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of H(2p) atoms produced by XUV photodissociation of H2

A. Dochain,1,* B. Fabre ,2 C. Lauzin ,1 and X. Urbain 1,†

1Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
2Université de Bordeaux-CNRS-CEA, CELIA, UMR5107, F33405 Talence, France

(Received 27 October 2022; revised 23 December 2022; accepted 23 December 2022; published 19 January 2023)

The production of pairs of correlated Lyman-α photons upon XUV excitation of molecular hydrogen is
studied using coincidence measurements to evaluate at which level the entanglement is transferred from atoms to
photons. By referencing the timing of fluorescence photon detection to the synchrotron light pulse, we were able
to determine branching ratios for the 2p + 2p and 2p + 3� (with � = s, d) channels separately. Time-dependent
analysis of the spectral signature recorded around 33.6 eV and close examination of the doubly excited states
lying in the Franck-Condon window confirm prior assignments of the 2p + 2p being the main dissociation
channel of the Q2

1�u (1) molecular state. The angular dependence of the two-photon detection probability
measured with respect to the polarization axis is found to be in agreement with earlier measurements [Y. Torizuka
et al., Phys. Rev. A 99, 063426 (2019)]. A simple model, assuming a transition from Hund’s case (a) to Hund’s
case (c), reproduces the measured angular distributions satisfactorily.
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I. INTRODUCTION

Homonuclear diatomic molecules have long been contem-
plated as a natural source of entangled atom and photon pairs
through dissociation and electronic excitation, respectively.
Molecules were thus considered suitable for a direct test of
Bell’s inequalities with actual spins as suggested by Bohm [1],
instead of polarization states of light as performed by Clauser
[2], Aspect [3], and Zeilinger [4]. As a result of molecular
photodissociation, a pair of entangled atoms is generated.
Interrogating such Einstein-Podolsky-Rosen (EPR) pairs in-
volves either a spin analyzer of the Stern-Gerlach type for
H2 [5,6] or some multiphoton ionization scheme for Hg2 or
Cd2 [7–9]. This approach was later extended to polyatomic
systems where photodissociation leads to entanglement be-
tween internal degrees of freedom of the fragment molecule
and momentum of the recoiling atom [10]. More recently, the
possibility of launching entangled atom pairs by exciting a
Bose-Einstein condensate on an atom chip has been demon-
strated [11].

In this context, the characterization and potential control
of entanglement or disentanglement has attracted numerous
studies since the first measurement of the Lyman-α–Lyman-α
coincidence spectrum coming from the dissociation of doubly
excited molecular hydrogen [12]. These two Lyman-α pho-
tons mainly come from the deexcitation of a pair of H(2p)
atoms produced by photodissociation of H2 [13]:

H2 + hν XUV → H∗∗
2

(
Q2

1�u
) → H(2p) + H(2p). (1)

Following the development of synchrotron facilities, new
experimental and theoretical studies have been conducted
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with the aim of characterizing the two-photon entanglement
[14–18]. In particular, in [14,15], the authors claimed to ob-
serve the effect of entanglement via the shortening of the
emission lifetime of the atomic H(2p) states. This statement
was also supported by the analysis of the angular correla-
tion function (ACF) of the double Lyman-α emission. The
entanglement of the two H(2p) atoms, even separated by
a large distance, was assumed to be transferred to the two
emitted photons [19]. None of these previous experimental
studies was able to measure the initial time t0 corresponding
to absorption of the XUV excitation photon.

In this paper, we aim at characterizing the entanglement
of the two Lyman-α photons by performing a complete coin-
cidence measurement of the two-Lyman-α-photon emission,
with the addition of an initial reference time provided by a
synchrotron clock. In Sec. II, the experimental coincidence
setup is presented. We describe in Sec. III the decay dynam-
ics of the two-Lyman-α-photon emission with the ability to
determine the arrival time of the first and second photon,
and compare the experimental distribution with several mod-
els (atomic spontaneous decay, superradiance, and entangled
photon emission). In Sec. IV, we explain how to isolate the
coincident two-photon emission coming from the deexcitation
of a pair of H(2p) atoms produced by the dissociation of a
single molecule from Lyman-α photons emitted from sepa-
rate molecules or resulting from other photodissociation and
deexcitation paths. This allows us to obtain the partial cross
section for the H(2p) + H(2p) and H(2p) + H(3d ) channels
as a function of the synchrotron XUV photon energy. Finally,
in Sec. V, we analyze the angular dependence of the two-
photon emission with respect to the polarization axis of the
XUV exciting beam. In this section we also develop a model
for the ACF taking into account the experimental constraints
of the measurement. This model does not rely on an entan-
gled photon emission and matches the observations while
preserving the ungerade character of the final H(1s) atom pair.
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FIG. 1. (a) Experimental setup. The interaction region between
the synchrotron radiation and the H2 gas is highlighted in purple.
In this configuration, the angle between the synchrotron polarization
direction ε̂ and the interdetector axis (aligned along x̂) is given by θD.
(b) Schematic representation of the experimental setup. CFD, con-
stant fraction discriminator; TDC, time-to-digital converter; MCP,
multichannel plate; and FC, Faraday cup.

All necessary developments regarding decay probabilities and
molecular symmetries are given in Appendices A and B.

II. EXPERIMENTAL SETUP AND METHOD

The experimental setup is presented in Fig. 1. The DESIRS
beam line of the SOLEIL synchrotron facility was used as
a pulsed source of XUV photons with tunable polarization
and wavelength. This source, when operating in single bunch
mode, is characterized by a repetition rate of 846 kHz and an
average number of 2.5 × 1010 photons per second at 33 eV for
a bandwidth of 0.1%. Each pulse has a temporal full width at
half maximum (FWHM) of 60–70 ps [20].

A trigger associated with the arrival time t0 of the pulse
was provided by the SOLEIL synchrotron clock through a
fast Transistor-Transistor Logic (TTL) signal. The jitter of
the TTL with respect to the synchrotron master clock is of
1–2 ps. The relative intensity of the light pulses was moni-
tored by a Faraday cup (FC) in Daly geometry [21], through
the measurement of the electron current produced from the
illumination of an electrically biased stainless steel plate by
the XUV radiation. The readout was calibrated against the
beam-line photon flux monitor. This arrangement also allowed
us to check the alignment of the XUV beam with respect to the
axis of the interaction chamber.

The synchrotron beam was injected through a pair of cir-
cular apertures into an interaction cell at ambient temperature
filled with molecular hydrogen at pressures ranging from
2 × 10−4 to 1 × 10−2 mbar. On either side of the cell, a
CsI-coated multichannel plate assembly (MCP1 and MCP2,
active diameter 29 mm), located behind a 1-mm-thick MgF2
window at a distance of 21 mm from the synchrotron beam
axis, was used to detect in coincidence the two Lyman-α pho-
tons emitted by H(2p) pairs at time t1 and t2. The synchrotron
clock trigger t0 (S) and the photon arrival times t1 (MCP1) and
t2 (MCP2) were recorded by a multichannel time-to-digital
converter (TDC) with 120-ps bin width. The start signal (or
common stop signal) was generated by S AND MCP1 AND

MCP2 or by S AND (MCP1 OR MCP2) as illustrated in Fig. 1.
The use of logical operators OR and AND ensures the cor-
rect discrimination of coincident events from single-photon
detection. All timing signals were amplified and treated by a
constant fraction discriminator (CFD) before being recorded.

The completeness of the present study, where all times
are measured, constitutes a major experimental improvement
with respect to the study of Tanabe et al. [15]. The previous
measurements [12,22] exhibit a clear maximum located at
33.6 eV. Accordingly, this incident photon energy was chosen
to perform the measurements presented hereafter.

As illustrated in Fig. 1, this configuration, where three
time stamps (t0, t1, and t2) are recorded per coincidence,
gives us several ways of visualizing the H(2p) fluorescence
histograms, either by plotting the decay measured on each
detector referenced to the clock, or by plotting the arrival time
of the first and second photon with respect to the clock. An ad-
ditional visualization was adopted by Tanabe and co-workers
[15] in the absence of a reference clock, i.e., the time differ-
ence between detections, t1 − t2. The detection signals were
measured at two H2 interaction cell pressures: a relatively high
pressure (0.3 Pa) where no entanglement effect was expected,
and a lower pressure (0.02 Pa) where the entanglement effect
had been reported [14,15].

In previous studies [13–15], the authors have measured the
time difference between their two detectors and claimed to
observe an effect of the gas pressure on the H(2p) lifetime
which they attributed to the loss of entanglement at high
pressure. They originally concluded that the apparent lifetime
of each of the entangled H(2p) atoms (low-pressure case) was
half that of an isolated H(2p) atom. This observation was
the original motivation of the present study. That assumption
was, however, challenged by the same group, attributing this
pressure effect to false coincidences due to cosmic muons. As
mentioned in [23], the measurement of the absolute emission
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FIG. 2. Decay time histograms of �t1 (shaded area, experiment
with 1σ uncertainty interval) and �t2 (black dots with error bars, ex-
periment with 1σ uncertainty interval) at a H2 pressure of (a) 0.02 Pa
and (b) 0.3 Pa. Recording time was adapted to reach the same
statistics.

time of the first (t f ) and second (ts) Lyman-α photon should
provide sufficient information to draw a clear conclusion.

The decay times �t1 and �t2 measured respectively on
detectors 1 and 2 with respect to the XUV pulse, and defined
as �t1 = t1 − t0 and �t2 = t2 − t0, are presented in Fig. 2 at
low and high pressure [0.02 Pa in Fig. 2(a) and 0.3 Pa in
Fig. 2(b)]. For a given H2 pressure, the two decay curves are
superimposed, which confirms that the electronic response of
the two detectors is identical. Additionally, the perfect mirror-
ing of the curves in Figs. 2(a) and 2(b) shows that there is no
pressure effect on the decay times, and hence no factor-of-2
reduction of the apparent 2p lifetime, contrary to what was
first reported [14,15] and later invalidated [17].

FIG. 3. Decay time histograms of t f (shaded area, experiment
with 1σ uncertainty interval) and ts (black dots with error bars, ex-
periment with 1σ uncertainty interval), the respective time of arrival
of the first and second photon, at a H2 pressure of (a) 0.02 Pa and
(b) 0.3 Pa.

FIG. 4. Radiative cascade following photodissociation of H2 into
a pair of H(2p) atoms. Green arrows indicate the first Lyman-α (Lyα)
photon, red arrows the second Lyman-α photon.

In Fig. 3 are presented the arrival time of the first pho-
ton, t f = min(t1, t2) − t0, and that of the second one, ts =
max(t1, t2) − t0. The arrival time of the first photon, t f ,
presents a faster decay than the arrival time of the second
photon, ts, as we discuss below.

III. DECAY DYNAMICS

The H(2p) atom pair produced by reaction (1) will return
to the ground state following the radiative cascade depicted in
Fig. 4. Several models that could explain this decay process
were proposed, as detailed below, and will be compared to
the experimental distribution in order to validate which model
describes best the decay dynamics.

First, one could consider that the two atoms are indepen-
dent. In such a case, the emission dynamics is limited to
spontaneous decay (SP) where the intermediate (1s, 2p) states
of the radiative cascade are neither mixed nor entangled, lead-
ing to two distinct decay paths going through H(1s) + H(2p)
or H(2p) + H(1s), respectively (see Fig. 4). The emission
rates for the first and second photons obtained with such
assumptions are

pSP,2p
f (t ) = 2
e−2
t , (2)

pSP,2p
s (t ) = 2
e−
t (1 − e−
t ), (3)

where 
 is the emission rate for the H(1s) ← H(2p) transition
(see Appendix A). In this framework, the emission rate of the
first photon is twice the rate of an isolated H(2p) atom without
invoking any entanglement.

Superradiance theory (SUP), where the increase of the
emission rate with respect to the case of isolated atoms is
due to collective photon emission, could also be considered to
explain this faster decay. The superradiance effect is directly
related to the phase locking of the atomic dipoles through the
medium, which is possible if the distance between the excited
atoms is small compared to the emission wavelength [24]. In
the absence of initial dipole-dipole correlation, the system de-
cays to a superposition of H(1s) + H(2p) and H(2p) + H(1s)
by emitting a first Lyman-α photon with a decay constant
equal to 2
, meaning that the first photon obeys Eq. (2). This
entangled state decays to the ground state of the two atoms
with the same average rate 2
 as for independent spontaneous
emission. However, while the initial state contains two excited
atoms, the second contains only one. According to Gross
and Haroche [24], the emission rates pSUP

f and pSUP
s of the

first and second photons over time t are obtained by time
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FIG. 5. Comparison between theory and experiment for the nor-
malized emission rate of the (a) first and (b) second photon at
0.02 Pa, hνXUV = 33.6 eV, θD = 90◦ (see Fig. 1). Shaded area,
experiment with 1σ uncertainty interval; dotted curves, superradi-
ance; dashed curves, (2p, 2p) spontaneous emission; solid curves,
combined (2p, 2p) and (2p, 3d ) spontaneous emission. Theoretical
curves are convoluted by a Gaussian of 120 ps FWHM (see text).

differentiation of initial and final populations (see Eqs. 2.26
and 2.28 from [24]):

pSUP
f (t ) = 2
e−2
t , (4)

pSUP
s (t ) = 4
2te−2
t . (5)

Whereas the equations describing the first photon emission
are the same for both theories, the emission rate of the second
photon differs, the superradiant emission presenting a faster
decay than the spontaneous one.

To compare with experimental measurements, the decay
curves of these two models have been convoluted with a Gaus-
sian of 120 ps FWHM to take into account the time resolution
of the TDC (∼60 ps) and the synchrotron pulse duration
(∼60–70 ps). The experimental data have been normalized to
a total of two emitted photons.

In order to perform the background subtraction, the sorted
and integrated distribution of background (BG) events, as well
as the coincidence between background counts and Lyman-α
photons, were evaluated (see Appendix A 3). The background
level is found to be between 1% and 3%.

The agreement between experiment and the spontaneous
emission model, when using the decay constant given by
NIST [25] for the H(2p) deexcitation, 
 = 6.2649 × 108 s−1,
in Eqs. (2) and (3), is unambiguously better than the agree-
ment with the superradiance prediction (see Fig. 5). This
should not come as a surprise, in view of the approximate dis-
tance traveled by the departing atoms over a time τ = 1.6 ns
at a relative velocity v � 5.8 × 106 cm s−1 [26], d � vτ =
93 µm.

The agreement between the spontaneous decay theory and
the experimental data can be further improved by taking into
account additional deexcitation channels following the disso-
ciation of H∗∗

2 (see Sec. IV):

H2 + hν XUV → H∗∗
2 → H(2p) + H(3s, 3d ). (6)

The 2p ← 3s, 3d transition leads to the emission of a
Balmer-α photon (denoted Hα). This photon, due to its wave-

FIG. 6. Radiative cascade including (2p, 3�) channels, with � =
s, d . Green arrows indicate the first Lyman-α (Lyα) photon, red
arrows the second Lyman-α photon, and gray arrows the Balmer-α
(Hα) photons. Only the Lyman-α photons are detected in the present
experiment.

length, cannot be detected with our experimental arrangement,
and its emission will precede that of the second Lyman-α
(Lyα) photon. The intricate radiative cascade that ensues is
depicted in Fig. 6. This cascade has a non-negligible influence
on the two-photon decay rate. Indeed, as shown in Fig. 7, this
extra deexcitation step will add a tail to the decay dynamics at
late times.

Dissociation of H∗∗
2 via different Q2 states leads to a mixed

initial state represented as a combination of the (2p, 2p) and
(2p, 3�) states, where � = s, d . The identification of the Q2

states involved will be discussed at length in Sec. IV. The
total spontaneous emission for this (2p, 3�) state is given by
(Appendix A 3)

pSP,3�
f = 
2pe−
2pt


2p − 
3�

[(
2p + 
3�)e−
3�t − 2
3�e−
2pt ], (7)

pSP,3�
s = 
2p


2p − 
3�

[(
2p − 2
3�)e−
2pt + 2
3�e−2
2pt

− (
2p + 
3�)e−(
2p+
3� )t + 
3�e−
3�t ]. (8)

FIG. 7. Comparison between theory and experiment for the nor-
malized photon emission probability of the (a) first and (b) second
photon at 0.02 Pa, hνXUV = 33.6 eV, θD = 90◦ (see Fig. 1). Shaded
area, experiment with 1σ uncertainty interval; solid blue curves,
2p-2p spontaneous emission component; red dashed curves, 2p-3�

spontaneous emission component; black dotted curves, total emis-
sion signal.
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A linear combination of the decay probabilities pSP,2p
f ,

pSP,2p
s , pSP,3�

f , and pSP,3�
s [Eqs. (2) and (3) and Eqs. (7) and

(8)], given the form

R f (t ) = a2p pSP,2p
f + a3� pSP,3�

f , (9)

Rs(t ) = a2p pSP,2p
s + a3� pSP,3�

s , (10)

is fitted to the experimental emission rate measurements while
keeping as fixed parameters 
3d = 
2p←3d = 0.064 ns−1,

3s = 
2p←3s = 0.0063 ns−1, and 
2p = 
1s←2p =
0.625 ns−1 as tabulated by NIST [25]. As the coincidence
range and the analytical shape of pSP,3�

s are known, the
amount of undetected events is included in the yield (see
Appendix A 2). This is best achieved by working with the
integrated photon yield and analytical decay probabilities
(see Appendix A 3). The χ2 fit of the data given in Figs. 5
and 7 gives a branching ratio of 80.8 ± 1.3% for (2p, 2p),
12.6 ± 1.5% for (2p, 3d ), and 6.6 ± 2.2% for (2p, 3s). This
ratio is compatible with the Lyα/Hα cross-section ratio
measured by Glass-Maujean [27] for the photodissociation
of H2. Considering the small proportion of (2p, 3s) and
the two-order-of-magnitude-longer lifetime of 3s compared
to 2p, it is difficult to separate its decay dynamics from
the 2p-background coincidences for coincidence windows
shorter than 60 ns (see Appendix A 5), leading to an additional
uncertainty in the fit. Since the (2p, 3s) contribution could not
be extracted from some of our measurements, only (2p, 3d )
is considered in the remainder of the text.

Although nearly no change can be seen in the instantaneous
decay rate, those higher-lying levels have a significant effect
on the cumulative distribution of emitted photons over time.
The improvement of the model through the inclusion of this
dynamics is clearly visible in Fig. 7.

Sancho and Plaja [23] have proposed an alternative way
to describe the emission of two photons coming from the
deexcitation of entangled atom pairs. Following their develop-
ment, the decay rates for the first and second photons may be
written as

pS&P
f = 
 f e−
 f t , (11)

pS&P
s = 
 f 
s


s − 
 f
(e−
 f t − e−
st ). (12)

This description is compatible with the spontaneous emis-
sion model when the decay constants for the first and second
photons are respectively taken equal to 
 f = 2
 and 
s = 
.
However, they do not necessarily assume those values. The
decay rate and photon emission described by Sancho and Plaja
are not plotted in Fig. 5 as the fit gives 
 f = (1.94 ± 0.08)

and 
s = (0.99 ± 0.10)
, meaning they are perfectly super-
imposed to the spontaneous emission ones.

Although they provide information on the deexcitation
path, absolute emission time measurements do not allow us
to discriminate the independent spontaneous emission model
from the entangled model of Sancho and Plaja [23]. This
unique observable is thus not sufficient to reach a definite
conclusion about the role of entanglement in the emission
dynamics of the Lyman-α photon pair.

FIG. 8. Pressure dependence of the total (black triangles), partial
(2p, 2p) (blue dots), and (2p, 3d ) (red squares) coincidence rates
measured with vertically polarized (along the z axis) incident photons
at 33.6 eV. The partial coincidence rates are obtained using the fit
shown in Fig. 7. Quadratic fit (thick lines) and linear fit (thin lines)
are shown for the total (dotted lines), the (2p, 2p) (blue solid lines),
and the (2p, 3d ) (red dashed lines) components.

IV. PARTIAL CROSS SECTIONS

The spectral dependence of the coincidence signal may
be used to further confirm the leading (2p, 2p) and (2p, 3d )
contributors to the two-photon emission. In order to extract
partial cross sections, the coincidence rate was measured as a
function of gas pressure and synchrotron XUV photon energy,
as presented in Figs. 8 and 9, respectively. The signal-to-noise
ratio was excellent (60:1 to 1200:1), as we measured less than
one coincidence per minute with the XUV beam off and al-
ways above 1 Hz with the XUV beam on. The measurement of
the partial cross sections versus photon energy was performed
with linear polarization along the z axis (vertical polarization,
perpendicular to the interdetector axis).

A linear dependency of the signal with the pressure en-
sures that the two coincident photons come from the same
molecule, and is hence proportional to the cross section,
while a quadratic pressure dependency indicates that the
two detected Lyman-α photons were emitted from different
molecules.

FIG. 9. Decay dynamics at various photon energies (33.6–
37 eV). (a) First photon emission and (b) second photon emission.
The increasing contribution of the (2p, 3�) is clearly visible.
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FIG. 10. Doubly differential cross section for the emission of two
Lyman-α photons as a function of incident photon energy. Polariza-
tion is set perpendicular to the detection axis (θD = 90◦). (2p, 2p)
partial cross section: solid blue circles, present experiment; open gray
triangles, Odagiri et al. [22]; open black circles, Hosaka et al. [28].
(2p, 3�) partial cross section: Solid red squares, present experiment.
Q2

1�u(1): solid blue line, linear dipole matrix element; long dashed
blue line, constant dipole matrix element; dot-dashed blue line, ma-
trix element from Borges and Bielschowsky [29]; short dashed blue
line, model calculation from Glass-Maujean and Schmoranzer [30].
Q2

1+
u (2): solid red line, linear dipole matrix element; long dashed

red line, constant dipole matrix element; dot-dashed red line, matrix
element from Borges and Bielschowsky [29]; short dashed red line,
model calculation from Glass-Maujean and Schmoranzer [30].

The 3d/2p ratio was extracted from the fit of the decay
dynamics shown in Fig. 9, and the partial cross sections versus
photon energy are shown in Fig. 10. As the decay dynamics is
the same whether the Lyman-α photons originate from one or
several H2 molecules, the fitting procedure remains valid for
both the true coincidences (pair of photons emitted by a single
molecule) and the false coincidences (pair of photons emitted
by different molecules). This allows us to determine that the
signal at 0.02 Pa mostly consists of true coincidences for
both channels, while the delayed signal corresponding to the
3d cascade comes mostly from false coincidences at higher
pressure.

The false coincidences are removed from the apparent
cross section using a global quadratic fit of the coincidence
rate as a function of pressure, as shown in Fig. 8. The total
number N2pn� of coincidences measured over a time T associ-
ated with the state (2p, n�) is assumed to be given by

N2pn�

T
= α2pn�(Eγ , ε̂)PIγ + [β2p(Eγ , ε̂)PIγ ][βn�(Eγ , ε̂)PIγ ],

(13)

where P is the cell pressure, Iγ is the synchrotron photon
flux, ε̂ is the polarization direction of the incident photon,
α2pn�(Eγ , ε̂) is proportional to the doubly differential pho-
todissociation cross section toward the corresponding doubly
excited states (Fig. 10), and βn�(Eγ , ε̂) is proportional to the
partial photodissociation cross section toward both singly and
doubly excited states for which only one photon is detected
(Fig. 11). Among the latter processes embodied by βn�(Eγ , ε̂),

30
0

1

2

3

32 34 36

FIG. 11. Singly differential cross section for the emission of
Lyman-α (blue circles) or Balmer-α (red squares) photons as a
function of the XUV photon energy. Solid circles and squares, this
work (θD = 90◦ and Balmer-α values are deduced from delayed 2p
emission); open circles and squares, Glass-Maujean [27].

let us mention the photodissociation via Q1 states forming
H(1s) + H(n�) and their subsequent radiative deexcitation.

The latter is estimated using noncoincident measurements
for which the 2p/3d/BG count rate was extracted from the
decay dynamics (similarly as in Sec. III). The magnitude
of the βn�(Eγ , ε̂) parameters was obtained at Eγ = 33.6 eV
from the quadratic fit of the coincidence rate versus pressure
while their energy dependence is identified to the evolution of
the single-photon signal as shown in Fig. 11. By subtracting
this quadratic term from the total signal for all photon wave-
lengths, one obtains the energy dependence of α2pn�(Eγ , ε̂)
and, hence, of the partial cross section of interest.

These partial cross sections are shown in Fig. 10 as a func-
tion of the XUV photon energy. They fall in good agreement
with previous measurements by Odagiri et al. [22] and Hosaka
et al. [28], the latter being of superior statistical significance.
The error associated with present partial cross sections is the
combination of statistical uncertainty, χ2 fit error of Eqs. (9)
and (10), which include the timing precision of the decay
process, 5% precision on the pressure reading, and ∼1% pre-
cision in the determination of the synchrotron flux. All those
errors are propagated using Eq. (13) and its single-photon
equivalent, and finally combined using the square root of the
sum of the square of each identified significant source of
uncertainty.

The larger values obtained by Odagiri et al. [22] and
Hosaka et al. [28] when the incident photon energy is higher
than 35 eV might come from a contamination of the H(2p) +
H(2p) by the H(2p) + H(3d ) signal. This effect is small
with Odagiri et al., who used a 50-ns coincident time win-
dow [only 5% of the H(2p) + H(3d ) signal is lost], albeit
with an alternate detector orientation (detectors located along
the polarization axis instead of perpendicular to it). Hosaka
et al. removed the H(2p) + H(3d ) signal by fitting the de-
cay dynamics with the H(2p) + H(2p) curve plus a constant
background signal. As the H(2p) + H(3d ) signal corresponds
to neither of these curves for the 16-ns coincident window
they used (40% of H(2p) + H(3d ) signal is lost in such a
case; see Appendix A 5, Fig. 14), it is difficult to assess which
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proportion of the signal comes from the H(2p) + H(3d ) decay
dynamics.

Numerous theoretical attempts to reproduce the actual ex-
citation function of Lyman-α and Balmer-α emission have
been performed, at various levels of theory [27–37]. All
calculations rely on the accuracy of the potential energy
curves of the autoionizing states lying in the Franck-
Condon window [38] and located far above the ionization
threshold of H2 [39], and the knowledge of their dynam-
ical correlation to the atomic asymptotes leading to line
emission.

Such states have an excited ionic core and form Rydberg
series converging to the excited molecular orbitals of H+

2 : Q1

with 2pσu, Q2 with 2pπu, and Q3 with 2sσg [38,40,41]. As a
result of the double degeneracy of the atomic asymptotes, two
molecular orbitals correlate with every atomic asymptote, e.g.,
1sσg and 2pσu with H(1s) + H+, 2sσg and 3pσu with H(2s) +
H+, 3dσg and 4 f σu with H(2p0) + H+, and 2pπu and 3dπg

with H(2p±1) + H+. The specific n� values follow Barat and
Lichten’s correlation rules [42] imposing the conservation of
the number of nodes in the radial part of the electronic wave
function. This explains the very high density of doubly excited
states, and the difficulty to follow them towards the united
atom and separated atom limit, respectively.

The first series leading to a pair of excited atoms, i.e.,
the Q2 2pπun�λg,u states, will generate a 2p or 2s atom in
combination with an n � 2 atom. From what is written above,
the configuration 2pπu3dσg

1�u would lead to the forma-
tion of H(2p) + H(2p) while 2pπu2sσg

1�u would lead to
H(2p) + H(2s) (gerade states are not discussed here as they
are not accessed by single-photon transitions).

The corresponding potential energy curves have been com-
puted at numerous instances, the most complete data sets
being those computed by Sánchez and Martín [40] (Q1 and
Q2 states), and by Fernández and Martín [41] (Q3 and Q4

states). The first two curves of 1�u and 1+
u symmetry are

plotted in Fig. 12, where we have smoothly connected them
to the long-range calculations of Vanne et al. [43]. The latter
predict that Q2

1�u(1) correlates with H(2p) + H(2p), and
Q2

1�u(2) and Q2
1+

u (1) with H(2s) + H(2p), implying
that Q2

1+
u (2) correlates with some H(2p) + H(3�) limit.

Also plotted are the empirical potential energy curves of
Glass-Maujean and Schmoranzer [30] that best fit the ob-
served excitation profile. The latter curves, however, depart
significantly from the expected Rydberg character emerging
from a 2pπu or 2sσg core, as may be seen in the inset of
Fig. 12, where we plot the energy difference between the first
two Q2

1�u states of H2 and the 2pπu
2�u state of H+

2 . This
difference should remain nearly constant over the depicted R
range, as verified with the curves of Sánchez and Martín [40].

The nearly complete degeneracy of n� states requires to
follow the dissociation up to large distances where nona-
diabatic transitions take place. Such calculations have been
performed by Vanne et al. [43], Sanz-Vicario et al. [36], and
Santos et al. [44]. A crude diabatization of the long-range
avoided crossing between Q2

1�u(1) and Q2
1�u(2) curves

provides a Landau-Zener transition probability of ∼50% at
the peak of the H(2p) + H(2p) coincidence signal. Hence
both states are likely to contribute evenly. A similar conclu-
sion may be reached when considering the first and second

2pπu

2sσg

1Σu
+

1Πu

1 2 3 4

4

FIG. 12. Potential energy curves of the lowest Q2
1�u (solid

black lines) and 1+
u (dashed red lines) autoionizing states of H2.

Also shown are the Q2
1�u potential curves of Glass-Maujean and

Schmoranzer [30] (short dashed black lines), and the potential energy
curves of the 2pπu

2�u and 2sσg
2+

g states of H+
2 (solid gray lines).

The energy difference between the 1�u and 2�u states is shown in
the inset. The gray area marks the Franck-Condon region. Arrows
point to the avoided crossings (see text).

1+
u curves, i.e., that both of them are likely to contribute to

H(2p) + H(3�) production.
In order to obtain the excitation profile corresponding to

the Q2
1�u(1) and Q2

1+
u (2) states (see Fig. 10), we have

performed a model calculation of the photodissociation cross
section:

σPD(ν) = 2π2ν

3cε0
|〈F (E )|Qe(R)|χ0〉|2, (14)

where χ0 is the H2 vibrational ground-state wave function,
Qe(R) is the R-dependent dipole matrix element, and F (E )
is the continuum wave function associated to the dissociative
state. In the absence of reliable dipole matrix elements, we
have made two simple assumptions: a linear dependence on R,
and a constant value. A rapid comparison with the experimen-
tal line profile, shown in Fig. 10, favors the linearly dependent
matrix element for both symmetries, and further confirms our
symmetry assignment, i.e., that Q2

1�u(1) and Q2
1+

u (2)
are the leading contributors to the observed H(2p) + H(2p)
and H(2p) + H(3d ) signals, respectively. Also shown in
Fig. 12 are the excitation curves computed by Glass-Maujean
and Schmoranzer [30] with the help of their empirical poten-
tial energy curves. One notices that these excitation curves
reproduce the peak position but underestimate the width of
the excitation profiles. Moreover, it should be noted that the
present model only concentrates on the absorption process
via the linear dependence of the transition dipole and omits
the role of autoionization along the dissociation path and the
highly nonadiabatic behavior of the dissociation dynamics,
as demonstrated by the time-dependent Schrödinger equa-
tion (TDSE) calculations performed by Sanz-Vicario et al.
[36].
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FIG. 13. Coincidence yield for different detection geometries
and relative orientations of the detectors with respect to the polar-
ization axis given by the angles θD1 and θD2. Top: Configuration
where the two detectors are facing each other. This configuration
corresponds to the measurements performed in this study. All data
are averaged over a 0.64 sr solid angle and an interaction length
equal to the detector’s diameter [17], and scaled for their average to
be equal to one. Bottom: Other detector orientations detailed below
the graph. Data are scaled using the same factor as for the top panel.
Models from this work and from Torizuka et al. [26] are presented
in both graphs. Experiment: solid blue circles, this work; open red
circles, Ref. [26]. Theory: dot-dashed red curve, Ref. [26]; solid blue
line, this work.

V. ANGULAR CORRELATION FUNCTION

The ACF was obtained following the procedure described
in the previous section for each orientation of the polarization
axis with respect to the detector interaxis. Three different
polarizations were available at the DESIRS synchrotron beam
line: vertical, 45◦, and horizontal.1 The count rate was mea-
sured for these three polarizations, as shown in Fig. 13. The
measured ACF is compatible with the previous experimental
results [17,26,28].

For a meaningful comparison with experiment, the theo-
retical ACF must be averaged over the detection area and
the interaction volume as illustrated in Fig. 1(a). This was
evaluated using a Monte Carlo procedure.

In order to describe the angular correlation function, it
is useful to follow the sequence of the process. First a H2

molecule in its ground state 1+
g is excited in the Q2

1�u(1)
state. As this electronic state is dissociative, the molecule
dissociates in two H(2p) atoms. The selection rules for the

1The 45◦ polarization may have contained an unknown fraction of
circular polarization.

emission of two photons in Hund’s case (a) impose that
the molecule ends up in a 1+

u state, which contradicts the
Wigner-Witmer rules [45]. Indeed, only 1+

g and 3+
u are

allowed for a homonuclear system dissociating in a pair of
S atoms. This inconsistency was lifted by Torizuka et al.
[26] who observed the near degeneracy of the Q2

1�u(1)
and Q2

3+
u (2) states at an interatomic distance below 100a0,

where a0 is the Bohr radius. Spin-orbit coupling would thus
mix those states maximally and modify the decay dynamics
that ensues; in particular it would allow for a two-photon de-
cay to the 3+

u ground state. A two-state treatment is adopted
by these authors for the sake of simplicity, and was found to
reproduce the experimental distribution satisfactorily.

However, in order to describe the decay dynamics, one
needs to keep in mind that the average time before the emis-
sion of the first photon leads to an average distance be-
tween the two atoms of 46 µm = 8.7 × 105a0. This large
interatomic distance questions the validity of Hund’s case
(a) representation which supposes that the atomic 2p1/2-2p3/2

splitting (14 × 10−5 eV) is negligible compared to the molec-
ular binding energy, as described by Vanne et al. [43]. Instead,
the molecular binding energy is negligible compared to the
2p1/2-2p3/2 splitting when the interatomic distance is greater
than 300a0. Hund’s case (c) should thus be adopted here,
meaning that only � (� = |�̃|, �̃ = �̃ + ̃, �̃ and ̃ being
respectively the projection of the molecular electronic orbital
momentum and of the electronic spin along the interatomic
axis) and overall parity p (gerade or ungerade) are valid sym-
metries. As a consequence, the molecule, once dissociated,
ends up in a �p = 1u state.

One should also take into account the photon detection
process. Once the first photon is emitted, as the detectors are
situated less than 3 cm from the excited molecule, this first
photon reaches the detector in less than 0.1 ns, i.e., well before
the second photon is emitted.

A simple model could be the following: the ground-state
molecule is initially randomly oriented, then the synchrotron
photon excites it in a 1�u state with a probability sin2 θε,R

where θε,R is the angle between the polarization and the in-
teratomic axis. The molecular dissociation can be described
under the axial recoil approximation, since the molecular axis
turns by less than 1◦ during the rapid dissociation. The po-
larization of the recoiling H(2p) atoms remains only defined
in the molecular frame, instead of the laboratory frame, as a
result of multiple avoided crossings and spin-orbit coupling
among the potential energy curves (PECs). The next assump-
tion of this model is that both atoms will emit light long after
the synchrotron electromagnetic field has vanished (after tens
of picoseconds). The orbital momentum of the 2p orbital has
to be projected along the interatomic axis which defines a
2pml state. As the first photon is detected before the second is
emitted, the photon angular emission is independent for each
atom. The 2p0 orbital emits light with a probability sin2 θγ ,R,
while the 2p±1 orbitals emit light with a probability cos2 θγ ,R,
where θγ ,R is the angle between the interatomic axis and
the Lyman-α propagation axis [46]. It now only remains to
determine the orbital momentum projection of the 2p orbitals
in the molecular frame before they decay. Those are readily
obtained by applying the Wigner-Witmer rules [45] and listing
all combinations of (ml1 , ml2 ) that satisfy the 1u requirement
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TABLE I. Combination of all ml and ms values, associated with
Hund’s cases (a) and (c). Only the ungerade symmetries are dis-
played. The rows highlighted in bold face (�̃ = ±1) are the ones
contributing to the emission.

ml1 ms1 ml2 ms2 �̃ ̃ �̃ Hund’s case (a)

+1 +1/2 +1 +1/2 +2 +1 +3 3�u

+1 +1/2 +1 −1/2 +2 0 +2 3�u

+1 −1/2 +1 +1/2 +2 0 +2 3�u

+1 −1/2 +1 −1/2 +2 −1 +1 3�u

−1 +1/2 −1 +1/2 −2 +1 −1 3�u

−1 +1/2 −1 −1/2 −2 0 −2 3�u

−1 −1/2 −1 +1/2 −2 0 −2 3�u

−1 −1/2 −1 −1/2 −2 −1 −3 3�u

+1 +1/2 0 +1/2 +1 +1 +2 3�u

+1 +1/2 0 −1/2 +1 0 +1 3�u,
1�u

+1 −1/2 0 +1/2 +1 0 +1 3�u,
1�u

+1 −1/2 0 −1/2 +1 −1 0 3�u

0 +1/2 +1 +1/2 +1 +1 +2 3�u

0 +1/2 +1 −1/2 +1 0 +1 3�u,
1�u

0 −1/2 +1 +1/2 +1 0 +1 3�u,
1�u

0 −1/2 +1 −1/2 +1 −1 0 3�u

−1 +1/2 0 +1/2 −1 +1 0 3�u

−1 +1/2 0 −1/2 −1 0 −1 3�u,
1�u

−1 −1/2 0 +1/2 −1 0 −1 3�u,
1�u

−1 −1/2 0 −1/2 −1 −1 −2 3�u

0 +1/2 −1 +1/2 −1 +1 0 3�u

0 +1/2 −1 −1/2 −1 0 −1 3�u,
1�u

0 −1/2 −1 +1/2 −1 0 −1 3�u,
1�u

0 −1/2 −1 −1/2 −1 −1 −2 3�u

0 +1/2 0 +1/2 0 +1 +1 3�+
u

0 +1/2 0 −1/2 0 0 0 3+
u

0 −1/2 0 +1/2 0 0 0 3+
u

0 −1/2 0 −1/2 0 −1 −1 3�+
u

+1 +1/2 −1 +1/2 0 +1 +1 3�+
u

+1 +1/2 −1 −1/2 0 0 0 3+
u , 1−

u

+1 −1/2 −1 +1/2 0 0 0 3+
u , 1−

u

+1 −1/2 −1 −1/2 0 −1 −1 3�+
u

−1 +1/2 +1 +1/2 0 +1 +1 3�+
u

−1 +1/2 +1 −1/2 0 0 0 3+
u , 1−

u

−1 −1/2 +1 +1/2 0 0 0 3+
u , 1−

u

−1 −1/2 +1 −1/2 0 −1 −1 3�+
u

(see Appendix B, Table I). Adding their contribution incoher-
ently gives the ACF in the molecular frame:

pACF(θε,R, θγ1,R, θγ2,R)

= sin2 θε,R[2(sin2 θγ1,R sin2 θγ2,R + sin2 θγ2,R sin2 θγ1,R)

+ 8(sin2 θγ1,R cos2 θγ2,R + sin2 θγ2,R cos2 θγ1,R)

+ 6(cos2 θγ1,R cos2 θγ2,R + cos2 θγ2,R cos2 θγ1,R)], (15)

which still has to be averaged over all initial molecular orien-
tations in the laboratory frame.

The present model reproduces the amplitude of the an-
gular modulation seen in the ACF quite satisfactorily, while
it does not show the same sensitivity to detector arrange-
ment as the model of Torizuka et al. However, the latter
explicitly involves a two-photon ungerade-to-gerade transi-
tion from the H(2p) + H(2p) 1u to the H(1s) + H(1s) 1g state.

This surprising assumption rests on the ungerade symmetry
being imparted to the entangled photon pair, which contra-
dicts the sequential emission and detection of the Lyman-α
photons.

A complete description of the coherent two-photon emis-
sion process was offered by Jänkälä et al. [16]. This more
sophisticated model does not reproduce the ACF in any of the
geometries studied, as discussed by Torizuka et al. [26].

VI. CONCLUSIONS

We have studied the production of pairs of Lyman-α pho-
tons upon XUV excitation of H2. By time-referencing the
fluorescence photon detection to the synchrotron light pulse,
we were able to extract the partial cross sections for the
H(2p) + H(2p) and H(2p) + H(3�) channels.

A pressure dependence analysis allowed us to isolate
them from accidental coincidences. Close examination of the
doubly excited states lying in the Franck-Condon window
confirms the prior assignment of the H(2p) + H(2p) channel
to the Q2

1�u(1) state.
The angular dependence of the two-photon detection prob-

ability with respect to the polarization axis was verified to
match earlier measurements. A simple model is proposed to
account for the spin-orbit mixing taking place at large dis-
tances, which assumes a transition from Hund’s case (a) to
Hund’s case (c). The main consequence of that crude treat-
ment is that the final state is solely of 1u character, as opposed
to the model of Torizuka et al., which predicts that both 1+

g

and 3+
u symmetries are populated.

At this stage, a significant increase of the measurement
statistics would allow to perform measurements more sensi-
tive to entanglement.

For the specific case of the measurement of the de-
cay dynamics, lowering the pressure while increasing the
coincidence integration window should make possible a bet-
ter separation of the different deexcitation channels. This
selection can also be achieved by varying the excitation wave-
length.

For angle-resolved measurements, polarization-sensitive
detectors should be used while increasing the distance be-
tween them. Similarly, while carrying out the measurement of
the ACF over the whole range of angles between the polariza-
tion and detector axis, it would be interesting to concentrate
the measurements around 45◦, where differences between the
various theoretical approaches are the most significant.

Additionally, applying the same experimental procedure to
hydrogen deuteride should allow, by breaking the symmetry,
to lift ambiguities between the different theories, as was re-
cently done by Hosaka et al. [37].

These improvements, impacting both temporal and angular
selectivity, will lead to a more decisive conclusion concerning
the influence of entanglement on the deexcitation process of
doubly excited H2.
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APPENDIX A: EFFECTS OF THE COINCIDENCE
WINDOW ON THE MEASURED DECAY DYNAMICS

1. General formulas

This section details how the measured decay dynamics is
affected by the coincidence window length. This description
is given under the following assumption: the coincident decay
dynamics is generated by two independent random distribu-
tions p(t1 = t ) and p(t2 = t ) where t is bounded between
tmin and tmax, defining the coincidence window duration as
�t = tmax − tmin. Each distribution is associated with a de-
cay process. They are not necessarily identical. Each event
generates a combination of (t1, t2), those are detected by two
detectors D1 and D2, leading to the corresponding event
(tD1, tD2). But the fact that, for each event, the probabilities are
p(t1 = tD1) = p(t1 = tD2) = 0.5 leads to the impossibility to
directly extract the distributions p(t1 = t ) and p(t2 = t ) from
p(tD1 = t ) and p(tD2 = t ).

In order to circumvent this problem, the decay dynamics is
studied using the sorted time distribution

t f = min(t1, t2) = min(tD1, tD2), (A1)

ts = max(t1, t2) = max(tD1, tD2), (A2)

where t f is the first photon detection event and ts is the
second. One can note that (t f , ts) do not depend on whether
tD1 = t1, tD2 = t2 or tD1 = t2, tD2 = t1. This means that the
experimental distribution (t f , ts) measured using a subset of
(tD1, tD2) is identical to the theoretical distribution predicted
by the computation of a subset of (t1, t2). Therefore, the
probability density functions p(t f = t ) and p(ts = t ) can be
obtained using the law of total probability,

p(A) =
∑

i

p(A|Bi )p(Bi ), (A3)

applied to (t1, t2), which leads to

p(t f = t ) = p(t f = t |t1 < t2)p(t1 < t2)

+ p(t f = t |t2 < t1)p(t2 < t1), (A4)

p(ts = t ) = p(ts = t |t1 > t2)p(t1 > t2)

+ p(ts = t |t2 > t1)p(t2 > t1), (A5)

where p(t f = t |t1 < t2) is the probability to measure t f at a
time t if the event satisfies the condition t1 < t2. Then t f = t1
if this condition is satisfied; t f = t2 otherwise. The previous
equations are then

p(t f = t ) = p(t1 = t |t1 < t2)p(t1 < t2)

+ p(t2 = t |t2 < t1)p(t2 < t1),

p(ts = t ) = p(t1 = t |t1 > t2)p(t1 > t2)

+ p(t2 = t |t2 > t1)p(t2 > t1).

The terms p(ti = t |ti < t j ) are not easy to compute, but can
easily be transformed using Bayes’s theorem,

p(A|B) = p(B|A)p(A)

p(B)
, (A6)

which leads to

p(t f = t ) = p(t1 = t )p(t1 < t2|t1 = t )

+ p(t2 = t )p(t2 < t1|t2 = t ),

p(ts = t ) = p(t1 = t )p(t1 > t2|t1 = t )

+ p(t2 = t )p(t2 > t1|t2 = t ).

As writing p(t1 < t2|t1 = t ) is equivalent to say “the prob-
ability that the event t1 is smaller than an element of the t2
distribution if the event t1 is equal to the value t ,” which means
that “the probability that an element of the t2 distribution is
greater than the value t ,” then p(t1 < t2|t1 = t ) = p(t2 > t ).
When the previous equations take into account this argument,
they are rewritten as

p(t f = t ) = p(t1 = t )p(t2 > t ) + p(t2 = t )p(t1 > t ),

p(ts = t ) = p(t1 = t )p(t2 < t ) + p(t2 = t )p(t1 < t ).

Then, since the probability p(ti < t ) is defined by

p(ti < t ) =
∫ t

tmin

dt ′ p(ti = t ′) (A7)

and p(ti > t ) is defined by

p(ti > t ) =
∫ tmax

t
dt ′ p(ti = t ′), (A8)

the previous equations are written as

p(t f = t ) = p(t1 = t )
∫ tmax

t
dt ′ p(t2 = t ′)

+ p(t2 = t )
∫ tmax

t
dt ′ p(t1 = t ′), (A9)

p(ts = t ) = p(t1 = t )
∫ t

tmin

dt ′ p(t2 = t ′)

+ p(t2 = t )
∫ t

tmin

dt ′ p(t1 = t ′). (A10)

These equations give the emission rates p f (t ) = p(t f = t )
and ps(t ) = p(ts = t ) of the first and second photons over time
t . However, the experimental emission rate depends on the
time binning of the events. The method used to bypass this
problem is to integrate over all the events that happened before
the time t :

Pf (t ) = p(t f < t ) =
∫ t

tmin

dt ′ p(t f = t ′)

=
∫ t

tmin

dt ′ p(t1 = t ′)
∫ tmax

t ′
dt ′′ p(t2 = t ′′)

+
∫ t

tmin

dt ′ p(t2 = t ′)
∫ tmax

t ′
dt ′′ p(t1 = t ′′), (A11)
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Ps(t ) = p(ts < t )

=
∫ t

tmin

dt ′ p(ts = t ′)

=
∫ t

tmin

dt ′ p(t1 = t ′)
∫ t ′

tmin

dt ′′ p(t2 = t ′′)

+
∫ t

tmin

dt ′ p(t2 = t ′)
∫ t ′

tmin

dt ′′ p(t1 = t ′′). (A12)

This general formula depends only on the time distribution
of t1 and t2.

2. Emission rate normalization

If the theoretical distribution (t1, t2) is not initially bounded
between tmin and tmax, there are events falling outside the coin-
cidence window. They cannot be measured. It means that for
t1 /∈ [tmin, tmax] a random event from the distribution t2 occurs.
As t2 is independent of t1, the single event appearing at t2 is
lost with a probability p(t2 = t ). This means that p(t1 = t ) and
p(t2 = t ) can be normalized independently:

p̃(t1 = t ) = p(t1 = t )∫ tmax

tmin
dt ′ p(t1 = t ′)

, (A13)

p̃(t2 = t ) = p(t2 = t )∫ tmax

tmin
dt ′ p(t2 = t ′)

, (A14)

where the tildes indicate normalized values with tmax − tmin =
�t .

This normalization must be applied to t1 and t2, not t f and
ts, because t f and ts are not independent. This assertion can be
explained as follows: If a second photon is emitted at time
Ts after tmax, the coincident event cannot be detected. It is
therefore needed to remove that event from the t f distribution.
But this event cannot be random; it must satisfy Tf < Ts. This
changes the shape of the t f distribution, which means that the
t f and ts distributions cannot be normalized independently.
However, it is easy to verify that if p(t1 = t ) and p(t2 = t ) are
normalized, then p(t f = t ) and p(ts = t ) are also normalized.

This normalization method is also used to extract the
number of coincident events which physically happened but
cannot be measured because either t1 or t2 is outside the
interval [tmin, tmax].

The physics of the decay dynamics is bounded between
tmin = 0 and tmax = ∞. The experimental setup records events
between tmin = 0 and tmax = �t . It means that the experiment
cannot measure any event where ts > �t (t f is not taken into
account because if ts < �t then t f < �t). If we note

P̃s(t ) =
∫ t

0
dt ′ p̃(t1 = t ′)

∫ t ′

0
dt ′′ p̃(t2 = t ′′)

+
∫ t

0
dt ′ p̃(t2 = t ′)

∫ t ′

0
dt ′′ p̃(t1 = t ′′), (A15)

the number of events physically produced, Nall, is linked to the
number of events effectively measured, Nmeas, by

Nall = Nmeas
P̃s(�t )

Ps(�t )
, (A16)

where P̃s(�t ) is equal to 1 as a result of the normalization
procedure.

3. Application to doubly excited H2

The following cases use the normalized distribution p̃(t1 =
t ) and p̃(t2 = t ). The time bounds are tmin = 0 and tmax = �t .

The normalized distributions considered are the following:
(i) The single Lyα emission process from an atom initially

in the 2p state is

p̃2p(ti = t ) = 
2pe−
2pt

1 − e−
2p�t
,

where 
2p = 
1s←2p is the decay rate.
(ii) The Lyα emission is coming from an atom initially in

the 3� state, where � = s, d . The atom emits initially a Hα

photon, then a Lyα photon. Only the Lyα photon is detected.
This distribution is obtained by solving

ṅ3�(t ) = − 
3�n3�(t ),

ṅ2p(t ) = 
3�n3�(t ) − 
2pn2p(t ),

ṅ1s(t ) = 
2pn2p(t ),

where n3�(0) = 1, n2p(0) = 0, n1s(0) = 0, and 
3� = 
2p←3�.
Then

p̃3�(ti = t ) = ṅ1s(t )

= 
2p
3�

(
e−
3�t − e−
2pt

)

2p(1 − e−
3��t ) − 
3�

(
1 − e−
2p�t

) .

(iii) A random background process, independent of the
synchrotron radiation (e.g., dark counts of MCP detectors),
is uniform:

p̃BG(ti = t ) = 1/�t .

(iv) Due to the transmission window of MgF2 being lim-
ited to 110 nm, the Lyβ photon, resulting from the deexcitation
of an atom initially in the 3p state, cannot be detected in the
present experiment.

Using these formulas, the integrated decay rates are for the
2p-2p coincident distribution:

P̃2p-2p
f (t ) =

(
1 − e−2
2pt

) − 2e−
2p�t
(
1 − e−
2pt

)
(
1 − e−
2p�t

)2

P̃2p-2p
s (t ) =

(
1 − e−
2pt

)2(
1 − e−
2p�t

)2 , (A17)

which gives, when tmax = ∞,

P2p-2p
f (t ) = (1 − e-2
2pt )

P2p-2p
s (t ) = (1 − e-
2pt )2, (A18)

whose derivative leads to Eqs. (2) and (3) in the main text.
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For the 2p-3� coincidences, the distributions are⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P̃2p-3�

f (t ) = [(
3� − 
2p)(1 − e−
2p�t ) − (
3�e−
2p�t − 
2pe−
3��t )(1 − e−
2pt )
− (
3�e−
2pt − 
2pe−
3�t )(e−
2pt − e−
2p�t )]
× [(1 − e−
2p�t ) × (
3�(1 − e−
2p�t ) − 
2p(1 − e−
3��t ))]−1

P̃2p-3�
s (t ) = [(1 − e−
2pt ) × (
3�(1 − e−
2pt ) − 
2p(1 − e−
3�t ))]

× [(1 − e−
2p�t ) × (
3�(1 − e−
2p�t ) − 
2p(1 − e−
3��t ))]−1

, (A19)

which gives, when tmax = ∞,⎧⎨
⎩P2p-3�

f (t ) = (
3�−
2p)−[
3�e−
2pt −
2pe−
3�t ]e−
2pt


3�−
2p

P2p-3�
s (t ) = (1−e−
2pt )[
3�(1−e−
2pt )−
2p(1−e−
3�t )]


3�−
2p

, (A20)

whose derivative leads to Eqs. (7) and (8) in the main text.
The fact that there is nearly no coincident background

without the synchrotron radiation does not mean that there is
no background process. The coincident background distribu-
tion is the following:⎧⎪⎨

⎪⎩
P̃2p-BG

f (t ) = �t+(t−�t )e−t/τ2p−te−�t/τ2p

�t(1−e−�t/τ2p )

P̃2p-BG
s (t ) = t(1−e−t/τ2p )

�t(1−e−�t/τ2p )

, (A21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̃3�-BG
f (t )
= [(�t − t )(
3�e−
2pt − 
2pe−
3�t )

+
3�(te−
2p�t − �t ) − 
2p(te−
3��t − �t )]
× [�t (
3�(e−
2p�t − 1) − 
2p(e−
3��t − 1))]−1

P̃3�-BG
s (t )
= [t (
3�(e−
2pt − 1) − 
2p(e−
3�t − 1))]

× [�t (
3�(e−
2p�t − 1) − 
2p(e−
3��t − 1))]−1

,

(A22){
P̃BG-BG

f (t ) = 2t�t−t2

�t2

P̃BG-BG
s (t ) = t2

�t2

. (A23)

4. Spontaneous decay direct derivation

The differential equations corresponding to the radiative
cascade of Figs. 4 and 6 are

ṅ2p3� = −
3�n2p3� − 
2pn2p3�, (A24)

ṅ2p2p = +
3�n2p3� − 
2pn2p2p − 
2pn2p2p, (A25)

ṅ2p1s = +
2pn2p2p − 
2pn2p1s, (A26)

ṅ1s3� = +
2pn2p3� − 
3�n1s3�, (A27)

ṅ1s2p = +
2pn2p2p + 
3�n1s3� − 
2pn1s2p, (A28)

ṅ1s1s = +
2pn2p1s + 
2pn1s2p, (A29)

where the n corresponds to the population of the various
states.

The emission rates are defined as{
p f = −ṅ2p3� − ṅ2p2p

ps = ṅ1s1s
, (A30)

where (pSP,2p
f , pSP,2p

s ) is the solution of Eqs. (A24)–
(A29) with the atoms initially in the (2p, 2p) state and

(pSP,3�
f , pSP,3�

s ) is the solution of these equations when the
atoms are initially in the (2p, 3�) state.

5. Why the 2p-3s state is not included in the decay curve fits

Those distributions should be included in the fit. However,
when �t is small compared to 1/
3�, the exponential decay is
close to linear in the recorded time window (Fig. 14). There-
fore, the 2p-BG distribution is similar to the 2p-3s distribution
for the coincidence windows used during the experiment (30
and 60 ns). This applies for 2p-3d only when �t < 15 ns.

APPENDIX B: NONCOHERENT ACF
IN THE MOLECULAR FRAME

At large internuclear distance, we make the assumption
that all states of 1u symmetry are statistically populated as
a result of spin-orbit coupling and near degeneracy of all
states correlated to H(2p) + H(n = 2) pairs, among them the
Q2

1�u(1) state. Therefore, it cannot be solely defined by
the 2p1/2 or 2p3/2 states of the separated atoms. Instead, one
has to build the 1u wavefunction from the (2p, 2p) asymp-
totic case without initially defining J . One way to do so
is to detail the atomic wave functions from the Wigner-
Witmer rules applied to Hund’s case (a) and then to determine

(d)

(a) (b)
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t)

(c)
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FIG. 14. Coincident integrated decay rate for various distribu-
tions. First photon Pf , red; second photon Ps, blue. Solid lines, 2p-3�,
reduced coincidence window tmax = �t ; dash-dotted lines, 2p-3�,
infinite coincidence window tmax = ∞; dashed lines, 2p-BG, reduced
coincident window. (a) 2p-3d , �t = 10 ns; (b) 2p-3d , �t = 30 ns;
(c) 2p-3d , �t = 60 ns; (d) 2p-3s, �t = 60 ns.
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which substate is associated to a 1u state in Hund’s case (c)
framework.

The 2Pu-2Pu combination generates the following symme-
tries, the number of states of each symmetry being given
here in parentheses [45]: 1+

g (2), 1−
u (1), 3−

g (1), 3+
u (2),

1�g(1), 1�u(1), 3�g(1), 3�u(1), 1�g(1), and 3�u(1).

Each of these states is weighted by its multiplicity (due to
S and �). Then, by listing all the ml and ms of each atom, one
should assign each of these combinations to a (combination
of) Hund’s case (a) symmetry in order ensure that the state
is an ungerade state. It only remains to sum over all the
combinations, and add them:

sin2(θγ1,R) sin2(θγ2,R) + sin2(θγ2,R) sin2(θγ1,R) if ml (1) = 0 and ml (2) = 0, (B1)

sin2(θγ1,R) cos2(θγ2,R)+ sin2(θγ2,R) cos2(θγ1,R)

{
if ml (1) = ±1 and ml (2) = 0
or ml (1) = 0 and ml (2) = ±1, (B2)

cos2(θγ1,R) cos2(θγ2,R)+ cos2(θγ2,R) cos2(θγ1,R) if ml (1) = ±1 and ml (2) = ±1, (B3)

for each term which satisfies �̃ = ±1 for an ungerade state.
Once this is done (see Table I), one obtains the ACF in the molecular frame:

pACF(θε,R, θγ1,R, θγ2,R) = sin2 θε,R[2(sin2 θγ1,R sin2 θγ2,R + sin2 θγ2,R sin2 θγ1,R) + 8(sin2 θγ1,R cos2 θγ2,R

+ sin2 θγ2,R cos2 θγ1,R) + 6(cos2 θγ1,R cos2 θγ2,R + cos2 θγ2,R cos2 θγ1,R)]. (B4)
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J. Phys. Chem. A 115, 6851 (2011).

[10] S. Y. Grebenshchikov and D. Picconi, Chem. Phys. 515,
60 (2018); Ultrafast Photoinduced Processes in Polyatomic
Molecules: Electronic Structure, Dynamics and Spectroscopy
(Dedicated to Wolfgang Domcke on the occasion of his 70th
birthday).

[11] F. Borselli, M. Maiwöger, T. Zhang, P. Haslinger, V. Mukherjee,
A. Negretti, S. Montangero, T. Calarco, I. Mazets, M. Bonneau,
and J. Schmiedmayer, Phys. Rev. Lett. 126, 083603 (2021).

[12] S. Arai, T. Kamosaki, M. Ukai, K. Shinsaka, Y. Hatano, Y. Ito,
H. Koizumi, A. Yagishita, K. Ito, and K. Tanaka, J. Chem. Phys.
88, 3016 (1988).

[13] T. Odagiri, T. Tanabe, and N. Kouchi, J. Phys.: Conf. Ser. 388,
012024 (2012).

[14] T. Tanabe, T. Odagiri, M. Nakano, I. H. Suzuki, and N. Kouchi,
Phys. Rev. Lett. 103, 173002 (2009).

[15] T. Tanabe, T. Odagiri, M. Nakano, Y. Kumagai, I. H. Suzuki,
M. Kitajima, and N. Kouchi, Phys. Rev. A 82, 040101(R)
(2010).

[16] K. Jänkälä, P. V. Demekhin, S. Heinäsmäki, I. Haar, R. Hentges,
and A. Ehresmann, J. Phys. B: At. Mol. Opt. Phys. 43, 065104
(2010).

[17] Y. Nakanishi, K. Hosaka, R. Kougo, T. Odagiri, M. Nakano, Y.
Kumagai, K. Shiino, M. Kitajima, and N. Kouchi, Phys. Rev. A
90, 043405 (2014).

[18] P. Sancho, Phys. Rev. A 95, 032116 (2017).
[19] H. Miyagi, A. Ichimura, and N. Kouchi, J. Phys. B: At. Mol.

Opt. Phys. 40, 617 (2007).
[20] M.-E. Couprie, L. S. Nadolski, R. Nagaoka, P. Brunelle, A.

Loulergue, M. A. Tordeux, J. F. Lamarre, and A. Nadji,
Synchrotron Radiat. News 26, 14 (2013).

[21] N. R. Daly, Rev. Sci. Instrum. 31, 264 (1960).
[22] T. Odagiri, M. Murata, M. Kato, and N. Kouchi, J. Phys. B: At.

Mol. Opt. Phys. 37, 3909 (2004).
[23] P. Sancho and L. Plaja, Phys. Rev. A 83, 066101 (2011).
[24] M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982).
[25] NIST Atomic Spectra Database, http://www.nist.gov/

pml/data/asd.cfm.
[26] Y. Torizuka, K. Hosaka, P. Schmidt, T. Odagiri, A. Knie, A.

Ehresmann, R. Kougo, M. Kitajima, and N. Kouchi, Phys. Rev.
A 99, 063426 (2019).

[27] M. Glass-Maujean, J. Chem. Phys. 89, 2839 (1988).
[28] K. Hosaka, K. Shiino, Y. Nakanishi, T. Odagiri, M. Kitajima,

and N. Kouchi, Phys. Rev. A 93, 063423 (2016).
[29] I. Borges and C. E. Bielschowsky, J. Phys. B: At. Mol. Opt.

Phys. 33, 1713 (2000).
[30] M. Glass-Maujean and H. Schmoranzer, J. Phys. B: At. Mol.

Opt. Phys. 38, 1093 (2005).
[31] M. Glass-Maujean, J. Chem. Phys. 85, 4830 (1986).
[32] M. Glass-Maujean, H. Frohlich, and P. Martin, Phys. Rev. A 52,

4622 (1995).
[33] I. Borges and C. E. Bielschowsky, Chem. Phys. Lett. 342, 411

(2001).
[34] M. Glass-Maujean, S. Klumpp, L. Werner, A. Ehresmann, and

H. Schmoranzer, J. Phys. B: At. Mol. Opt. Phys. 37, 2677
(2004).

013109-13

https://doi.org/10.1103/PhysRevLett.28.938
https://doi.org/10.1103/PhysRevLett.49.1804
https://doi.org/10.1103/PhysRevLett.80.3891
https://doi.org/10.1209/0295-5075/16/1/006
https://doi.org/10.1103/PhysRevLett.69.261
https://doi.org/10.1088/1464-4266/4/4/323
https://doi.org/10.1021/jp1112922
https://doi.org/10.1016/j.chemphys.2018.07.005
https://doi.org/10.1103/PhysRevLett.126.083603
https://doi.org/10.1063/1.453943
https://doi.org/10.1088/1742-6596/388/1/012024
https://doi.org/10.1103/PhysRevLett.103.173002
https://doi.org/10.1103/PhysRevA.82.040101
https://doi.org/10.1088/0953-4075/43/6/065104
https://doi.org/10.1103/PhysRevA.90.043405
https://doi.org/10.1103/PhysRevA.95.032116
https://doi.org/10.1088/0953-4075/40/3/016
https://doi.org/10.1080/08940886.2013.791210
https://doi.org/10.1063/1.1716953
https://doi.org/10.1088/0953-4075/37/19/010
https://doi.org/10.1103/PhysRevA.83.066101
https://doi.org/10.1016/0370-1573(82)90102-8
http://www.nist.gov/pml/data/asd.cfm
https://doi.org/10.1103/PhysRevA.99.063426
https://doi.org/10.1063/1.454987
https://doi.org/10.1103/PhysRevA.93.063423
https://doi.org/10.1088/0953-4075/33/9/303
https://doi.org/10.1088/0953-4075/38/8/002
https://doi.org/10.1063/1.451717
https://doi.org/10.1103/PhysRevA.52.4622
https://doi.org/10.1016/S0009-2614(01)00598-X
https://doi.org/10.1088/0953-4075/37/13/005


DOCHAIN, FABRE, LAUZIN, AND URBAIN PHYSICAL REVIEW A 107, 013109 (2023)

[35] J. D. Bozek, J. E. Furst, T. J. Gay, H. Gould, A. L. D. Kilcoyne,
J. R. Machacek, F. Martín, K. W. McLaughlin, and J. L. Sanz-
Vicario, J. Phys. B: At. Mol. Opt. Phys. 39, 4871 (2006).

[36] J. L. Sanz-Vicario, H. Bachau, and F. Martín, Phys. Rev. A 73,
033410 (2006).

[37] K. Hosaka, Y. Torizuka, P. Schmidt, A. Knie, A. Ehresmann, T.
Odagiri, M. Kitajima, and N. Kouchi, Phys. Rev. A 99, 033423
(2019).

[38] S. L. Guberman, J. Chem. Phys. 78, 1404 (1983).
[39] D. Sprecher, C. Jungen, W. Ubachs, and F. Merkt, Faraday

Discuss. 150, 51 (2011).
[40] I. Sánchez and F. Martín, J. Chem. Phys. 110, 6702 (1999).

[41] J. Fernández and F. Martín, J. Phys. B: At. Mol. Opt. Phys. 34,
4141 (2001).

[42] M. Barat and W. Lichten, Phys. Rev. A 6, 211 (1972).
[43] Y. V. Vanne, A. Saenz, A. Dalgarno, R. C. Forrey, P. Froelich,

and S. Jonsell, Phys. Rev. A 73, 062706 (2006).
[44] L. O. Santos, A. B. Rocha, R. F. Nascimento, N. V. de Castro

Faria, and G. Jalbert, J. Phys. B: At. Mol. Opt. Phys. 48, 185104
(2015).

[45] G. Herzberg, Spectra of Diatomic Molecules, Molecular Spectra
and Molecular Structure (Van Nostrand, New York, 1950).

[46] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Springer, Berlin, 1957).

013109-14

https://doi.org/10.1088/0953-4075/39/23/006
https://doi.org/10.1103/PhysRevA.73.033410
https://doi.org/10.1103/PhysRevA.99.033423
https://doi.org/10.1063/1.444882
https://doi.org/10.1039/c0fd00035c
https://doi.org/10.1063/1.478576
https://doi.org/10.1088/0953-4075/34/21/306
https://doi.org/10.1103/PhysRevA.6.211
https://doi.org/10.1103/PhysRevA.73.062706
https://doi.org/10.1088/0953-4075/48/18/185104

