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Proposal for spin squeezing in rare-earth-ion-doped crystals with a four-color scheme
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Achieving spin squeezing within solid-state devices is a long-standing research goal due to the promise of
their particularities, for instance, their long coherence times, the possibility of low-temperature experiments,
or the integration of entanglement-assisted sensors on-chip. In this work, we investigate an interferometer-free
four-color scheme to achieve spin squeezing of rare-earth-ion-doped crystals. The proposal relies on an analytic
derivation that starts from a Tavis-Cummings model for light-matter interaction, providing microscopic insights
onto spin-squeezing generation. We evince the spin-squeezing signature in the light intensity variance. We
consider the two particular cases of europium- and praseodymium-doped yttrium orthosilicates, workhorses
of quantum technology developments. We show that up to 8 dB of spin squeezing can be obtained with readily
accessible experimental resources, including noise due to photon scattering. Our results for rare-earth-ion-doped
crystals add to the promising properties of these platforms for manipulating many-body entangled states and for
high-precision measurements.
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I. INTRODUCTION

Spin squeezing provides a way of entangling a large en-
semble of spins, which can also be readily verified with
current experimental techniques. Correlations among the
spins are typically built via their collective interaction with
an optical field, as opposed to individually addressing the
quantum-mechanical degrees of freedom of the spins [1,2].
Spin squeezing has numerous applications towards entangle-
ment detection [3], quantum sensing, and quantum metrology;
see the above reviews. A natural starting point for achieving
spin squeezing of an ensemble of real or artificial atoms
is the coherent spin state (CSS) of N two-level quantum
systems in a fully quantum coherent superposition between
ground and excited states. Light-matter collective interactions
are typically implemented by transferring quantum states of
light to the atoms or through nondestructive measurements via
interferometric schemes, leading to successful experiments
and promising proposals with various platforms, including
trapped ions [4], Bose–Einstein condensates [5–7], cold ther-
mal atoms [1,3,8,9], nuclear spin squeezing [10], optical spin
squeezing [11], and magnons [12].

The goal of achieving spin squeezing within solid-state de-
vices is motivated by several key advantages specific to these
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platforms. In particular, spin squeezing in solid-state devices
could benefit from their long coherence times, would allow
for low-temperature operation and provide the possibility
to integrate entanglement-assisted sensors on-chip. Whereas
very recent experiments have demonstrated spin-squeezing
with NV centers opening the way towards spin squeezing at
room temperature [13], no experiments have yet been real-
ized with rare-earth-ion-doped crystals (REIDCs). REIDCs
are solid-state devices of particular interest for implementing
a broad diversity of quantum information processing protocols
such as quantum memories [14–17], photonic processors in
the spectro-temporal domain [18,19] and quantum repeaters
[20,21]. They are particularly appealing materials thanks to
their record coherence times [17,22–24], and their solid-state
nature allows them to be integrated via a large range of avail-
able techniques [25–29].

In this work, we propose to achieve spin squeezing in
a REIDC using a four-color scheme [30] as illustrated in
Fig. 1. A single spatial mode containing two pairs of optical
modes (labeled α and β) probe the lower two spin states of
the ground manifold of the ensemble, initially prepared in a
CSS. Quantum nondemolition (QND) measurements of the
intensity variance will constitute a signature of spin squeezing
within the medium. In contrast to Ramsey-type experiments,
we avoid interferometric-stability issues as quantum interfer-
ences take place within each pair of optical probes as shown
in the next sections. Other known methods to implement spin
squeezing in the previously mentioned platforms also remain
valid for REIDCs, but the goal of our approach is to combine
the simplicity of an experimental scheme with our solid-state
ensembles.
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FIG. 1. Coherent manipulation of spin transitions, optically ad-
dressed in an independent way. (a) Sketch of ground |↓〉 and excited
|↑〉 spin state. The optical transitions with excited states |e↓〉 and
|e↑〉 [see panel (b)] are addressed by a pair of photonic probes
centered around ωα and ωβ , respectively. Each probe in a given pair
is detuned from the central frequency by δω/2. (b) Illustration of
the atomic structure of the 4 f ↔ 4 f transitions of europium- and
praseodymium-doped Y2SiO5.

From a theoretical perspective, we provide a complemen-
tary approach with respect to Ref. [30], starting from the
generalized Jaynes-Cummings Hamiltonian in the rotating
wave approximation for light-matter interaction. We then
work in the dispersive regime, valid for a large detuning
between the light and atomic transitions. In this regime, the
light-matter interaction is QND, inducing a frequency shift
of the probes that depends linearly on the atomic populations
of the CSS. Such a QND interaction is known to be a valid
way to achieve spin squeezing [1,2]. We show that the amount
of squeezing (i.e., the squeezing parameter) depends directly
on the dispersive coupling strength, which we estimate from
state-of-the-art experiments with rare-earth ions. We derive
the variance of the light’s intensity, the atomic postmeasured
state in terms of this dispersive shift, and discuss the role
of photon scattering in future experiments with two differ-
ent types of REIDCs, europium-doped yttrium orthosilicate
(Eu3+:Y2SiO5) and praseodymium-doped yttrium orthosili-
cate (Pr3+:Y2SiO5). Our model predicts that up to 8 dB
spin squeezing can be achieved in these. This value would
place REIDCs as serious counterparts to gaseous systems,
while retaining all the aforementioned strengths of solid-state
systems.

The paper is organized as follows: In Sec. II, we briefly
introduce spin squeezing. In Sec. III, we derive the light-atoms
entangled state created by our experimental scheme. These
analytical results are based on a microscopic description of
light-matter interaction in the dispersive regime. In Sec. IV,
we compute the first two moments of light intensity without
and with the presence of atoms and show how the intensity
variance depends on the number of atoms and on the disper-
sive phase shift per atom. In Sec. V, we derive the atomic
state and show that it is modified upon the measurement out-
comes for light detection. In Sec. VI, we provide an analytical
expression of the spin squeezing parameter ξ 2 specific to
our experimental scheme and discuss its dependence on the

measurement outcomes taking state-of-the-art experimental
values for the two REIDCs under consideration. In the last
section, Sec. VII, we discuss squeezing in the presence of
photon scattering considering for these systems. We compare
our predictions to past experiments with rubidium and cesium
cold atomic gases.

II. OUR PROPOSAL FOR SOLID-STATE-BASED
SPIN SQUEEZING

We use a simplified model where each atom has two spin
states |↓〉 and |↑〉 in the electronic ground state, and another
two spin states |e↓〉 and |e↑〉 in an excited electronic state. The
transitions between the ground and excited spin states |↓〉 ↔
|e↓〉 and |↑〉 ↔ |e↑〉 are probed with optical modes, labeled α

and β, see Fig. 1. The N spins are initially put in a coherent
superposition (|↓〉 + |↑〉)/

√
2, forming a CSS. In the Dicke

state basis {|m〉} where |m〉 is an eigenstate of the collective
operator Ĵz = 1

2

∑N
i=1 σ̂ i

z with eigenvalue m, the CSS takes the
form

|CSS〉 = 1

2N/2
(|↓〉 + |↑〉)⊗N =

N/2∑
m=−N/2

cm|m〉. (1)

The Dicke state |m〉 is a superposition of spin states
with N/2 + m (N/2 − m) spins in their excited (ground)
state and cm the normalized binomial coefficients such that∑

m |cm|2 = 1:

cm = 1

2N/2

√(
N

N
2 + m

)
. (2)

The CSS state is characterized by the expectation value of
the collective operator Ĵx = 1

2

∑N
i=1 σ̂ i

x and Ĵy = 1
2

∑N
i=1 σ̂ i

y,
with their expected values being 〈Ĵx〉 = N/2, 〈Ĵy〉 = 0. The
variance of a collective spin operator in the orthogonal di-
rection ẑ is simply given by 〈Ĵ2

z 〉 = N/4, whereas its average
reduces to zero as easily seen from the above definitions. The
CSS is the optimal separable state for metrology, saturating
the standard quantum limit. However, the standard quantum
limit can be surpassed when the spins become entangled [1],
and the metrological gain can then be quantified through the
squeezing parameter ξ 2:

ξ 2 = N

〈
Ĵ2

z

〉
〈
Ĵx
〉2 . (3)

This parameter takes the value ξ 2 = 1 when expectation
values of the orthogonal collective operators Ĵz and Ĵx are
evaluated for a CSS. In contrast, when evaluated for a spin-
squeezed state, values for ξ 2 below 1 can be achieved,
evincing a reduced variance in the z direction while main-
taining the mean value in the x direction, giving rise to an
enhanced sensitivity.

The experimental setup is illustrated in Fig. 2. Assuming
the atoms and the light probes being detuned from the atomic
transition resonance, their interaction effectively shifts the
phase of each frequency mode according to the spin popula-
tion. By measuring the intensity of each probe, Īα,β , the state
of the atoms is modified according to quantum measurement

013108-2



PROPOSAL FOR SPIN SQUEEZING IN … PHYSICAL REVIEW A 107, 013108 (2023)

FIG. 2. Sketch of the proposal for achieving free space squeezing of REIDCs. Two coherent states with respective frequency ωα , ωβ are
sent into a modulator to produce four probes, grouped in pairs detuned by δω/2 from the central frequencies ωα,β . These four probes interact
with the rare-earth atomic ensemble initialized in a coherent spin state (CSS) for a probe time tp in a nondestructive way. This QND scheme
induces a frequency shift to each probe that depends on the atomic number m through the collective operators Ĵzα/β

. The frequency shift depends
on the interaction strength between atoms and light, on the detuning δω/2 and on the probe time tp, see Eqs. (12) and (20) in the main text. All
optical modes are put in the same spatial mode to avoid the use of an interferometric setup.

theory, and we show that it enables noninterferometric spin
squeezing with REIDCs.

III. ENTANGLING LIGHT AND ATOMS

As sketched in Fig. 2, the two pairs of modes required in
the four-color scheme are generated by sending two coherent
states with frequencies ωα and ωβ into a modulator that pro-
duces two pairs of coherent states detuned by ±δω/2 from
their central frequency:

ω±
α,β = ωα,β ± δω/2. (4)

The photonic states to be manipulated in this proposal
hence take the form

|α〉 → ∣∣α(eiω+
α t + eiω−

α t
)〉 = ∣∣αeiωαt

(
eiδωt/2 + e−iδωt/2)〉,

|β〉 → ∣∣β(eiω+
β t + eiω−

β t)〉 = ∣∣βeiωβ t
(
eiδωt/2 + e−iδωβ t/2

)〉
.

(5)

The total Hamiltonian for spins and optical modes,
accounting for light-matter interaction through a Tavis-
Cummings Hamiltonian, takes the form

Ĥtot = (ωα â†
α âα + ωβ â†

β âβ ) +
N∑

i=1

(
ωα

2
σ̂ i

zα
+ ωβ

2
σ̂ i

zβ

)

+
N∑

i=1

g(i)
α

(
σ̂ i

+α
âα + â†

ασ̂ i
−α

)

+
N∑

i=1

g(i)
β

(
σ̂ i

+β
âβ + â†

β σ̂ i
−β

)
, (6)

with âα,β and â†
α,β being the bosonic annihilation and creation

operators for the two photonic probes, and σ i
±α,β

the raising
and lowering operators for the optical transitions ωα,β for the
atom i. The Tavis-Cummings interaction Hamiltonian is valid
under the rotating-wave approximation (RWA), i.e., consid-
ering only near-resonant interactions between the photonic
modes and the spin degrees of freedom [31,32]. Notice that
excitation of crossed transition (|↓〉 ↔ |e↑〉 and |↑〉 ↔ |e↓〉)
are neglected here, which might not be the case in actual

experimental implementations. The interaction strengths gi
μ

will be made explicit as a function of experimental parameters
below.

A. Atomic quantum nondemolition measurement

To achieve a QND measurement of the CSS state by the
photonic probes, we consider the dispersive regime of the
Tavis-Cummings Hamiltonian in the RWA, valid when the
detuning δω/2 between atomic and photonic frequencies is
much larger than the interaction strengths g(i)

μ :

g(i)
α , g(i)

β 
 δω/2. (7)

In this situation, the total Hamiltonian takes the effective form
of the dispersive Hamiltonian in the RWA [33–36]:

Ĥeff =
N∑

i=1

(
ωα +

(
g(i)

α

)2

δω/2

)
σ̂ i

zα

2

+
N∑

i=1

(
ω±

α ±
(
g(i)

α

)2

δω/2
σ̂ i

zα

)
â†

α âα

+
N∑

i=1

⎛
⎝ωβ +

(
g(i)

β

)2

δω/2

⎞
⎠ σ̂ i

zβ

2

+
N∑

i=1

⎛
⎝ω±

β ±
(
g(i)

β

)2

δω/2
σ̂ i

zβ

⎞
⎠â†

β âβ. (8)

Further assuming that the light-matter interaction strength
is the same for all atoms and does not depend on the optical
frequencies, g(i)

α = g(i)
β ≡ g (as discussed below), the RWA

Hamiltonian in the dispersive regime that applies to our
scheme is

Ĥeff =
(

ωα + g2

δω/2

)
Ĵzα

+
(

ω±
α ± 2g2

δω/2
Ĵzα

)
â†

α âα

+
(

ωβ + g2

δω/2

)
Ĵzβ

+
(

ω±
β ± 2g2

δω/2
Ĵzβ

)
â†

β âβ. (9)

013108-3



T. KRIVÁCHY et al. PHYSICAL REVIEW A 107, 013108 (2023)

Here we have introduced the collective operators Ĵzμ
(μ =

α, β), the spin operators for the optical transitions ωα and ωβ :

Ĵzα
= 1

2

N∑
i=1

σ̂ i
zα

, (10a)

Ĵzβ
= 1

2

N∑
i=1

σ̂ i
zβ

, (10b)

probing respectively the ground and excited spin states of the
atomic CSS |↓〉 and |↑〉:

Ĵzα
|m〉 = −

(
N

2
− m

)
|m〉, (11a)

Ĵzβ
|m〉 = −

(
N

2
+ m

)
|m〉. (11b)

The minus sign originates in the definition of the opera-
tors Ĵzα,β

(probing the ground and excited states of the CSS
corresponding, respectively, to probing the ground state of the
α-optical transition and of the β-optical transition). Recall that
Ĵz without a subscript represents the operator acting on the
{|↓〉, |↑〉} subspace, cf. Fig. 1. Equation (9) clearly shows that
ground spin states and probes acquire a frequency shift due

to their interaction in the RWA in the dispersive regime. This
frequency shift 2g2/(δω/2) will be denoted �0 in the rest of
this work:

�0 = 2g2

δω/2
. (12)

This dispersive regime allows for a QND-measurement with
no population transfer to the excited states |e↓〉 and |e↑〉
through the shift in frequency of the photonic probes:

ω±
α → ω±

α ± �0Ĵzα
, (13a)

ω±
β → ω±

β ± �0Ĵzβ
. (13b)

Below, we derive the entangled state for atoms and pho-
tonic modes and demonstrate squeezing upon measurements
of light intensities.

B. Light-atom entangled state

For simplicity, we start from the state |ψt−tp〉 at time t − tp

before the light-matter interaction of duration tp took place.
It is therefore the tensor product of the CSS written as a
superposition of Dicke states |m〉 [see Eq. (1)], with the two
coherent states as described in Eq. (5) taking t → t − tp:

|ψt−tp〉 =
∑

m

cm|m〉 ⊗ ∣∣αeiωα (t−tp)
(
eiδω(t−tp)/2 + e−iδω(t−tp)/2

)〉
⊗ ∣∣βeiωβ (t−tp)

(
ei(δω(t−tp)/2+θ/2) + e−i(δω(t−tp)/2−θ/2)

)〉
. (14)

Here, a relative phase θ is introduced as an additional parameter, that can be adjusted via the independent modulations of the
optical fields α and β. As a consequence of the QND scheme, all coherent states pick up a phase factor that depends on the
mth Dicke state through Ĵzμ

according to Eqs. (13) and on the probe time tp during which the coherent states interacted with
the atoms. Light and atoms become entangled and the state evolves to

|ψt 〉 =
∑

m

cm|m〉 ⊗ ∣∣αeiωαt
(
eiδωt/2e−i�0(N/2−m)tp + e−iδωt/2e+i�0(N/2−m)tp

)〉
⊗ ∣∣βeiωβ t

(
eiδωt/2e−i�0(N/2+m)tpeiθ/2 + e−iδωt/2e+i�0(N/2+m)tpe−iθ/2

)〉
=

∑
m

cm|m〉 ⊗
∣∣∣∣2αeiωαt cos

(
�0tpN−δωt

2
− m�0tp

)〉
⊗

∣∣∣∣2βeiωβ t cos

(
�0tpN−δωt−θ

2
+ m�0tp

)〉

=
∑

m

cm|m〉 ⊗ |2αeiωαt cos(Xt − mϕ)〉 ⊗ |2βeiωβ t cos(Xt−θ/2 + mϕ)〉 (15)

:=
∑

m

cm|m〉 ⊗ |αm〉 ⊗ |βm〉. (16)

After interaction, photonic and atomic degrees of freedom
can no longer be written as a separable state. Each photonic
state now depends explicitly on the atomic quantum number
m through the population of the spin ground state (N/2 − m)
or the population of the spin excited state (N/2 + m). We have
introduced the notations

Xt = (ϕN−δωt )/2, (17)

�0tp = ϕ,

αm = 2αeiωαt cos (Xt − mϕ),

βm = 2βeiωβ t cos (Xt−θ/2 + mϕ). (18)

The amplitudes αm and βm exhibit a time dependence through
Xt and depend on the atomic quantum number m. The relative
phase θ between the two coherent states modulations plays
the role of a control parameter which influences both the light
intensity and variance. In the following, we fix it to θ = +π ,
such that [using cos(ζ − π/2) = sin ζ ]

αm = 2αeiωαt cos (Xt − mϕ), (19a)

βm = 2βeiωβ t sin (Xt + mϕ). (19b)

The probe time tp entering the QND-measurement induced
phase factors in Eq. (15) reflects the time during which the
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coherent states interact with (or “probe”) the atoms. In full
generality, Eq. (9) introduces an additional phase term in
Eqs. (15) and (16) in front of |m〉, given by ei(ωβ−ωα )tpm. This
additional phase changes the reference direction in the x-y
plane by an angle of (ωβ − ωα )tp. It implies a squeezed state
with a given orientation set by the pulse time tp and the beating
frequency ωα − ωβ . Without loss of generality and for the
sake of clarity, we work in the rotating frame of the atoms
in the following, hence omitting this phase factor in the main
text. In Appendix E, we explain how this term exactly enters
the squeezing parameter.

Towards implementation in a solid-state experiment, sev-
eral aspects should be addressed. First, the Eu- and Pr-doped
crystals usually display inhomogeneously broadened optical
lines, with typical widths (≈GHz) much broader than the
frequency spacing of the spin transitions [≈10 MHz, see
Fig. 1(b)]. Therefore, specific preparation procedures are re-
quired in order to select only the atoms resonant with the
proper transition at a given wavelength (also known as “class
cleaning procedure” [37]). This can be performed by using
well-known optical pumping techniques, which also come
with a decrease of the optical depth of the ensemble. A
detailed analysis of these aspects is given in Appendix A.
Second, it is important to explicit the form of the phase shift
ϕ = �0tp = 2 g2

�
tp with the detuning � = δω/2 in terms of

relevant parameters for a REIDC, in order to assess the feasi-
bility of spin-squeezing experiments. As mentioned above, the
coupling strengths gα and gβ of both transitions at frequencies
ωα and ωβ can be made equal independently by adjusting the
relative transition cross sections. To this extent, one can act
on an additional degree of freedom for the two coherent states
α and β such as polarization for instance. Then the probe
time tp will typically be set by the length of the sample Ls

and the group velocity vg of the light pulses. We then have
g = μ|E (1)|/h̄ with E (1) = √

h̄ω/(2ε0V )
√

vg/(nc) being the
single-photon electric field, μ = √

nε0ch̄σ�/ω the electric
dipole of the optical transition, σ the transition resonant cross
section, � the homogeneous linewidth, ω the transition fre-
quency, V = ALs the quantization volume, A the area of the
addressed ensemble, and n the refractive index of the medium
[38]. Using these expressions, the phase shift per atom ϕ can
be expressed in terms of the optical depth of the sample, d =
σN/A with N being the total number of atoms in the crystal
and the photon-scattering rate η = Iphσ/A(�/�)2. Here, Iph

corresponds to the number of photons probing one optical
transition, Iph = 2I0 with the definition |α|2 = |β|2 = I0. This
gives

ϕ =
√

ηd

NIph
=

√
ηd

N (2I0)
, (20)

a relation that agrees with the literature ηd = ϕ2NIph

[1,2,30,39] and references therein.
The beatnotes at frequency δω will be subsequently mea-

sured and the components at frequencies ωα and ωβ will each
produce photocurrents that can be accessed individually or
together in basic operations such as their sum or differences.
The case of difference in the photocurrents is presented in
Appendix B 2; this scheme may be advantageous to facilitate

the measurement of the light variance, as the mean value
can be made zero through the relative phase θ between the
two coherent states in Eq. (15). In the following sections,
we focus on the case where both intensities can be measured
independently.

IV. MOMENTS OF LIGHT IN PRESENCE OF ATOMS

We now calculate the light intensity and its variance, as-
suming the photonic modes have interacted with the atomic
cloud and assuming they can be measured independently
through the photon number operators n̂α and n̂β . The total
intensity operator is then simply the sum of the two operators:

Î = n̂α + n̂β = â†
α âα + â†

β âβ, (21)

The average intensity 〈Î〉 is calculated with respect to the
photonic state obtained by taking the partial trace with respect
to the atomic state. The light intensity variance is defined as
Var(Î ) = 〈(Î − 〈Î〉)2〉 = 〈Î2〉 − 〈Î〉2. Before interaction with
the atoms, one simply has

〈Î〉 = Var(Î ) = 4I0. (22)

After interaction with the atoms, the situation changes radi-
cally. The coherent states acquire a phase shift, their amplitude
now depend on the atomic quantum number m, see Eqs. (19)
for |αm〉 and |βm〉. When examining observables of the op-
tical modes, such as intensity and variance, one must start
from Eq. (16) and trace out the atomic degrees of freedom.
The resulting density matrix describing the optical degrees of
freedom is ρα,β = ∑

m c2
m|αm〉|βm〉〈βm|〈αm|, and the average

intensity reads〈
Î
〉 =

∑
m

c2
m〈αm|〈βm|Î|βm〉|αm〉 (23)

=
∑

m

c2
m(〈αm|â†

α âα|αm〉 + 〈βm|â†
β âβ |βm〉)

=
∑

m

c2
m(|αm|2 + |βm|2)

= 4I0

∑
m

c2
m[1 + sin(2Xt ) sin(mϕ)]. (24)

The sum over m is performed by determining a valid support
for the binomial coefficients cm. Initially, the binomial distri-
bution c2

m is centered around zero and its support is primarily
in [−√

N/2,
√

N/2], where N is the total number of atoms.
Comparing mϕ (of order ≈1/

√
N) to Nϕ (of order ≈1, total

phase shift for the atomic ensemble), we can Taylor expand
sin(mϕ) and keep the lowest-order terms in ϕ in the sup-
port of the binomial distribution. Using then

∑
m c2

m = 1 and∑
m c2

mm = 0, we find that the average light intensity remains
unaffected by the presence of the atoms to first-order in ϕ:

〈Î〉 = 4I0. (25)

In contrast, a change in the intensity variance is observed
from 4I0 when interaction with the atoms is taken into ac-
count. Keeping only lowest-order terms in ϕ, sin2(mϕ) ≈
m2ϕ2, and using

∑
m c2

mm2 = N/4, we find (see details in
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Appendix B 1):

〈Î2〉 ∼ 4I0

[
1 + 4I0

(
1 + Nϕ2

4
sin2(2Xt )

)]
. (26)

Subtracting 〈Î〉2 = 16I2
0 , we get the intensity variance of light

after interaction with the atoms up to second order in ϕ:

Var(Î ) = 4I0[1 + I0Nϕ2 sin2(2Xt )] + O(ϕ3). (27)

Equation (27) shows that a change in the variance of light in
a QND scheme depends on the total number N of atoms, the
phase shift per atom ϕ per atom and the average light intensity
I0 in each optical mode. Let us note that this change will
only be present if I0Nϕ2 � 1. Note that there is an explicit
time dependence in the intensity variance through the param-
eter Xt := δωt/2 + N/2 in the above expression. All these
specificities will show up in the final form of the squeezing
parameter as discussed in Sec. VI. For clarity for the reader,
we emphasize that similar expressions for the optical intensity
variance were obtained in previous works by identifying the
phase shift ϕ2 with the angular phase shift typically labeled as
κ̃2; see, for instance, Ref. [30].

V. POSTMEASUREMENT ATOMIC STATE

Having shown in the previous section that the optical in-
tensity variance is modified by the interaction with the atoms,
we now turn to determine how the average and the variance
of the atomic CSS collective spin operators are modified by
the interaction with the photonic modes. Before interaction,
the atoms are in a coherent spin state (CSS) with density
operator ρA

ρA =
∑
m,m′

cmcm′ |m〉〈m′|, (28)

where we have assumed, without loss of generality, that
the binomial coefficients cm, cm′ are real. When calculating
the average of the collective operators with respect to ρA, one
finds 〈Ĵ2

z 〉 = N/4 and 〈Ĵx〉 = N/2, such that ξ 2 = 1 for the
CSS. After interaction and measurement on the optical modes,
the state of the atoms is modified according to the measure-
ment outcomes. In this work, we assume the measurement
outcomes to be the intensity of the two photonic modes Īα
and Īβ , corresponding to each photonic mode to be detected
by its own classical detector, see Fig. 2.

Measurement theory tells us that the atomic state given a
certain set of outcomes (Īα, Īβ ) is modified into [40]

ρ ′
A = Trα,β [KαKβ |ψt 〉〈ψt |K†

βK†
α ]

Tr{KαKβ |ψt 〉〈ψt |K†
βK†

α} , (29)

with the Kraus operators

Kγ = e−Īγ /2
∑
nγ

Ī
nγ /2
γ√
nγ !

|nγ 〉〈nγ |, γ = α, β (30)

corresponding to the positive operator valued measure
(POVM) Mγ = K†

γ Kγ :

Mγ = e−Īγ
∑
nγ

(Īγ )nγ

nγ !
|nγ 〉〈nγ | =

∫ 2π

0

d�

2π
|γ 〉〈γ |. (31)

The POVM Mγ corresponds to an intensity measurement of
the coherent state |γ 〉 with no information about its phase. Its
form is demonstrated in Appendix C. Equation (29) can be
rewritten as

ρ ′
A = 1

N Trα,β{KαKβ |ψt 〉〈ψt |K†
βK†

α }

= 1

N
∑
m,m′

cmcm′ |m〉〈m′|,

Trα{Kα|αm〉〈αm′ |K†
α}Trβ{Kβ |βm〉〈βm′ |K†

β }

= 1

N
∑
m,m′

cmcm′ 〈Mα〉m,m′ 〈Mβ〉m,m′ |m〉〈m′|, (32)

with

〈Mα〉m,m′ = Trα{Kα|αm〉〈αm′ |K†
α}, (33a)

〈Mβ〉m,m′ = Trβ{Kβ |βm〉〈βm′ |K†
β }, (33b)

and the normalization constant N
N = Trα,β,m{KαKβ |ψt 〉〈ψt |K†

βK†
α }

=
∑

m

c2
m〈Mα〉m,m〈Mβ〉m,m. (34)

Equation (32) explicitly shows that the coefficients 〈Mα,β〉m,m′

will modify the initial binomial distribution of the atoms given
a certain set of measurement outcomes Īα , Īβ . The form of
these coefficients can be derived analytically up to second
order in ϕ, as detailed in Appendix D. Here, we only provide
their final expressions, highlighting their dependence on ϕ and
on the atomic degrees of freedom m, m′:

〈Mα〉m,m′ 〈Mβ〉m,m′ = exp(−Īα − Īβ ) exp(Vαβ ) exp[Wαβ (m + m′)ϕ] exp{[Yαβ (m2 + m′2) + Zαβm, m′]ϕ2}, (35)

with

Vαβ = 4I0

⎛
⎝
√

Īα
I0

| cos Xt | +
√

Īβ
I0

| sin Xt | − 1

⎞
⎠, (36a)

Wαβ = 2I0

⎛
⎝
√

Īα
I0

sin Xt cos Xt

| cos Xt | +
√

Īβ
I0

cos Xt sin Xt

| sin Xt | − 2 sin 2Xt

⎞
⎠, (36b)
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Yαβ = − I0

2

⎛
⎝
√

Īα
I0

1 + cos2 Xt

| cos Xt | +
√

Īβ
I0

1 + sin2 Xt

| sin Xt |

⎞
⎠, (36c)

Zαβ = I0

⎛
⎝
√

Īα
I0

sin2 Xt

| cos Xt | +
√

Īβ
I0

cos2 Xt

| sin Xt |

⎞
⎠. (36d)

Equations (35) and (36) are key analytical results of our
derivation. In the above equations, any terms independent of
m, m′ [namely, exp(−Īα − Īβ ) exp(Vαβ )] will cancel out and
are physically meaningless. We can now provide exact expres-
sions for the variance and average of the atomic collective spin
operators relevant for demonstrating spin squeezing.

VI. FOUR-COLOR SPIN SQUEEZING WITH
RARE-EARTH-ION-DOPED CRYSTALS

To quantify spin squeezing, we need to calculate 〈Ĵ2
z 〉 and

〈Ĵx〉. Because Ĵ2
z |m〉 = m2|m〉, the average reduces the sum

over m, m′ to a sum over m only, and 〈Ĵ2
z 〉 is given by

〈
Ĵ2

z

〉 = Tr{m2ρ ′
A} = 1

N
∑

m

c2
mm2〈Mα〉m,m〈Mβ〉m,m, (37)

In contrast, the average of 〈Ĵx〉 is more complex because the
Dicke states |m〉 are not eigenstates of Ĵx. In Appendix E, we
show that this average can be expressed as

〈Ĵx〉 = 1

N
∑

m

c2
m

(
N

2
− m

)
〈Mα〉m,m+1〈Mβ〉m,m+1, (38)

where the notation 〈Mα〉m,m+1〈Mβ〉m,m+1 implies that m′ is
replaced by m + 1 in Eq. (35). For large coherent spin
states, N�1, the Dicke states approximately follow a normal
distribution as the limit of the binomial distribution. As a
consequence, the sum over m can be replaced by a Gaussian
integral: ∑

m

c2
m −→

∫ ∞

−∞

dm√
2π (N/4)

e−m2/[2(N/4)]

=
∫ ∞

−∞

dm√
πN/2

e−m2/(N/2). (39)

The calculations of the averages and the normalization coef-
ficient N reduce to generalized Gaussian integrals as detailed
in Appendix F. The final expectation values are

〈
Ĵ2

z

〉 = N

4

(
1

1 + Nϕ2λ/2
+ Nϕ2W 2

αβ

(1 + Nϕ2λ/2)2

)
, (40)

〈Ĵx〉 ≈ N

2
for N � 1, (41)

with

λ = −2Yαβ − Zαβ = 2I0

⎛
⎝
√

Īα
I0

| cos Xt | +
√

Īβ
I0

| sin Xt |
⎞
⎠.

(42)

This leads us to our main results for squeezing with this
four-probe scheme in free space, with the squeezing parameter
expressed as

ξ 2 = N

〈
Ĵ2

z

〉
〈Ĵx〉2

= 1

1 + Nϕ2λ/2
+ Nϕ2W 2

αβ

(1 + Nϕ2λ/2)2

= 1

1 + Nϕ2λ/2

(
1 + Nϕ2W 2

αβ

1 + Nϕ2λ/2

)
. (43)

The amount of squeezing depends on the measurement
outcomes Īα , Īβ and on Xt . The latter is determined by the
details of the measurement setup and can be fixed at arbitrary
values by choosing the position of the detectors. In Fig. 3,
we plot the squeezing parameter ξ 2 for praseodymium with
expected optical depth d = 40 for different values of Xt . We
refer the reader to Appendix A for relevant spectroscopic de-
tails of praseodymium. The squeezing parameter is shown as a
function of the two measurement outcomes, considering their
average values 〈Iα〉 and their standard deviation s(Iα ). Values
of the order of 0.28 (0.5 when scattering is considered, see
Sec. VII) are predicted with praseodymium and squeezing is
maximal when the outcomes take their most probable values,
i.e., their average value. A rotational symmetry is highlighted,
which originates in the interplay of the two photonic probes α

and β.
Interestingly, in the case where the most probable val-

ues for the outcomes are considered, the expression for the
squeezing parameter recovers the more standard form, also
obtained in previous works [30,39]. Indeed, in this situation,
we have Īα = 〈Iα〉 = 4I0 cos2(Xt ), Īβ = 〈Iβ〉 = 4I0 sin2(Xt ),
which gives Wαβ = 0 and λ = 4I0. Thus the second term van-
ishes in Eq. (43) and Eq. (41) becomes exact. The squeezing
parameter reads

ξ 2 = 1

1 + 2I0Nϕ2
. (44)

By replacing ϕ2 with its expression in terms of the optical
depth and scattering rate, see Eq. (20), we find

ξ 2 = 1

1 + ηd
. (45)

Let us remark that our results for squeezing do reflect a
dependence on the time of flight through the factor Xt that
was absent from Ref. [30], although that work also considers
a four-color scheme as mentioned in the introduction. This
difference originates from the fact that we did not use local
oscillators to isolate the phase directly, our scheme is based
on a “self-heterodyne” detection. This also means that we
maintain a time dependence in the intensity measurement’s
variance. Note that t (Xt ) is fixed by the measurement setup,
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FIG. 3. Squeezing parameter ξ 2 [Eq. (43)] for Pr as a function of the measurement outcomes Īα, Īβ , for Xt ≈ 0, π/8, π/4,≈π/2 (left to
right). The two axes are centered around the mean values, with a range of ± one standard deviation, s(Î ) := [Var(Î )]1/2. See Appendix B 1 for
detailed formulas for the means and variances. Other relevant parameters (I0 = 1011, d = 40, η = 0.32) were taken from Table I of Appendix A.

and there is no time evolution in the squeezing parameter from
Xt after measurement. Additionally, the authors in Ref. [30]
did the derivation by identifying constants of motion under the
interaction Hamiltonian and calculate rotations of the relevant
Stokes and collective spin vectors, whereas in the current
work we give a microscopic derivation of the evolution of the
explicit atomic quantum state.

In the next section, we compare the squeezing parameter
for two REIDCs, Eu3+:Y2SiO5 and Pr3+:Y2SiO5, and esti-
mate its value in presence of photon scattering. We discuss
these results in view of state-of-the-art experimental results
with cesium (Cs) and rubidium (Rb) cold atomic systems.

VII. EXPERIMENTAL IMPLEMENTATION

When discussing experimental implementations, addi-
tional key parameters need to be taken into account, in
particular the noise coming from the spontaneous decay
(decoherence) of the atoms, characterized by the average
scattering rate per atom η. Depending on the atomic system
and the experimental platform, noise arising from scattered
photons enters in different ways in the final expression of the
squeezing parameter [30,44,45]. For an implementation with
REIDCs, we estimate the scattered photons to not affect the
Ĵz operator of the atoms and only to induce a reduction in
〈|Ĵx|〉 as discussed in Ref. [30] for a four-color scheme. In the
following, we now only consider the most probable outcomes
for the detector (maximal squeezing without photon scatter-
ing), hence we start from Eq. (45). Taking into account photon
scattering for our implementation amounts to multiplying the
ideal squeezing parameter by a factor 1/(1 − η)2. This gives
a modified squeezing parameter ξ ′2 [see Ref. [30], Eq. (12)]

ξ ′2 = 1

(1 − η)2 ξ 2 = 1

(1 − η)2

1

1 + ηd
. (46)

Assuming that all other experimental parameters are fixed
(number of atoms, interaction strength, and time), the photon-
scattering rate η plays an important role because it imposes a
limitation on the light intensity I0 through the optical depth d
which is characteristic for each sample.

Hence, increasing the light intensity in order to achieve
more squeezing induces atomic scattering, which will in turn
preclude the increase in squeezing. Choosing an experimental
sample characterized by a large optical depth is therefore one
of the main criteria for achieving strong spin squeezing. In
Fig. 4, we illustrate this dependence by plotting the squeezing

parameter ξ ′2 for the two rare earths under consideration as
a function of η, and compare it to existing squeezing experi-
ments with cesium and rubidium atoms. For the latter, let us
mention that photon scattering enters in a different way in the
squeezing parameter’s expression [45]:

ξ ′2 = ξ 2 + η

1 − η
+ η

(1 − η)2 . (47)

FIG. 4. Squeezing parameter ξ ′2 in presence of photon-scattering
noise. (upper panel) Density plot of ξ ′2 as a function of optical
depth d and average scattering η, based on Eq. (46). The dashed
lines represent the relevant cuts for the two rare earths considered,
Pr (orange, d = 40) and Eu (blue, d = 10). (lower panel) ξ ′2 as a
function of scattering η. The different curves correspond to values
of experimentally realizable optical depths d . We consider the two
rare-earth systems mentioned before (Pr, Eu), as well as d = 16 (Cs,
Ref. [39]); d = 51 (Rb, Refs. [41,42]); d = 75 (Cs, Ref. [43]). For
Cs and Rb systems we used the corresponding scattering model (47).
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This is the expression of ξ ′2 that is considered for the cold
atomic species in Fig. 4. These species are characterized by
different optical depths d ranging from 10 to 75. For com-
pleteness, the upper panel of Fig. 4 shows the squeezing
parameter over a whole range of optical depths. The complete
reasoning allowing us to determine the required experimental
parameters in the case of REIDCs is given in Appendix A.
For europium (praseodymium), after fixing the target optical
depth of d = 10 (d = 40) and optical mode field diameter,
we evaluate an effective atom number of ≈N = 1011 and
a dephasing per atom of ϕ2 � 10−24 (ϕ2 � 10−22), leading
to a squeezing parameter of ξ ′2 � 0.5, equivalent to 3 dB
of squeezing (ξ ′2 � 0.16, equivalent to 8 dB of squeezing).
These numbers set the intensity I0 required, i.e., I0 ≈ 1011

in both cases. In contrast, for the experimental parameters
in Ref. [39] for Cs, a squeezing parameter of ξ ′2 � 0.8 can
be achieved with a much lower intensity of I0 � 4×106 (with
d = 16, ϕ2 = 3.6×10−12), which clearly originates from the
stronger light-matter coupling in Cs than in REIDCs. In fact,
in Ref. [43] an optical depth of d = 75 was reported for
Cs, which, again in our comparison in Fig. 4, potentially
allows for a squeezing value of ≈0.4. The particular scattering
model chosen for the REIDCs (46) however helps pushing the
squeezing parameter further, overcoming such value for lower
optical depths, and placing our systems at the state of the art
of current realizations.

The key experimental aspects that should be considered
for particular implementations are listed in Appendix A, but
several points require a particular attention. Importantly, our
proposal relies on the capability to shape narrow spectral
structures with large (d ≈ 10–40) optical depths: it should
be explicitly assessed which combination of optical depth or
spectral width are experimentally accessible via usual optical
pumping techniques. Linked with this, in our analysis we con-
sidered a single detuning δω for all the atoms, while a nonzero
spectral width will be obtained experimentally. Given that the
required detuning can be comparable with the structure width,
a refined analysis might be needed to take into account such
imperfection. Another aspect concerns the structure of the
atomic system: here we considered that the spin transition
is only composed of two levels, |↑〉 and |↓〉. However, in
Eu3+ : Y2SiO5 and Pr3+ : Y2SiO5, these levels actually con-
sist in two degenerate states, whose degeneracy can be lifted
by applying a magnetic field [46,47]. Spin and optical manip-
ulations therefore involve complex evolution within four-level
systems, whose dynamics require specific considerations [48].
Further studies would allow determining the influence of such
peculiarities, which go beyond the derivations treated here.
Finally, the scattering model (46) that we chose to adopt
relies on the hypothesis that transitions are essentially cycling
transitions [see Ref. [30], Eq. (12)]. This is motivated by the
fact that the branching ratios of the considered systems are
mainly polarized [37,46,47,49], but does not reflect the strict
reality of these systems. This means that the actual squeezing
parameter could be lower than predicted. The results in this
work motivate future investigations with more precise models
to confirm REIDCs as promising platforms for achieving spin
squeezing.

VIII. CONCLUSION

With this work, we provide a complementary theoretical
approach to existing works for demonstrating spin squeezing.
We employed this approach for predicting spin squeezing with
rare-earth ion-doped crystals, a solid-state platform which is
highly promising for quantum technologies thanks to their
very long coherence times and their straightforward integra-
tion. Despite their lower light-matter coupling than alkali
ensembles, the particularity of their atomic structure allows
reaching squeezing parameter ranging from 3 to 8 dB with
Eu3+ : Y2SiO5 and Pr3+ : Y2SiO5, at the state-of-the-art of
current realizations. These values would place rare-earth-ion-
doped crystals as serious counterparts to gaseous systems,
while retaining all the strengths of solid-state systems.
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APPENDIX A: EXPERIMENTAL IMPLEMENTATION

This proposal relies on the coherent manipulation of spin
transitions to initialize the atomic ensemble in a coherent
spin state and then to optically address these transitions
independently for the readout. Within rare-earth experimen-
tal platforms, atomic nuclear as well as electronic spins
can be used for this purpose, such that both Kramers and
non-Kramers rare earths can in principle be used to imple-
ment such experiments. Given that such materials are usually
strongly inhomogeneously broadened, optical pumping of the
atomic population must be performed to select a given class
of atoms: this corresponds to performing the so-called class-
cleaning procedure [37]. As stated in the body of the paper,
we focus on the case of europium- and praseodymium-doped
Y2SiO5, workhorses for the implementation of quantum in-
formation protocols [14,18,20,50,51], for which the spin
transitions are nuclear. Moreover, the ease of long-duration
manipulation of nuclear spin population after initialization is
high in these materials due to their long population lifetime
[22,52]. Their simplified atomic structure is shown in Fig. 1(b)
in the main text.

Detailed class-cleaning procedures of these materials are
already detailed in the literature [37] and were intensively
used to implement quantum memory protocols such as
the atomic frequency comb protocol [14,51,53]. Population
preparation by optical pumping is very efficient in this mate-
rial, with spectral resolutions below ≈10 kHz [54,55]. After
preparation, the typical absorption coefficient for europium
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TABLE I. Parameters to realize spin squeezing in Eu3+:Y2SiO5 and Pr3+:Y2SiO5.

M (g/mol) C α (cm−1) d ξ ′2
min ηopt σ (cm2) N I0 δω/�

Eu 152 10−3 (1000 ppm) 2 10 0.50 (3.0 dB) 0.27 1.2×10−14 3×1011 1011 15
Pr 140 5×10−4 (500 ppm) 20 40 0.16 (8.0 dB) 0.32 2.2×10−13 6×1010 1011 42

is αEu ≈ 2 cm−1 [56] and αPr ≈ 20 cm−1 for praseodymium
[57], such that multipass configuration in centimeter-size
crystals would allow reaching optical depths of the order of
dEu ≈ 10 for europium and dPr ≈ 40 for praseodymium [58].
In Fig. 4 we have seen that optimal squeezing can be reached
for specific values of the scattering parameter η, which we
connect in this Appendix to experimental parameters.

First, given the absorption coefficient α of the material, a
given optical depth d can be directly linked with the crystal
length via L = d/α (or effective interaction length in the case
of multiple passes). By fixing the optical-mode area A, we
then estimate the overall number of ions involved in the pro-
cess. To this extent, we should also point that only a fraction
of the overall ions will be involved in the process, as the
inhomogeneous linewidth is very large (≈1 GHz) compared
with the atomic structures at stake here (≈10 kHz), giving a
ratio R of usable ions of the order of 10−5. The total number
of atoms involved in the process is given by

N = ρY SOCALNA

M
R, (A1)

where ρY SO is the density of the host matrix, C is the doping
concentration of the ion, A is the optical-mode area, NA is the
Avogadro number, and M is the molar mass of the rare-earth
under consideration. At the same time, the resonant transition
cross section σ can be expressed as

σ = αM

ρY SOCNAR
. (A2)

The next step is to determine the number of photons that
shall be used for the light noise measurement. To this extent,
we use the relation ϕN � 1, leading to

I0 � ησN2

2A
. (A3)

Finally, the necessary detuning δω is determined given the
target dephasing rate η and is simply calculated as

δω = 2�

√
2I0σ

ηA
. (A4)

Table I gathers the experimental relevant parame-
ters for equivalent 5-cm-long europium and 2-cm-long
praseodymium crystals (lengths that can be reached with mul-
tipass configurations). The mode size diameter A is chosen
as A = π×1002 μm2. We clearly see here that the stronger
light-matter interaction of praseodymium as compared with
europium would lead to an important squeezing parameter,
with detunings that would be easier to reach experimentally
(≈100 kHz for Pr vs ≈10 kHz for Eu). In both cases, the
number I0 of photons is experimentally accessible because it
corresponds to using ≈100-μs-long ≈100 μW pulses in both
cases. Notice also that the resonant cross section found here

gives an electric-dipole moment of the order of μ ∼ 1×10−33

C m for europium, of the same order of magnitude as what can
be found in the literature for class-cleaned atomic populations
[37].

APPENDIX B: VARIANCE OF LIGHT

For pedagogical purposes, we detail in this Appendix the
calculation of the light variance when the photocurrents are
measured independently from each other and when the dif-
ference of photocurrents is measured. These two cases are
relevant experimentally as presented in the main text.

1. Photocurrents measured separately

In case the photocurrents associated with the two photonic
modes α, β are measured independently from each other, the
light intensity operator is simply the sum of the two photon
number operators:

Î = n̂α + n̂β = â†
α âα + â†

β âβ. (B1)

The variance is calculated from 〈Î2〉 with

Î2 = â†
α âα â†

α âα + â†
β âβ â†

β âβ + 2â†
α âα â†

β âβ (B2)

= (â†
α )2â2

α + â†
α âα + (â†

β )2â2
β + â†

β âβ + 2â†
α âα â†

β âβ,

(B3)

where we have used the commutation relations [âi, â†
j ] = δi j .

When taking the average with respect to the atomic plus
photonic state |ψm〉, see Eq. (16), and tracing out the atomic
degrees of freedom, we get

〈Î2〉 =
∑

m

c2
m{|αm|4 + |αm|2 + |βm|4 + |βm|2 + 2|αm|2|βm|2}

(B4)

=
∑

m

c2
m{(|αm|2 + |βm|2)2 + |αm|2 + |βm|2}. (B5)

Inserting the exact expressions for the amplitudes αm and βm,
see Eqs. (19) with |α|2 = |β|2 = I0, we use

cos2(X − mk/2) + sin2(X + mk/2) = 1 + sin(2X ) sin(mk)

(B6)

to obtain

〈Î2〉 =
∑

m

c2
m

{[
4I2

0 cos2(Xt−mϕ/2)+4I0 sin2(Xt + mϕ/2)
]2

+ 4I0[cos2(Xt − mϕ/2) + sin2(Xt + mϕ/2)]
}

(B7)

= 16I2
0

∑
m

c2
m[1 + sin(2Xt ) sin(mϕ)]

+ 4I0

∑
m

c2
m[1 + sin(2Xt ) sin(mϕ)]. (B8)
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Keeping terms up to second order in ϕ, the sum over m is
performed exploiting the binomial distribution of the coeffi-
cients cm,

∑
m c2

m = 1,
∑

m c2
mm = 0, and

∑
m c2

mm2 = N/4.
This leads to Eq. (26) in the main text.

In a similar manner, one can also calculate 〈Îα〉, 〈Î2
α〉, 〈Îβ〉,

and 〈Î2
β 〉. The mean values of the intensity operators for α and

β modes are, up to second order in ϕ,

〈Îα〉 = 4I0 cos2(Xt ) − 8I0Nϕ2 cos2(Xt ) cos(2Xt ), (B9)

〈Îβ〉 = 4I0 sin2(Xt ) + 8I0Nϕ2 sin2(Xt ) cos(2Xt ), (B10)

and the variances are, to the same order,

Var(Îα ) = 4I0{cos2(Xt ) + 2I0Nϕ2 cos2(Xt ) cos(2Xt )

− I0Nϕ2[cos(2Xt ) + cos(4Xt )]}, (B11)

Var(Îβ ) = 4I0{sin2(Xt ) − 2I0Nϕ2 sin2(Xt ) cos(2Xt )

+ I0Nϕ2[cos(2Xt ) − cos(4Xt )]}. (B12)

These expressions are used when showing the dependence
of the squeezing parameter on the measurement outcomes in
Fig. 3.

2. Difference of photocurrent

The advantage of measuring the difference in photocurrent
is to cancel out the two intensities of the photocurrents Îα and
Îβ such that it becomes easier to access experimentally the
fluctuations of this operator that depends on the atomic state
via mϕ. To cancel out the difference in photocurrents, one
needs to exploit the phase θ between the two coherent states,
such that the amplitudes αm and βm become

αm = 2α cos(Xt − mϕ/2), (B13a)

βm = 2β cos(Xt + mϕ/2). (B13b)

The operator for the difference of photocurrents is

�Î = n̂α − n̂β, (B14)

and its average with respect to |ψm〉 with the coherent states
being given by Eq. (B13a) cancels out up to second order
in ϕ:

〈�Î〉 = 4I0

∑
m

c2
m sin(2Xt ) sin(mϕ) = O(ϕ3). (B15)

The variance is calculated from �Î2:

�Î2 = (â†
α )2â2

α + â†
α âα + (â†

β )2â2
β + â†

β âβ − 2â†
α âα â†

β âβ.

(B16)

Evaluating this operator with respect to the amplitudes
Eq. (B13a), we get up to second order in ϕ:

Var(�Î2) = 4I0

{
1 + cos (2Xt )

+ Nϕ2

4
[4I0 sin2(2Xt ) − cos(2Xt )/2]

}
. (B17)

APPENDIX C: POVM AND KRAUS OPERATOR
ASSOCIATED WITH MEASURING THE INTENSITY

OF COHERENT STATES

Measuring experimentally the intensity of a coherent state
|γ 〉 = ||γ |ei�〉 without any information about its phase �

corresponds in measurement theory to the POVM Mγ defined
as

Mγ =
∫ 2π

0

d�

2π
|γ 〉〈γ |. (C1)

This POVM satisfies
∫

d|γ |2Mγ = I and that Mγ > 0. One
can express Mγ in the Fock basis by inserting the definition of
a coherent state in the Fock basis {|n〉}:

Mγ =
∫ 2π

0

d�

2π
e−|γ |2 ∑

n,n′

|γ |n+n′
eiψ (n−n′ )

√
n!n′!

|n〉〈n′|

= e−|γ |2 ∑
n,n′

|γ |n+n′

√
n!n′!

|n〉〈n′|
∫ 2π

0

d�

2π
eiψ (n−n′ )

︸ ︷︷ ︸
δ(n−n′ )

= e−|γ |2 ∑
n

|γ |2n

n!
|n〉〈n|. (C2)

The corresponding Kraus operators are chosen to be Kγ =√
Mγ :

Kγ = e−|γ |2/2
∑

n

|γ |n√
n!

|n〉〈n|. (C3)

APPENDIX D: ANALYTICAL CALCULATIONS
OF 〈Mα〉M,M′ 〈Mβ〉M,M′

We start from Eqs. (33):

〈Mα〉m,m′ = Trα{Kα|αm〉〈αm′ |K†
α}, (D1a)

〈Mβ〉m,m′ = Trβ{Kβ |βm〉〈βm′ |K†
β }, (D1b)

with the Kraus operator

Kγ = e−Īγ /2
∑
nγ

Ī
nγ /2
γ√
nγ !

|nγ 〉〈nγ |, γ = α, β. (D2)

From now on, one can choose to work in the Fock basis
or directly with the overlap of coherent states. Both lead
evidently to the same results and a common discussion starts
again from Eq. (D8). We present here the two derivations.

1. Working in the Fock basis

Inserting the Kraus operator Kγ into the definition of
〈Mγ 〉m,m′ , we get

〈Mγ 〉m,m′

= Trnγ

⎡
⎣e−Īγ

∑
n′

γ ,n′′
γ

Ī
(n′

γ +n′′
γ )/2

γ√
n′

γ !n′′
γ !

|n′
γ 〉〈n′

γ |γm〉〈γm|n′′
γ 〉〈n′′

γ |
⎤
⎦

(D3)

= e−Īγ
∑
nγ

Ī
nγ

γ

nγ !
〈nγ |γm〉〈γm′ |nγ 〉, (D4)
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with |γm〉, γ = α, β being the coherent states with amplitude
γm defined in Eqs. (19). These coherent states can be written
in their respective Fock basis {nγ }:

|γm〉 = e−|γm|2/2
∑
nγ

(γm)nγ√
nγ !

|nγ 〉. (D5)

This allows us to compute explicitly the product

〈nγ |γm〉〈γm′ |nγ 〉 = exp[−(|γm|2 + |γm′ |2)/2]
(γmγ ∗

m′ )nγ

nγ !
,

(D6)

with ∗ denoting the complex conjugate. We obtain

〈Mγ 〉m,m′ = e−Īγ e−(|γm|2+|γm′ |2 )/2
∞∑

nγ =0

(Īγ γmγ ∗
m′ )nγ

(nγ !)2
. (D7)

Remarkably, the sum over nγ corresponds to the modified
Bessel function of zeroth order, B0:

∞∑
nγ =0

(Īγ γmγm′ )nγ

(nγ !)2
:= B0(2

√
Īγ γmγm′ ). (D8)

Let us note that we arrive at this same expression if one would
have worked with the coherent states directly, see Sec. D 2
below for the details. From Eq. (D8), we therefore arrive to the
following exact expression of the product 〈Mα〉m,m′ 〈Mβ〉m,m′ :

〈Mα〉m,m′ 〈Mβ〉m,m′ = e−(Īα+Īβ )e−(|αm|2+|αm′ |2+|βm|2+|βm′ |2 )/2

×B0(2
√

Īααmα∗
m′ )B0(2

√
Īββmβ∗

m′ ).

(D9)

Inserting the exact form of the amplitudes αm, βm defined in
Eqs. (19) gives

αm = 2αeiωαt cos(Xt − mϕ), (D10a)

βm = 2βeiωβ t sin(Xt + mϕ), (D10b)

and the products in the arguments of the two Bessel functions
read:

Īααmα∗
m′ = Īα4|α|2 cos(Xt − mϕ) cos(Xt − m′ϕ), (D11)

Īββmβ∗
m′ = Īβ4|β|2 sin(Xt + mϕ) sin(Xt + m′ϕ). (D12)

In the following, we approximate each Bessel functions with
an exponential

B0(x) ≈ 1√
x

ex = ex− 1
2 ln x ≈ ex, (D13)

an approximation that is valid for a large argument x. In our
situation, the measurement outcomes Īα , Īβ will follow the
initial distribution of the coherent states, i.e., will be centered
around I0 that is very large. Due to the presence of the cos and
sin functions, these arguments may be small for some specific
values of time t through Xt and some values of m, but only
a small fraction of the terms will behave as cos(Xt − mϕ) 

1/I0, for instance. This justifies this approximation. We now
expand all arguments of the exponentials up to second order
in the phase ϕ. We get

e−(|αm|2+|αm′ |2+|βm|2+|βm′ |2 )/2

= e−4I0−2I0(m+m′ )ϕ sin(2Xt ) + O(ϕ3), (D14)

and for the argument of the Bessel function for photonic
mode, we get

2
√

4ĪαI0 cos (Xt − mϕ) cos (Xt − m′ϕ)

= 4
√

ĪαI0

{
cos(Xt ) + 1

2
(m + m′)ϕ cos (Xt ) tan (Xt )

−ϕ2

[
(m2 + m′2)

3 + cos(2Xt )

16 cos (Xt )
+ mm′ 1 − cos (2Xt )

8 cos (Xt )

]}

+ O(ϕ3), (D15)

and similarly for the argument of the Bessel function for pho-
tonic mode β. When adding all these exponentials together,
we get the final expression

−4I0 + 4
√

I0 Īα cos (Xt ) + 4
√

I0 Īβ sin (Xt ) + 2(m + m′)ϕ(
√

I0 Īα sin (Xt ) +
√

I0 Īβ cos (Xt ) − 2I0 sin (2Xt ))

− 1

2
ϕ2(m2 + m′2)

[√
I0 Īα

(
2 cos (Xt ) + sin2 (Xt )

cos (Xt )

)
+

√
I0 Īβ

(
2 sin (Xt ) + cos2 (Xt )

sin (Xt )

)]

+ϕ2mm′
(√

I0 Īα
sin2 (Xt )

cos (Xt )
+

√
I0 Īβ

cos2 (Xt )

sin (Xt )

)
, (D16)

from which the coefficients Eqs. (36) are deduced by identifi-
cation.

2. Working with coherent states

We start again from the expressions of 〈Mα〉m,m′ , 〈Mβ〉m,m′

as a function of the POVM Mγ and the coherent state |γ 〉 from
Eqs. (33):

〈Mα〉m,m′ = Trα{Kα|αm〉〈αm′ |K†
α} = Trα{Mα|αm〉〈αm′ |},

(D17a)

〈Mβ〉m,m′ = Trβ{Mβ |βm〉〈βm′ |}, (D17b)

with Mγ

Mγ =
∫ 2π

0

d�

2π
|γ 〉〈γ |. (D18)

We then make use of the overlap of two coherent states

〈γ1|γ2〉 = e−|γ1|2/2−|γ2|2/2+γ ∗
1 γ2 , (D19)
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which gives

〈Mα〉m,m′ =
∫ 2π

0

d�

2π
e−Īα e(−|αm|2+|αm′ |2 )/2e

√
Īαe−i�2α cos (Xt −mϕ)

× e
√

Īαei�2α∗ cos (Xt −m′ϕ). (D20)

The integral over � can be represented by the modified Bessel
function of the zeroth order using the following identity:∫

d�

2π
eX cos �+iY sin � = B0(

√
X 2 − Y 2)

= B0(
√

(X + Y )(X − Y )). (D21)

By identification, we extract the coefficients X , Y :

X = 2
√

Īα[α cos(Xt − mϕ) + α∗ cos(Xt − m′ϕ)], (D22)

Y = 2
√

Īα[−α cos(Xt − mϕ) + α∗ cos(Xt − m′ϕ)]. (D23)

This gives

X + Y = 4
√

Īαα∗ cos(X − m′ϕ), (D24)

X − Y = 4
√

Īαα cos(X − mϕ), (D25)

which corresponds to the zeroth Bessel function
B0(2

√
Īααmαm′ ). Proceeding similarly with the probes cen-

tered around ωβ , we finally get the product 〈Mα〉m,m′ 〈Mβ〉m,m′

given by Eq. (D8) and then follow the calculation and
approximations described above.

APPENDIX E: AVERAGE VALUE OF ĴX

For 〈Ĵx〉, we use that Ĵx = 1
2 (Ĵ+ + Ĵ−), with Ĵ± = Ĵx ± iĴy.

Evaluating this on a pair of Dicke state 〈m′|, |m〉, this operator
results in

〈m′| 1
2 (Ĵ+ + Ĵ−)|m〉 (E1)

= 〈m′| 1
2

√
(N/2 − m)(N/2 + 1 + m)|m + 1〉

+ 〈m′| 1
2

√
(N/2 + m)(N/2 + 1 − m)|m − 1〉 (E2)

= 1
2

√
(N/2 − m)(N/2 + 1 + m)δm′,m+1

+ 1
2

√
(N/2 + m)(N/2 + 1 − m)δm′,m−1. (E3)

Notice that the second term is the same as the first if we
replace m → m + 1. Under a shift of m → m + 1, the sec-
ond term’s binomial coefficients will also match with the
first term’s, i.e., cmcm−1 → cm+1cm = cmcm+1, and the corre-
sponding 〈Mα,β〉m,m−1 → 〈Mα,β〉m+1,m = 〈Mα,β〉m,m+1 due to
the symmetry of m and m′ in this coefficient. Thus, when we
sum over m each term will appear twice (except for the terms
m = N/2 and m = −N/2, which evaluate to zero anyway), so
we can write

〈Ĵx〉 = 1

N
∑

m

cmcm+1〈Mα〉m,m+1〈Mβ〉m,m+1

×
√

(N/2 − m)(N/2 + 1 + m),

where we explicitly denote that the coefficients from the
optical contribution should be evaluated for (m, m′) =
(m, m + 1). Using the recursive binomial relation

cm+1 = cm

√
N
2 − m

N
2 + m + 1

, (E4)

it is easy to show that

cmcm+1

√
(N/2 − m)(N/2 + 1 + m) = c2

m

(
N

2
− m

)
. (E5)

Putting it all together, we get Eq. (38) in the main text:

〈Ĵx〉 = 1

N
∑

m

c2
m(N/2 − m)〈Mα〉m,m+1〈Mβ〉m,m+1. (E6)

At this point let us refer back to the effect of the additional
phase which appears in front of |m〉, which we neglected in
the main text for clarity. The phase factor reads as exp[i(ωβ −
ωα )tpm] [cf. the effective Hamiltonian (9)]. In any observable
where 〈m|m′〉 = δm,m′ appears, e.g., 〈I〉, 〈Ĵz〉, this phase term
will cancel with its conjugate. The only observable where this
phase term will appear is Ĵx. There, the phase will appear in
the two terms of (E3) as exp[i(ωβ − ωα )tp(m − m′)]. Due to
the Kronecker deltas, this results in exp[−i(ωβ − ωα )tp] in
the first term and exp[+i(ωβ − ωα )tp] in the second. As a
consequence, a simple factorization is not possible, and an
additional cosine factor will appear cos[(ωα − ωβ )tp] factor
for 〈Ĵx〉. Notice that, for 〈Ĵy〉, the same happens, but with
sin[(ωα − ωβ )tp]. This implies that, depending on the beating
frequency and pulse duration values, the mean direction of
the spins in the x-y plane will end up rotated. Hence, the
squeezing value as defined in (3), considering a given ro-
tated x direction, will remain unaffected by the phase factor
appearing in front of |m〉. Experimentally, it means that one
would not be able to assess exactly the mean direction of the
spin squeezed state. Whether it constitutes a drawback or not
depends on how one exploits this squeezed state for specific
applications, which goes beyond the scope of this work.

APPENDIX F: GAUSSIAN INTEGRALS

For evaluating the squeezing parameter ξ 2, we need to
compute the following quantities:

〈
Ĵ2

z

〉 = Tr{m2ρ ′
A} = 1

N
∑

m

c2
mm2〈Mα〉m,m〈Mβ〉m,m,

〈Ĵx〉 = 1

N
∑

m

c2
m

(
N

2
− m

)
〈Mα〉m,m+1〈Mβ〉m,m+1,

N = Tr{ρ ′
A} =

∑
m

c2
m〈Mα〉m,m〈Mβ〉m,m. (F1)

As explained in the main text, for large coherent spin states,
the Dicke states approximately follow a normal distribution as
the limit of the binomial distribution. As a consequence, the
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sum over m can be replaced by a Gaussian integral:

∑
m

c2
m −→

∫ ∞

−∞

dm√
2π (N/4)

e−m2/[2(N/4)]

=
∫ ∞

−∞

dm√
πN/2

e−m2/(N/2). (F2)

With the expression of 〈Mα〉m,m′ 〈Mβ〉m,m′ given by Eqs. (35)
and (36), the different averages then amount to calculate the
following integrals:

N = e−Īα−Īβ eVαβ

∫ ∞

−∞

dm√
πN/2

e−m2ϕ2λe2mϕWαβ , (F3)

〈
Ĵ2

z

〉 = e−Īα−Īβ eVαβ

N

∫ ∞

−∞

dmm2

√
πN/2

e−m2ϕ2λe2mϕWαβ , (F4)

and

〈Ĵx〉 = e−Īα−Īβ eVαβ

N eYαβϕ2
eWαβϕ

∫ ∞

−∞
dm

(
N

2
− m

)
× e−λm2ϕ2

e(2Wαβϕ−λϕ2 )m, (F5)

with the notation [see Eq. (42)]

λ := −(2Yαβ + Zαβ ) = 2I0

⎛
⎝
√

Īα
I0

| cos Xt | +
√

Īβ
I0

| sin Xt |
⎞
⎠.

(F6)

The convergence of the Gaussian integrals is ensured when
λ � 0. The different integrals appearing above are Gaussian

integrals of the following type:

G1 =
∫ ∞

−∞
dxe−ax2+bx+c =

√
π

a
eb2/(4a)+c, a � 0, (F7)

G2 =
∫ ∞

−∞
dxx2e−ax2+bx+c = 2a + b2

4a2

√
π

a
eb2/(4a)+c

= 2a + b2

4a2
G1, a � 0, (F8)

G3 =
∫ ∞

−∞
dx

(
N

2
− x

)
e−ax2+bx+c = −b + aN

2a

√
π

a
eb2/(4a)+c

= −b + aN

2a
G1, a � 0. (F9)

Using these results, we get

N = e−Īα−Īβ eVαβ
eNϕ2W 2

αβ /[2(1+Nϕ2λ/2)]√
1 + Nϕ2λ/2

, (F10)

〈
Ĵ2

z

〉 = N

4

[
1

1 + Nϕ2λ/2
+ NW 2

αβϕ2

(1 + Nϕ2λ/2)2

]
, (F11)

〈Ĵx〉 = N

2

(
1 − Wαβϕ

1 + Nλϕ2/2

)
e−Nϕ4λ(Wαβ+λ/4) /(2+Nλϕ2 )

≈ N

2
for N � 1, (F12)

I0 ∼ O(N ). (F13)

The last approximation is obtained by using the fact that Īα
(Īβ) typically only deviates from its mean value 4I0 cos2(Xt )
[4I0 sin2(Xt )] by at most O(

√
I0) [see Eq. (B11). Under such

circumstances Wαβ is at most of the order of
√

N , such that
Wαβϕ is of the order of 1/

√
N , which vanishes for N � 1.

These expressions correspond to Eqs. (40) and (41) in the
main text.
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