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Relativistic light shifts in hydrogenlike ions
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We investigate the level structure of heavy hydrogenlike ions in laser beams. In heavy ions, the electrons
are tightly bound by the Coulomb potential of the nucleus, which prohibits ionization even by strong lasers.
However, interaction with the light field leads to dynamic shifts of the electronic energy levels. We apply a fully
relativistic description of the electronic states by means of the Dirac equation. Interaction with the monofrequent
laser field is treated by second-order time-dependent perturbation theory. Our formalism goes beyond the Stark
long-wavelength dipole approximation and takes into account nondipole effects of retardation and interaction
with the magnetic-field components of the laser beam. The resulting level shifts are relevant for experiments at
present and near-future laser facilities.
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I. INTRODUCTION

Laser spectroscopy of atomic systems has been greatly
contributing to our understanding of nature [1]. The inves-
tigation of transition energies in hydrogen yielded the most
accurate value for a physical quantity ever measured. Fre-
quency comb techniques have led to the construction of
all-optical atomic clocks of unprecedented accuracy [2] and
enable the observation of the expansion of the universe in
real time by measuring the cosmological redshift of distant
astronomical objects [3].

Two-photon absorption (TPA) is of fundamental impor-
tance in super-resolution imaging and spectroscopy. Isotope
shifts were determined by two-photon Doppler-free spec-
troscopy and by collinear laser spectroscopy [4,5], providing
valuable insight into the collective structure of nuclei.
Recently, the paper [6] reports an absolute frequency measure-
ment of the 2s3d 1D2 state in neutral 9Be. In the paper [7],
the authors consider nonresonant corrections to 2s − ns/nd
transition frequencies in hydrogen for the experiments based
on two-photon spectroscopy, concluding that the corrections
could be significant for the determination of Rydberg constant
and proton charge radius. In the paper [8], the authors develop
a theoretical framework for spin selection in single-frequency
two-photon excitation of alkali-metal atoms as a function of
polarization of the excitation light, and verify the theory by
experimentally probing the 3S1/2 → 6S1/2 transition rate in
87Rb.

TPA has potential applications in quantum information
processing. The paper [9] studies multiphoton blockade and
photon-induced tunneling effects in the two-photon Jaynes-
Cummings model, concluding that quantum interference can
enhance the photon blockade effect. The work [6] demon-
strates a simple method to generate a broader and flatter
orbital angular momentum spectrum of entangled photon
pairs by modifying the pump beam profile.

Energy shifts of atomic levels due to laser fields play an im-
portant role in high-precision laser spectroscopy. The dynamic
Stark shift is one of the inherent systematic effects that shifts
atomic energy levels in a laser spectroscopic experiment. In
contrast to other shifting effects which may in principle be ex-
perimentally controllable, the dynamic Stark shift is due to the
probing laser field itself and as such it cannot be eliminated.
The dynamic (ac) Stark shift is also present in laser-induced
processes like ionization [10–12]. Theoretical investigations
so far apply nonrelativistic approaches and are restricted to
electric dipole interactions.

In this paper we calculate light field shifts in single-
electron ions in a fully relativistic manner. Compared to the
works [13,14], the bare atomic states are solutions of the Dirac
equation rather than Schrödinger’s equation. The interaction
with the monofrequent laser field is treated by perturbation
theory in the second order. Relativistic calculations of the
dynamic dipole polarizability for the ground state of hydro-
genic ions have been undertaken before [15]. In this paper,
beyond dipole effects, the relativistic effects of retardation and
level shifts due to interaction of the magnetic component of
the laser—ac Zeeman shifts—are accounted for. Furthermore,
we generalize previous investigations to the case of excited
states with substantially larger level shifts. With our approach,
not only does the accuracy of calculated level shifts increase,
but, it also allows one to extend the field of investigations
to stronger laser fields and higher frequencies, e.g., x-ray
lasers [16]. As relativistic effects scale with high powers of
the charge number Z , the theoretical description of atomic
systems of the highest nuclear charges is accessible this way.

This paper is structured as follows. In Sec. II, we briefly
summarize the derivation of the energy shift expression from
perturbation theory and extend the standard method to the
relativistic case. In Sec. III, the decomposition of the matrix
elements into angular and radial integrals is presented. The
resulting expressions are evaluated by algebraic and analytical
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means. In Sec. IV, we discuss numerical results for some
selected systems of interest. Finally, we conclude the paper
with a summary. Some auxiliary calculations are given in the
Appendix.

II. DYNAMIC SHIFT BY MEANS
OF PERTURBATION THEORY

Let us consider the effect of adding the interaction Hamil-
tonian V (ε, t ) to the sum of relativistic hydrogenlike ion H0:

H = H0 + V (ε, t ),

H0 = cαp + βm0c2 − Ze2

4πε0r
,

V (ε, t ) = −(A0αε̂νeikr−iωt + c.c.)eεt . (1)

Here, ε is an infinitesimal damping parameter [17]. The intro-
duction of an adiabatic damping parameter is a key element of
time-dependent perturbation theory. In the interaction picture
(denoted by the subscript I), the interaction V is represented
by [18]

VI (ε, t ) = e
i
h̄ H0tV (ε, t )e− i

h̄ H0t . (2)

We calculate the time evolution operator UI up to second order
in VI from the Dyson series:

UI = lim
t→∞UI (ε, t ),

UI (ε, t ) = 1 − i

h̄

∫ t

−∞
dt ′VI (ε, t ) +

(
− i

h̄

)2

×
∫ t

−∞
dt ′

∫ t

−∞
dt ′′VI (ε, t ′)VI (ε, t ′′). (3)

Let �n represent an eigenfunction of the unperturbed Hamil-
tonian H0 with an eigenvalue En. We denote the complete set
of eigenstates of H0 by {|�n〉}. |�I (t )〉 is a time-dependent
atomic state in the interaction picture. The state function be-
fore interaction is an eigenstate of H0: |�I (t = −∞)〉 = |�a〉,
where �a is an eigenstate of the unperturbed Hamiltonian
H0. Thus the state function at any time can be constructed by
applying the evolution operator as

|�I (t )〉 = UI (ε, t )|�I (t = −∞)〉 =
∑

n

cn(t )|�n〉. (4)

This condition is also true for the degenerate case [18] without
loss of generality. The time-dependent expansion coefficients
cn(t ) are given as the projections

cn(t ) = 〈�n|�I (t )〉. (5)

For calculating the light shift of a given atomic state a, we are
interested in the projection [17]

ca(t ) = 〈�a|�I (t )〉 = 〈�a|UI (ε, t )|�a〉. (6)

The first-order perturbation 〈�a|V |�a〉 vanishes. Substituting
UI (ε, t ) from Eq. (3), the leading order of the perturbation
expansion is V 2 and the problem reduces to calculating the

matrix element

M =
∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′〈�a|VI (ε, t ′)VI (ε, t ′′)|�a〉

=
∑

n

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′〈�a|VI (ε, t ′)|�n〉

× 〈�n|VI (ε, t ′′)|�a〉. (7)

The index n counts all bound and continuum states of the
unperturbed hydrogenlike ion. After carrying out the time
integration, the matrix element is given as

M = − h̄

i

∑
n

(
A2

0
〈�a|V1|�n〉〈�n|V1|�a〉e2t (ε−iω)

2(ε − iω)(Ea − En + h̄ω − ih̄ε)

+ |A0|2 〈�a|V2|�n〉〈�n|V1|�a〉
2ε(Ea − En − h̄ω − ih̄ε)

e2εt

+ |A0|2 〈�a|V1|�n〉〈�n|V2|�a〉
2ε(Ea − En + h̄ω − ih̄ε)

e2εt

+ (A∗
0 )2 〈�a|V2|�n〉〈�n|V2|�a〉e2t (ε+iω)

2(ε + iω)(Ea − En − h̄ω − ih̄ε)

)
. (8)

For simplicity the notation V1 = −αε̂νeikr and V2 =
−α∗ε̂∗

ν e−ikr is introduced above. In the second order of
perturbation theory one can write

ca(t ) = − i

h̄
M ′(t ), (9)

with M ′ = − i
h̄ M. Neglecting higher-order terms, the logarith-

mic derivative of the expansion coefficient is

d

dt
ln[ca(t )] = − i

h̄

dM ′

dt
. (10)

In the limit ε → 0, the time derivative of the matrix
element is

dM ′

dt
=

∑
n

(
A2

0
〈�a|V1|�n〉〈�n|V1|�a〉

Ea − En + h̄ω
e−2iωt

+ |A0|2 〈�a|V2|�n〉〈�n|V1|�a〉
Ea − En − h̄ω

+ |A0|2 〈�a|V1|�n〉〈�n|V2|�a〉
Ea − En + h̄ω

+ (A∗
0 )2 〈�a|V2|�n〉〈�n|V2|�a〉

Ea − En − h̄ω
e2iωt

)
. (11)

For ω �= 0 we use the property e2iωt = 1
2iω

∫ t
0 dt ′e2iωt ′

. Using
relation (3) (see [19]) to form the Dyson series, we get

dM ′

dt
=

∑
n

(
|A0|2 〈�a|V2|�n〉〈�n|V1|�a〉

Ea − En − h̄ω

+ |A0|2 〈�a|V1|�n〉〈�n|V2|�a〉
Ea − En + h̄ω

)
. (12)

Because dM ′
dt is time independent, one can make the

ansatz [17]

ċa

ca
= − i

h̄
�E , (13)
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FIG. 1. Diagrams representing the lowest-order perturbative
light shift corrections. The Coulomb-dressed electron is depicted by
a double line and the wavy lines represent photons.

and define the energy shift of the state a due to interaction
with the light field as

�E = |A0|2
∑

n

( 〈�a|V2|�n〉〈�n|V1|�a〉
Ea − En − h̄ω

+ 〈�a|V1|�n〉〈�n|V2|�a〉
Ea − En + h̄ω

)
. (14)

A0 is given as |A0|2 = |E|2c2

ω2 , with E being the electric-field
strength. In Fig. 1, the diagrams representing the two terms in
the above equations are shown.

III. EVALUATION OF MATRIX ELEMENTS

In this section we describe how the relativistic wave func-
tions, the vector potential of the electromagnetic field, and
the interaction matrix elements in Eq. (14) are treated. Our
description is fully relativistic and accounts for spin and
magnetic-field effects. A similar description is used for the
relativistic theoretical study of the spontaneous emission in
[19–22].

The principal task in calculating the light shift is the eval-
uation of the matrix element:

M =
∑

n

〈�a|α̂∗ε̂∗
ν e−ikr|�n〉〈�n|α̂ε̂νeikr|�a〉

Ea − En − h̄ω
. (15)

We apply the multipole decomposition of the transverse elec-
tromagnetic plane wave as

α̂ε̂νeikr = 4πα̂
∑
lm

1∑
λ=0

il−λ[Y (λ)
lm (k̂) · ε̂ν]†a(λ)

lm (r), (16)

thus M becomes

M = 16π2
∑

nlmλl ′m′λ′
〈�a|α̂∗iλ−l [ε̂νY (λ)

lm (k̂)]a(λ)†
lm (r)|�n〉

× 〈�n|α̂(i∗)l ′−λ′
(Y (λ′ )

l ′m′ (k̂)ε̂ν )†a(λ′ )
l ′m′ (r)|�a〉

Ea − En − h̄ω
. (17)

To obtain the level shift, a summation over polarization states
and integration over photon directions have to be performed:

M̄ = 1

2

∑
ν

1

4π

∫
d
kM. (18)

However, for simplicity we drop the overbar of M from here
on. Using the orthogonality property∑

ν

∫
d
k[Y (λ′ )

l ′m′ (k̂)ε̂ν]†[ε̂νY (λ)
lm (k̂)] = δll ′δmm′δλλ′ , (19)

the expression above simplifies to

M = 2π
∑
nlmλ

〈�a|α̂∗a(λ)†
lm (r)|�n〉〈�n|α̂a(λ)

lm (r)|�a〉
Ea − En − h̄ω

. (20)

Using the spectral representation of Green’s function

G(r, r′; z) =
∑

n

�n(r)�n(r)†

En − z
, (21)

and splitting Eq. (20) into an electric (λ = 1) and a magnetic
(λ = 0) part we get

M = −2π
∑
lm

∫
drdr′�†

a(r)α̂∗a(0)†
lm (r)G(r, r′; z)

× α̂a(0)
lm (r)�a(r′) − 2π

∑
lm

∫
drdr′�†

a(r)α̂∗

× a(1)†
lm (r)G(r, r′; z)α̂a(1)

lm (r)�a(r′), (22)

where the energy variable is z = Ea − h̄ω.
We perform a gauge transformation of the matrix elements.

The transformed multipole potential can be written as

aλ
JM (r̂) −→ aλ

JM (r̂) + ∇χJM (r̂),

�JM (r̂) −→ iωχJM (r̂), (23)

where the gauge function χJM (r̂) (and the multipole potential)
is a solution to the Helmholtz equation. We choose the gauge
function to be

χJM (r̂) = −1

k
GJ jJ (kr)YJM (r̂). (24)

With the choice of GJ = √
J + 1/J , the so-called Babushkin

gauge, i.e., a relativistic generalization of the length form
interaction, is adopted [21–23]. This transformation has no
effect on the magnetic multipole potentials, but transforms
electric potentials to the form

a(1)
JM (r̂) = − jJ+1(kr)

(
Y (1)

JM (r̂) −
√

J + 1

J
Y (−1)

JM (r̂)

)
,

�
(1)
JM (r̂) = −ic

√
J + 1

J
jJ (kr)YJM (r̂). (25)

The electric multipole potentials can be rewritten as

a(1)
JM (r̂) = −

√
2J + 1

J
aJJ+1M (r̂), (26)

with aJJ+1M (r̂) given by Eq. (B7) in the Appendix.
Denoting with Mm the magnetic part and with Me the

electric part, after some algebraic manipulations we obtain

Mm = 4π

h̄c

∑
lmκn

{(
Rm

1 + Rm
4

)
Kκn−κa

JJM K−κnκa
JJM

− Rm
2

(
K−κnκa

JJM

)2 − Rm
3

(
Kκn−κa

JJM

)2}
,

Me = 4π

h̄c

∑
lmκn

{
2J + 1

J

[(
Re

1 + Re
4

)
Kκn−κa

JJ+1MK−κnκa
JJ+1M

− Re
2

(
K−κnκa

JJ+1M

)2 − Re
3

(
Kκn−κa

JJ+1M

)2]
− J + 1

J

[
Re

1′
(
Kκnκa

JM

)2 + (
Re

2′ + Re
3′
)
Kκnκa

JM K−κn−κa
JM

+ Re
4′
(
K−κn−κa

JM

)2]}
. (27)
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We shall refer to the K’s as the angular matrix elements and
to the R’s as the radial matrix elements.

The matrix element

M ′ =
∑

n

〈�a|α̂ε̂νeikr|�n〉〈�n|α̂∗ε̂∗
ν e−ikr|�a〉

Ea − En + h̄ω
, (28)

can readily be found from Eq. (27) by the substitu-
tions Kκn−κa → K−κa−κn , Kκnκa → Kκa−κn , Kκnκa → Kκaκn ,
and K−κn−κa → K−κa−κn . In the radial part, the energy variable
z = Ea + h̄ω has to be substituted.

A. Radial matrix elements

The following notations are introduced for the two-
dimensional radial integrals:

Rm
1 =

∫
drdr′r2r′2Fa(r) jJ (kr)g12(r, r′; E ) jJ (kr′)Ga(r′),

Rm
2 =

∫
drdr′r2r′2Ga(r) jJ (kr)g22(r, r′; E ) jJ (kr′)Ga(r′),

Rm
3 =

∫
drdr′r2r′2Fa(r) jJ (kr)g11(r, r′; E ) jJ (kr′)Fa(r′),

Rm
4 =

∫
drdr′r2r′2Ga(r) jJ (kr)g21(r, r′; E ) jJ (kr′)Fa(r′),

Re
1′ =

∫
drdr′r2r′2Ga(r) jJ (kr)g11(r, r′; E ) jJ (kr′)Ga(r′),

Re
2′ =

∫
drdr′r2r′2Fa(r) jJ (kr)g21(r, r′; E ) jJ (kr′)Ga(r′),

Re
3′ =

∫
drdr′r2r′2Ga(r) jJ (kr)g12(r, r′; E ) jJ (kr′)Fa(r′),

Re
4′ =

∫
drdr′r2r′2Fa(r) jJ (kr)g22(r, r′; E ) jJ (kr′)Fa(r′).

(29)

In these integrals, jJ (kr) is the spherical Bessel function [24]
and the gi j (i, j = 1, 2) are the radial components of the
Coulomb-Dirac Green’s function.

All radial matrix elements can be evaluated analytically by
the help of the substitution

jl (kr) =
( π

2kr

)1/2
Jl+1/2(kr), (30)

and the Taylor expansion of the Bessel functions Jl+1/2:

jl (kr) = (31)√
π

2kr

∑
n=0

(−1)n

22n+l+1/2n!�(n + l + 3/2)
(kr)2n+l+1/2.

The final results are as follows:

Rm
1 =

(
1 − E2

a

m2c4

)1/2

U 2
a

1

2
(2λn)(2γn )

∑
n

(
−(κn + ν/εn)

n!
(
I2
A1J − I2

B1J

)
�(2γn + 1 + n)(n + γn + 1 − ν)

− (κn − ν/εn)
n!

(
I2
A1J − I2

B1J

)
�(2γn + 1 + n)(n + γn − ν)

− n!2

�(2γn + n)(n + γn − ν)

(
IA2J IB1J − IA1J IB2J

))
, (32)

Rm
2 =

(
1 + Ea

mc2

)
U 2

a

ε

2
(2λn)(2γn )

∑
n

(
(κn + ν/εn)

n!′
(
IA1J − IB1J

)2

�(2γn + 1 + n)(n + γn + 1 − ν)
− [(κn − ν/εn) − 2(γn + ν)]

× n!
(
IA1J − IB1J

)2

�(2γn + 1 + n)(n + γn − ν)
− n!2

�(2γn + n)(n + γn − ν)

(
IA2J IA1J − IA1J IB2J − IA2J IB1J + IB1J IB2J

))
, (33)

Rm
3 =

(
1 − Ea

mc2

)
U 2

a

1

2ε
(2λn)(2γn )

∑
n

(
(κn + ν/εn)

n!
(
IA1J + IB1J

)2

�(2γn + 1 + n)(n + γn + 1 − ν)
− [(κn − ν/εn) + 2(γn + ν)]

× n!
(
IA1J + IB1J

)2

�(2γn + 1 + n)(n + γn − ν)
+ n!2

�(2γn + n)(n + γn − ν)

(
IA2J IA1J + IA1J IB2J + IA2J IB1J + IB1J IB2J

))
, (34)

Rm
4 =

(
1 − E2

a

m2c4

)
U 2

a

1

2
(2λn)(2γn )

∑
n

(
− (κn + ν/εn)

n!
(
I2
A1J − I2

B1J

)
�(2γn + 1 + n)(n + γn + 1 − ν)

− (κn − ν/εn)
n!

(
I2
A1J − I2

B1J

)
�(2γn + 1 + n)(n + γn − ν)

− n!2

�(2γn + n)(n + γn − ν)

(
IA2J IB1J − IA1J IB2J

))
, (35)

Re
1′ =

(
1 + Ea

mc2

)
U 2

a

1

2ε
(2λn)(2γn )

∑
n

(
(κn + ν/εn)

n!
(
IA1J − IB1J

)2

�(2γn + 1 + n)(n + γn + 1 − ν)
− [(κn − ν/εn) + 2(γn + ν)]

× n!(IA1J − IB1J )2

�(2γn + 1 + n)(n + γn − ν)
+ n!2

�(2γn + n)(n + γn − ν)

(
IA2J IA1J − IA1J IB2J − IA2J IB1J + IB1J IB2J

))
, (36)
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Re
2′ =

(
1 − E2

a

m2c4

)1/2

U 2
a

1

2
(2λn)(2γn )

∑
n

(
−(κn + ν/εn)

n!
(
I2
A1J − I2

B1J

)
�(2γn + 1 + n)(n + γn + 1 − ν)

− (κn − ν/εn)
n!

(
I2
A1J − I2

B1J

)
�(2γn + 1 + n)(n + γn − ν)

+ n!2

�(2γn + n)(n + γn − ν)

(
IA2J IB1J − IA1J IB2J

))
, (37)

Re
3′ =

(
1 − E2

a

m2c4

)1/2

U 2
a

1

2
(2λn)(2γn )

∑
n

(−(κn + ν/εn)
n!

(
I2
A1J − I2

B1J

)
�(2γn + 1 + n)(n + γn + 1 − ν)

− (κn − ν/εn)
n!

(
I2
A1J − I2

B1J

)
�(2γn + 1 + n)(n + γn − ν)

+ n!2

�(2γn + n)(n + γn − ν)

(
IA2J IB1J − IA1J IB2J

))
, (38)

Re
4′ =

(
1 − Ea

mc2

)
U 2

a

ε

2
(2λn)(2γn )

∑
n

(
(κn + ν/εn)

n!
(
IA1J + IB1J

)2

�(2γn + 1 + n)(n + γn + 1 − ν)
− [(κn − ν/εn) − 2(γn + ν)]

× n!
(
IA1J + IB1J

)2

�(2γn + 1 + n)(n + γn − ν)
− n!2

�(2γn + n)(n + γn − ν)

(
IA2J IA1J + IA1J IB2J + IA2J IB1J + IB1J IB2J

))
. (39)

For the one-dimensional radial integrals we obtain the following analytical results:

IA1J =
( π

2k

)∑
α,p

ar (−1)α

α!�(α + l + 3/2)

(−ar + 1)p

(2γa + 1)p

�(γan + l + 2α + p + 1)�(2γn + n + 1)

n!�(2γn + 1)

×
(

k

2

)2α+l+1/2 (2λa)p+γa−1

p!
λ−(γan+p+2)

an 2F1

(
−n, γan + l + 2α + p + 1, 2γn + 1,

2λn

λan

)
, (40)

IA2J =
( π

2k

) ∑
α,p

ar (−1)α

α!�(α + l + 3/2)

(−ar + 1)p

(2γa + 1)p

�(γan + l + 2α + p + 1)�(2γn + n)

n!�(2γn)

×
(

k

2

)2α+l+1/2 (2λa)p+γa−1

p!
λ−(γan+p+2)

an 2F1

(
−n, γan + l + 2α + p + 1, 2γn,

2λn

λan

)
, (41)

IB1J =
( π

2k

)∑
α,p

(Na − κa)(−1)α

α!�(α + l + 3/2)

(−ar )p

(2γa + 1)p

�(γan + l + 2α + p + 1)�(2γn + n + 1)

n!�(2γn + 1)

×
(

k

2

)2α+l+1/2 (2λa)p+γa−1

p!
λ−(γan+p+2)

an 2F1

(
−n, γan + l + 2α + p + 1, 2γn + 1,

2λn

λan

)
, (42)

IB2J =
( π

2k

) ∑
α,p

(Na − κa)(−1)α

α!�(α + l + 3/2)

(−ar )p

(2γa + 1)p

�(γan + l + 2α + p + 1)�(2γn + n)

n!�(2γn)

×
(

k

2

)2α+l+1/2 (2λa)p+γa−1

p!
λ−(γan+p+2)

an 2F1

(
−n, γan + l + 2α + p + 1, 2γn,

2λn

λan

)
. (43)

Here we introduced the notations λan = λa + λn and γan =
γa + γn for simplicity. The remaining radial matrix elements
can be calculated from the ones given in Eqs. (32)–(35) by the
substitutions Re

i = Rm
i (J → J + 1) for all i ∈ {1, 2, 3, 4}.

B. Angular matrix elements

Equations (27) contain angular integrals of the form

Kκnκa
JkM =

∫
dor


†
κn

(r̂)σ̂Y JkM (r̂)
κa (r̂). (44)

The direct product of the spin operator σ̂ and the vector
spherical harmonic is a spherical tensor operator and thus its
matrix element can be rewritten as

Kκnκa
JkM = 〈

ln
1
2 jn

∣∣TJ (Ykσ1)
∣∣la 1

2 ja
〉
. (45)

The reduced matrix elements of the tensor T can be calculated
using the formula

〈
l1

1

2
j

∥∥∥∥TK (Ckσ1)

∥∥∥∥l ′
1

1

2
j′
〉

= aK (−1)J ′−K−1/2(2 j′ + 1)1/2

(
j j′ K
1
2 − 1

2 0

)
, (46)

where the coefficients are [25]

ak = (κ − κ ′)/
√

k(k + 1),

ak−1 = −(k + κ + κ ′)/
√

2k(k + 1),

ak+1 = (k + 1 − κ − κ ′)/
√

(k + 1)(2k + 1). (47)

013105-5



OCTAVIAN POSTAVARU PHYSICAL REVIEW A 107, 013105 (2023)

TABLE I. Comparison of nonrelativistic (NR) and relativistic (R)
light shifts for K and L shell states in hydrogenic ions, at an optical
laser frequency. Eb denotes the binding energy of the orbital and �E
stands for the light shift contribution.

Z = 54 Z = 92

Eb �E Eb �E

NR 1s −39674.2 −1.02586(−4) −115159 −1.21763(−5)
R 1s1/2 −41347.0 −8.17337(−5) −132280 −5.63212(−6)
NR 2s −9918.55 −2.73564(−3) −28789.6 −3.24700(−4)
R 2s1/2 −10443.5 −4.94986(−2) −34215.5 −1.40870(−3)
NR 2p −9918.55 −4.92415(−3) −28789.6 −5.84460(−4)
R 2p1/2 −10443.5 −3.17409(−3) −34215.5 −2.17374(−4)
R 2p3/2 −10016.7 +4.31087(−2) −29649.8 +7.88416(−4)

For the integrals containing the scalar spherical harmonics,

Kκnκa
JM =

∫
dor


†
κn

(r̂)YJM (r̂)
κa (r̂)

=
〈
ln

1

2
jn

∣∣∣∣YJM

∣∣∣∣la 1

2
ja

〉
, (48)

one can compute the reduced matrix elements as [25]〈
l1

1

2
j

∥∥∥∥CK

∥∥∥∥l ′
1

1

2
j′
〉

= (−1) j′−K−1/2(2 j′ + 1)1/2

(
j j′ K
1
2 − 1

2 0

)
. (49)

IV. NUMERICAL RESULTS

In Eq. (14), the series over intermediate states include the
bound states, the positive-energy-continuum eigenstates, and
also the negative-energy-continuum eigenstates. In order to
evaluate these second-order expressions, we have used the
Green’s function in the Sturmian representation [26], in which
the continuous sum over wave functions will be replaced by
discrete summations running over all, positive and negative,
integers. The technical procedure for transforming sums into
expressions that contain only summations over non-negative
integers is also presented in [26]. To obtain an accuracy of
five decimal places, the number of terms included varies from
5 for Z = 26 to 10 for Z = 91.

TABLE III. Comparison of nonrelativistic (NR) and relativistic
(R) light shifts for 1s − ns for Z=1, with the photon frequency equal
to half of the transition frequency.

βNR [Hz(W/m2)−1] βR [Hz(W/m2)−1]
Z = 1 1s − ns 1s1/2 − ns1/2

1s − 2s −2.67827(−5) −2.67808(−5)
1s − 3s −3.02104(−5) −3.02082(−5)
1s − 4s −3.18301(−5) −3.18278(−5)
1s − 5s −3.26801(−5) −3.26778(−5)
1s − 6s −3.31724(−5) −3.31701(−5)
1s − 7s −3.34805(−5) −3.34781(−5)
1s − 8s −3.36851(−5) −3.36827(−5)
1s − 9s −3.38277(−5) −3.38252(−5)

To start our discussion on relativistic results on light shifts,
we present results for an atom in a laser field at an optical fre-
quency (λ = 1054 nm, h̄ω = 1.176 eV) and with the widely
accessible intensity of I = 1018 W/cm2. We calculate the light
shifts in eV, both in relativistic and nonrelativistic treatments,
for some heavy elements (Z = 54, 92, i.e., Xe and U). Results
are shown in Table I. As it is well known, the ac Stark shifts,
calculated in a nonrelativistic way, follow an exact ∝ Z−4

scaling. It is also intuitively understandable that external field
effects in general have a smaller effect if the electrons are
bound by stronger central potentials. Still, even for elements
as heavy as Xe and U, and for orbitals of the L shell, the
light shift exceeds or approaches to the meV range. This is
anticipated to be noticeable in near-future experiments. For
measurements with lighter elements, the effects are certainly
more pronounced.

As the table also clearly shows, the relativistic and non-
relativistic results greatly differ. For these relativistic systems,
the nonrelativistic calculation can only serve as an order-of-
magnitude approximation, since not even the first digits of
the results calculated in the two different approaches agree. In
some cases, e.g., for the 2p3/2 state, even the sign of the shift
is different, which is originated in the different level structure
as described by the relativistic theory.

For soft x-ray frequencies (h̄ω = 50 eV), for the same
intensity, we give the shifts for the elements Z = 10, 54, and
92 in Table II. At the heaviest system studied, namely, for U,
these results almost coincide with the light shifts calculated
with optical laser frequencies. This illustrates that retardation

TABLE II. Comparison of nonrelativistic (NR) and relativistic (R) light shifts for K and L shell states in hydrogenic ions at a soft x-ray
laser frequency. Notations as in Table I.

Z = 10 Z = 54 Z = 92

Eb �E Eb �E Eb �E

NR 1s −1360.57 −8.74042(−2) −39674.2 −1.02587(−4) −115159 −1.21763(−5)
R 1s1/2 −1362.39 −8.6767(−2) −41347.0 −8.17339(−5) −132280 −5.63212(−6)
NR 2s −340.142 −2.47409 −9918.55 −2.73583(−3) −28789.6 −3.24703(−4)
R 2s1/2 −340.710 −2.33842 −10443.5 −5.01577(−2) −34215.5 −1.40885(−3)
NR 2p −340.142 −4.47426 −9918.55 −4.92452(−3) −28789.6 −5.84465(−4)
R 2p1/2 −340.710 −3.61534 −10443.5 −3.17429(−3) −34215.5 −2.17375(−4)
R 2p3/2 −340.256 −4.16667 −10016.7 +4.37674(−2) −29649.8 +7.88564(−4)
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TABLE IV. Same as Table III, but for Z=10.

βNR [Hz(W/m2)−1] βR [Hz(W/m2)−1]
Z = 10 1s − ns 1s1/2 − ns1/2

1s − 2s −2.67827(−9) −2.65885(−9)
1s − 3s −3.02104(−9) −2.99941(−9)
1s − 4s −3.18301(−9) −3.16030(−9)
1s − 5s −3.26801(−9) −3.24471(−9)
1s − 6s −3.31724(−9) −3.29360(−9)
1s − 7s −3.34805(−9) −3.32418(−9)
1s − 8s −3.36851(−9) −3.34449(−9)
1s − 9s −3.38277(−9) −3.35863(−9)

effects are only relevant when the photon energy is compa-
rable to the atomic binding energy: in the case of U, where
the binding energies exceed the 10-keV range, even a photon
frequency of 50 eV is negligible in the description of the
dynamic Stark shift. However, for lighter systems such as Xe
(Z = 54), the difference between the optical and the soft x-ray
light field is noticeable. This is especially the case for excited
states.

In order to avoid a discussion about the intensity I and
for a better comparison with existing nonrelativistic literature
data, in the following we introduce the dynamic Stark shift
coefficient β:

�E = hβI, (50)

where �E is the Stark shift of the atomic level |�a〉. In
Tables III, IV, and V, the nonrelativistic and relativistic Stark
shift coefficients βNR and βR are compared for the half 1s − ns
transition frequency for nuclear charge numbers Z = 1, 10,
and 54. The light shift calculated in the nonrelativistic limit
of the formulas derived in this paper agrees perfectly with
the calculations of Haas [14]. Also, they show an exact ∝
Z−4 scaling with the atomic number Z . However, for the
relativistic results, a clear deviation from this law is observ-
able, especially for the highest atomic charge numbers. These
tables also illustrate that the light shifts are most relevant
for highly excited, weakly bound states, i.e., for Rydberg
levels.

As we can see from Eqs. (22) and (25), in the final ex-
pression of dipole light shifts we have the following possible
combinations of electromagnetic potentials: matrix elements
of scalar-scalar, vector-vector, and scalar-vector potentials.

TABLE V. Same as Table III, but for Z=54.

βNR [Hz(W/m2)−1] βR [Hz(W/m2)−1]
Z = 54 1s − ns 1s1/2 − ns1/2

1s − 2s −3.14978(−12) −2.51398(−12)
1s − 3s −3.55288(−12) −2.84491(−12)
1s − 4s −3.74337(−12) −3.00038(−12)
1s − 5s −3.84334(−12) −3.08132(−12)
1s − 6s −3.90124(−12) −3.12789(−12)
1s − 7s −3.93747(−12) −3.15688(−12)
1s − 8s −3.96153(−12) −3.17606(−12)
1s − 9s −3.97829(−12) −3.18937(−12)

FIG. 2. Light shift of the 1s1/2 energy levels in a hydrogenlike ion
as a function of the charge number Z , for a laser intensity of I = 1018

W/cm2. The E1 (blue, continuous) and 1000 times the contribution
of M1 (dashed, green) are shown.

Because of the selection rules incorporated in the angular
matrix elements, the scalar-vector part is zero. In the follow-
ing tables we give some values of the dynamic Stark shift
coefficient β for scalar-scalar and vector-vector parts and for
the interaction with the magnetic-field component of the laser
field, including the retardation contribution caused by the de-
pendence on the photon frequency. The tables show that the
scalar-scalar contribution is by far the dominant part of
the interaction.

In Fig. 2, we represented the light shift of the 1s1/2 energy
levels in a hydrogenlike ion as a function of the charge number
Z , for a laser intensity of I = 1018 W/cm2. We represented
both the contribution of E1 and 1000 times the contribution
of M1. In Fig. 3, we represented the light shift of the 1s1/2

energy levels in a hydrogenlike ion as a function of the charge
number Z , for the same setup as the one in Fig. 2. The E1 and
M1 contributions are shown.

Taking into account the fact that only the scalar-scalar part
contributes, the Breit-Pauli approximation should be suffi-
cient [14]. In Tables VI and VII we can see the retardation
contribution compared to the Breit-Pauli approximation. De-
veloping the electromagnetic field in multipoles, we obtain
important contributions to the resonance. When the photon

FIG. 3. The same setup as in Fig. 2, for 2p1/2. The E1 (blue,
continuous) and M1 (dashed, green) contributions are shown.
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TABLE VI. Different relativistic electric dipole (E1) contributions to the light shift for 1s − ns two-photon transitions: scalar-scalar (s-s),
vector-vector (v-v), and magnetic-field contributions, with or without frequency-dependent retardation (ret.) contributions. The results are
given for Z = 10.

Z = 10 s-s s-s, ret. v-v v-v, ret. Mag. Mag., ret.

1s − 2s −2.6588(−9) −2.6579(−9) −6.7879(−16) −6.7848(−16) −9.2665(−13) −9.2635(−13)
1s − 3s −2.9994(−9) −2.9978(−9) −1.0200(−15) −1.0193(−15) −1.0973(−12) −1.0968(−12)
1s − 4s −3.1603(−9) −3.1584(−9) −1.1667(−15) −1.1658(−15) −1.1753(−12) −1.1746(−12)
1s − 5s −3.2447(−9) −3.2427(−9) −1.2402(−15) −1.2393(−15) −1.2156(−12) −1.2149(−12)
1s − 6s −3.2936(−9) −3.2915(−9) −1.2818(−15) −1.2808(−15) −1.2387(−12) −1.2380(−12)
1s − 7s −3.3241(−9) −3.3220(−9) −1.3075(−15) −1.3064(−15) −1.2531(−12) −1.2524(−12)
1s − 8s −3.3444(−9) −3.3423(−9) −1.3243(−15) −1.3233(−15) −1.2627(−12) −1.2619(−12)
1s − 9s −3.3586(−9) −3.3564(−9) −1.3360(−15) −1.3349(−15) −1.2693(−12) −1.2685(−12)

frequency is equal to half of the transition frequency, the Stark
shift comes from the E1 transitions. One may conclude that
the dipole approximation is good, especially for low charge
states where the retardation effect is small. At high nuclear
charges and frequencies, the dependence of the scalar-scalar
term on the photon frequency starts to show up; however, the
vector-vector and magnetic terms are still orders of magnitude
smaller.

V. SUMMARY

Off-resonant light shifts of hydrogenic levels are calculated
in a fully relativistic framework. We used Coulomb-Dirac
wave functions and Green’s functions in the Sturmian rep-
resentation to evaluate the second-order expressions. The
electromagnetic field has been expanded into multipoles,
which enabled us to study the nondipole effects of interaction
with magnetic-field components of the laser light and retar-
dation contributions depending on the frequency of the laser
photon. At high laser intensities, the light shifts are sizable, es-
pecially for excited states with lower binding energies. These
results are relevant in current and near-future spectroscopic
experiments, especially for experiments employing advanced
light sources in the x-ray regime.

ACKNOWLEDGMENTS

The author acknowledges helpful conversations with
Zoltan Harman, Christoph H. Keitel, and Flavius Dragoi.

APPENDIX A: COULOMB-DIRAC GREEN’S FUNCTION
IN THE STURMIAN REPRESENTATION

Given a Hermitian operator H , the corresponding resolvent
or Green operator G(z) is defined by

(H − z)G(z) = 1, (A1)

where z, referred to later on as the energy variable, is a
complex number. Let us assume that H possesses a complete
set of eigenfunctions �n corresponding to eigenvalues E :

(H − En)�n = 0, (A2)∑
n

�n�
†
n = 1. (A3)

In the spectral representation, G(z) is formally given by

G(z) = −
∑

n

�n�
†
n

z − En
. (A4)

Generally, the summation is performed over a discrete and a
continuous spectrum of eigenfunctions.

If H is represented by a differential operator Hr acting on a
Hilbert space of functions on R3, G(z) is itself represented by
a function G(r1, r2; z) on R3 × R3 which satisfies the equation

(Hr1 − z)G(r1, r2; z) = δ(r1 − r2). (A5)

For a certain class of Hamiltonians, the Green’s function
can be given analytically, without explicitly carrying out the
summation over a complete spectrum. The Green’s function

TABLE VII. Same as Table VI, for Z = 54.

Z = 54 s-s s-s, ret. v-v v-v, ret. Mag. Mag., ret.

1s − 2s −2.5139(−12) −2.4873(−12) −6.2890(−16) −6.2032(−16) −2.8362(−14) −2.8093(−14)
1s − 3s −2.8449(−12) −2.8013(−12) −9.5338(−16) −9.3473(−16) −3.3758(−14) −3.3284(−14)
1s − 4s −3.0003(−12) −2.9488(−12) −1.0922(−15) −1.0683(−15) −3.6223(−14) −3.5646(−14)
1s − 5s −3.0813(−12) −3.0255(−12) −1.1615(−15) −1.1347(−15) −3.7490(−14) −3.6859(−14)
1s − 6s −3.1278(−12) −3.0697(−12) −1.2004(−15) −1.1720(−15) −3.8214(−14) −3.7552(−14)
1s − 7s −3.1568(−12) −3.0972(−12) −1.2243(−15) −1.1949(−15) −3.8664(−14) −3.7982(−14)
1s − 8s −3.1760(−12) −3.1153(−12) −1.2400(−15) −1.2099(−15) −3.8960(−14) −3.8266(−14)
1s − 9s −3.1893(−12) −3.1280(−12) −1.2508(−15) −1.2202(−15) −3.9166(−14) −3.8462(−14)
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associated with the Dirac-Coulomb Hamiltonian can be de-
composed into radial and angular parts as

G(r1, r2; En) = 1

ch̄

(
G11 G12

G21 G22

)
, (A6)

where in the components Gi j , i, j ∈ {1, 2}, which are 2 × 2
matrices, we omitted the coordinate and energy arguments for
brevity. They can be decomposed as

G11 =
∑
κnmn

g11
κn

(r1, r2; En)
κnmn (r̂)
∗
κnmn

(r̂′),

G12 =
∑
κnmn

−ig12
κn

(r1, r2; En)
κnmn (r̂)
∗
−κnmn

(r̂′),

G21 =
∑
κnmn

ig21
κn

(r1, r2; En)
−κnmn (r̂)
∗
κnmn

(r̂′),

G22 =
∑
κnmn

g22
κn

(r1, r2; En)
−κnmn (r̂)
∗
−κnmn

(r̂′). (A7)

The radial components gi j can be represented as an expansion
involving Laguerre polynomials. Introducing the notations

ε =
√

mc2 − E

mc2 + E
, ε = E

mc2
, ν = αZε√

1 − ε2
, (A8)

the explicit formulas for the radial components are [26]

g11
κn

= 1

2ε
(2λn)2γn (rr′)γn−1e−λn(r+r′ )

∞∑
n=0

(
(κn + ν/εn)

n!

�(2γn + 1 + n)

L2γn
n (2λnr)L2γn

n (2λnr′)
n + γn + 1 − ν

− [(κn − ν/εn) + 2(γn + ν)]

× n!

�(2γn + 1 + n)

L2γn
n (2λnr)L2γn

n (2λnr′)
n + γn − ν

+ n!

�(2γn + n)

L2γn−1
n (2λnr)L2γn

n (2λnr′) + L2γn
n (2λnr)L2γn−1

n (2λnr′)
n + γn − ν

)
, (A9)

g12
κn

= 1

2
(2λn)2γn (rr′)γn−1e−λn (r+r′ )

∞∑
n=0

(
(κn + ν/εn)

n!

�(2γn + 1 + n)

L2γn
n (2λnr)L2γn

n (2λnr′)
n + γn + 1 − ν

+ (κn − ν/εn)
n!

�(2γn + 1 + n)

× L2γn
n (2λnr)L2γn

n (2λnr′)
n + γn − ν

− n!

�(2γn + n)

L2γn−1
n (2λnr)L2γn

n (2λnr′) − L2γn
n (2λnr)L2γn−1

n (2λnr′)
n + γn − ν

)
, (A10)

g21
κn

= g12
κn

(r ↔ r′), (A11)

g22
κn

= ε

2
(2λn)2γn (rr′)γn−1e−λn (r+r′ )

∞∑
n=0

(
(κn + ν/εn)

n!

�(2γn + 1 + n)

L2γn
n (2λnr)L2γn

n (2λnr′)
n + γn + 1 − ν

− [(κn − ν/εn) − 2(γn + ν)]

× n!

�(2γn + 1 + n)

L2γn
n (2λnr)L2γn

n (2λnr′)
n + γn − ν

− n!

�(2γn + n)

L2γn−1
n (2λnr)L2γn

n (2λnr′) + L2γn
n (2λnr)L2γn−1

n (2λnr′)
n + γn − ν

)
. (A12)

APPENDIX B: ELECTROMAGNETIC MULTIPOLES

In the following, we systematize the decomposition of
the first-order transition amplitude into multipole compo-
nents (electric and magnetic dipole, electric and magnetic
quadrupole, etc.). The transition matrix element is defined as

Tan =
∫

d3rφ†
a (r)αA(r, ω)φn(r), (B1)

where A(r, ω) is the transverse-gauge vector potential [19]:

A(r, ω) = ε̂eikr. (B2)

As a first step of the multipole decomposition, we expand
the vector potential A(r, ω) in a series of vector spherical
harmonics [19] as

A(r, ω) =
∑
JLM

AJLMY JLM (r̂). (B3)

The expansion coefficients are given by

AJLM =
∫

d
[Y JLM (r̂) · ε̂]†eikr. (B4)

Using the expansion of a plane wave in terms of spherical
Bessel functions jl (kr) [24], namely,

eikr = 4π
∑
lm

il jl (kr)Y ∗
lm(k̂)Ylm(r̂), (B5)

and carrying out the angular integration in Eq. (B4), we can
rewrite the vector potential in the form

A(r, ω) = 4π
∑
JLM

iL[Y JLM (k̂) · ε̂]aJLM (r), (B6)

with

aJLM (r) = jL(kr)Y JLM (r̂). (B7)

For compactness, we introduce the notation Y (λ)
JM (r̂), which is

related to the vector spherical harmonics as

Y JJ−1M (r̂) =
√

J

2J + 1
Y (−1)

JM (r̂) +
√

J + 1

2J + 1
Y (1)

JM (r̂),

Y JJM (r̂) = Y (0)
JM (r̂), (B8)

Y JJ+1M (r̂) = −
√

J + 1

2J + 1
Y (−1)

JM (r̂) +
√

J

2J + 1
Y (1)

JM (r̂).
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This transformation leads immediately to the multipole expan-
sion of the vector potential:

A(r, ω) = 4π
∑
JMλ

iJ−λ[Y (λ)
JM (k̂) · ε̂]†a(λ)

JM (r). (B9)

The vector functions a(λ)
JM are referred to as the multipole

potentials. They are given by

a(0)
JM (r) = aJJM (r),

a(1)
JM (r) =

√
J + 1

2J + 1
aJJ−1M (r) −

√
J

2J + 1
aJJ+1M (r). (B10)

Only terms with λ = 0 and 1 contribute to this mul-
tipole expansion, since Y (−1)

JM (k̂) = k̂YJM (k̂) is orthogonal
to k̂.

A gauge transformation leaves the transition amplitudes
invariant, provided the energy difference between the ini-
tial and final states equals the energy carried off by
the photon. The transformed multipole potential can be

written as

aλ
JM (r̂) −→ aλ

JM (r̂) + ∇χJM (r̂), (B11)

�JM (r̂) −→ iωχJM (r̂),

where the gauge function χJM (r̂) is a solution to the
Helmholtz equation. We choose the gauge function to be

χJM (r̂) = −1

k

√
J + 1

J
jJ (kr)YJM (r̂), (B12)

to cancel the contribution that is of lowest order in powers of
kr. The resulting transformation has no effect on the magnetic
multipoles, but transforms electric multipole potentials to the
form

a(1)
JM (r̂) = − jJ+1(kr)

(
Y (1)

JM (r̂) −
√

J + 1

J
Y (−1)

JM (r̂)

)
,

�
(1)
JM (r̂) = −ic

√
J + 1

J
jJ (kr)YJM (r̂). (B13)

The resulting potentials reduce to the length form potentials in
the nonrelativistic limit [21,22].
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