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Two-component three-dimensional atomic Bose-Einstein condensates supporting
complex stable patterns
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We report the computational discovery of complex, topologically charged, and spectrally stable states in three-
dimensional multicomponent nonlinear wave systems of nonlinear Schrödinger type. While our computations
relate to two-component atomic Bose-Einstein condensates in parabolic traps, our methods can be broadly
applied to high-dimensional nonlinear systems of partial differential equations. The combination of the so-called
deflation technique with a careful selection of initial guesses enables the computation of an breadth of patterns,
including ones combining vortex lines, rings, stars, and vortex labyrinths. Despite their complexity, they may be
dynamically robust and amenable to experimental observation, as confirmed by Bogoliubov–de Gennes spectral
analysis and numerical evolution simulations.
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I. INTRODUCTION

The realm of nonlinear Schrödinger models has been one
of the principal pillars for the study of nonlinear wave phe-
nomena in dispersive systems [1–4]. The relevant applications
span a wide range of fields including nonlinear optical systems
[5], water waves, and plasmas [6], as well as importantly
over the past two decades the atomic physics setting of
Bose-Einstein condensates (BECs) [7,8]. In the latter setting,
nonlinear structures in the form of bright [9] and dark [10]
solitary waves, but also importantly topologically charged
patterns in the forms of vortices [11,12] in two dimensions,
as well as vortex rings, lines, or knots, among others [13–15]
in three dimensions have played a central role not only in
theoretical and computational but also in experimental studies.
Indeed, these have been connected to notions such as persis-
tent currents [16], turbulence and associated cascades [17],
emulations of an expanding universe in the laboratory [18],
and Hawking radiation from analog black holes [19].

While the majority of the relevant contributions focused
on single-component systems, such as single atomic species
BECs, gradually this situation is changing. Over the past
few years, it has been realized that coupled systems can be
exploited to manipulate the spin degree of freedom [20] in
order to produce a wide variety of topological and nontopo-
logical ground- and excited-state coherent structures in both
one dimension [21] and higher dimensions [22]. However,
developing numerical methods to compute nonlinear wave-
forms in high dimensions, such as three dimensions, poses
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considerable challenges, even in single-component settings
[23,24]. This is even harder in multicomponent systems,
where only a few groups have attempted to provide a descrip-
tion of stability of singular and nonsingular patterns featuring
vortices, monopoles, and the so-called Alice rings [25–28].

In this work we report on a computational investigation
of the solutions of two-component atomic BECs in a three-
dimensional (3D) parabolic trap. The solutions are discovered
with a numerical technique called deflation [29], which has
been successfully applied to lower-dimensional or single-
component systems [24,30,31] but has not been extended to
multicomponent 3D problems. We complement this with a
Bogoliubov–de Gennes stability analysis and transient numer-
ical simulations. Surprisingly, contrary to what was found
to be the case in the single-component setting [24,30], the
multicomponent system allows for the dynamically robust
existence of unexpected and highly complex vortical states,
including ones featuring labyrinthine patterns. This suggests
the potential observability of the obtained states.

II. SETUP AND METHOD

A mixture of two bosonic components of the same atom
species can be described, at the mean-field level, by a system
of two coupled Gross-Pitaevskii (GP) equations [7,8]. We
refer to the two components as − and + and describe their
distributions by the wave functions �± : D × R+ → C with
spatial domain D = [−6, 6]3 ⊂ R3. The model can be written
in its nondimensional form as [4]

i
∂�−
∂t

= −1

2
∇2�− + (g11|�−|2 + g12|�+|2)�− + V (r)�−,

i
∂�+
∂t

= −1

2
∇2�+ + (g12|�−|2 + g22|�+|2)�+ + V (r)�+,

(1)
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with homogeneous Dirichlet boundary conditions on the
boundary of the domain D. The symmetric 2 × 2 coefficient
matrix (gi j )1�i, j�2 characterizes the interactions between the
two components. Focusing on the case of the hyperfine states
of 87Rb, we use the parameter values g11 = 100.4/98.006,
g12 = 1, and g22 = 95.44/98.006, proposed in [32] (see Table
II therein). The function V (r) = 1

2�2|r|2 is a parabolic exter-
nal confining spherical potential with strength � = 1, where
|r|2 = x2 + y2 + z2. We compute stationary solutions to the
coupled GP equations by assuming the standing-wave ansatz
�±(r, t ) = φ±(r)e−iμ±t and solving the following system of
coupled equations:

− 1
2∇2φ− + (g11|φ−|2 + g12|φ+|2)φ− +V (r)φ− − μ−φ− = 0,

− 1
2∇2φ+ + (g12|φ−|2 + g22|φ+|2)φ+ +V (r)φ+ − μ+φ+ = 0.

(2)

We discretize the real and imaginary components of φ−
and φ+ using cubic Lagrange finite elements defined on a
hexahedral mesh, with ten cells along each axis. The use
of a hexahedral mesh is desirable because the discretized
problem inherits some of the reflective symmetries of the
infinite-dimensional problem. Equation (2) is solved using the
Firedrake finite-element library [33] by combining Newton’s
method with the MUMPS LU solver [34] via PETSc [35] to
solve the resulting linear equations.

A. Deflation of solutions

We compute multiple solutions to Eq. (2) at parameters
(μ−, μ+) = (4, 5) using deflation [29]. Deflation allows us
to identify new stationary solutions by modifying the non-
linear problem solved to prevent the discovery of known
solutions by Newton’s method. If F (φ−, φ+) denotes the cou-
pled nonlinear Schrödinger (NLS). operator associated with
Eq. (2) and (φ1−, φ1+) is a steady-state already obtained,
then we construct and solve a new problem G(φ−, φ+) =
M1(φ−, φ+)F (φ−, φ+). The deflation operator M1 we
employ is

M1 =
(

1

‖|φ−|2 − |φ1−|2‖2
+ 1

)(
1

‖|φ+|2 − |φ1+|2‖2
+ 1

)
,

where ‖ · ‖ is the H1(D)-norm. This operator prevents the
convergence of Newton’s method applied to G to the previous
solution (φ1−, φ1+) (or its multiple by eiθ for any θ ∈ R) since
M1(φ−, φ+) → ∞ as (φ−, φ+) approaches eiθ (φ1−, φ1+).
The deflation procedure can be iterated to deflate an arbitrary
number of known solutions {(φi−, φi+ )}n

i=1 by constructing
a problem G = Mn · · ·M1F . We remark that this opera-
tor differs significantly from the one previously used in the
single-component setting [24]. In this work we employ a
factorization of the operator into a product of two deflation
operators associated with the first and second components φ1−
and φ1+, respectively, to reduce the number of uninteresting
solutions obtained by deflating states of the form (φ1−, 0)
and (0, φ1+). Solutions of this form that we exclude can be
obtained by solving the one-component problem, whereas we
are interested in finding steady states with nonzero coupling
between the components.

Given the computational difficulty of the problem, a key
challenge is to initialize our search with suitable initial
guesses to discover a large number of solutions with complex
patterns. Contrary to the single-component setting [24], we
found that exploiting linear low-density limits of the system
(2) is not an efficient strategy as it requires a large num-
ber of Newton iterations to eventually converge and results
in simple steady states. To achieve our goal of discovering
complex but experimentally observable solutions (see the
discussion of their stability below), we provided Newton’s
method with a large number of initial guesses of the form
(φ−, φ+) = (φ7/2, φ9/2) by combining solutions to the non-
linear one-component equation. Here φ7/2 and φ9/2 are steady
states of the one-component problem emanating from the third
and fourth excited states at chemical potentials μ = 7/2 and
9/2 previously discovered in [24].

Once a steady state has been discovered by deflation at
parameters (μ−, μ+) = (4, 5), we continue it to the linear
limit at (μ0−, μ0+) by performing a linear interpolation in
both components. As μ+ (the chemical potential of the first
component) decreases from μinit+ to μ0+, we want μ− (the
chemical potential of the second component) to vary from
μinit− to μ0−. This yields the following linear interpolation
equation for μ−:

μ− = μinit−
μ+ − μ0+

μinit+ − μ0+
+ μ0−

μinit+ − μ+
μinit+ − μ0+

. (3)

After identifying the chemical potential parameters μ0− and
μ0+ at which the two components emerge, we then discretize
the interval [μ0+, μinit+] with regular step size �μ = 10−2,
where μinit+ = 5. A steady state is continued to the linear
limit as μ+ goes from μinit+ to μ0+ [and similarly for μ−
using Eq. (3)] by solving the NLS system using the solution
at the previous step in the chemical potential as initial guess.
We then display the continuation of the state (φ−, φ+) by
reporting the atomic number of each component

N− =
∫

�

|φ−|2dx, N+ =
∫

�

|φ+|2dx

as a function of the parameter μ+. As the state is continued
towards the low-density limit at (μ0−, μ0+), the atomic num-
bers N− and N+ converge to zero.

B. Stability analysis and transient simulations

We now provide details about the stability computations of
the discovered solutions to the time-dependent NLS system
(1). Once a steady state φ0

±(r) to Eq. (1) has been identified
by deflation, we perform a Bogoliubov–de Gennes (BdG)
spectral stability analysis [4,7,8] by using the perturbation
ansatz [31]

�̃−(r, t ) = e−iμ−t [φ0
− + ε(a(r)eiωt + b∗(r)e−iω∗t )],

�̃+(r, t ) = e−iμ+t [φ0
+ + ε(c(r)eiωt + d∗(r)e−iω∗t )], (4)

where ω ∈ C is the eigenfrequency, ε 	 1 is a small pa-
rameter, and ∗ denotes the complex conjugate. Inserting this
equation into Eq. (1) yields an eigenvalue problem at O(ε),
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which we write in matrix form as⎛
⎜⎜⎝

A11 A12 A13 A14

−A∗
12 −A11 −A∗

14 −A∗
13

A∗
13 A14 A33 A34

−A∗
14 −A13 −A∗

34 −A33

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ = ρ

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠, (5)

with eigenvalue ρ = −ω and eigenvector V = [ab, cd]
. The
matrix elements in Eq. (5) are given by

A11 = − 1
2∇2 + (2g11|φ0

−|2 + g12|φ0
+|2) + V (r) − μ−,

A33 = − 1
2∇2 + (g12|φ0

−|2 + 2g22|φ0
+|2) + V (r) − μ+,

A12 = g11(φ0
−)2, A34 = g22(φ0

+)2,

A13 = g12φ
0
−(φ0

+)∗, A14 = g12φ
0
−φ0

+.

Similar to [24], we decompose Eq. (5) into real and imag-
inary parts to solve the discretized 8 × 8 block matrix
eigenvalue problem. We employ the same piecewise cubic
finite-element discretization as the one used for solving the
NLS system and solve the resulting eigenvalue problem us-
ing a Krylov-Schur algorithm with a shift-and-invert spectral
transformation implemented [36] in the Scalable Library for
Eigenvalue Problem Computations [37]. We then decompose
the eigenfrequencies ω ∈ C into real and imaginary parts as
ω = ωr + iωi. A state is considered spectrally stable at the
chemical potentials (μ−, μ+) if the eigenfrequencies have
imaginary parts satisfying |ωi| < 10−3.

To verify the spectral stability or weak instability of a state
φ0

± discovered by deflation, we integrate the time-dependent
NLS system (1) until T = 240 by perturbing φ0

± along its most
unstable eigendirection similarly to Eq. (4). We then select
ε = 10−2 and use ψ

(0)
± (r) := �̃±(r, t = 0) as the initial state

for the time integration of the system. The time discretization
of the system is performed using a modified Crank-Nicolson
method [38] with a time step �t = 10−2. As for the single-
component nonlinear Schrödinger equation [38], one can
show that this time-stepping scheme conserves the atomic
number of each component of the state and its energy.

III. NUMERICAL RESULTS

We now illustrate some solutions discovered with defla-
tion. Our procedure leads to the discovery of 150 distinct
solutions to (2) with complex structures. We then conduct a
BdG stability analysis to focus on the most physically relevant
ones and partition our findings into three broad categories.
The first set of our results is shown in Fig. 1 and captures a
palette of unstable states partially identified in earlier works
on one-component 3D systems. This illustrates that already
some complex building blocks can be assembled into rele-
vant stationary two-component solutions that the method can
identify without prior knowledge of associated theoretical or
numerical constructions.

We recognize in Fig. 1(a) a dipole solitary wave in the
second component coupled with a vortical pattern in the
first component. It is helpful to utilize a Cartesian notation
|k, m, n〉, highlighting the number of nodes that exist in each
x, y, z direction, to classify these states as a superposition
of eigenstates near the linear limit. In this limit, this is the
natural classification equivalently representing the order of the

FIG. 1. Selection of three unstable steady states whose individual
components have been identified in previous works on the one-
component GP equation. The top (bottom) row illustrates the − (+)
component of the solution. The colors represent the argument of the
solution on the isosurface of magnitude 0.2, i.e., |φ−(x, y, z)|2 = 0.2
and |φ+(x, y, z)|2 = 0.2. Whenever appropriate, we display the den-
sity isosurfaces at density 0.2 with opacity 0.5 to visualize the vortex
structure of the component.

FIG. 2. Five stable states to the NLS system discovered by
deflation.
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FIG. 3. (a) Snapshots of the time evolution of a weakly unstable state, initially perturbed along its most unstable eigendirection. The top
and bottom rows display the first and second components of the state, respectively. (b) Stability analysis of the steady state as the chemical
potentials approach (3.5,4.5).

polynomial modulating the Gaussian envelope of the states. In
that notation, the first component consists (at low density, i.e.,
near the linear limit) of |1, 0, 0〉 + i|0, 1, 0〉, while the second
one represents |0, 0, 1〉. This state is unstable with a growth
rate of ωi ≈ 0.81. Similarly unstable (ωi ≈ 0.30) in Fig. 1(b)
is a so-called Chladni soliton [23,39] of a one-species con-
densate in the second component, coupled to a “ground state”
(a nodeless cloud) in the first component. Finally, Fig. 1(c)
reveals a single vortex pattern similar to Fig. 1(a) in the
first component, while the second is an example of a star
pattern, reminiscent of the ones described in [24,40], with
the following linear combination close to the linear limit:

|2, 0, 0〉 − |0, 2, 0〉 + i[|2, 0, 0〉 − |0, 0, 2〉]. This state has a
growth rate of ωi ≈ 0.26 and is unstable.

A. Dynamically stable states

A more elaborate set of dynamically stable states has
been identified and presented in Fig. 2. Here we illustrate
five distinct states identified as spectrally stable over wide
parametric regimes. More specifically, the parameter regime
we investigate is to linearly interpolate both chemical poten-
tials μ− and μ+ towards their low-density limits at μ0− and
μ0+, e.g., (μ0−, μ0+) = (1.5, 3.5) in Fig. 2(a). Some of the
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FIG. 4. Continuation and stability analysis of the states pre-
sented in Fig. 2. Each panel features the atomic numbers (N−, N+)
of the components of the state as well as the real and imag-
inary parts of the associated eigenfrequencies. The linear limit
for the states are (a) (μ−, μ+) → (1.5, 3.5), (b) (μ−, μ+) →
(1.5, 2.5), (c) (μ−, μ+) → (1.5, 3.5), (d) (μ−, μ+) → (3.5, 4.5),
and (e) (μ−, μ+) → (3.5, 4.5).

resulting (widely) stable states are straightforward to interpret.
For instance, Fig. 2(a) features a fundamental state in the first
component that is complemented by a vortex of topological
charge l = 2 in the second component. Figure 2(b) shows a
vortex of topological charge l = 1 in the second component
harboring an effective bright soliton within a vortex-bright
line configuration [41]; such states have been explored
as filled-core vortices already since the early experimental
studies of [42]. Then, in Fig. 2(c) we find a stable vortex star
in the second component [40] coupled to a ground state of the
first component.

While one can argue that the above states are perhaps ones
that can be expected in the two-component realm based on
our single-component experience, this is far from obvious in
the context of Figs. 2(d) and 2(e). The structure of Fig. 2(d)
contains in turn two vortex lines in the first component that
are coupled to a second component featuring an S-shaped
vortex attached to a vortex ring as well as two additional
U-shaped vortex lines. Interestingly, such a state in a single-
component was also obtained in our previous work [24] and
was weakly unstable with a growth rate of ωi ≈ 5 × 10−2 at
μ = 5, illustrating that coupled systems may stabilize BEC
configurations. Figure 2(e) represents an especially complex,
topologically charged configuration, where the vortex ring of
the first component connects to an antisymmetric pattern rem-
iniscent of a pair of vortex-based slings, each held by a vortex
line. Importantly, despite the elaborate multivortical structure

FIG. 5. Exotic weakly unstable solutions discovered by deflation
which are within windows of experimental observability with growth
rate ωr < 6.7 × 10−2.

of these two configurations, our computations identify them as
a spectrally and dynamically stable. As an illustration, we re-
port in Fig. 3 the continuation of the atomic numbers (N−, N+)
for each of the two components of the state presented in Fig. 2
as a function of the chemical potential μ+. The real part of
the relevant eigenfrequencies in the third column of Fig. 3
showcase the excitation frequencies, while the absence of
imaginary eigenfrequencies (for most parameter values) in the
fourth column indicates stability of the corresponding states
within our BdG analysis.

B. Weakly unstable states

In addition to these stable states, our deflation search yields
a considerable wealth of weakly unstable states such as the
one shown in Fig. 4(a) at time T = 0. Here we observe
a pair of vortex lines in the first component, coupled to a
labyrinthine network involving multiple vortex rings, as well
as S-shaped and U-shaped vortices (see the bottom row).
Remarkably given the complexity of the state, yet in line with
the BdG stability analysis, our dynamical simulations [38],
involving hundreds of oscillation periods of the trap, identify
the state as only very weakly unstable, with a particularly
small growth rate of ωi ≈ 3.1 × 10−2 [see Fig. 4(b) and the
movie at [43] in the Supplementary Material]. This is only
one of many such states that our detailed time-integration
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simulations, which conserve N± and the energy to ma-
chine precision, appear to preserve over timescales that
would be relevant for experimental observability. Indeed,
we present in Fig. 5 a selection of exotic weakly
unstable states whose vortex structures involve struc-
tures well beyond the complexity of simple vortex
rings and lines and rather extend to labyrinthine pat-
terns of connected vorticity isocontours. The structures
are sustained over a long time period with growth rates
bounded by ωi < 6.7 × 10−2 at chemical potential values
(μ−, μ+) = (4, 5). Despite their complexity, all of these
configurations are expected to be experimentally observable
following our spectral stability analysis.

IV. CONCLUSION AND FUTURE WORK

We have discovered a wealth of complex states to the
two-component 3D GP equations. The deflation approach has
allowed us to retrieve a number of states that previous efforts
have sought to obtain [4,21,22]. Even more importantly, sev-
eral configurations involving combined vortical patterns, such
as ones with S-shaped, U-shaped, and ring-shaped vortex pat-
terns, were found to be stable and hence potentially accessible
by state-of-the-art experimental techniques.

While a number of additional unstable states have been
retrieved, current experimental techniques have made sub-
stantial progress towards creating a diverse host of initial
conditions and the unstable or transient dynamics of such
states may lead to intriguing pattern formation phenomena in
multicomponent condensates.

Our deflation technique enables the identification of com-
plex (and possibly topologically charged) patterns in a variety
of nonlinear, elliptic partial differential equation problems
of the Schrödinger class. The results were proposed in the
experimentally tractable platform of atomic Bose-Einstein
condensates. However, other settings where the nonlinear

Schrödinger equation is relevant can be equally well applica-
ble. In fact, the same numerical techniques could be broadly
applicable to a variety of other problems, such as reaction-
diffusion ones [44], among others.

The present work paves the way for numerous further
possibilities. On the one hand, the theoretical understanding
of such complex states, including from the linear limit of
small amplitude, is a feature which has been explored in 1D
and 2D settings [4], but not systematically in the 3D case.
This is due to the computational complexity of the problem.
In the two-component setting of the present work, there is
recent experimental motivation [45] to explore not only the
case where g12 > 0 as done herein, but also that of g12 < 0
(but weak enough to avoid mean-field collapse). Furthermore,
while we have restricted our attention to the two-component
pseudospinor case in this work, a significant volume of exper-
iments has been recently focusing on three-component spinor
settings [20,22]. It would be particularly interesting to extend
the ideas presented herein in the latter setting.
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