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XUV superfluorescence from helium gas in the paraxial three-dimensional approximation
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We present the results of a theoretical study of XUV superfluorescence from doubly excited states of helium
resonantly pumped by free-electron laser (FEL) pulses. Our model allows us to predict both the spectrum and
angular distribution of emitted XUV radiation in a wide range of experimentally accessible parameters. This
is achieved by going beyond two key deficiencies of most previous models: The one-dimensional treatment in
space is upgraded to three dimensions with electromagnetic fields treated in the paraxial approximation and
spontaneous emission is modeled by a recently developed approach that avoids the unrealistic delayed response
but preserves the expected characteristics of the emitted field in the spontaneous emission limit. The case study
of 3a 1Po resonance in helium with 63.66 eV excitation energy is presented for realistic parameters of seeded
light pulses from the FERMI FEL facility and a recently developed high-pressure gas cell. Results of numerical
simulations show that both the spectral width and angular divergence of emitted radiation vary with gas pressure
and pump pulse intensity in a complex way.
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I. INTRODUCTION

The development of free-electron lasers (FELs) [1–3] has
opened the way for studying the nonlinear interaction of ex-
treme ultraviolet (XUV) and x-ray light with matter. One such
process is superfluorescence [4], where spontaneously emitted
radiation is amplified as it propagates through an inverted
population of target atoms. Achieving a substantial population
of excited states which rapidly decay via fluorescence in the
XUV or x-ray spectral domain requires pumping by highly in-
tense light pulses with duration on the order of femtoseconds,
which are currently produced only by FELs. Superfluores-
cence has in recent years been observed in a range of different
targets, for example, in neon gas [5], copper foil [6], and
manganese solutions [7]. In all of these experiments, strong
amplification of fluorescence was observed along with an
exponential dependence of the number of emitted photons on
pump pulse energy.

Since the emitted light pulses have high longitudinal coher-
ence and a duration that is comparable to that of FEL pulses
[8,9], there has been interest in employing superfluorescence
as the basis for new implementations of x-ray lasers [10].
However, designing such elaborate instruments requires reli-
able theoretical predictions. Modeling of superfluorescence is
an intricate problem, which has been extensively investigated
in the optical domain [4], but has recently also received at-
tention at shorter wavelengths [8,9,11]. Despite the progress
in the theoretical description of XUV and x-ray superfluores-
cence, the agreement between predictions and experimental
results is still only qualitative. One of the problems is an
accurate description of spontaneous emission, which is the
basis for subsequent amplification of the emitted field. This

has most widely been modeled by adding stochastic noise
terms mimicking fluctuations of polarization to the semiclas-
sical Maxwell-Bloch equations [12,13]. However, it has been
shown [14] that the generally used form of the noise terms
produces a delay in the emitted pulse with respect to pumping
and is thus inadequate for modeling systems in which pump
pulse duration is comparable to the excited-state lifetime.

Another reason for the poor agreement between theoretical
and experimental results is that field propagation is generally
modeled in a single spatial dimension. This is justified by
the fact that typically in superfluorescence experiments the
excited part of the target has the shape of an elongated cylin-
der. However, even in this case, the system evolution depends
on the Fresnel number, which is proportional to the square
of the target radius and inversely proportional to the target
length and emitted field wavelength and is thus a measure of
the significance of diffraction effects [4]. Strictly speaking,
the one-dimensional spatial approximation is only adequate
when the Fresnel number of the system is approximately one.
The spatially one-dimensional approach also assumes that the
intensity profile of pump radiation in the plane perpendicular
to its propagation direction is uniform with a cutoff at a certain
radius. Since the amplification of emitted radiation depends
exponentially on the local intensity of the pump pulse, such a
model cannot directly describe the propagation of pulses with
a Gaussian lateral intensity profile, such as those produced by
realistic FELs [1]. A Gaussian spatial intensity profile can be
approximately accounted for by combining simulation results
for the box-type intensity profile for different peak intensities
[14]. However, such spatial averaging does not provide infor-
mation on transverse variations of the emitted field intensity
and is only applicable if the Rayleigh range of the pump beam
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ŠPELA KRUŠIČ et al. PHYSICAL REVIEW A 107, 013113 (2023)

FIG. 1. Schematic representation of the level scheme. A helium
atom in the ground state 0 is resonantly photoexcited to the selected
doubly excited state i, which is coupled to the continuum and decays
via fluorescence to a singly excited state f or via autoionization a to
He+ 1s. The latter is coupled to He+ 2p (b) by the emitted radiation.

is much larger than the target length so that diffraction of
the FEL pulse inside the target is negligible. This is not the
case in experiments with gas targets pumped by XUV pulses
featuring focal sizes of a few micrometers and the Rayleigh
range on the order of millimeters [15].

The following is a typical experimental setup for observa-
tion of superfluorescence. Pump pulses are focused onto the
target to create a long column of transiently excited atoms or
ions. Amplified emission in the forward direction is analyzed
with a dispersive spectrometer, diffracting the signal onto a
two-dimensional (2D) detector. The dispersive axis of the
recorded images thus reflects the energy spectrum of superflu-
orescence pulses, whereas the nondispersive direction allows
for observation of the spatial intensity profile of emitted radi-
ation [5]. Recording the zeroth-order image on a CCD camera
after filtering out the pump signal also allows one to directly
measure the transverse angular profile of superfluorescence
with a resolution of approximately the ratio of the pixel size
to the distance between the target and detector. However, due
to the lack of 3D modeling, the latter aspect of the measure-
ments has not yet been fully investigated. Modeling the spatial
dependence of the emitted field intensity is also crucial for
experiments in which the gain cannot be simply inferred from
measurements of the emitted pulse energy. Such an example
is the observation of seeded Mn Kβ stimulated emission [16],
where the target was irradiated with two-color FEL pulses.
One color was used to create a core-hole population inversion
and the other to stimulate the weak Kβ emission. Because of
the lack of an upstream spectrometer that would measure the
shot-by-shot seed pulse energy before the target, amplification
of Kβ emission was detected based on the angular divergence
of the amplified field with respect to the seed.

In this work we present a theoretical study of XUV super-
fluorescence from the 3a 1Po doubly excited state of helium,
resonantly pumped by FEL pulses with 63.66 eV photon en-
ergy (Fig. 1). The evolution of the system is described in
three spatial dimensions and time, and the electromagnetic
fields are propagated in the paraxial approximation. This is
applicable since, due to the elongated shape of the excited
medium, emitted radiation primarily propagates along the

cylinder axis even when taking into account its transverse
variations. The duration of pump pulses is comparable to
the 80-fs lifetime of the excited state, which predominantly
decays via autoionization. To model spontaneous emission
and the onset of amplification, the recently introduced form
of stochastic noise terms [17] is added to the Maxwell-Bloch
equations. We demonstrate that this approach reproduces the
expected temporal and spectral profile of spontaneously emit-
ted radiation in the paraxial approximation for the studied
system.

The helium atom is a prototypical two-electron system and
as such it has been extensively studied over the years. In
particular, the measurement of the double-excitation spectrum
[18] was one of the early ground-breaking applications of
synchrotron radiation. The advent of XUV FEL sources has
enabled the study of nonlinear effects in helium such as res-
onant multiphoton excitation [19,20] and superfluorescence
at visible wavelengths [21]. While XUV amplified sponta-
neous emission from helium has not been observed before,
superfluorescence from the 3a 1Po doubly excited state was
investigated theoretically in Ref. [22]. However, in this study,
the system evolution was described in a single spatial di-
mension and spontaneous emission was modeled using noise
terms that introduced an artificial delay to the emitted field.
This model could thus provide only qualitative predictions
on the characteristics of superfluorescence. In the present
work we surpass the most prohibiting limitations of the pre-
vious model by treating the system evolution in three spatial
dimensions with noise terms that adequately model sponta-
neous emission, as well as including resonant coupling in
He+, which will be shown to significantly affect the spectral
properties of emitted radiation after its amplification. The
presented numerical results, which are calculated for realis-
tically achievable pumping and target parameters, could thus
be directly experimentally verified.

The paper is organized as follows. In Sec. II the theoretical
model of superfluorescence from doubly excited states of he-
lium is described along with the methods used to numerically
solve the obtained system of partial differential equations.
Numerical results of the simulations and characteristics of su-
perfluorescence in different regimes are discussed in Sec. III.
Details of the derivation are presented in Appendix A and
the numerical values of photoionization cross sections used in
the simulations are specified in Appendix B. In Appendix C
simulation results for the case of spontaneous emission are
discussed and the ability of stochastic noise terms to suitably
describe spontaneous emission is verified. Atomic units are
used throughout the paper, unless stated otherwise.

II. THEORETICAL DESCRIPTION AND MODELING

The target is helium gas which is pumped by linearly polar-
ized FEL pulses with 63.66 eV photon energy, resonant with
the 1 1Se → 3a 1Po transition (|0〉 → |i〉 in Fig. 1) [23]. This
particular doubly excited state was selected for the present
case study because it is relatively isolated in energy, so con-
sidering the pump spectral width, which is a few meV for
seeded XUV FEL pulses [1], it is the only state that is excited.
It has a lifetime of 80 fs [23] and decays predominantly by
autoionization, resulting in a natural linewidth of 8.2 meV.
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The radiative decay contributes only 4.8 μeV [24] to the width
and the dominant radiative decay channel is to the singly
excited 3 1Se state (| f 〉), with the emitted photon energy of
40.74 eV [25] and a fluorescence branching ratio of 72.7%.
The final singly excited state has a lifetime of 55 ns [26].
Minor radiative decay channels of the doubly excited state
are neglected, as it has been shown that emission from the
dominant fluorescence channel is most strongly amplified and
inclusion of minor channels does not significantly affect the
evolution of superfluorescence [22].

The transition dynamics in the helium atom is modeled by
a three-level � system, which is resonantly coupled to the
1sεp continuum (Fig. 1). This is a good approximation, since
the linearly polarized pump field resonantly populates a single
excited state, and this decays radiatively to a single final state
by emission of radiation having the same linear polarization
as the pump. The energy of photons emitted on the |i〉-| f 〉
transition is relatively close to the 40.8 eV energy of the
1s-2p transition in He+ with a 6.6 μeV natural width. The
ground state of He+ (denoted by |a〉) is strongly populated
by autoionization of the doubly excited state, so in the satu-
ration regime, where the spectral width of emitted radiation
is expected to increase [9], significant field absorption due to
the He+ 1s-2p transition could occur and the corresponding
resonant coupling must be considered by the model. Sponta-
neous emission on this transition is neglected, since the He+

2p excited state (|b〉) has a lifetime of 100 ps. Additionally,
atomic and ionic states can be photoionized by the pump
and emitted field. The state |c〉 denotes a single level that is
included to account for field absorption due to photoionization
and effectively replaces excited states He+ nl with n = 3, 4.
The latter is a reasonable approximation made to simplify the

model, because resonant coupling of these states to each other
or to the atomic states is negligible and their populations are
expected to be small.

A. Equations for atomic populations and coherences

Atomic states are coupled by the pump field F and emitted
field E , with their main propagation direction parallel to the z
axis. The transverse electric fields can be written in terms of
their slowly varying amplitudes as

U = U (+)ei(kUzz−ωU t ) + U (−)e−i(kUzz−ωU t ). (1)

Here U = F, E are the pump and emitted electric field and
U (±) = F (±), E (±) are their respective positive- and negative-
frequency components. The wave-vector component along the
main propagation direction z and carrier frequency of the field
U are denoted by kUz and ωU , respectively. When modeling
spontaneous emission with the addition of stochastic noise
terms [17], the positive- and negative-frequency field ampli-
tudes are not complex conjugate pairs. However, the |0〉-|i〉
transition is resonantly pumped by a strong FEL pulse and
the branching ratio for the decay of the doubly excited state
back to the ground state is about 50 times smaller than that for
fluorescence into the final 3 1Se state [27]. Stochastic noise
contributions to the |0〉-|i〉 transition are thus negligible and
we can assume F (−) = F (+)∗.

Following the derivation in Refs. [22,28,29], which is also
outlined in Appendix A, we obtain a system of semiclassical
Maxwell-Bloch equations that describe the evolution of the
density matrix and propagation of electric-field amplitudes in
the paraxial and slowly varying envelope approximations [30].
In the retarded time frame, with τ = t − αz, the evolution of
atomic populations is described by

∂

∂τ
ρ00 = −(γ0 + �0)ρ00 − iF (−)μ̃0i

(
1 − i

q0i

)
ρi0 + iF (+)μ̃i0

(
1 + i

qi0

)
ρ0i, (2a)

∂

∂τ
ρii = −(�a + �r + �i )ρii − iF (+)μ̃i0

(
1 − i

qi0

)
ρ0i + iF (−)μ̃0i

(
1 + i

q0i

)
ρi0

− iE (+)μ̃i f

(
1 − i

qi f

)
ρ f i + iE (−)μ̃ f i

(
1 + i

q f i

)
ρi f − χ (hρ f i + h†ρi f ), (2b)

∂

∂τ
ρ f f = −(γ f + � f )ρ f f + � f

r ρii − iE (−)μ̃ f i

(
1 − i

q f i

)
ρi f + iE (+)μ̃i f

(
1 + i

qi f

)
ρ f i

+χ (h†ρi f + hρ f i ) + h∗ρi f + h†∗ρ f i. (2c)

Here �a = 8.2 meV is the autoionization decay width of the
doubly excited state, �r = 4.8 μeV is its fluorescence width,
�

f
r = 3.5 μeV is the partial radiative rate to the final state, and

γ0, f are the field-induced widths of the ground and final states,
respectively (see Appendix A). Nonresonant photoionization
processes are encompassed in � j , j = 0, i, f , which are added
to the density-matrix equations via a rate-equation approach
and are defined as

�0 = �E0, (3a)

�i = �F i + �E i, (3b)

� f = �F f . (3c)

Here �U j denotes the photoionization rate of state | j〉 with
field U and can be expressed as �U j = σU jJU , where JU =
U (+)U (−)/2παωU is the flux of field U and σU j is the pho-
toionization cross section specified in Appendix B. Ionization
of the ground state with the emitted field populates He+ 1s,
whereas ionization of the final state with the pump field and
ionization of the doubly excited state with both fields populate
the combined ionic state |c〉 (see Appendix B).

The modified dipole matrix elements μ̃i j = μ̃ ji, j = 0, f ,
describe transitions to and from the discrete excited state
modified by an admixture of the continuum [22] and qi j are
the real-valued Fano parameters [31]. For the present atomic
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system, the values of dipole moments are μ̃i0 = 0.0143 a.u.

and μ̃i f = 0.279 a.u. For the pumping transition qi0 = −2.57,
so the resonant part of the absorption coefficient for the pump
field exhibits an asymmetric Fano profile, whereas for the
|i〉-| f 〉 transition qi f was calculated to be 310; hence, in the
spontaneous emission limit the emitted field spectrum is mod-
eled as a Lorentzian. Fano parameters qi j and dipole matrix
elements μ̃i j were calculated using the method of complex
rotation [32].

The terms proportional to h(†) and h(†)∗ on the right-hand
side of Eqs. (2b) and (2c) are stochastic noise terms mim-
icking spontaneous emission on the |i〉-| f 〉 transition, with χ

a normalization factor [17,33]. The derivation of stochastic
terms for the studied case is presented in Appendix A and in
Appendix C we numerically demonstrate the validity of simu-
lating spontaneous emission with this approach by comparing
the numerical and analytical results in the limit of low target
pressures and pump pulse intensities.

Coherences describing the pumping transition |0〉-|i〉
evolve according to

∂

∂τ
ρi0 = −

(
�i0

2
+ �D

i0 − i�F

)
ρi0

− iF (+)μ̃i0

(
1 − i

qi0

)
ρ00 + iF (+)μ̃i0

(
1 + i

qi0

)
ρii

− iE (+)μ̃i f

(
1 − i

qi f

)
ρ f 0 − χhρ f 0, (4a)

∂

∂τ
ρ0i = −

(
�i0

2
+ �D

i0 + i�F

)
ρ0i

− iF (−)μ̃0i

(
1 − i

q0i

)
ρii + iF (−)μ̃0i

(
1 + i

q0i

)
ρ00

+ iE (−)μ̃ f i

(
1 + i

q f i

)
ρ0 f − χh†ρ0 f , (4b)

where �i j = �a + �r + �i + � j + γ j for j = 0, f and �F =
ωF − (Ei − E0) is the pump field frequency detuning (Ej are
energies of atomic levels). The last two terms on the right-
hand side of Eqs. (4) are proportional to ρ0 f and ρ f 0 and are
significant only when the emitted field intensity is high. In the
studied system, this only occurs after field amplification, when
the contribution of spontaneous emission is already negligible
and the emitted field amplitude can be described classically
with E (−) ≈ E (+)∗. Consequently, stochastic noise terms in
Eqs. (4) can be neglected and we can assume ρi0 = ρ∗

0i.
The Doppler line broadening is accounted for in an ap-

proximate way [34] by adding an extra decay rate �D
i j =

γD|Ei − Ej | to the equations for nondiagonal density-matrix
elements, where γD = [8 ln(2)kBT/Mc2]1/2 ≈ 6.15 × 10−6 at
room temperature, with M the mass of helium atoms and T the
gas temperature. Collisional processes are neglected, since for
the gas pressures of interest both the elastic collisional rates
between atoms [35] as well as electron-impact excitation and
ionization rates [36] are much smaller than the autoionization
or photoionization rates.

The time dependence of other nondiagonal matrix elements
is described by

∂

∂τ
ρi f = −

(
�i f

2
+ �D

i f − i�E

)
ρi f − iE (+)μ̃i f

(
1 − i

qi f

)
ρ f f + iE (+)μ̃i f

(
1 + i

qi f

)
ρii

− iF (+)μ̃i0

(
1 − i

qi0

)
ρ0 f + χh(ρii − ρ f f ) + h†∗ρii, (5a)

∂

∂τ
ρ f i = −

(
�i f

2
+ �D

i f + i�E

)
ρ f i − iE (−)μ̃ f i

(
1 − i

q f i

)
ρii + iE (−)μ̃ f i

(
1 + i

q f i

)
ρ f f

+ iF (−)μ̃0i

(
1 + i

q0i

)
ρ f 0 + χh†(ρii − ρ f f ) + h∗ρii, (5b)

∂

∂τ
ρ0 f = −

(
�0 f

2
+ i[�F − �E ]

)
ρ0 f − iF (−)μ̃0i

(
1 − i

q0i

)
ρi f + iE (+)μ̃i f

(
1 + i

qi f

)
ρ0i + (χh + h†∗)ρ0i, (5c)

∂

∂τ
ρ f 0 = −

(
�0 f

2
− i[�F − �E ]

)
ρ f 0 − iE (−)μ̃ f i

(
1 − i

q f i

)
ρi0 + iF (+)μ̃i0

(
1 + i

qi0

)
ρ f i + (χh† + h∗)ρi0, (5d)

with �E = ωE − (Ei − E f ) the emitted field detuning and �0 f = ∑
j=0, f (� j + γ j ). Since in our case the only contribution to

the emitted field stems from resonant fluorescence �E = 0.

B. Equations for ionic populations and coherences

Ionic states |a〉 and |b〉 effectively act as a two-level system; however, the equation governing the lower state population
contains additional terms due to its resonant coupling to the doubly excited state:

∂

∂τ
ρaa = −�Faρaa + (γ0 + �E0)ρ00 + �aρii + γ f ρ f f − iE (−)μabρba + iE (+)μbaρab

+ 2
μ̃i0

qi0
F (+)ρ0i + 2

μ̃0i

q0i
F (−)ρi0 + 2

μ̃i f

qi f
E (+)ρ f i + 2

μ̃ f i

q f i
E (−)ρi f , (6a)
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∂

∂τ
ρbb = −(�Fb + �Eb)ρbb + iE (−)μabρba − iE (+)μbaρab, (6b)

∂

∂τ
ρab = −

(
�ab

2
+ i�ion.

E

)
ρab − iE (−)μab(ρbb − ρaa), (6c)

∂

∂τ
ρba = −

(
�ab

2
− i�ion.

E

)
ρba + iE (+)μba(ρbb − ρaa). (6d)

Here μab = μba = 0.372 a.u., �ab = �Fa + �Fb + �Eb, and �ion
E = ωE − (Eb − Ea), with Ea and Eb the energies of the He+ 1s

and 2p states, respectively. Other levels of He+ are only coupled to the rest of the system through nonresonant photoionization,
so the population of state |c〉, in which they are combined, evolves according to

∂

∂τ
ρcc = −(�Fc + �Ec)ρcc + (�F i + �E i )ρii + �F f ρ f f . (7)

C. Field propagation equations

In the paraxial approximation, propagation of the slowly varying pump field amplitude is described by (see Appendix A)
[4,37] (

∂

∂z
− i

2kF
∇2

⊥

)
F (+) = −κF

2
F (+) − 2π iαωFnμ̃0i

(
1 − i

q0i

)
ρi0, (8)

where ∇2
⊥ = (∂2/∂x2 + ∂2/∂y2), n is the number density of atoms, and

κF = n

⎛
⎝σ̃0ρ00 +

∑
j=i, f ,a,b,c

σF jρ j j

⎞
⎠ (9)

is the pump field absorption coefficient. The FEL pump pulse impinging on the target is assumed to have an axially symmetric
Gaussian transverse intensity profile with the focal point at longitudinal position z0 (see Appendix A). The input parameters are
the pulse energy EFEL and spot size d0 in focus (FWHM of the intensity profile). The temporal profile of the pump pulse is also
assumed to be Gaussian with a FWHM duration τ0, in accordance with temporally coherent pulses produced by the seeded FEL
FERMI [1] that operates in the XUV spectral range.

Equations for the emitted field amplitudes are(
∂

∂z
− i

2kE
∇2

⊥

)
E (+) = −κE

2
E (+) − 2π iαωE

[
nμ̃ f i

(
1 − i

q f i

)
ρi f + ρ∗

f i

2
+ μ̃ f ih + nμabρba

]
, (10a)

(
∂

∂z
+ i

2kE
∇2

⊥

)
E (−) = −κE

2
E (−) + 2π iαωE

[
nμ̃i f

(
1 + i

qi f

)
ρ f i + ρ∗

i f

2
+ μ̃i f h† + nμbaρab

]
. (10b)

Due to the stochastic noise terms (terms proportional to h and
h†) the positive- and negative-frequency amplitude compo-
nents are not Hermitian conjugates. The form of coherence
terms (second term on the right-hand side of each equation)
arises from the regularization necessary because of divergent
noise trajectories [17]. The absorption coefficient

κE = n

⎛
⎝σ̃ f ρ f f +

∑
j=0,i,b,c

σE jρ j j

⎞
⎠

is the same for both amplitudes, as it only depends on the field
flux and diagonal density-matrix elements.

D. Numerical implementation

The system of differential equations is solved nu-
merically on a discrete grid of points (xk, yl , zm, τn) =
(k�x, l�y, m�z, n�τ ). Differential equations for the density
matrix are propagated as

ρi j,xk yl zmτn+1 = ρi j,xk yl zmτn+1 |reg + �τρi j,xk yl zmτn |noise, (11)

where ρi j,xk yl zmτn+1 |reg is the regular part of the density-matrix
equations (without stochastic terms), which is propagated
from time τn to τn+1 using the fourth-order Runge-Kutta
method [38], and ρi j,xk yl zmτn |noise is the stochastic part. On
the discretized grid, the noise normalization factor is χ =
παωE |μ̃ f i|2�z and the stochastic terms are defined as [17]

hxkyl zmτn =
√

1

χ�V �τ

(√
ρii

ρii − ρ f f

)
xkyl zmτn

ξxkyl zmτn , (12a)

h†
xkyl zmτn

=
√

1

χ�V �τ

(√
ρii

ρii − ρ f f

)
xkyl zmτn

ξ †
xkyl zmτn

, (12b)

h∗
xkyl zmτn

=
√

χ

�V �τ

(√
ρii − ρ f f

ρii

)
xkyl zmτn

ξ ∗
xkyl zmτn

, (12c)

h†∗
xkyl zmτn

=
√

χ

�V �τ

(√
ρii − ρ f f

ρii

)
xkyl zmτn

ξ †∗
xkyl zmτn

, (12d)

where �V = �x�y�z and ξ and ξ † are complex random
numbers drawn from a standard normal distribution at each
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grid point. Equations for the field propagation are solved by a
split-step finite-difference beam propagation method [39,40]
(see Appendix A for details).

III. RESULTS AND DISCUSSION

Previous studies have shown [22] that the crucial parameter
for achieving superfluorescence in gases is a sufficiently high
target density. This is usually achieved by using an open-
ended stationary or pulsed gas cell, or an Even-Lavie or Parker
valve as the source [5,41,42]; however, in these cases the
spatial profile of the gas density is generally unknown. More-
over, the density along the pump pulse propagation direction
increases and decreases slowly, causing unwanted absorp-
tion of the pump pulse where the gas density is too low to
achieve amplification. Another option is to use the recently
developed microfluidic glass cells produced by femtosecond
laser irradiation followed by chemical etching [43,44], which
allow one to achieve a high gas density with a flat profile in
a localized region. Such cells have been used, for example,
to demonstrate the generation of few-cycle deep ultraviolet
pulses via frequency up-conversion [45] and to efficiently gen-
erate high-order harmonics in helium gas [46]. These devices
appear ideal for superfluorescence experiments, since the gas
density inside the cell can be finely tuned and pressures of
up to 1 bar can be achieved [46]. As the aim of this study is to
reproduce a realistic experimental setup as closely as possible,
we use a density profile that can be produced by a simple
version of such a cell [45] and is shown on the left-hand
side plot of Fig. 6. The (target or gas) pressure p specified
throughout this section refers to the backing pressure in the
reservoir that is connected to the cell by an injection channel.
The gas density inside the cell scales linearly with backing
pressure [46] and its maximum value is about 1% smaller than
the density calculated from the ideal gas law using the value
of the backing pressure. The length of the microfluidic cell
is around 10 mm and we assume that the focal point of the
FEL beam is at the middle of the cell with a focal FWHM
spot size of d0 = 6 μm and τ0 = 50 fs FWHM pulse duration,
in line with parameters achievable at the FERMI FEL [15].
Numerical results presented in this section are averaged over
300 repetitions of the simulation, unless stated otherwise.

In experiments with gas targets, it is possible to investigate
the dependence of the superfluorescence yield from a given
excited state on two parameters: target pressure and pump
pulse energy. The number of emitted photons as a function of
these two parameters for the 3a 1Po resonance in He is shown
in Fig. 2. Increasing either of the two parameters produces
the same characteristic curve. At low pressures or pump pulse
energies, the density of excited states is low and emission is
spontaneous with a linear increase of the number of emitted
photons. When either of the two parameters is sufficiently
high, the emitted field starts to amplify and the photon number
increases exponentially, until the system reaches saturation at
high gas pressures and/or pump pulse energies. In the latter
regime, the dependence of the photon number on the two pa-
rameters can be anywhere from constant to linear, depending
on the fraction of atoms that is excited from the ground state,
or can even start to decrease at very high gas pressures, when
emitted field absorption becomes the dominant process. At

FIG. 2. Number of emitted photons as a function of gas pressure
and pump pulse energy. Dashed lines denote the corresponding num-
ber of pump photons impinging on the target.

the highest investigated gas pressures, the number of emitted
photons is only about an order of magnitude smaller than the
number of photons in the FEL pulse impinging on the target.

A quantity that is generally measured in superfluorescence
experiments is the spatially integrated frequency spectrum
of emitted radiation. In the spontaneous emission limit, the
spectral profile is approximately Lorentzian with a width cor-
responding to the excited-state lifetime [see Fig. 7(a)]. The
spectral shape remains roughly equal also in the amplifica-
tion regime. While gain narrowing, i.e., a decrease in the
bandwidth of emitted radiation, is expected to occur simul-
taneously with field amplification in high-gain systems [47],
this is not observed here because the pump pulse duration is
comparable to the excited-state lifetime and pumping modi-
fies the excited-state population as it decays. Increasing the
pressure even further leads to a broadening of the spectral
line, which also becomes highly asymmetric. Figure 3 shows
spatially integrated frequency spectra of radiation emitted by

FIG. 3. Spectral intensity of radiation emitted from the target exit
integrated over transverse dimensions for different backing pressures
and 40 μJ pump pulse energy. The vertical dashed line denotes the
|i〉-| f 〉 transition energy.
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FIG. 4. Single-repetition and average time-integrated angular
spectra of radiation emitted from the target exit for 5 mbar (top row)
and 25 mbar backing pressure (bottom row) and 10 μJ pump pulse
energy.

the target for different backing pressures after the onset of
saturation. Broadening of the spectral line is caused by the
Autler-Townes effect and is characteristic of the saturation
regime of superfluorescence [9,22]; however, its asymmetry is
specific to the presented case. In part, the asymmetric profile
is a consequence of the fact that radiation stems from an au-
toionizing resonance. This leads to a modified Autler-Townes
effect producing a complex spectral shape [48], which can be
observed in Fig. 3 for pressures below 20 mbar, when the
emission line is still relatively narrow. Additionally, as the
spectral line widens with increasing gas pressure, the high-
energy part of the emission spectrum starts to overlap with the
energy of the He+ 1s-2p transition at 40.8 eV. The emitted
field is reabsorbed around this transition energy due to res-
onant excitation of He+ ions in the ground state. Depending
on the pressure and pump pulse energy, this absorption can
be only partial; coupling of ionic states to the strong electric
field produces Rabi oscillations in the time domain (see Fig. 6)
and the corresponding broadening or splitting of the emission
line in the spectral domain. In line with this, the spectral
region of partial field reabsorption is not limited to a few μeV
around 40.8 eV photon energy, as expected in the case of the
nondriven He+ 1s-2p transition governed by the natural width.

In the XUV spectral region, directional radiation emitted
from the target is usually analyzed using a grating spec-
trometer. In the Fraunhofer approximation, the zeroth-order
image measured on a 2D detector typically positioned several
meters from the target approximately corresponds to the time-
integrated angular spectrum of emitted radiation. Examples
of single-shot 2D angular spectra along with spectra aver-
aged over 300 repetitions of the simulation for two different
backing pressures are shown in Fig. 4. For the considered
pump pulse energy of 10 μJ, the lower pressure of 5 mbar
corresponds to the amplification regime of superfluorescence,
whereas at the higher pressure of 25 mbar the system is in
saturation. Single-shot angular spectra differ substantially be-
tween different repetitions of the simulation and can be highly
asymmetric, with the peak of intensity positioned off-axis.
This reflects the randomness of spontaneous emission which
initiates the amplification process. On the other hand, average
spectra exhibit cylindrical symmetry with maximum intensity

FIG. 5. (a) Scaled angular spectra of emitted radiation at θy = 0
for different backing pressures and 10 μJ pump pulse energy. (b) An-
gular divergence of the emitted field (see the text) as a function of
backing pressure for two different pump pulse energies. The gray
dashed lines denote the (a) angular spectrum and (b) angular diver-
gence of the pump pulse.

at θx,y = 0, as expected when pumping the target with a Gaus-
sian beam. Average spectra differ for the two gas pressures, in
both their shape and angular divergence.

More detailed changes of the angular spectral shape and di-
vergence with varying gas pressure are demonstrated in Fig. 5.
We define the angular divergence as the FWHM of average
angular spectral intensity at either θx = 0 or θy = 0 mrad (av-
erage spectra are axially symmetric). At the lowest depicted
pressures corresponding to initial stages of the amplification
regime, the angular spectrum is approximately Gaussian, but
angular divergence decreases with increasing pressure. This
is a consequence of gain guiding; contrary to the case of
spontaneous emission, which is approximately isotropic, in
stimulated emission the field modes that are amplified are
those propagating at small angles with respect to the pump
propagation direction, because those are the modes that en-
counter a large population inversion and can thus be amplified.
Moreover, the spatial profile of population inversion mimics
that of the pump pulse and thus has a Gaussian transverse
profile. Since the rate of amplification is exponentially depen-
dent on the local population inversion, its spatial distribution
additionally contributes to the overall reduction of divergence.

As the gas pressure increases, parts of the gas close to the
axis of pump pulse propagation enter saturation. However,
field modes propagating off-axis might still undergo exponen-
tial amplification, since away from the target axis the overall
field intensity is lower and population inversion can remain
positive. Consequently, in latter parts of the target, amplifi-
cation of off-axis modes is relatively stronger than of those
propagating at very small angles; hence the angular spectrum
changes shape and divergence increases.

Depending on the combination of gas pressure and pump
pulse energy, the transverse profile of population inversion
can differ substantially from the Gaussian profile of the pump
pulse and the maximum density of excited states can also vary
longitudinally. The former occurs if the pump pulse is strong
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FIG. 6. Results of a single repetition of the simulation for 25 mbar backing pressure and 10 μJ pump pulse energy. The left-hand side of
the figure shows the number of emitted photons as a function of propagation distance, along with the scaled longitudinal density profile of
gas inside the microfluidic cell. The transverse (x, y) dependence of the gas density is assumed to be constant. Plots on the right-hand side
show the scaled emitted field intensity, population inversion in neutral helium ρii − ρ f f , and He+ population inversion ρbb − ρaa at y = 0 μm
for two propagation distances, i.e., z = −2.8 mm (bottom row) and z = 2.8 mm (top row), indicated by black dots on the left-hand-side plot.
Time τ = 0 fs coincides with the peak pump pulse intensity.

enough to completely deplete the ground state in some finite
transverse region, whereas the latter takes place if the gas
pressure is high and the pump pulse is significantly absorbed
as it propagates through the target. Both cases can lead to
a more complex dependence of the angular divergence, as
shown for the 40-μJ case in Fig. 5(b).

Overall, the angular divergence of the emitted pulse is
significantly larger than that of the pump pulse. For all inves-
tigated gas pressures and both pump pulse intensities, angular
divergence of the pump pulse after transition through the tar-
get is approximately 1.4 mrad. In terms of the angular spread
of a Gaussian beam, which is defined in terms of its waist, this
corresponds to 2.5 mrad, which is approximately in agree-
ment with the expected angular spread of a Gaussian beam
for the given focus size and wavelength (2.43 mrad) [49].

Analyzing the spatiotemporal dependence of the emitted
field intensity and population inversion shows that the dynam-
ics of the light-matter interaction is indeed highly nonuniform
across the target, making 3D spatial modeling crucial for
studies of superfluorescence. Figure 6 shows the (x, τ ) de-
pendence of these variables at y = 0 μm and two different
propagation distances z. The dependence of the emitted pho-
ton number on z is similar to the curves in Fig. 2, with a
clearly discernible amplification and saturation region. Hence,
the first longitudinal point z = −2.8 mm corresponds to the
amplification regime and the second point z = 2.8 mm to
the saturation regime. Even though the quantities depicted
in Fig. 6 cannot be directly measured, they can support the
interpretation of results in Figs. 2 and 3, which can be experi-
mentally verified.

At z = −2.8 mm, population inversion in atomic helium
ρii − ρ f f , which is created by resonant pumping with the FEL
pulse, is positive and relatively large at short times. The main

decay channel of the doubly excited state is autoionization
to state |a〉, causing the population inversion in He+ to be
negative in the whole (x, t ) region, since here the emitted
field intensity is relatively low and the resonant transfer of
population to He+ 2p is negligible. The ground state of He+

can be further photoionized to He2+ by the strong pump pulse,
making the spatiotemporal dependence of population inver-
sion more complex. The emitted field is delayed with respect
to the pump pulse, as amplification requires some time to
build up [9]. Since Fig. 6 shows results for a single repetition,
the transverse dependence of the emitted field intensity is not
symmetric with respect to x = 0 μm. However, this allows us
to observe that the regions of (x, τ ) space where the emitted
field intensity is significant coincide with the regions where
ρii − ρ f f becomes negative; these are the regions where, due
to stimulated emission, population is transferred to the final
state | f 〉 by emission of an additional photon.

In the amplification regime at z = 2.8 mm, Rabi oscilla-
tions are clearly visible in both the emitted field intensity and
ρii − ρ f f population inversion, where again the high-intensity
regions coincide with a larger population of the final state. In
the spectral domain, these oscillations correspond to a broad-
ening of the emission line, as seen in Fig. 3. At long times, He
population inversion around the target axis is more negative
than in the amplification regime, which indicates that transfer
of population to state | f 〉 is stronger, resulting in a larger
number of emitted photons. A clear manifestation of Rabi
oscillations also in the He+ population inversion confirms
that the emitted field is indeed partially reabsorbed around
the resonant energy of the |a〉-|b〉 transition. The spectral line
there is broadened beyond the natural width due to coupling
with strong electric fields, leading to the nontrivial calculated
spectral shapes at high gas pressures (Fig. 3).

013113-8



XUV SUPERFLUORESCENCE FROM HELIUM GAS IN THE … PHYSICAL REVIEW A 107, 013113 (2023)

IV. CONCLUSION

We have presented the results of a theoretical model of
XUV superfluorescence emitted by helium atoms in a doubly
excited state that is resonantly pumped by FEL light pulses.
The model provides quantitative predictions that could be
directly verified in an experimental campaign. The evolution
of the light-matter interaction was described in three spatial
dimensions and time, and the electric fields were treated in the
paraxial approximation, which is a realistic 3D approximation
due to the elongated shape of the active medium. Spontaneous
emission, which initiates superfluorescence and thus crucially
determines its evolution, was modeled by a recently developed
form of stochastic noise terms that reproduce the expected
properties of emitted radiation at low density of atoms in the
resonant state.

The developed model enables the study of both the fre-
quency and angular distribution of the emitted electric field,
which are observables that could be measured with spec-
troscopic setups adapted to superfluorescence experiments.
Characteristics of the emitted field were investigated for a
wide range of experimentally achievable gas pressures and
pump pulse energies. Simulation results showed that the
spectral width of emitted radiation increases significantly
with increasing excited-state density, and the distribution of
spectral intensity exhibited a complex profile resulting from
several processes. The angular divergence of the emitted field
also varied with increasing gas pressure or pump pulse energy
and was calculated to be significantly larger than that of the
pump beam. The latter is in line with experimental observation
of seeded Mn Kβ emission [16], where field amplification
was detected based on the large angular divergence of emitted
radiation.

While the model takes into account a wide array of atomic
processes, some approximations are still made in the deriva-
tion of Maxwell-Bloch equations that limit the usability of the
theoretical description presented. One of them is neglecting
the minor radiative decay channels of the doubly excited state
that could potentially get amplified after emission on the dom-

inant radiative transition becomes saturated [9], although it
has been shown in the frame of a spatially one-dimensional
model that this should not significantly alter the simulation
results [22]. Another limiting approximation is neglecting the
shifts associated with autoionization and field-induced ion-
ization (see Appendix A). These could become significant at
very high pump pulse energies or target pressures and hence
limit the range of parameters that can be studied with the
presented model. Finally, at high gas pressures, plasma effects
and electronic collisional processes could alter the dynamics
of the system evolution, or the propagation length at which
the system reaches saturation could become comparable to
the transverse extent of the target, which would make the
paraxial approximation no longer applicable. Experimental
investigation of resonantly pumped XUV superfluorescence,
which has not been observed before and is feasible for the
atomic system studied, is thus crucial for the evaluation of the
theoretical results presented.
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APPENDIX A: DERIVATION OF MAXWELL-BLOCH
EQUATIONS

The effective Hamiltonian which describes the atomic sys-
tem interacting with resonant electromagnetic fields (Fig. 1)
in the rotating-wave approximation is [50–52]

H =
∑

j=0,i, f

E j | j〉〈 j| +
∑
j=a,b

∫
(Ej + ε)| jε〉〈 jε|dε + F (+)μi0θF |i〉〈0| + F (−)μ0iθ

∗
F |0〉〈i| + E (+)μi f θE |i〉〈 f |

+ E (−)μ f iθ
∗
E | f 〉〈i| +

∫
dε(F (+)μa0θF |aε〉〈0| + F (−)μ0aθ

∗
F |0〉〈aε| + E (+)μa f θE |aε〉〈 f | + E (−)μ f aθ

∗
E | f 〉〈aε|

+ Via|i〉〈aε| + Vai|aε〉〈i| + E (+)μbaθE |bε〉〈aε| + E (−)μabθ
∗
E |aε〉〈bε|), (A1)

where Ej is the unperturbed energy of state j, Ea + ε (Eb + ε) is the energy of the 1sεp (2pεp) continuum state, μ jk = 〈 j|μ̂|k〉
are the dipole matrix elements, with μ̂ the projection of electric dipole moment onto the field polarization vector, and to simplify
notation we introduced θU = exp(ikUzz − iωU t ), with U = F , E . Continuum states above the N = 1 ionization threshold are
coupled to the doubly excited state via interaction V̂ , with Vjk = 〈 j|V̂ |k〉. The ionic state |c〉 is only populated through
nonresonant processes, so it is omitted from the Hamiltonian and will be coupled to the atomic system at a later stage via
the corresponding photoionization rates [30].

By writing the solutions of the time-dependent Schrodinger equation in terms of the slowly varying probability amplitudes of
resonantly coupled states u j as

|ψ〉 = e−iE0t

(
u0|0〉 + uiθF |i〉 + u f θFθ∗

E | f 〉 +
∫

dε(uaεθF |aε〉 + ubεθFθE |bε〉)

)
, (A2)
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we arrive at the equations for the time evolution of probability
amplitudes

∂

∂t
u0 = −iF (−)μ0iui − i

∫
dε F (−)μ0auaε, (A3a)

∂

∂t
ui = i�Fui − iF (+)μi0u0 − iE (+)μi f u f − i

∫
dε Viauaε,

(A3b)

∂

∂t
u f = i(E0 + ωF − E f − ωE )u f − iE (−)μ f iui

− i
∫

dε E (−)μ f auaε, (A3c)

∂

∂t
uaε = i�a(ε)uaε − iF (+)μa0u0 − iVaiui

− iE (+)μa f u f − iE (−)μabubε, (A3d)

∂

∂t
ubε = i�b(ε)ubε − iE (+)μbauaε (A3e)

and analogous equations for complex conjugate amplitudes,
with �a(ε) = E0 + ωF − (Ea + ε) and �b(ε) = E0 + ωF +
ωE − (Eb + ε). By using the Born-Markov approximation
[53] for the terms coupling continuum and atomic states,
equations for amplitudes uaε and u∗

aε at time t can be formally
solved to obtain (spatial coordinates are omitted)

uaε (t ) = F (+)(t )μa0u0(t ) + E (+)(t )μa f u f (t ) + Vaiui(t )

�a(ε) + iη

− i
∫ t

0
dt ′e−i�a (ε)(t−t ′ )E (−)(t ′)μabubε (t ′), (A4a)

u∗
aε (t ) = F (−)(t )μ0au∗

0(t ) + E (−)(t )μ f au∗
f (t ) + Viau∗

i (t )

�a(ε) − iη

+ i
∫ t

0
dt ′ei�a (ε)(t−t ′ )E (+)(t ′)μbau∗

bε (t ′), (A4b)

where we assume the limit η → 0+.
After inserting these solutions into Eqs. (A3) and anal-

ogous equations for the complex conjugate amplitudes and
neglecting the coupling of atomic states through the 2pεp
continuum (terms proportional to Viaμab and μ jaμab, j =
0, f ), we can make use of the Sokhotski-Plemelj theorem
[54] to define the autoionization width �a = 2π |Via|2�a(ε)=0
and the associated shift [50], as well as the field-induced ion-
ization widths γ0 = σ̃0JF and γ f = σ̃ f JE and their associated
shifts [55]. Ionization cross sections of the ground state with
the pump field and final state with the emitted field are defined
as σ̃ j = 4π2αωU |μ ja|2�a(ε)=0, with j = 0, f and U = F , E ,
respectively. In a similar way we can define the modified
dipole matrix elements

μ̃i j = μi j + P
∫

dε
Viaμa j

�a(ε)
, j = 0, f , (A5)

that describe coupling of the ground or final state to the doubly
excited state modified by the admixture of the continuum
(P denotes the Cauchy principal value). The Fano asymme-
try parameters are then defined as qi j = μ̃i j/(πViaμa j )�a(ε)=0

[31].

Density-matrix equations for the atomic part of the system
are obtained after neglecting the autoionization and field-
induced shifts [48], as well as coupling of the ground and
final state through the 1sεp continuum (terms proportional
to μ jaμak , where j = 0, f and k = f , 0, respectively) [22],
and using ρ jk = u ju∗

k as the definition of the density-matrix
elements. Adding the rates due to nonresonant photoioniza-
tion and fluorescence from the excited state to final state leads
to Eqs. (2)–(5). Ionic density-matrix elements are defined as
ρ jk = ∫

u jεu∗
kεdε, with j, k = a, b, from which Eqs. (6) are

obtained after performing the same approximations as above.
The noise contribution to equations for the time evolution

of density-matrix elements is (see Refs. [17,33,56,57])

∂

∂t
ρi j

∣∣∣∣
noise

= −
∑
σ,s

χ [ρs jTisσ (Hish − Hsih
†)

− ρisTs jσ (Hs jh − Hjsh
†)]

+
∑
σ,s

(ρs jTisσ Hsih
∗ + ρisTs jσ Hs jh

†∗), (A6)

where Hi j = �(Ei − Ej ), with �(x) the Heaviside step func-
tion. The tensor Tjkσ describes the relative strength of dipole
transitions between atomic states. The index σ runs over the
field polarization modes and s over the states of the system. In
our case, since the pump field is linearly polarized, a single ex-
cited state is populated, and this decays radiatively to a single
final state, so the emitted field contains only one polarization
mode and index σ can be omitted. As mentioned in the main
text, spontaneous decay to the ground state is neglected and
thus

Tjk =
⎡
⎣0 0 0

0 0 1
0 1 0

⎤
⎦, (A7)

where the sequence of states is (0, i, f ). Inserting Eq. (A7)
into Eq. (A6) leads to the noise contributions in Eqs. (2), (4),
and (5).

Field propagation equations are derived in the paraxial
and slowly varying envelope approximations [30]. The former
consists in assuming that |kUx|, |kUy| 
 |kUz| ∼ |kU |, where
kU = (kUx, kUy, kUz ) is the wave vector of field mode U ,
whereas the latter prescribes that the spatial and temporal
variations of field amplitudes are small, i.e., |∂U (±)/∂z| 

kU |U (±)| and |∂U (±)/∂t | 
 ωU |U (±)|. Equations (8) and (10)
can be written in the form

∂

∂z
U = LU + C, (A8)

where L = i∇2
⊥/2kU − κU/2. Propagation due to the oper-

ator L is approximated using a second-order factorization
[39], where the differential operator is evaluated using a two-
dimensional Fourier transform over the transverse directions x
and y [40]. There are several options to evaluate the last term
of Eq. (A8) [58], but for its simplicity and stability the implicit
backward Euler method was chosen. The field at longitudinal
point z + �z is thus evaluated as

U (z + �z) = e−(�/z4)κU (z+�z)FT−1
xy

{
e−(i�z/2kU )(k2

x +k2
y )FTxy

×[
e−(�z/4)κU (z)U (z)

]} + �zC(z + �z), (A9)
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TABLE I. Values of photoionization cross sections (in a.u.) used
in the simulations.

Parameter Value Parameter Value

σ̃0 0.044 σF i 1.7 × 10−3

σ̃ f 4.4 × 10−4 σEi 5.8 × 10−3

σE0 0.10 σFb 9.8 × 10−4

σF f 0.032 σEb 4.5 × 10−3

σFa 0.037 σFc 4.3 × 10−4

σEc 1.3 × 10−3

where FTxy denotes the Fourier transform over transverse
directions and kx and ky are the associated spatial frequencies.
The boundary condition for the pump FEL field at the target
entrance (z = 0) is defined as

F (+)(x, y, z = 0, t )

= F0

q
exp

(
ikF

x2 + y2

2q

)
exp

(
− [t − t0]2

4σ 2
τ

)
, (A10)

where q = −z0 − ikFd2
0 /(4 ln 2) is the complex beam param-

eter, στ = τ0/(2
√

2 ln 2), t0 is a temporal offset, and F0 is the
normalization constant related to the pump pulse energy EFEL.

APPENDIX B: PHOTOIONIZATION CROSS SECTIONS

Numerical values of photoionization cross sections for all
processes included in the simulation are presented in Table I.
Cross sections σ̃ j connected to the dipole matrix elements for
resonant excitation to the doubly excited state are calculated
using the method of complex rotation [32], and cross sec-
tions for ionization of the doubly excited state are calculated
using the methods from Refs. [59,60].

The n = 3, 4 excited states of singly ionized helium, which
are replaced with a single state |c〉 in the model, are populated
in the following way: Ionization of the doubly excited state
with the pump and emitted field predominantly populates He+

3p and 4p ionic states, whereas ionization of the final state
with the pump field mainly produces ions in the He+ 3s and
4s states. The ratio between the largest and smallest cross
sections for ionization of these states with a given field is
around 3. Since the overall populations of these states are
small and hence simulation results are not sensitive to their
respective cross sections, we take as σFc and σEc the cross
sections for photoionization of He+ 4s, which lie between the
values for other states.

APPENDIX C: VERIFICATION OF STOCHASTIC
NOISE TERMS

In the spontaneous emission limit, where the contribu-
tion of stochastic terms in Eqs. (2) and (5) is dominant and
stimulated emission is negligible, simulation results can be
compared to known analytical solutions. To verify that the
electric field produced by the noise terms exhibits the ex-
pected characteristics, we consider a simplified three-level
system, where photoionization is neglected (σU j = 0; U =
F , E ; and j = 0, i, f , a, b, c) and the resonant coupling be-
tween the ground and excited states of He+ is set to zero

(μab = 0). Additionally, we omit terms proportional to E (±) in
the density-matrix equations (2), (4), and (5), which produce
stimulated emission on the |i〉-| f 〉 transition. This allows us
to increase the target density without producing amplification
of the emitted field and effectively increase the spontaneous
emission signal. This in turn reduces the number of repetitions
of the simulation over which the results have to be averaged
to obtain convergence [17]. The target pressure of 0.3 mbar is
set to be constant throughout the 8-mm-long target and the
FWHM focus size of the pump pulse with 120 fs duration
and 5 μJ pulse energy is set to 10 μm so that pump pulse
divergence inside the target region is negligible.

Under these conditions, the correlation function of the
spontaneously emitted field has the discretized form

JE (x, y, z, τ1, τ2) = E (+)
xyzτ1

E (−)
xyzτ2

2παωE

= 2παωE |μ̃i f |2n

�x�y

z∑
z̃=0

�ze−(γ /2)|τ1−τ2|

× ρii,xyz̃τmin�(|τ1 − τ2|), (C1)

where τmin = min(τ1, τ2), γ = �i f + 2�D
i f is the decoherence

rate, and �(x) is the Heaviside step function. Due to the
properties of stochastic noise terms, the field intensity in the
spontaneous emission limit has to be regularized [17] and is
calculated as

IE (x, y, z, τ ) = 1
4

(
E (+)

xyzτE
(−)
xyz(τ−�τ ) + E (+)

xyzτE
(−)
xyz(τ+�τ )

+ E (+)
xyz(τ−�τ )E (−)

xyzτ + E (+)
xyz(τ+�τ )E (−)

xyzτ

)
. (C2)

The expected temporal profile of the emitted field intensity
can thus be obtained from the field correlation function by set-
ting τ1 = τ2 ± �τ . The expected number of emitted photons
is

Nan
E (z) =

∑
xyτ

�τ�x�y JE (x, y, z, τ, τ + �τ )

= 2παωE |μ̃i f |2n�τ�z
∑
xyτ

z∑
z̃=0

ρii,xyz̃τ e−γ�τ/2.

(C3)

Since spontaneous emission is a linear process, the in-
tensity of emitted radiation at a given time and position
is proportional to the cumulative number of atoms in up-
per states and the probability for radiative decay, which in
Eq. (C1) are encompassed in factors nρii and 2παωE |μ̃i f |2 ∼
�

f
r , respectively, with �

f
r the spontaneous radiative decay

rate from the doubly excited state to the final state. The
spectral profile of the emitted field is obtained through the
Wiener-Khinchin theorem as the Fourier transform of the
time-integrated field correlation function. The exponential
factor exp(− γ

2 |τ1 − τ2|) in Eq. (C1) thus reproduces the ex-
pected Lorentzian spectral profile of spontaneously emitted
fields with width equal to the decoherence rate γ ; however,
this profile is modified since the upper-state population varies
in time. The temporal profile of emitted field intensity thus
resembles a convolution of the exponential decay of upper
states and temporal dependence of the pumping rate [61].
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FIG. 7. (a) Shown on the left is the temporal profile of the pump
pulse intensity IF , excited-state population ρii, and emitted field
intensity Re(IE ) at the target exit integrated over transverse dimen-
sions. On the right is the spectral intensity of emitted radiation at the
target exit (num.), along with the expected spectral profile (an.) and
Lorentzian profile of width γ = 9 meV (Lorentz). (b) Numerically
and analytically calculated numbers of emitted photons as a function
of propagation distance.

As shown in Fig. 7(a), the expected spectral profile is slightly
wider than the Lorentzian with more rapidly decreasing tails.

Figure 7 presents numerical results averaged over 2 × 105

repetitions of the simulation, along with expected analytical
results. The integrated field intensity and spectral intensity
at target exit are shown, as well as the number of emitted
photons. There is good agreement between numerical and
analytical results, with small discrepancies due to averaging
over a limited number of repetitions. The imaginary parts of
the emitted field intensity and number of photons indicate
the level of field fluctuations remaining after averaging and
decrease with increasing number of repetitions.

It is worth noting that a very large number of repetitions
is required to obtain approximately smooth average results in
the spontaneous emission limit. However, the number of nec-
essary repetitions is drastically reduced when the emitted field
starts to amplify and the contribution of noise terms becomes
less significant. In the spontaneous emission limit, only results
averaged over a large ensemble of simulation repetitions can
be compared to physical observables, whereas after the initial-
ization of field amplification, individual realizations become
relevant and can be related to single-shot experimental results.
Since in this paper we are mainly interested in the amplifica-
tion and saturation regime of superfluorescence, the number
of repetitions over which numerical results are averaged can
be reduced to a few hundred. Moreover, after amplification
the field intensity no longer needs to be regularized, as it
coincides with the intensity calculated in the standard way as
IE (x, y, z, τ ) = E (+)

xyzτE (−)
xyzτ .
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Nonlinear Sci. Numer. Simul. 67, 264 (2019).
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