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General framework for interatomic interaction energy of two ground-state atoms in a thermal bath
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We give a general derivation of the fourth-order DDC formalism (a formalism proposed by Dalibard, Dupont-
Roc, and Cohen-Tannoudji) for calculating the interaction energy between two ground-state multilevel atoms
which are coupled to electromagnetic fields in a thermal bath at temperature T . Both the contributions of the
thermal field fluctuations and the radiation reaction of atoms are separately identified. As an application of
the formalism, we revisit the interaction energy of two static ground-state two-level atoms in a free space and
discover new behaviors such as the ∼T L−2 behavior of the van der Waals interaction energy in the region
where λ3/4T −1/4 � L � λ, with λ the transition wavelength of the atoms and L the interatomic separation,
and an oscillatory behavior of the Casimir-Polder interaction energy as L varies which is superimposed on the
monotonic ∼T L−6 dependence when L � λ � T −1.
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I. INTRODUCTION

Spontaneous emission and energy-level shifts of an atom
are remarkable phenomena arising from atom-field interac-
tion, which can be attributed to vacuum fluctuations [1,2]
or radiation reaction of the atom [3] or a combination of
them [4,5]. However, different physical interpretations may
be plagued by different problems, for example, the instabil-
ity of ground-state atoms for the explanation of spontaneous
emission as a result of only radiation reaction and the “spon-
taneous absorption” of ground-state atoms in vacuum for that
of only vacuum fluctuations. The indeterminacy in physical
interpretation originates from different choices of ordering
of commuting operators of the atom and the field in a
Heisenberg picture approach to the problem [6]. Noteworthily,
this ambiguity was resolved by Dalibard, Dupont-Roc, and
Cohen-Tannoudji (DDC) [7,8], who suggested that the sym-
metric operator ordering should be adopted such that the
distinct contributions of vacuum fluctuations and radiation re-
action of atoms to the variation rate of an arbitrary observable
of the atom are separately Hermitian and thus each possesses
an independent physical meaning. This approach which is
later called the DDC formalism irons out the problem of in-
stability for ground-state atoms when only radiation reaction
is considered and the problem of spontaneous absorption of
atoms when only vacuum fluctuations are taken into account.

The DDC formalism was then widely utilized to study the
average variation rate of energy and radiative energy-level
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shifts of a single atom in various circumstances [9–25]. Re-
cently, the DDC formalism was generalized to the case of two
atoms in order to study the resonance interaction energy and
the evolution of energy of a two-atom system in the symmetric
or antisymmetric entangled state (the maximally entangled
states) [26]. It is discovered that both the resonance interaction
energy and the average variation rate of energy of a two-atom
system in a maximally entangled state are wholly attributable
to the radiation reaction of the atoms but irrelevant to the field
fluctuations [26–29]. This is in sharp contrast to the radiative
properties of a single atom which is a combined effect of
both the field fluctuations and the radiation reaction of the
atom.

Atoms in the maximally entangled state, although interest-
ing in their own right, are not as commonplace as atoms in the
ground state. Recently, the interaction between two ground-
state atoms has attracted considerable interest [30–33]. The
distinction between the interaction between two atoms in
maximally entangled states and that in the ground state is
that the former is a second-order effect while the latter is a
fourth-order one from the point of view of perturbative calcu-
lations. Physically, the two differ as exchange of real photons
is involved in the former while the latter is only a result of
exchange of virtual photons during the atom-field interac-
tion. Although there have already been investigations in the
interatomic interaction between two ground-state atoms with
different methods [34–40], attempts with the DDC formalism
appear only very recently [30–33]. As a first step, a simplified
model in which atoms are assumed to be in the monopole
interaction with a scalar field in vacuum is considered, and
by generalizing the DDC formalism, which is originally of
the second order in perturbation, to the fourth order, it is
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shown that the interaction energy of two ground-state atoms
is a joint effect of the vacuum fluctuations of the field and
the radiation reaction of the atoms [32]. With this complete
fourth-order DDC formalism [32], the interaction energy of
two ground-state atoms in uniform acceleration is recently
calculated and it is found that the interaction displays novel
behaviors that reveal the long-range properties of vacuum
altered by accelerating atoms through it [33]. Let us note
here that this fourth-order DDC formalism has been further
generalized from vacuum to a thermal bath [41].

However, one should bear in mind that the model in which
atoms are in the monopole interaction with a scalar field is just
a toy model that serves to qualitatively disclose the properties
of the interatomic interaction in a simplified setting. To obtain
quantitative behaviors of the interaction in the real world, one
must study a realistic situation in which atoms are coupled
to an electromagnetic field. The present paper aims to first
establish, in Sec. II, the fourth-order DDC formalism that
can deal with two multilevel ground-state atoms coupled to
electromagnetic fields in a thermal bath.

Then, as an application of the generalized formalism, we
separately calculate, in Sec. III, the contribution of thermal
fluctuations and that of radiation reaction to the interaction
energy of two static ground-state two-level atoms with the
same transition frequency ω which are coupled with electro-
magnetic fields in a thermal bath at temperature T . Detailed
analysis will be performed on the behaviors of the interaction
energy in both the low- and high-temperature limits, i.e., when
T � ω and T � ω, which are equivalent to λ � β and λ �
β with λ = 2πω−1 and β = T −1, the transition wavelength
of the atoms and the characteristic wavelength of thermal
photons, respectively.1 Note that besides two characteristic
lengths, λ and β, there is another characteristic length for
the problem under consideration, i.e., the interatomic separa-
tion L. With this length scale, the low- and high-temperature
limits can be further divided into three subregions, i.e., L �
λ � β, λ � L � β, and λ � β � L for the low-temperature
limit, and L � β � λ, β � L � λ, and β � λ � L for the
high-temperature limit. We examine the behaviors of the in-
teratomic interaction energy in all the six subregions, with
the contributions of the thermal fluctuations and the radiation
reaction separately identified. In comparison with the existing
results in the literature [42–46], we discover behaviors of the
interatomic interaction energy in the high-temperature limit,
i.e., a unique behavior of ∼T L−2 in the region where 4

√
λ3β �

L � λ, and an oscillatory behavior which is superimposed
on the monotonic ∼T L−6 dependence on separation L when
β � λ � L, which were both not reported before.

We then conclude in Sec. IV with a summary and some
discussions. Throughout the paper, we exploit the units in
which h̄ = c = ε0 = 1 with h̄ the reduced Plank constant, c
the speed of light, and ε0 the vacuum permittivity.

1We have set the Boltzmann constant kB = 1.

II. GENERIC FOURTH-ORDER DDC FORMALISM:
THE THERMAL ELECTROMAGNETIC FIELD CASE

In this section, we give a detailed derivation of the fourth-
order DDC formalism for calculating the interaction energy
between two ground-state multilevel atoms which are coupled
to electromagnetic fields in a thermal bath at temperature T .
We label the two atoms by A and B and assume them to be in
synchronous motion so that they share the same proper time
τ . Then the Hamiltonian of the two atoms can be written as

HS (τ ) =
∑

n

ωA
n σ A

nn(τ ) +
∑

n

ωB
n σ B

nn(τ ), (1)

where σnn = |n〉〈n| and |n〉 denotes a series of stationary
states of the atom with energy ωn. In the Coulomb gauge, the
electric-field operator reads [47]

E(x) =
∫

d3k gk

2∑
ν=1

iωkε(k, ν)

× [ak,νe−iωkt eik·x − a†
k,νeiωkt e−ik·x] (2)

with gk = [(2π )32ωk]−1/2, k and ν the wave vector and the
polarization of the field modes respectively, ak,ν and a†

k,ν the
annihilation and creation operators, and ε(k, ν) the polariza-
tion vector satisfying

2∑
ν=1

εp(k, ν)εq(k, ν) + kpkq

k2
= δpq. (3)

Then the Hamiltonian of the field follows

HF (t (τ )) =
∫

d3k ωk

2∑
ν=1

a†
k,ν

(t (τ ))ak,ν (t (τ ))
dt

dτ
(4)

with ak,ν (t ) = ak,νe−iωkt , and the Hamiltonian describing the
atom-field interaction is given by

HI (τ ) = −μA(τ ) · E(xA(τ )) − μB(τ ) · E(xB(τ )), (5)

where μξ with ξ = A, B is the dipole moment operator of
atom ξ . Adding up the three Hamiltonians Eqs. (1), (4), and
(5), we obtain the total Hamiltonian of the system: H (τ ) =
HS (τ ) + HF (τ ) + HI (τ ).

As a result of the atom-field interaction, the electromag-
netic field E(x) can be separated into two parts, i.e., a free
part E f (x) which exists even when there is no atom-field
interaction, and a source part which arises from the atom-field
interaction. Similarly, every operator of the atoms can also be
separated into a free part and a source part. We next implement
such separations using the Heisenberg equations of motion of
the dynamical variables of the atoms and the field.

012815-2



GENERAL FRAMEWORK FOR INTERATOMIC INTERACTION … PHYSICAL REVIEW A 107, 012815 (2023)

A. Evolution of dynamical variables of the atoms and the field

With the Hamiltonians of the atom-field system, we can derive the Heisenberg equations of motion for the atomic operator
σ ξ

mn(τ ) and that of the field ak,ν (t (τ )):

d

dτ
σ ξ

mn(τ ) = i
(
ωξ

m − ωξ
n

)
σ ξ

mn(τ ) − iE(xξ (τ )) · [μξ (τ ), σ ξ
mn(τ )

]
(6)

and

d

dτ
ak,ν (t (τ )) = −iωkak,ν (t (τ ))

dt

dτ
− i

B∑
ξ=A

μξ (τ ) · {E(xξ (τ )), ak,ν (t (τ ))}, (7)

and then split each solution to the equations into a free part which is independent of the atom-field coupling and a source part
which is induced by the coupling. Hereafter, [· · · , · · · ] represents the commutator of two sets of operators, and we denote the
free parts and the source parts by superscripts “ f ” and “s” respectively. So, we can write

σ ξ
mn(τ ) = σ ξ, f

mn (τ ) + σ ξ,s
mn (τ ), (8)

ak,ν (t (τ )) = a f
k,ν

(t (τ )) + as
k,ν (t (τ )) (9)

with ⎧⎪⎨
⎪⎩

σ
ξ, f
mn (τ ) = σ

ξ, f
mn (τ0)ei(ωξ

m−ωξ
n )(τ−τ0 ),

σ ξ,s
mn (τ ) = −i

∫ τ

τ0

dτ1 E(xξ (τ1)) · [
μξ (τ1), σ ξ

mn(τ1)
]
ei(ωξ

m−ωξ
n )(τ−τ1 )

(10)

and ⎧⎪⎨
⎪⎩

a f
k,ν

(t (τ )) = a f
k,ν

(t (τ0))e−iωk[t (τ )−t (τ0 )],

as
k,ν (t (τ )) = −i

B∑
ξ=A

∫ τ

τ0
dτ1 μξ (τ1) · [E(xξ (τ1)), ak,ν (t (τ1))]e−iωk[t (τ )−t (τ1 )].

(11)

As a result, E(x(τ )) is accordingly split into the free field E f (x(τ )) and the source field Es(x(τ )) with⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E f (x) = ∫
d3k gk

2∑
ν=1

iωkε(k, ν)
[
a f

k,ν
(t )eik·x − a† f

k,ν
(t )e−ik·x],

Es(x) = ∫
d3k gk

2∑
ν=1

iωkε(k, ν)
[
as

k,ν (t )eik·x − a†s
k,ν (t )e−ik·x]. (12)

We now expand the full operators in the source operators σ ξ,s
mn (τ ) and as

k,ν (t (τ )) in the second line of Eqs. (10) and (11) in the
coupling constant which is assumed to be small,

σ ξ
mn(τ ) = σ ξ, f

mn (τ ) + σ ξ,(1)
mn (τ ) + σ ξ,(2)

mn (τ ) + σ ξ,(3)
mn (τ ) + · · · , (13)

ak,ν (t (τ )) = a f
k,ν (t (τ )) + a(1)

k,ν (t (τ )) + a(2)
k,ν (t (τ )) + a(3)

k,ν (t (τ )) + · · · , (14)

E(xξ (τ )) = E f (xξ (τ )) + E (1)(xξ (τ )) + E (2)(xξ (τ )) + E (3)(xξ (τ )) + · · · , (15)

and put these expansions into the second line of Eqs. (10) and (11). Then we can iteratively express σ
ξ,( j)
mn (τ ) and a( j)

k,ν (t (τ )) in

terms of free operators of the atoms and the field. For concrete expressions of the first- to third-order source operators, σ
ξ,( j)
mn (τ ),

a( j)
k,ν (t (τ )) and E ( j)(xξ (τ )), please refer to Appendix A.

With these free and source operators, we next discuss the evolution of energy of the atoms by separately identifying
contributions of the free field and the source field.

B. Variation rate of energy of atoms: Separation of contributions of field fluctuations and radiation reaction of atoms

To study the evolution of energy of the atoms, we first resort to the Heisenberg equations of motion of their Hamiltonians.
Take that of atom A for an example, which is

d

dτ
HA(τ ) = −i

[
μA(τ ) · E(xA(τ )),

∑
n

ωA
n σ A

nn(τ )

]
. (16)

Separating E(xA(τ )) into the free part E f (xA(τ )) and the source part Es(xA(τ )), adopting the symmetric operator ordering [7,8]
between the variables of the atom μA(τ ) and those of field E f (xA(τ )) or Es(xA(τ )), and taking the average of the variation rate
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over the thermal state of the field, |β〉 with β = T −1, we find〈
dHA(τ )

dτ

〉β

tot

=
〈

dHA(τ )

dτ

〉β

tf

+
〈

dHA(τ )

dτ

〉β

rr

(17)

with 〈
dHA(τ )

dτ

〉β

tf

= − i

2

∑
n,p

ωA
n 〈β|{E f

p (xA(τ )),
[
μA,p(τ ), σ A

nn(τ )
]}|β〉 (18)

and 〈
dHA(τ )

dτ

〉β

rr

= − i

2

∑
n,p

ωA
n 〈β|{Es

p(xA(τ )),
[
μA,p(τ ), σ A

nn(τ )
]}|β〉, (19)

which we define as the contributions of thermal fluctuations [tf] and the radiation reaction of atoms [rr]. Hereafter, μξ,p

and {· · · , · · · } denote the pth component of the dipole moment of atom ξ and the anticommutator of two sets of operators,
respectively, and 〈· · · 〉β on the left-hand side stands for 〈β| · · · |β〉.

Next, we expand operators on the right of Eq. (18) with the help of Eq. (13) and the relation

μξ (τ ) =
m �=n∑
m,n

(μξ )mnσ
ξ, f
mn (τ ) +

∞∑
j=1

m �=n∑
m,n

(μξ )mnσ
ξ,( j)
mn (τ ), (20)

and find that the first- to the fourth-order operators of 〈 dHA(τ )
dτ

〉βtf are given by〈
dHA(τ )

dτ

〉β,(1)

tf

= − i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E f (xA(τ )),

[
σ A, f

pq (τ ), σ A, f
nn (τ )

]}|β〉, (21)

〈
dHA(τ )

dτ

〉β,(2)

tf

= − i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E f (xA(τ )),

[
σ A,(1)

pq (τ ), σ A, f
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E f (xA(τ )),

[
σ A, f

pq (τ ), σ A,(1)
nn (τ )

]}|β〉, (22)

〈
dHA(τ )

dτ

〉β,(3)

tf

= − i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E f (xA(τ )),

[
σ A, f

pq (τ ), σ A,(2)
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E f (xA(τ )),

[
σ A,(1)

pq (τ ), σ A,(1)
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E f (xA(τ )),

[
σ A,(2)

pq (τ ), σ A, f
nn (τ )

]}|β〉 (23)

and 〈
dHA(τ )

dτ

〉β,(4)

tf

= − i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E f (xA(τ )),

[
σ A, f

pq (τ ), σ A,(3)
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E f (xA(τ )),

[
σ A,(1)

pq (τ ), σ A,(2)
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E f (xA(τ )),

[
σ A,(2)

pq (τ ), σ A,(1)
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E f (xA(τ )),

[
σ A,(3)

pq (τ ), σ A, f
nn (τ )

]}|β〉. (24)

Then with the first- to third-order atomic and field operators given in Appendix A, we can reexpress the above four equations in
terms of the free operators of the atoms and the field. It is easy to see that 〈 dHA(τ )

dτ
〉β,(1)

tf and 〈 dHA(τ )
dτ

〉β,(3)
tf are zero, because the

anticommutator {· · · , · · · } on the right of Eq. (21) is obviously of the first power in E f and that of Eq. (23) is of the third power
in E f according to Eqs. (A1) and (A6), and so they both vanish after taking the expectation value over |β〉. The second- and
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fourth-order average variation rates are generally nonzero and are respectively given by〈
dHA(τ )

dτ

〉β,(2)

tf

= −1

2

∑
n,p,q

ωA
n

∫ τ

τ0

dτ1 〈β|{E f
p (xA(τ )), E f

q (xA(τ1))
}|β〉{μ f

A,p(τ ),
[
μ

f
A,q(τ1), σ A, f

nn (τ )
]}

(25)

and 〈
dHA(τ )

dτ

〉β,(4)

tf

= 1

2

∑
n,p,q,r,s

ωA
n

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 〈β|{E f
p (xA(τ )), E f

s (xB(τ3))
}

× {
E f

r (xB(τ2)), E f
q (xA(τ1))

}|β〉[μ f
B,s(τ3), μ f

B,r (τ2)
]{

μ
f
A,q(τ1),

[
μ

f
A,p(τ ), σ A, f

nn (τ )
]} + F (τ ). (26)

Notice here that F (τ ) is the abbreviation of a collection of terms of the zeroth and first power in μ
f
B with μ

f
ξ (τ ) ≡∑m �=n

m,n (μξ )mnσ
ξ, f
mn (τ ). Since the explicit expression of F (τ ) is very tedious and more importantly it does not contribute to the

interatomic interaction as we shall explain in the next subsection, we do not show it explicitly here.
Following similar procedures, we find 〈 dHA(τ )

dτ
〉β,( j)

rr which starts at the second order:〈
dHA(τ )

dτ

〉β,(2)

rr

= − i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E (1)(xA(τ )),

[
σ A, f

pq (τ ), σ A, f
nn (τ )

]}|β〉, (27)

〈
dHA(τ )

dτ

〉β,(3)

rr

= − i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E (1)(xA(τ )),

[
σ A,(1)

pq (τ ), σ A, f
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E (1)(xA(τ )),

[
σ A, f

pq (τ ), σ A,(1)
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E (2)(xA(τ )),

[
σ A, f

pq (τ ), σ A, f
nn (τ )

]}|β〉, (28)

and 〈
dHA(τ )

dτ

〉β,(4)

rr

= − i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E (1)(xA(τ )),

[
σ A,(1)

pq (τ ), σ A,(1)
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E (1)(xA(τ )),

[
σ A, f

pq (τ ), σ A,(2)
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E (1)(xA(τ )),

[
σ A,(2)

pq (τ ), σ A, f
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E (2)(xA(τ )),

[
σ A,(1)

pq (τ ), σ A, f
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E (2)(xA(τ )),

[
σ A, f

pq (τ ), σ A,(1)
nn (τ )

]}|β〉

− i

2

∑
n,p,q

ωA
n (μA)pq · 〈β|{E (3)(xA(τ )),

[
σ A, f

pq (τ ), σ A, f
nn (τ )

]}|β〉. (29)

By the same line of reasoning as that for the thermal field contribution, we can also derive that only the second- and the
fourth-order operators contribute. Then we have〈

dHA(τ )

dτ

〉β,(2)

rr

= −1

2

∑
n,p,q,ξ

ωA
n

∫ τ

τ0

dτ1 〈β|[E f
p (xξ (τ1)), E f

q (xA(τ ))
]|β〉{μ f

ξ,p(τ1),
[
μ

f
A,q(τ ), σ A, f

nn (τ )
]}

(30)

and 〈
dHA(τ )

dτ

〉β,(4)

rr

= 1

2

∑
n,p,q,r,s

ωA
n

∫ τ

τ0

dτ1

∫ τ

τ0

dτ2

∫ τ2

τ0

dτ3 〈β|[E f
q (xB(τ1)), E f

p (xA(τ ))
]

×[
E f

s (xB(τ3)), E f
r (xA(τ2))

]|β〉{μ f
B,q(τ1), μ f

B,s(τ3)
}[

μ
f
A,r (τ2),

[
μ

f
A,p(τ ), σ A, f

nn (τ )
]]

+1

2

∑
n,p,q,r,s

ωA
n

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ

τ0

dτ3 〈β|{E f
r (xB(τ2)), E f

s (xA(τ3))
}
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×[
E f

q (xB(τ1)), E f
p (xA(τ ))

]|β〉[μ f
B,r (τ2), μ f

B,q(τ1)
][

μ
f
A,s(τ3),

[
μ

f
A,p(τ ), σ A, f

nn (τ )
]]

+1

2

∑
n,p,q,r,s

ωA
n

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ1

τ0

dτ3 〈β|[E f
r (xB(τ2)), E f

q (xA(τ1))
]

×[
E f

s (xB(τ3)), E f
p (xA(τ ))

]|β〉[μ f
B,r (τ2), μ f

B,s(τ3)
]{

μ
f
A,q(τ1),

[
μ

f
A,p(τ ), σ A, f

nn (τ )
]}

+1

2

∑
n,p,q,r,s

ωA
n

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 〈β|[E f
r (xB(τ2)), E f

q (xA(τ1))
]

×[
E f

s (xB(τ3)), E f
p (xA(τ ))

]|β〉[μ f
B,s(τ3), μ f

B,r (τ2)
]{

μ
f
A,q(τ1),

[
μ

f
A,p(τ ), σ A, f

nn (τ )
]}

+1

2

∑
n,p,q,r,s

ωA
n

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 〈β|[E f
q (xA(τ1)), E f

s (xB(τ3))
]

×[
E f

r (xB(τ2)), E f
p (xA(τ ))

]|β〉[μ f
B,s(τ3), μ f

B,r (τ2)
}{

μ
f
A,q(τ1),

[
μ

f
A,p(τ ), σ A, f

nn (τ )
]}

+1

2

∑
n,p,q,r,s

ωA
n

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 〈β|[E f
s (xA(τ3)), E f

r (xB(τ2))
]

×[
E f

q (xB(τ1)), E f
p (xA(τ ))

]|β〉[μ f
B,r (τ2), μ f

B,q(τ1)
]{

μ
f
A,s(τ3),

[
μ

f
A,p(τ ), σ A, f

nn (τ )
]} + G(τ ), (31)

where G(τ ) is the abbreviation of a collection of terms of the zeroth, first, and third power in μ
f
B. We do not show it explicitly

here as it does not contribute to the interatomic interaction potential either.

C. Effective Hamiltonians and the interatomic interaction energy

So far, we have derived the first- to fourth-order tf and rr contributions to the variation rate of the Hamiltonian of atom A, and
those of atom B can be easily obtained by exchanging the indices A and B. Adding up the tf and rr contributions to the average
variation rate of energy of both atoms, we then obtain 〈 d

dτ
HS (τ )〉β,(i)

tf and 〈 d
dτ

HS (τ )〉β,(i)
rr with H f

S (τ ) = ∑
ξ,n

ωξ
nσ

ξ, f
nn (τ ), which are

respectively the contributions of the free field and the source field to the average variation rate of energy of the two-atom system.
Following the tricky procedures similar to those in Ref. [32], we can further express them in the following form:〈

d

dτ
HS (τ )

〉β,(i)

tf,rr

= i
[
(HS (τ ))eff,(i)

tf,rr , H f
S (τ )

] + non-Hermitian terms (32)

where

(HS (τ ))eff,(2)
tf = i

4

∑
p,q

∫ τ

τ0

dτ1 〈β|{E f
p (xA(τ )), E f

q (xA(τ1))
}|β〉[μ f

A,q(τ1), μ f
A,p(τ )

] + A � B term (33)

and

(HS (τ ))eff,(4)
tf = i

8

∑
p,q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 〈β|{E f
p (xA(τ )), E f

s (xB(τ3))
}

×[
E f

r (xB(τ2)), E f
q (xA(τ1))

]|β〉[μ f
A,p(τ ), μ f

A,q(τ1)
][

μ
f
B,s(τ3), μ f

B,r (τ2)
] + F̃ (τ ) + A � B terms (34)

are the second- and fourth-order effective Hamiltonians of the two-atom system due to the thermal fluctuations, and

(HS (τ ))eff,(2)
rr = i

4

∑
p,q

∫ τ

τ0

dτ1 〈β|[E f
p (xB(τ1)), E f

q (xA(τ ))
]|β〉{μ f

B,p(τ1), μ f
A,q(τ )

}

+ i

4

∑
p,q

∫ τ

τ0

dτ1 〈β|[E f
p (xA(τ1)), E f

q (xA(τ ))
]|β〉{μ f

A,p(τ1), μ f
A,q(τ )

} + A � B terms (35)

and

(HS (τ ))eff,(4)
rr = i

8

∑
p,q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 〈β|[E f
r (xB(τ2)), E f

q (xA(τ1))
]

×[
E f

s (xB(τ3)), E f
p (xA(τ ))

]|β〉{μ f
A,q(τ1), μ f

A,p(τ )
}[

μ
f
B,r (τ2), μ f

B,s(τ3)
]
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+ i

8

∑
p,q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 〈β|[E f
q (xA(τ1)), E f

s (xB(τ3))
]

×[
E f

r (xB(τ2)), E f
p (xA(τ ))

]|β〉{μ f
A,q(τ1), μ f

A,p(τ )
}[

μ
f
B,r (τ2), μ f

B,s(τ3)
]

+ i

8

∑
p,q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 〈β|[E f
s (xA(τ3)), E f

r (xB(τ2))
]

×[
E f

q (xB(τ1)), E f
p (xA(τ ))

]|β〉{μ f
A,s(τ3), μ f

A,p(τ )
}[

μ
f
B,q(τ1), μ f

B,r (τ2)
]

+ i

8

∑
p,q,r,s

∫ τ

τ0

dτ1

∫ τ

τ0

dτ2

∫ τ2

τ0

dτ3 〈β|[E f
q (xB(τ1)), E f

p (xA(τ ))
]

×[
E f

s (xB(τ3)), E f
r (xA(τ2))

]|β〉[μ f
A,p(τ ), μ f

A,r (τ2)
]{

μ
f
B,q(τ1), μ f

B,s(τ3)
}

+ i

8

∑
p,q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ

τ0

dτ3 〈β|{E f
r (xB(τ2)), E f

s (xA(τ3))
}

×[
E f

q (xB(τ1)), E f
p (xA(τ ))

]|β〉[μ f
A,p(τ ), μ f

A,s(τ3)
][

μ
f
B,r (τ2), μ f

B,q(τ1)
]

+ i

8

∑
p,q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ1

τ0

dτ3 〈β|[E f
r (xB(τ2)), E f

q (xA(τ1))
]

×[
E f

s (xB(τ3)), E f
p (xA(τ ))

]|β〉{μ f
A,q(τ1), μ f

A,p(τ )
}[

μ
f
B,s(τ3), μ f

B,r (τ2)
] + G̃(τ )

+A � B terms (36)

are the second- and fourth-order effective Hamiltonians of the two-atom system due to the radiation reaction. Then averaging
these effective Hamiltonians in Eqs. (33)–(36) over |gAgB〉 gives rise to the tf and rr contributions to the energy of the two atoms
as a whole.

Now some comments are in order. First, for the second order, it is obvious that the terms in Eq. (33) are independent of
the relative position of the two atoms (the interatomic separation), and thus 〈gAgB|(HS (τ ))eff,(2)

tf |gAgB〉 actually equals to the
second-order tf contribution to the energy shift of atom A plus that of atom B. Similarly, 〈gAgB|(HS (τ ))eff,(2)

rr |gAgB〉 is the second-
order rr contribution to the energy shift of atom A plus that of atom B, since the separation-dependent terms in Eq. (35) are
proportional to μ

f
Aμ

f
B and their averages over |gAgB〉 are vanishing. Second, for the fourth order, let us first note the fact that

F̃ (τ ) in (HS (τ ))eff,(4)
tf [Eq. (34)] follows from F (τ ) in 〈 d

dτ
HA(τ )〉β,(4)

tf [Eq. (26)] and G̃(τ ) in (HS (τ ))eff,(4)
rr [Eq. (36)] comes from

G(τ ) in 〈 d
dτ

HA(τ )〉β,(4)
rr [Eq. (31)]. So F̃ (τ ) is also a collection of terms of the zeroth and first power in μ

f
B and G̃(τ ) is a collection

of terms of the zeroth, first, and third power in μ
f
B. Therein, terms of the zeroth power in μ

f
B only contribute to the high-order

energy shift of atom A but are irrelevant to the interatomic interaction potential, and terms of the first and third power in μ
f
B also

do not contribute to the interatomic interaction potential because their averages over |gAgB〉 are zero. We do not explicitly show
such terms in Eqs. (34) and (36) but just abbreviate them by F̃ (τ ) and G̃(τ ), partly because of the fact that they do not contribute
to the interaction potential and partly because they are very lengthy.

Now it is clear that, up to the fourth order, the tf and rr contributions to the interatomic interaction potential respectively come
from the averages of those separation-dependent terms explicitly listed in (HS (τ ))eff,(4)

tf [Eq. (34)] and (HS (τ ))eff,(4)
rr [Eq. (36)]

over |gAgB〉, and they can be further simplified to

(δE )tf = 2i
∑

p,q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 CF
ps(xA(τ ), xB(τ3))χF

qr (xA(τ1), xB(τ2))χA
pq(τ, τ1)χB

rs(τ2, τ3) + A � B term (37)

and

(δE )rr = 2i
∑

p,q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 χF
ps(xA(τ ), xB(τ3))χF

qr (xA(τ1), xB(τ2))CA
pq(τ, τ1)χB

rs(τ2, τ3)

+2i
∑

p,q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 χF
qs(xA(τ1), xB(τ3))χF

pr (xA(τ ), xB(τ2))CA
pq(τ, τ1)χB

sr (τ3, τ2)

+2i
∑

p,q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 χF
rs (xB(τ2), xA(τ3))χF

pq(xA(τ ), xB(τ1))CA
ps(τ, τ3)χB

qr (τ1, τ2)

+2i
∑

p,q,r,s

∫ τ

τ0

dτ1

∫ τ

τ0

dτ2

∫ τ2

τ0

dτ3 χF
rs (xA(τ2), xB(τ3))χF

pq(xA(τ ), xB(τ1))χA
pr (τ, τ2)CB

qs(τ1, τ3)
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+2i
∑

p,q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ

τ0

dτ3 CF
rs(xB(τ2), xA(τ3))χF

pq(xA(τ ), xB(τ1))χA
ps(τ, τ3)χB

qr (τ1, τ2)

+2i
∑

p,q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ1

τ0

dτ3 χF
ps(xA(τ ), xB(τ3))χF

qr (xA(τ1), xB(τ2))CA
pq(τ, τ1)χB

sr (τ3, τ2) + A � B terms. (38)

Note that the contribution of zero-point fluctuations is included in the tf contribution [Eq. (37)]. In these two equations, we have
defined the symmetric correlation function and the linear susceptibility of the field along the trajectories of the atoms in the
thermal bath by

CF
pq(xA(τ ), xB(τ ′)) ≡ 1

2 〈β|{E f
p (xA(τ )), E f

q (xB(τ ′))
}|β〉, (39)

χF
pq(xA(τ ), xB(τ ′)) ≡ 1

2 〈β|[E f
p (xA(τ )), E f

q (xB(τ ′))
]|β〉θ (τ − τ ′) , (40)

with θ (x) being the Heaviside function defined as θ (x) = 1 if x > 0 and 0 if x � 0, and the symmetric and antisymmetric
statistical functions of the two atoms in their ground states Cξ

pq(τ, τ ′) and χξ
pq(τ, τ ′) by

Cξ
pq(τ, τ ′) ≡ 1

2 〈gξ |
{
μ

f
ξ,p(τ ), μ f

ξ,q(τ ′)
}|gξ 〉, (41)

χξ
pq(τ, τ ′) ≡ 1

2 〈gξ |
[
μ

f
ξ,p(τ ), μ f

ξ,q(τ ′)
]|gξ 〉, (42)

which can be further simplified to

Cξ
pq(τ, τ ′) = 1

2

∑
eξ

[〈gξ |μξ,p(0)|eξ 〉〈eξ |μξ,q(0)|gξ 〉eiωξ
ge(τ−τ ′ ) + 〈gξ |μξ,q(0)|eξ 〉〈eξ |μξ,p(0)|gξ 〉e−iωξ

ge(τ−τ ′ )], (43)

χξ
pq(τ, τ ′) = 1

2

∑
eξ

[〈gξ |μξ,p(0)|eξ 〉〈eξ |μξ,q(0)|gξ 〉eiωξ
ge(τ−τ ′ ) − 〈gξ |μξ,q(0)|eξ 〉〈eξ |μξ,p(0)|gξ 〉e−iωξ

ge(τ−τ ′ )] (44)

with ωξ
ge = ωξ

g − ωξ
e and the sum being over the complete set of atomic states. Note that in obtaining Eqs. (37) and (38), we have

also used the following relation:

〈β|E f
p (x1)E f

q (x2)E f
r (x3)E f

s (x4)|β〉 = 〈β|E f
p (x1)E f

q (x2)|β〉〈β|E f
r (x3)E f

s (x4)|β〉 + 〈β|E f
p (x1)E f

r (x3)|β〉〈β|E f
q (x2)E f

s (x4)|β〉
+ 〈β|E f

p (x1)E f
s (x4)|β〉〈β|E f

q (x2)E f
r (x3)|β〉, (45)

which simplifies every four-point correlation function of the field in the thermal state |β〉 into a product of two two-point
correlation functions.

It is worth pointing out now that since the effective
Hamiltonians Eqs. (34) and (36) are derived by separating
contributions from the couplings of the free field and the
source field with the induced dipole moments to the average
variation rate of the Hamiltonian of the two-atom system,
the term “thermal fluctuation (radiation reaction) contribu-
tion” refers to the contribution resulting from the interaction
between the free (source) field and the atoms with induced
dipole moments, regardless of whether they are induced by the
free field or by radiative fields of the atoms [see Eqs. (18) and
(19)]. Noteworthily, the radiation reaction contribution at the
fourth order is not exactly the same as that at the second order
since it now also contains the contribution of the source radi-
ation (radiative fields) from one atom on the other rather than
just that of radiative fields from the dipole moments induced
only by the free fields at the second order (see Refs. [7,8] for
instances). In this sense, one may think that “source-radiation
contribution” may be an appropriate label too. We choose
to hold on to the original “radiation reaction contribution”
for the following two reasons. First, in our derivation of the

fourth-order DDC formalism, the two atoms are treated as a
whole, and as a result, the action of the radiative field emitted
from one atom on the other can be understood as the radiation
reaction of the whole two-atom system. So, it is still legitimate
to call it “radiation reaction contribution” in this sense. Sec-
ond, it may be conducive to avoiding misunderstanding about
the origin of the source field, since it conveys clearly that the
back-reaction of the radiative fields is generated by induced
dipole moments of the atoms rather than by possible intrinsic
permanent ones.

Finally, a sum of the tf and rr contributions, Eqs. (37)
and (38), leads to the total interaction energy: (δE )tot =
(δE )tf + (δE )rr. So, the interatomic interaction energy of two
ground-state atoms, which is a fourth-order effect, is generally
ascribed to joint contributions of the field fluctuations and the
radiation reaction of atoms, and this is in sharp contrast to the
resonance interaction energy of two atoms in the symmetric or
antisymmetric entangled state which is a second-order effect
and totally caused by the radiation reaction of atoms but
irrelevant to the field fluctuations [26–29].
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III. INTERATOMIC INTERACTION ENERGY OF TWO STATIC GROUND-STATE ATOMS IN A THERMAL BATH
IN A FREE SPACE

As an application of the generic fourth-order DDC formalism derived in the preceding section, we now concretely calculate
the interaction energy of two ground-state two-level atoms in a thermal bath. The trajectories of the two atoms are given by

tA = tB = τ, xA = xB = 0, yA = yB = 0, zA = 0, zB = L (46)

with L > 0 being the interatomic separation.
To compute the tf and rr contributions, we have to first calculate the symmetric correlation function and the linear suscepti-

bility of the field. For this purpose, we first evaluate the two-point correlation function of the electric field 〈β|E f
p (x)E f

q (x′)|β〉.
Applying the expansion of E f (x) in Eq. (12) to 〈β|E f

p (x)E f
q (x′)|β〉, we obtain, after some simplifications (see Appendix B),

〈β|E f
p (x)E f

q (x′)|β〉 = − 1

4π2
(∂0∂

′
0δpq − ∂p∂

′
q )

∞∑
m=−∞

1

(�t − imβ − iε)2 − |�x|2 (47)

with �t = t − t ′, |�x| =
√

(x − x′)2 + (y − y′)2 + (z − z′)2, and ε a positive infinitesimal. Combining this two-point function
and the definitions of the symmetric correlation function and the linear susceptibility of the field [Eqs. (39) and (40)] and
performing the Fourier transform, we arrive at

CF
pq(xA(τ ), xB(τ ′)) = 1

4π2L3

∫ ∞

0
dω′ eβω′ + 1

eβω′ − 1
Gpq(ω′L) cos [ω′(τ − τ ′)], (48)

χF
pq(xA(τ ), xB(τ ′)) = − i

4π2L3

∫ ∞

0
dω′ Gpq(ω′L) sin [ω′(τ − τ ′)]θ (τ − τ ′) (49)

with {
Gxx(x) = Gyy(x) = x cos x + (x2 − 1) sin x,
Gzz(x) = −2x cos x + 2 sin x,

(50)

and all other components not listed vanishing.
For simplicity, we now assume that the dipole transition matrix elements of the atoms are real, i.e., 〈gξ |μξ,p(0)|eξ 〉 =

〈eξ |μξ,p(0)|gξ 〉, and denote them by (μξ
p)ge. Then the statistical functions of the atoms, Eqs. (43) and (44), are further simplified

to

Cξ
pq(τ, τ ′) = (

μξ
p

)
ge

(
μξ

q

)
ge cos [ωξ (τ − τ ′)], (51)

χξ
pq(τ, τ ′) = −i

(
μξ

p

)
ge

(
μξ

q

)
ge sin [ωξ (τ − τ ′)]. (52)

Before evaluating the tf and rr contributions, let us note that we are considering the interatomic interaction during the time
interval �τ = τ − τ0 which is assumed to be much larger than the correlation time τc of the fluctuating fields adapted to the
two-atom system and much less than the relaxation time of the atoms for the DDC approach to be applicable [8,48]. Once these
conditions are fulfilled, a large enough �τ as compared with τc can be treated as infinity for computational convenience. We
note that such a treatment of integrals over �τ has been adopted in the existing extensive studies of the radiative properties of
atoms in various circumstances with the DDC formalism [11–25,49–52]. Now we substitute Eqs. (48), (49), (51), and (52) into
Eqs. (37) and (38), and perform the triple integrals with respect to τ1, τ2, and τ3 for an infinitely long time interval �τ to find

(δE )tf = − 1

4π4L6

∑
p,q,r,s

(
μA

p

)
ge

(
μB

q

)
ge

(
μA

r

)
ge

(
μB

s

)
ge

∫ ∞

0
dω1

∫ ∞

0
dω2 coth (βω1/2)

ωAωBω2 Gpq(ω1L)Grs(ω2L)(
ω2

1 − ω2
A

)(
ω2

1 − ω2
B

)(
ω2

2 − ω2
1

) (53)

and

(δE )rr = − 1

4π4L6

∑
p,q,r,s

(
μA

p

)
ge

(
μB

q

)
ge

(
μA

r

)
ge

(
μB

s

)
ge

∫ ∞

0
dω1

∫ ∞

0
dω2 Gpq(ω1L)Grs(ω2L)

×
[

2ω1ω2
(
ω2

1 − ω2
A − ωAωB − ω2

B

)
(ωA + ωB)

(
ω2

1 − ω2
A

)(
ω2

1 − ω2
B

)(
ω2

2 − ω2
1

) + ωAωBω2 coth (βω1/2)(
ω2

1 − ω2
A

)(
ω2

1 − ω2
B

)(
ω2

2 − ω2
1

)]
. (54)

Assuming that the atoms are isotropically polarizable, then we have [38](
μξ

p

)
ge

(
μξ

q

)
ge = δpq

∣∣μξ
p

∣∣2

ge = 1
3δpq|μξ |2ge. (55)
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Using this relation together with Eq. (50) in Eqs. (53) and (54), and performing the ω2 integration with the technique of contour
integration and the residue theorem, the tf and rr contributions are finally simplified to

(δE )tf = μ2
Aμ2

B

144π2
(
ω2

A−ω2
B

)
L6

{ωB[P (ωAL) sin (2ωAL)−Q(ωAL) cos (2ωAL)]−ωA[P (ωBL) sin (2ωBL) − Q(ωBL) cos (2ωBL)]}

− μ2
Aμ2

B

36π3L6

∫ ∞

0
du

ωAωB[P (uL) cos (2uL) + Q(uL) sin (2uL)](
ω2

A − u2
)(

ω2
B − u2

)
(eβu − 1)

− μ2
Aμ2

B

72π3L6

∫ ∞

0
du

ωAωB[iP (iuL) + Q(iuL)](
ω2

A + u2
)(

ω2
B + u2

) e−2uL

(56)

and

(δE )rr = − μ2
Aμ2

B

144π2
(
ω2

A−ω2
B

)
L6

{ωB[P (ωAL) sin (2ωAL)−Q(ωAL) cos (2ωAL)]−ωA[P (ωBL) sin (2ωBL)−Q(ωBL) cos (2ωBL)]}

− μ2
Aμ2

B

36π3L6

∫ ∞

0
du

ωAωB[P (uL) cos (2uL) + Q(uL) sin (2uL)](
ω2

A − u2
)(

ω2
B − u2

)
(eβu − 1)

− μ2
Aμ2

B

72π3L6

∫ ∞

0
du

ωAωB[iP (iuL) + Q(iuL)](
ω2

A + u2
)(

ω2
B + u2

) e−2uL

(57)

with P (x) = −6x + 2x3 and Q(x) = 3 − 5x2 + x4. Hereafter, we abbreviate |μξ |2ge by μ2
ξ .

Adding Eqs. (56) and (57) up, we obtain the total interatomic interaction energy of the two ground-state atoms in a thermal
bath at temperature T (β−1):

(δE )tot = − μ2
Aμ2

B

18π3L6

∫ ∞

0
du

ωAωB[P (uL) cos (2uL) + Q(uL) sin (2uL)](
ω2

A − u2
)(

ω2
B − u2

)
(eβu − 1)

− μ2
Aμ2

B

36π3L6

∫ ∞

0
du

ωAωB[iP (iuL) + Q(iuL)](
ω2

A + u2
)(

ω2
B + u2

) e−2uL.

(58)

Obviously, the total interaction energy contains two terms, with the temperature-independent term being the interaction energy
of two static ground-state two-level atoms in vacuum and the temperature-dependent term representing the thermal corrections.

As analytical results of the above three equations are diffi-
cult to obtain, we discuss in the following the total interatomic
interaction energy as well as the tf and rr contributions to it in
two limiting cases, i.e., the low-temperature case in which the
temperature of the thermal bath T is much smaller than the
transition frequency of the atoms ωξ and the high-temperature
case in which T � ωξ . For simplicity, we assume that the two
atoms are identical with the same energy gap ω.

A. Low-temperature limit T � ω

The low-temperature limit, T � ω or equivalently β � λ

with β = T −1, can be further divided into three typical subre-
gions: L � λ � β, which is a van der Waals subregion, and
λ � L � β and λ � β � L, which are two Casimir-Polder
subregions.2

1. The van der Waals subregion L � λ � β

The tf contribution Eq. (56) in the L � λ � β subregion
can be approximated by

(δE )tf � − 7ω4

192π3L3
+ 11ω6 ln(2ωL)

120π3L

− (607–660γ )ω6

7200π3L
− 11π3T 6

945L
(59)

2By convention, we refer to regions with L � λ as van der Waals
regions and those with L � λ as Casimir-Polder regions.

with γ the Euler constant. Here and after, we express the tf
and rr contributions as well as the total interatomic interaction
energy in units of α(A)α(B) with α(ξ ) ≡ 2μ2

ξ /3ω the polariz-
ability of atom ξ . So, the tf contribution leads to a separation
dependence of ∼L−3 in the leading order for the van der Waals
interaction energy. The rr contribution Eq. (57) is, however,
approximated by

(δE )rr � − 3ω

64π2L6
+ ω3

64π2L4
− 7ω4α2

192π3L3

+ 3ω5

64π2L2
+ 11ω6 ln(2ωL)

120π3L

− (607–660γ )ω6

7200π3L
− 11π3T 6

945L
, (60)

which results in a separation-dependence of ∼L−6 for the van
der Waals interaction energy.

From the above two equations we can see that the rr
contribution dominates over the tf contribution and thermal
effects on both the tf and rr contributions (referring to those
temperature-dependent terms) are very small since they ap-
pear at the fourth order at most for the tf contribution and
at even higher orders for the rr contribution. As a result, the
interatomic van der Waals interaction energy mainly comes
from the rr contribution which, in the leading order, gives the
total interaction energy of the two atoms in vacuum, i.e.,

(δE )tot � (δE )rr � − 3ω

64π2L6
. (61)
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2. The Casimir-Polder subregion λ � L � β

In the λ � L � β region, the tf and rr contributions to the
Casimir-Polder interaction energy can respectively be simpli-
fied to

(δE )tf � ω6g1(ωL)

64π2L
sin (2ωL) + ω5h1(ωL)

128π2L2
cos (2ωL)

− 23

128π3L7
− 11π3T 6

945L
, (62)

(δE )rr � −ω6g1(ωL)

64π2L
sin (2ωL) − ω5h1(ωL)

128π2L2
cos (2ωL)

− 23

128π3L7
− 11π3T 6

945L
(63)

with g1(x) = 1 − 3x−2 + 3x−4 and h1(x) = 1 − 7x−2 + 3x−4.
Note that each of the above two contributions includes both
oscillatory and nonoscillatory terms with the amplitudes of
oscillatory terms much greater than the nonoscillatory terms,
and thus an attractive or repulsive and even vanishing in-
teraction force could result from the tf or rr contribution.
Jointly, they however yield a monotonic behavior for the total
interaction energy:

(δE )tot � − 23

64π3L7
− 22π3T 6

945L
. (64)

The first term on the right, which is identical to that of the
two atoms in vacuum, exhibits a separation dependence of
L−7 which is one order higher than that of the van der Waals
interaction energy in vacuum and that in the L � λ � β

subregion in the thermal bath. This is the effect of retardation.
The second term is much smaller than the first term and this
indicates that thermal effects in this case lead to a slight
enhancement of the interaction energy.

3. The Casimir-Polder subregion λ � β � L

When the interatomic separation is very large, i.e., λ �
β � L, the tf and rr contributions are respectively approxi-
mated by

(δE )tf � ω6g1(ωL)

64π2L
sin (2ωL) + ω5h1(ωL)

128π2L2
cos (2ωL)

− 3T

32π2L6
(65)

and

(δE )rr � −ω6g1(ωL)

64π2L
sin (2ωL) − ω5h1(ωL)

128π2L2
cos (2ωL)

− 3T

32π2L6
. (66)

Similar to their counterparts in the λ � L � β subregion,
here both the tf and rr contributions contain oscillatory and
nonoscillatory terms. However, there is also a significant dis-
tinction, i.e., the leading-order nonoscillatory terms in the
above two equations are temperature dependent while those
in Eqs. (62) and (63) are temperature independent.

As the oscillatory terms in the tf and rr contributions cancel
out perfectly, the total interaction energy turns out to be

(δE )tot � − 3T

16π2L6
, (67)

which is temperature dependent in the leading order. This
result is in sharp contrast to that in subregions where L �
λ � β and λ � L � β since there the interaction energy in
the leading order is temperature independent, meaning that
thermal effects are negligible.

Now some comments are in order. Let us note that there has
already been an analysis on the interaction energy in the low-
temperature limit T � ω [42], and our results above are fully
consistent with those of Ref. [42]. Besides, the T L−6 behavior
of the interaction energy in the λ � β � L Casimir-Polder
subregion has also been reported in other works [43–46].
However, with the fourth-order DDC formalism, we are able
to identify how the field fluctuations and the radiation reac-
tion of the atoms separately contribute to the total interaction
energy.

B. High-temperature limit T � ω

Let us now turn our attention to the high-temperature
limit, i.e., T � ω or equivalently β � λ. Here we also
have three interatomic separation subregions: two van der
Waals subregions, i.e., L � β � λ and β � L � λ, and one
Casimir-Polder subregion, i.e., β � λ � L. We next analyze
the interatomic interaction energy in these three subregions.

1. The van der Waals subregion L � β � λ

In the L � β � λ subregion, the tf and rr contributions are
respectively given by

(δE )tf � − 7ω4

192π3L3
− 11ω4T 2

120π3L
, (68)

(δE )rr � − 3ω

64π2L6
+ ω3

64π2L4
− 7ω4

192π3L3
− 11ω4T 2

120π3L
,

(69)

and the total van der Waals interaction energy is given by

(δE )tot � − 3ω

64π2L6
+ ω3

64π2L4
− 7ω4

96π3L3
− 11ω4T 2

60π3L
.

(70)

Obviously, the total interaction energy mainly comes from the
rr contribution as (δE )tf � (δE )rr. The thermal corrections to
the tf and rr contributions appear at high orders and are thus
negligible. Although thermal corrections here are still small,
they however appear at orders lower than those in the van
der Waals subregion in the low-temperature limit, i.e., L �
λ � β [please see Eqs. (59) and (60)], indicating that thermal
effects in the L � β � λ van der Waals subregion in the
high-temperature limit are more significant than those in the
L � λ � β van der Waals subregion in the low-temperature
limit.

2. The van der Waals subregion β � L � λ

In the second van der Waals subregion in the high-
temperature limit, β � L � λ, the tf contribution is
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approximated by

(δE )tf � − ω4T

32π2L2
+ 7ω4

192π3L3
. (71)

In sharp contrast to its counterpart in the first subregion
in the high-temperature limit, i.e., Eq. (68), here the lead-
ing term is temperature dependent. Moreover, the second
temperature-independent term changes sign as compared with
its counterpart in the tf contribution in the L � λ � β subre-
gion in the low-temperature limit and that in the L � β � λ

subregion in the high-temperature limit. This sign change can
also be regarded as a result of strong thermal effects.

Approximately, the rr contribution in this subregion is
given by

(δE )rr � − ω4T

32π2L2
− 3ω

64π2L6
+ ω3

64π2L4
+ 7ω4

192π3L3
,

(72)

and the leading term can be either the first or the second
term depending on a more delicate relation among the three
characteristic lengths L, λ, and β. To be specific, when β �
L � 4

√
λ3β,

(δE )rr � − 3ω

64π2L6
. (73)

This is much larger than the tf contribution [Eq. (71)] and thus
constitutes the dominant contribution to the total interaction
energy, leading to (δE )tot ∼ (δE )rr. This behavior is the same
as that of the leading term of the total interaction energy in
the L � λ � β van der Waals region in the low-temperature
limit and that in the L � β � λ van der Waals subregion in
the high-temperature limit [refer to Eqs. (61) and (70)].

When 4
√

λ3β � L � λ, the rr contribution becomes
equally important as the tf contribution, so

(δE )rr � (δE )tf � − ω4T

32π2L2
, (74)

and as a result the total interaction energy is

(δE )tot � − ω4T

16π2L2
, (75)

which is twice that of the tf or rr contribution alone and scales
as ∼T L−2. This behavior of the van der Waals interaction
energy of two ground-state atoms in a thermal bath is a result
that has not been reported before.

3. The Casimir-Polder subregion β � λ � L

When β � λ � L, which is a typical Casimir-Polder re-
gion, we obtain the following tf and rr contributions:

(δE )tf � T ω5g2(ωL, T L)

32π2L
sin (2ωL)

+ T ω4h2(ωL, T L)

32π2L2
cos (2ωL) − 3T

32π2L6
, (76)

(δE )rr � T ω5g3(ωL, T L)

32π2L
sin (2ωL)

+ T ω4h3(ωL, T L)

32π2L2
cos (2ωL) − 3T

32π2L6
, (77)

and the total interaction energy

(δE )tot � T ω5g4(ωL, T L)

16π2L
sin (2ωL)

+ T ω4h4(ωL, T L)

16π2L2
cos (2ωL) − 3T

16π2L6
, (78)

in which we have defined⎧⎪⎨
⎪⎩

g2(x, y) = 1 − 4x−2 + 6x−4 − 1
2 xy−1(1 − 3x−2 + 3x−4),

g3(x, y) = 1 − 4x−2 + 6x−4 − 3
2 xy−1(1 − 3x−2 + 3x−4),

g4(x, y) = 1 − 4x−2 + 6x−4 − xy−1(1 − 3x−2 + 3x−4),

(79)

and⎧⎪⎨
⎪⎩

h2(x, y) = 1 − 6x−2 + 3x−4 − 1
4 xy−1(1 − 7x−2),

h3(x, y) = 1 − 6x−2 + 3x−4 − 3
4 xy−1(1 − 7x−2),

h4(x, y) = 1 − 6x−2 + 3x−4 − 1
2 xy−1(1 − 7x−2).

(80)

Equations (76)–(78) show that not only the tf and rr contri-
butions but also the total Casimir-Polder interaction energy
of the two atoms in the β � λ � L subregion contain both
oscillatory and nonoscillatory terms. As the amplitudes of
the oscillatory terms are much greater than the nonoscilla-
tory terms, both the tf and rr contributions as well as the
total interaction energy can be positive or negative and even
vanishing, depending on the interatomic separation L and
the temperature T . Noteworthily, this oscillatory behavior of
the Casimir-Polder interaction energy in the high-temperature
limit, which is superimposed on the monotonic T L−6 behav-
ior, has not been reported before either.

Finally, it is worth pointing out that the ∼T L−6 behavior
of the interaction energy was obtained for the two atoms in a
thermal bath when L � β [43,45,46]. However, our results
indicate that although the interaction energy indeed scales
as T L−6 in the Casimir-Polder subregion λ � β � L in the
low-temperature limit [see our Eq. (67)], it is not a universal
behavior for L � β. In fact, the actual behavior in the high-
temperature limit depends on some delicate relations among
L, β, and λ, and the interaction energy behaves differently in
different subregions of L � β. To be specific, in the lead-
ing order, it displays a temperature-independent behavior of
L−6 in β � L � 4

√
λ3β, and a temperature-dependent one of

T L−2 in 4
√

λ3β � L � λ, and oscillates with the interatomic
separation in β � λ � L. And only in β � λ � L can the
interaction energy be approximated by T L−6 for some special
values of L and β such that the sum of the oscillatory terms in
Eq. (78) vanishes or is comparatively very small.

IV. SUMMARY

In this paper, we have given a detailed derivation for the
fourth-order DDC formalism for calculating the interaction
energy between two ground-state multilevel atoms which are
coupled with electromagnetic fields in a thermal bath. As an
application of our generalized fourth-order DDC formalism,
we concretely calculated the interaction energy of two static
ground-state two-level atoms with the same transition fre-
quency ω in a thermal bath at an arbitrary temperature T in an
unbounded space, and analyzed in detail the behaviors of the
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total interaction energy as well as those of the contributions of
the thermal field fluctuations and the radiation reaction of the
atoms to it in both the low- and high-temperature limits. The
main results are summarized as follows.

In the low-temperature limit in which T � ω, there are
three subregions, i.e., the L � λ � β van der Waals sub-
region and two Casimir-Polder subregions, i.e., the regions
where λ � L � β and λ � β � L. We showed that the in-
teraction energy behaves as ∼L−6 in the L � λ � β van der
Waals subregion, as ∼L−7 due to the effect of retardation in
the first Casimir-Polder subregion, i.e., when λ � L � β, and
as ∼T L−6 in the second Casimir-Polder subregion, i.e., when
λ � β � L. Although these behaviors of the total interac-
tion energy in the low-temperature limit we obtained with
the DDC formalism are perfectly consistent with what was
derived with other approaches [42], our analysis shows that
the interaction energy is mainly attributable to the radiation
reaction of the atoms in the L � λ � β van der Waals subre-
gion while it is equally contributed by both the thermal field
fluctuations and the radiation reaction of the atoms in two
Casimir-Polder subregions.

In the high-temperature limit in which T � ω, there are
also three subregions, i.e., two van der Waals subregions,
L � β � λ and β � L � λ, and a Casimir-Polder subre-
gion, β � λ � L. We find that the total interaction energy
scales as ∼L−6 in the first van der Waals subregion L � β �

λ and is mainly ascribed to the rr contribution. The second van
der Waals subregion β � L � λ can be further divided into
two sub-subregions β � L � 4

√
λ3β and 4

√
λ3β � L � λ. In

the former, the interaction energy still scales as ∼L−6 and is
also mainly ascribed to the rr contribution, while in the latter
it displays a unique behavior of ∼T L−2 as a result of equal
tf and rr contributions. In the Casimir-Polder subregion, i.e.,
β � λ � L, both the tf and rr contributions as well as the
total interaction energy oscillate with interatomic separation,
resulting in an either positive or negative and even vanishing
total interaction energy depending on the interatomic separa-
tion and the temperature. The T L−2 scaling when 4

√
λ3β �

L � λ and the oscillatory behavior when β � λ � L are two
new findings of the present paper.
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APPENDIX A: THE FIRST- TO THIRD-ORDER SOURCE OPERATORS OF THE ATOMS AND THE FIELD

In this Appendix, we show how to derive the source operators of the atoms and the field by iteration in a perturbative approach.
For the source operators of the atoms, we only take those of atom A as an example, since the source operators of atom B can be
easily obtained by exchanging the indices A and B.

First, for the first order, it is straightforward to deduce from Eqs. (10) and (11) that the first-order operator in σ A,s
mn (τ ) and that

in as
k,ν (t (τ )) are

σ A,(1)
mn (τ ) = − i

2

∑
p

∫ τ

τ0

dτ1
{
E f

p (xA(τ1)),
[
μ

f
A,p(τ1), σ A, f

mn (τ )
]}

(A1)

and

a(1)
k,ν (t (τ )) = − i

2

∑
ξ,q

∫ τ

τ0

dτ1
{
μ

f
ξ,q(τ1),

[
E f

q (xξ (τ1), a f
k,ν (t (τ ))

]}
(A2)

where μ
f
ξ (τ ) ≡

m �=n∑
m,n

(μξ )mnσ
ξ, f
mn (τ ). Then an application of the above a(1)

k,ν
(t (τ )) to the second formula in Eq. (12) gives rise to

the following first-order source field operator:

E(1)(x(τ )) = − i

2

∑
ξ,q

∫ τ

τ0

dτ1
{
μ

f
ξ,q(τ1),

[
E f

q (xξ (τ1), E f (x(τ ))
]}

. (A3)

Second, for the second order, according to the formulas in the second line in Eqs. (10) and (11), we have

σ A,(2)
mn (τ ) = − i

2

∑
p

∫ τ

τ0

dτ1
{
E (1)

p (xA(τ1)),
[
μ

f
A,p(τ1), σ A, f

mn (τ )
]} − i

2

∑
p

∫ τ

τ0

dτ1
{
E f

p (xA(τ1)),
[
μ

(1)
A,p(τ1), σ A, f

mn (τ )
]}

− i

2

∑
p

∫ τ

τ0

dτ1
{
E f

p (xA(τ1)),
[
μ

f
A,p(τ1), σ A,(1)

mn (τ )
]}

(A4)
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and

a(2)
k,ν

(t (τ )) = − i

2

∑
ξ,q

∫ τ

τ0

dτ1
{
μ

(1)
ξ,q(τ1),

[
E f

q (xξ (τ1)), a f
k,ν

(t (τ ))
]} − i

2

∑
ξ,q

∫ τ

τ0

dτ1
{
μ

f
ξ,q(τ1),

[
E (1)

q (xξ (τ1), a f
k,ν

(t (τ ))
]}

− i

2

∑
ξ,q

∫ τ

τ0

dτ1
{
μ

f
ξ,q(τ1),

[
E f

q (xξ (τ1), a(1)
k,ν

(t (τ ))
]}

. (A5)

Then the use of the relation Eq. (20) and the first-order source operators Eqs. (A1)–(A3) in the above two equations leads to

σ A,(2)
mn (τ ) = −1

2

∑
p,q

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2
[
E f

q (xA(τ2)), E f
p (xA(τ1))

]{
μ

f
A,q(τ2),

[
μ

f
A,p(τ1), σ A, f

mn (τ )
]}

−1

2

∑
p,q

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2
{
E f

q (xA(τ2)), E f
p (xA(τ1))

}[
μ

f
A,q(τ2), [μ f

A,p(τ1), σ A, f
mn (τ )]

]

−
∑
p,q

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2
[
E f

q (xB(τ2)), E f
p (xA(τ1))

]
μ

f
B,q(τ2)

[
μ

f
A,p(τ1), σ A, f

mn (τ )
]

(A6)

and

a(2)
k,ν (t (τ )) = −

∑
ξ,q,r

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2 E f
r (xξ (τ2))[E f

q (xξ (τ1)), a f
k,ν (t (τ ))][μ f

ξ,r (τ2), μ f
ξ,q(τ1)]. (A7)

Applying the above a(2)
k,ν

(t (τ )) in the second formula in Eq. (12) yields the following second-order source field operator:

E(2)(x(τ )) = −
∑
ξ,q,r

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2 E f
r (xξ (τ2))

[
E f

q (xξ (τ1)), E f (x(τ ))
][

μ
f
ξ,r (τ2), μ f

ξ,q(τ1)
]
. (A8)

Third, for the third order, we first expand σ A,(3)
mn (τ ) and a(3)

k,ν
(t (τ )), according to formulas in the second line in Eqs. (10) and

(11), as

σ A,(3)
mn (τ ) = − i

2

∑
p

∫ τ

τ0

dτ1
{{

E (2)
p (xA(τ1)),

[
μ

f
A,p(τ1), σ A, f

mn (τ )
]} + {

E f
p (xA(τ1)),

[
μ

(2)
A,p(τ1), σ A, f

mn (τ )
]}

+{
E f

p (xA(τ1)),
[
μ

f
A,p(τ1), σ A,(2)

mn (τ )
]} + {

E (1)
p (xA(τ1)),

[
μ

(1)
A,p(τ1), σ A, f

mn (τ )
]}

+{
E (1)

p (xA(τ1)),
[
μ

f
A,p(τ1), σ A,(1)

mn (τ )
]} + {

E f
p (xA(τ1)),

[
μ

(1)
A,p(τ1), σ A,(1)

mn (τ )
]}}

(A9)

and

a(3)
k,ν (t (τ )) = − i

2

∑
ξ,q

∫ τ

τ0

dτ1
{{

μ
(2)
ξ,q(τ1),

[
E f

q (xξ (τ1)), a f
k,ν (t (τ ))

]} + {
μ

f
ξ,q(τ1),

[
E (2)

q (xξ (τ1)), a f
k,ν (t (τ ))

]}

+{
μ

f
ξ,q(τ1),

[
E f

q (xξ (τ1)), a(2)
k,ν (t (τ ))

]} + {
μ

(1)
ξ,q(τ1),

[
E (1)

q (xξ (τ1)), a f
k,ν

(t (τ ))
]}

+{
μ

(1)
ξ,q(τ1),

[
E f

q (xξ (τ1)), a(1)
k,ν

(t (τ ))
]} + {

μ
f
ξ,q(τ1),

[
E (1)

q (xξ (τ1)), a(1)
k,ν

(t (τ ))
]}}

. (A10)

Then using the zeroth- to second-order expressions of all operators we have derived so far in the above two equations, we obtain

σ A,(3)
mn (τ ) = i

∑
p,q,r

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3 E f
r (xB(τ3))

[
E f

q (xB(τ2)), E f
p (xA(τ1))

][
μ

f
B,r (τ3), μ f

B,q(τ2)
]

×[
μ

f
A,p(τ1), σ A, f

mn (τ )
] + terms of the zeroth and first power of μ

f
B (A11)

and

a(3)
k,ν

(t (τ )) = i
∑
q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ1

τ0

dτ3
[
E f

r (xB(τ2)), E f
q (xA(τ1))

][
E f

s (xB(τ3)), a f
k,ν

(t (τ ))
]
μ

f
A,q(τ1)

[
μ

f
B,r (τ2), μ f

B,s(τ3)
]

+i
∑
q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3
[
E f

r (xB(τ2)), E f
q (xA(τ1))

][
E f

s (xB(τ3)), a f
k,ν (t (τ ))

]
μ

f
A,q(τ1)

[
μ

f
B,s(τ3), μ f

B,r (τ2)
]

+i
∑
q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3
[
E f

q (xA(τ1)), E f
s (xB(τ3))

][
E f

r (xB(τ2)), a f
k,ν (t (τ ))

]
μ

f
A,q(τ1)

[
μ

f
B,s(τ3), μ f

B,r (τ2)
]
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+i
∑
q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3
[
E f

s (xA(τ3)), E f
r (xB(τ2))

][
E f

q (xB(τ1)), a f
k,ν

(t (τ ))
]
μ

f
A,s(τ3)

[
μ

f
B,r (τ2), μ f

B,q(τ1)
]

+terms of the zeroth, first, and third power of μ
f
B. (A12)

Accordingly, the third-order source field operator follows:

E(3)(x(τ )) = i
∑
q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ1

τ0

dτ3
[
E f

r (xB(τ2)), E f
q (xA(τ1))

][
E f

s (xB(τ3)), E f (x(τ ))
]
μ

f
A,q(τ1)

[
μ

f
B,r (τ2), μ f

B,s(τ3)
]

+i
∑
q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3
[
E f

r (xB(τ2)), E f
q (xA(τ1))

][
E f

s (xB(τ3)), E f (x(τ ))
]
μ

f
A,q(τ1)

[
μ

f
B,s(τ3), μ f

B,r (τ2)
]

+i
∑
q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3
[
E f

q (xA(τ1)), E f
s (xB(τ3))

][
E f

r (xB(τ2)), E f (x(τ ))
]
μ

f
A,q(τ1)

[
μ

f
B,s(τ3), μ f

B,r (τ2)
]

+i
∑
q,r,s

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3
[
E f

s (xA(τ3)), E f
r (xB(τ2))

][
E f

q (xB(τ1)), E f (x(τ ))
]
μ

f
A,s(τ3)

[
μ

f
B,r (τ2), μ f

B,q(τ1)
]

+terms of the zeroth, first, and third power of μ
f
B. (A13)

Here we have only listed in σ A,(3)
mn (τ ), a(3)

k,ν
(t (τ )), and E(3)(x(τ )) the terms in the second power of μ

f
B and abbreviated others

by “terms of the zeroth, first, and third power of μ
f
B” since they do not contribute to the interatomic interaction potential for

reasons we now explain. As we have shown in Sec. II B, σ A,(3)
mn (τ ) and E(3)(x(τ )) are respectively needed for derivation of the

fourth-order effective Hamiltonians [see Eqs. (24) and (29)], and “terms of the zeroth and first power in μ
f
B” collected in F (τ )

in Eq. (26) and “terms of the zeroth, first, and third power in μ
f
B” collected in G(τ ) in Eq. (31) follow from “terms of the zeroth

and first power of μ
f
B” of σ A,(3)

mn (τ ) and “terms of the zeroth, first, and third power of μ
f
B” of E(3)(x(τ )), respectively. As we have

shown in Sec. II C, these characters of F (τ ) and G(τ ) further carry onto F̃ (τ ) and G̃(τ ) in the fourth-order effective Hamiltonians
[Eqs. (34) and (36)], which after averaging over the atomic state |gAgB〉 give rise to zero or interatomic-separation-independent
contributions to the interaction potential. Because of this fact and that they are very lengthy, we abbreviate them by “terms of
the zeroth and first power in μ

f
B” and “terms of the zeroth, first, and third power in μ

f
B” respectively.

APPENDIX B: DERIVATION OF THE TWO-POINT CORRELATION FUNCTION OF THE ELECTRIC FIELD
〈β|E f

p (x)E f
q (x′ )|β〉

In this Appendix, we show how to calculate the two-point correlation function of the electric field 〈β|E f
p (x)E f

q (x′)|β〉, i.e.,
Eq. (47).

Using the expansion of E f (x) [the first line of Eq. (12)] and the relation Eq. (3) in the following formula,

〈β|E f
p (x)E f

q (x′)|β〉 ≡ Z−1Tr
[
e−βH f

F E f
p (x)E f

q (x′)
]

= −Z−1
2∑

ν1,ν2=0

∫
d3k1

∫
d3k2 gk1 gk2ωk1ωk2εp(k1, ν1)εq(k2, ν2)Tr

{
e−βH f

F

×[
a f

k1,ν1
e−iωk1 t eik1·x − H.c.

][
a f

k2,ν2
e−iωk2 t ′

eik2·x′ − H.c.
]}

, (B1)

where H f
F = ∑

ν

∫
d3kωka†, f

k,ν
a f

k,ν
is the free Hamiltonian of the electric field, Z ≡ Tr(e−βH f

F ) = ∏
k

(1 − e−βωk )−1, and “H.c.”

denotes the Hermitian conjugate, we obtain, after some algebraic simplifications,

〈β|E f
p (x)E f

q (x′)|β〉 = 1

16π3

∫
d3k

1

k
(k2δpq − kpkq)

[ ∞∑
m=0

e−βmωk e−iωk (t−t ′ )eik·(x−x′ ) +
∞∑

m=1

e−βmωk eiωk (t−t ′ )e−ik·(x−x′ )

]
. (B2)

This equation can be further transformed into

〈β|E f
p (x)E f

q (x′)|β〉 = 1

16π3
(∂0∂

′
0δpq − ∂p∂

′
q )

∫
d3k

1

k

[ ∞∑
m=0

e−βmωk e−iωk (t−t ′ )eik·(x−x′ ) +
∞∑

m=1

e−βmωk eiωk (t−t ′ )e−ik·(x−x′ )

]
. (B3)
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Then perform the integration and we obtain

〈β|E f
p (x)E f

q (x′)|β〉 = − 1

4π2
(∂0∂

′
0δpq − ∂p∂

′
q )

[ ∞∑
m=0

1

(�t − imβ − iε)2 − |�x|2 +
∞∑

m=1

1

(�t + imβ )2 − |�x|2
]

(B4)

with �t = t − t ′, |�x| =
√

(x − x′)2 + (y − y′)2 + (z − z′)2, and ε a positive infinitesimal. Combining the two summations, we
finally arrive at

〈β|E f
p (x)E f

q (x′)|β〉 = − 1

4π2
(∂0∂

′
0δpq − ∂p∂

′
q )

∞∑
m=−∞

1

(�t − imβ − iε)2 − |�x|2 , (B5)

which is Eq. (47).
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