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Electronic K x rays emitted from muonic atoms: An application
of relativistic density-functional theory
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We develop a method using relativistic density-functional theory with a self-interaction correction, which is
simple and fast yet has reasonable accuracy. A comparison with measured Kα lines and their hypersatellites of
several atoms, from low Z to high Z , reveals that the relativistic local density approximation is suitable for Kα

lines. In contrast, the relativistic local spin density approximation with a self-interaction correction is better for
Khα hypersatellites. Compared with the nonrelativistic density-functional theory, we found that the relativistic
effect is significant (about 100 eV) even for middle-Z atoms, such as Cu. The screening effects, from inner
shell to outer shell, and the conduction band, are also discussed. The present paper provides all the transition
lines of muonic atoms, which can be used to narrow down the possible transitions by comparing them with the
measurements.
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I. INTRODUCTION

Muonic atoms, which have been studied extensively, are
atoms with an electron replaced by a negatively charged
muon [1]. A muon is about 200 times heavier than an electron,
so it moves closer to the nucleus; muonic atoms thus connect
atomic physics and nuclear physics [2–5]. When a muon is
captured to a highly exited state by an atom, the muonic atom
can emit two kinds of x rays. One is called a muonic x ray
due to transitions between two muon states [6]. The other is
called an electronic x ray due to transitions between two elec-
tron states [7,8]. X rays emitted from muonic atoms encode
information of the muon state and the electron configuration
of exotic atoms. Such information can be decoded by com-
paring the measured x-ray energies with the calculated ones.
Muonic atoms have also been used to study the proton size [9],
Lamb shift [10], and other higher-order effects [11,12], as
well as a probe of local environments surrounding an exotic
atom [13,14]. The transition energies can be calculated by var-
ious methods, from simple nonrelativistic Hartree-Fock-Slater
methods [15], to more complex methods, such as the mul-
ticonfiguration Dirac-Fock and generalized matrix elements
(MCDFGME) method [16,17], which includes quantum elec-
trodynamics (QED), the Breit interaction, a finite nuclear
size [5], and vacuum polarization [1,18]. Due to the recent
development of low-energy muon beams [19] and new detec-
tor technologies [20], the electronic Kα x rays emitted from
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muonic atoms can be measured to a high precision [21]. The
most recently reported one was the measurement of electronic
Kα x rays from muonic Fe atomic ions [8]. These measured
Kα x rays are emitted from different muon states and ionic Fe
states. The number of possible transitions is about a quarter
million without considering the energy level splitting for the
same electron configuration and different angular momentum
couplings. If we consider all the atomic energy levels, the
number could reach 10 million or more. We performed a
simulation based on nonrelativistic density-functional theory
(DFT) [22] and compared the results with experiment by
shifting the energy systematically. These shifts are mainly
attributed to relativistic effects.

Since similar experiments on other materials and atoms are
being planned, it is necessary to develop a simple, fast method
with reasonable accuracy to calculate all the transition ener-
gies. By comparing with the measured ones, one can narrow
down the possible transitions, and then perform a more sophis-
ticated simulation, such as the MCDFGME method. For such
a goal, we extended the relativistic density-functional theory
with a self-interaction correction for atoms [23] to exotic
atoms. This method should, of course, also work for ordinary
atoms. By comparing the measured Kα and hypersatellite
lines of atoms with the ones calculated by various exchange-
correlation functionals, we found that the relativistic local
density approximation (LDA) is more accurate for Kα lines
from low- to high-Z atoms, while for the Khα hypersatellite,
the relativistic local spin density approximation (LSDA) with
self-interaction corrections (SIC) works better. Since our goal
is to develop a simple, fast method, we used the simple LDA
or LSDA exchange-correction functional [24,25], instead of
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using a more complicated exchange-correlation functional,
such as the generalized gradient approximation (GGA) [26] or
meta-GGA [27] with tunable parameters. The present method
works for both muonic and electronic x rays.

Since our goal is to provide the electronic K x-ray energies
for all charge states in order to identify possible transitions
measured in the experiment, we do not present the muonic
x-ray nor the transition rates. The transition rates can be
calculated [28] once the transitions are identified or narrowed
down.

We also studied the electron screening effects from differ-
ent orbits and concluded that the outer screening (M shell, N
shell, and the conduction band in the solid) is not important.
This justifies our use of the isolated muonic Fe data to com-
pare with the measurements from an Fe foil.

II. THEORETICAL METHOD

The descriptions of density-functional theory with a self-
interaction correction for atoms can be found in Refs. [22,23].
Here, we only present the working equations for exotic atoms.
In the relativistic density-functional theory, the Dirac equa-
tion of the electrons in an exotic atom is written as (atomic
units h̄ = me = e = 1 are used unless stated otherwise)

[cα · p + βc2 + veff,σ (r)]ψiσ (r) = εiσψ (r). (1)

The Dirac equation of the muon in the exotic atom is written
as

[cα · pμ + mμβc2 + vμ(rμ)]ψμ(rμ) = εμψμ(rμ). (2)

Here, mμ is the muon mass, c is the light velocity in vacuum,
and r, rμ are the electron and muon coordinates, respectively.
The electron moves in an optimized effective potential [29],
plus the electron-muon interaction as

veff,σ (r) = V OEP(r) +
∫

ρμ(rμ)

|r − rμ|drμ, (3)

and the muon moves in an effective potential formed by the
nucleus and the electrons as

vμ(rμ) = VN (rμ) +
∫

ρe(r)

|r − rμ|dr. (4)

Here, V OEP is the optimized effective potential [29,30], which
can be obtained as detailed in Refs. [23,31] and the last term
in Eq. (3) represents the muon-electron interaction. VN is the
muon-nucleus interaction, and the last term in Eq. (4) is the
electron-muon interaction. ρe, ρμ are the electron and muon
charge densities, respectively. Equations (1)–(4) are solved it-
eratively (self-consistently) until the effective potentials reach
convergence. The total energy for a given electron config-
uration and muon state is obtained, and the emitted x-ray
energy is calculated as the total energy difference between the
transition initial and final states.

We used the pseudospectra grid [32,33] to discretize the
space for the electron and muon radial wave functions sep-
arately due to the mass difference between the muon and
electron. If we replace the Dirac equations with Schrödinger
equations, we get the nonrelativistic version [22] of the DFT
method for exotic atoms.

III. RESULTS AND DISCUSSION

Within the DFT method, there are many exchange-
correlation functionals (several tens or hundreds), from LSDA
(LDA) to meta-GGA [34]. Even for the simplest LDA, one can
still consider the self-interaction correction (SIC). Our goal is
to find a simple, fast, yet reliable method to estimate electronic
K x-ray energies and their hypersatellite energies for muonic
atoms. By setting the muon density to zero, the method should
also work for characteristic K x rays emitted from an atom
with one 1s vacancy, which has been studied extensively [35];
these data, from both theory and experiment, are tabulated in
Ref. [36]. Data also exist [37,38] for K x-ray hypersatellites
emitted from hollow atoms with two 1s vacancies. Therefore,
we first compare the characteristic x-ray energies calculated
by DFT methods with LSDA or LDA with or without SIC
to find which exchange-correlation functional is better for
K x rays of atoms. Here, we labeled the relativistic DFT
with a local spin density approximation with a self-interaction
correction as R-LSDA/SIC and without SIC as R-LSDA/non-
SIC and DFT with a local density approximation with SIC as
R-LDA/SIC and without SIC as R-LDA/non-SIC. To study
the relativistic effects, we also present the corresponding non-
relativistic ones labeled as NR-LSDA or NR-LDA. First, we
compare our results with other existing data for the case of
ordinary atoms to check the validity of the present method.

A. K x ray and its hypersatellite of atoms

Table I lists the reported Kα1,2, Kβ1 energies for the
low-Z atom Ar (Z = 18), the high-Z atom Rn (Z = 86),
and the spin-polarized atom Eu (Z = 63), and the energy
differences between experiments and calculations with the
relativistic and nonrelativistic DFT methods using various
exchange-correlation functionals. The hypersatellites Khα1,2

from Cu [38] and Pb atoms [37] are also listed. For the theo-
retical results, we only present the energy difference with the
measured one, which is defined as � = Eexpt − Etheor. Overall,
the results of the relativistic simulations are better than the
nonrelativistic ones: The maximum error for the relativistic
simulation is less than 0.5%, while the nonrelativistic results
are in reasonable agreement with the measured ones only for
low-Z atoms, such as Ar, as we expected. For high-Z atoms,
such as Rn, the relativistic effect is about 10%. Note that for
the nonrelativistic simulation, we cannot distinguish Kα1 and
Kα2. Therefore, a relativistic calculation is needed even for
a low-Z atom, such as Ar. For high-Z atoms, the relativistic
effects cannot be ignored. For the nonrelativistic simulation,
the results are not so sensitive to SIC or non-SIC for high-Z
atoms because the relativistic effect is the major error source.
For low-Z atoms, the results of LSDA/SIC are better for
ionization potentials, as reported in a previous work [23].
Indeed, the NR-LDA/SIC results for Ar atoms are the best
among the nonrelativistic simulations. Thus, we may think
that the results of the relativistic SIC should also be better
than the non-SIC ones. To our surprise, the K x-ray energies
calculated with R-LDA without SIC are better than the ones
with SIC. For all of the K x rays in the table, the maximum rel-
ative error of R-LDA/non-SIC is less than 0.05%. For a very
heavy atom, such as Rn, the R-LDA/non-SIC and R-LSDA/
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TABLE I. Transition energies of Kα1,2, Kβ1 for Ar, Rn, and Eu atoms and Khα1,2 hypersatellites for Cu and Pd atoms from experiments.
The energy differences between the experiments and the simulations are also presented. All the energies are in eV. The bold font highlights the
best performing method for a given case.

R-LSDA R-LDA NR-LSDA NR-LDA

Element Eexpt SIC Non-SIC SIC Non-SIC SIC Non-SIC SIC Non-SIC

Ara (Z = 18) Kα1 2957.68 2.29 17.80 −15.85 −0.26 14.33 28.09 −4.05 9.76
Kα2 2955.57 2.55 18.04 −15.58 0.02 12.22 25.98 −6.16 7.65
Kβ1 3190.49 0.62 18.84 −18.53 −0.22 11.94 28.41 −7.45 9.08

Rna (Z = 86) Kα1 83783 −315 11 −363 −36 10508 10580 10430 10502
Kα2 81066 −282 37 −328 −10 7791 7863 7713 7785
Kβ1 94867 −319 31 −371 −21 10503 10595 10420 10512

Eua (Z = 63) Kα1 41542.63 −96.17 45.43 −142.67 −0.77 2588.43 2640.53 2530.23 2582.33
Kα2 40902.33 −83.57 55.73 −129.67 10.03 1948.13 2000.23 1889.93 1942.03
Kβ1 47038.40 −103.60 53.30 −151.60 5.50 2568.30 2634.50 2504.80 2571.10

Cub (Z = 29) Khα1 8352.60 −2.35 29.87 26.28 58.39 107.82 131.62 137.48 161.22
Khα2 8329.10 −1.85 30.31 26.57 58.51 84.32 108.12 113.98 137.72

Pbc (Z = 82) Khα1 76250±60 −133 157 80 210 8876 8945 8953 9022

aReference [36]
bReference [38]
cReference [37]

non-SIC results are comparable. A possible reason is that
there are two 1s electrons in the transition final state, thereby,
the spin average is better than the self-interaction correction,
or there are some cancellations between the relativistic effect
and the self-interaction correction. The original motivation for
introducing SIC [39] is to correct for the long-range Coulomb
tail, which significantly improves the orbital energies [22]
while only moderately improving the total energies [31]. We
use the total energy difference to calculate the transition ener-
gies, not the orbital energies. Also, the SIC corresponds to
a single-electron correction, and its relative contribution is
smaller for many-electron atoms or high-Z atoms. This could
be another possible reason why R-LDA/non-SIC is better for
the K x rays. For a given transition, the number of 1s electrons
in the final state plays an important role.

To check this scenario, we studied the K x-ray hypersatel-
lites (the final state having only one 1s electron) where the
local spin density approximation with a self-interaction cor-
rection plays a crucial role. In the R-LSDA/SIC, we assume
that the electron spin flip is forbidden and the transition hap-
pens only among the same spin states. Indeed, we found that
the R-LSDA/SIC is better for the K x-ray hypersatellites of
Cu. For heavy atoms, such as Pb (Z = 82), both R-LSDA/SIC
and R-LDA/SIC are better than the others. For such a heavy
atom, the Breit interaction [40], which is about several tens of
eV [41,42], is ignored in the present simulation.

To confirm the reliability of the R-LSDA/SIC, Table II
lists the Khα hypersatellite energies of the 3d transition met-
als reported in Ref. [38] and the values of the relativistic
multiconfiguration Dirac-Fock (RMCDF) methods [41,44,45]
and the active space approximation (ASA) methods [43]. To
focus on the reliability of the simulations, we present the
experimental results along with the differences between the
measured ones and simulations as � = Eexpt − Etheor.

For Khα2 x rays, our results are comparable with other
simulations, and the errors are less than 5 eV for all elements
in Table II. For Khα1 x rays, the results of Ref. [43] are better

than ours, but the largest error of our results is still less than
10 eV. Overall, our results are comparable with RMCDF-type
simulations, but numerically much simpler and faster. The
present DFT method is equivalent to the level average of RM-
CDF without calculating all of the energy levels for the same
electron configuration and different total angular momenta.
We need to calculate three total energies for the Khα1, Khα2

transition energies: One initial and two final states. It took less
than a minute with a desktop computer. The present method is
highly parallelized for use with a many-core computer or even
a supercomputer. Thus we can estimate the K x-ray energy
quickly.

Note that the above numerical results depend weakly on the
simulation parameters, such as the box size and the number
of grids. The results may change within a few eV for heavy
atoms if we reduced the box size and the number of grids by
half. In the present simulation, we did not tune these parame-
ters and used a box size of Rmax = 20 a.u. with the number of
grids N = 320. We found that the R-LDA/non-SIC is better

TABLE II. Khα1,2 hypersatellite energies of the 3d transition
metals reported in Ref. [38]. The energy differences between the
experiment and present simulations (�p) with R-LDA/SIC and
the differences between the experiment and the results of RMCDF
(�R) [38] or ASA (�A) [43] methods are also presented. All energies
are in eV.

Element Khα2 �p �R �A Khα1 �p �A

V 5176.6 0.89 1.50 5191.7 7.27
Cr 5649.2 0.56 0.70 0.8 5665.1 5.96 0.9
Mn 6143.4 1.00 2.80 6160.9 5.92
Fe 6659.7 2.53 4.00 2.7 6678.8 6.69 2.9
Co 7194.4 1.10 3.10 7214.9 4.00
Ni 7752.3 1.43 3.00 7774.1 2.62
Cu 8329.1 −1.85 −0.20 8352.6 −2.35
Zn 8929.5 −1.17 0.60 0.6 8955.8 −2.65 0.4
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TABLE III. Energy shifts (in eV) of Kα lines of μFe from the
Kα of Mn atoms calculated with R-LDA/non-SIC.

μ-state Present NR-LDAa NR-HF [15] RMCDF

1s 0.0 0.0 0.0 −0.6
5s 13.4 12.5 11.9 12.6
10s 119.8 114.9 112.9 118.3

aNote that the results are slightly different from the values in the
Supplemental Material of Ref. [8] due to the values being calculated
with NR-LSDA/SIC.

for K x rays and R-LSDA/SIC works better for Kh hypersatel-
lites. Therefore, in the following discussion, all the results are
obtained with the R-LDA/non-SIC for muonic atoms or ions
since only the electronic Kα transitions of muonic Fe were
reported in a recent experiment [8]. Of course, our method
should also work for Khα hypersatellites.

B. Energy shifts of electronic K x ray of muonic Fe

The muon is initially captured in highly excited states
peaked at a principal quantum number of about n ≈ √

mμ ≈
14 for low incident energies close to the threshold; the peak
moves to higher n as the incident energy increases [46,47].
Then the muon gradually cascades into lower excited states
through Auger decay by removing electrons from Fe atomic
ions or through radiative decay by losing energy via emit-
ting a photon. The cascade process has been studied in
Refs. [48,49]. During the cascading, various charged hollow
ions are formed. We first analyze the transition energy shifts of
K x rays with different muon states for muonic Fe (μFe) with
only one K vacancy. There are no high-precision experimental
data for muon state-specified electronic K x rays. Thus we use
the MCDFGME [8] data as references. The energy shifts are
almost the same for Kα1,2, and we do not distinguish the two
lines. Table III lists the Kα energy shifts of muonic Fe atoms
with respect to the Kα line of Mn atoms. As the muon state
nμ becomes lower, the screening effect of the muon on the
nucleus becomes more significant, and at nμ = 1, Kα lines
of μFe become identical to Kα of Mn atoms. Overall, our
results are in reasonable agreement with the nonrelativistic
Hartree-Fock results [15], although the Kα energies may dif-
fer due to relativistic effects. Our results are also in agreement
with MCDFGME [8], in which QED and other higher-order
effects are considered. The discrepancies between the present
simulations and MCDFGME ones are less than 2 eV.

C. Electronic Kα x rays from muonic Fe ions

There are various types of μFe ions with different charge
states formed during the cascade process. In the solid state, the
vacancies of the hollow ions can be refilled by electrons in the
conduction band. We need to consider all muon states from
n = 1 to n = 12, which is 144 states if all possible j states
are considered. The probability for a muon captured into a
high-n (>12) state with a K vacancy is negligibly small. For
spin-averaged simulations with LDA, the number of electron
configurations of the L shell with the electron number vary-
ing from 0 to 8 is 45, which is the same for the M shell.

FIG. 1. Kα energies of μFe as a function of muonic states (nμ, lμ,
or jμ) calculated by the LDA/non-SIC methods. For the relativistic
simulation, only Kα1 lines are presented.

Therefore, the total transition lines are 144 × 45 × 45 =
291 600, roughly a quarter million. If we consider all energy
levels with the same electron configuration and different total
angular momenta, the number can easily reach for 10 million
or even more. This is our motivation for a simple, fast method
to estimate Kα energies of muonic atoms and ions.

Since the experiment was performed with an Fe foil, we
need to check if the conduction band electrons affect the x-ray
energies emitted from hollow muonic Fe ions produced in
the metal. We modified the method employed to study x-ray
emission from hollow nitrogen ions Nq+ inside of a metal in
Ref. [50] to study muonic atomic ions in a metal. For Nq+

ions in Al metal, the emitted x-ray energies differ from the
corresponding emission in vacuum. The energy shifts also
depend on the charge state q. Unlike Nq+ hollow atoms, x-ray
energies from μFe hollow ions in bulk are almost the same
as the ones in vacuum. By further analysis, we confirmed that
the screening effect of electrons in the conduction band on
μFe is attributed to an outer screening that does not affect
the Kα transition energies. This is different from the case of
Nq+ hollow atoms in bulk, in which the screening affects the
initial state of the transition. Therefore, all of the following
μFe results are calculated for isolated μFe atomic ions.

Figure 1 shows the electronic Kα (or Kα1 for the rela-
tivistic case) energies of μFe ions with different muon states
determined by the relativistic and nonrelativistic LDA simu-
lations. To show the outer screening effect, we plot the data of
μFe ions where all the valence electrons in 3d, 4s orbits are
removed for the nonrelativistic LDA simulation. For a given
principal quantum number nμ, there are still many possible
jμ or lμ states, which results in a spreading of the energy.
Note that the outer screening effect becomes negligibly small
by removing the eight valence electrons. This screening effect
should be larger than the screening from the electrons in the
conduction band. This comparison justifies using μFe data
to compare with the ones measured in a solid [8]. We also
see that the relativistic effect shifts the nonrelativistic results
systematically, and the shifts weakly depend on the muon
states. The nonrelativistic shift of this calculation is 47 eV,
and the value of MCDFGME is 50 eV [51]. This justifies the
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FIG. 2. Kα1 energies of μFe as a function of muonic states
(nμ, jμ) with different numbers of M, L-shell electrons calculated by
the relativistic LDA method.

procedure in Ref. [8], where we used the nonrelativistic results
and shifted by a constant value systematically.

Figure 2 shows Kα1 energies of μFe ions with different
muon states determined by the relativistic LDA simulations
for changing the number of electrons in the M and L shells.
Comparing Kα1 with a full 3s23p6 and without 3s, 3p elec-
trons, the screening effect of the 3s, 3p can be as large
as 20 eV. This is not negligibly small, and the electron
configuration in the M shell should be taken into account
for a high-precision simulation. Comparing the results with
the full L-shell electrons and one L-shell electron, we found
the energy shifts can be as large as 200 eV. This shows that
the L-shell electron is important for the Kα transition, and
the electron configuration in the L shell must be considered.
The different muon states also contribute to the Kα energy,
and the measured x-ray energy encodes the information of the
muon states and the electron configurations of μFe ions.

As we mentioned that there are about a quarter million Kα

lines in the simulation, we do not present all of them but use
the data to compare with the measurements.

IV. CONCLUSION

We developed a relativistic density-functional theory to
study electronic Kα x-ray energies of muonic atoms. By

comparing the available Kα and its hypersatellite energies
calculated with various exchange-correlation functionals for
various atoms, from low- to high-Z atoms, we conclude that
(1) while relativistic effects are obviously important for high-
Z atoms, which are known qualitatively without simulation,
even for middle-Z atoms relativistic simulations are neces-
sary; (2) the relativistic local density approximation is suitable
for Kα while the relativistic local spin density approximation
with a self-interaction correction is suitable for hypersatel-
lites. We also studied the screening effect from electrons in
the inner-shell/outer-shell orbits and the conduction band. We
found that the outer screening effect from the conduction band
and valence electrons is negligibly small (about a few eV for
muonic Fe ions). In contrast, the inner-shell (L-shell) screen-
ing effect is comparable to or even larger than the energy shifts
from different muon states. Such a simple, fast, reasonably
accurate method can be used to calculate all K x-ray energies,
either muonic x rays or electronic x rays. The number of the
transitions can reach about a quarter million, even a million
depending on the targets. Comparing the simulations by this
method with experiments, one can narrow down the possible
transitions and then study the specific transitions with a more
elaborate method, such as MCDFGME with QED and other
higher-order effects.

All data are available from the corresponding author
(X.M.T.) upon request.
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