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Lack of hyperfine shifts in Doppler-limited spectra of molecular hydrogen
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Accurate spectroscopy of molecular hydrogen isotopologues is used for testing quantum electrodynamics and
searching for physics beyond the standard model. Recent measurements of energies of rovibrational resonances
in the ground electronic state have reached a level of uncertainty lower than the magnitude of the hyperfine
splitting. The underlying hyperfine components of the resonance clearly perturb sub-Doppler saturation spectra.
The extent to which hyperfine structure influences the Doppler-limited spectra is not fully understood, as there
are two contradicting experimental works that show either a 350 kHz shift or lack of any deviation from the
central frequency of the resonance in the HD molecule. Here, we address this problem theoretically. Using
the spherical tensor approach, we prove that the barycenter of all hyperfine-resolved spectra corresponds to
the unperturbed transition frequency (the first moment of the hyperfine-resolved spectra vanishes). This property
is directly transferred to Doppler-limited spectra: we show that there is no detectable shift due to the hyperfine
structure unless the ratio of the Doppler width to the root-mean-square hyperfine splitting is less than 50.
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I. INTRODUCTION

Precise spectroscopic studies of simple atomic and molec-
ular systems allow for the performance of accurate tests of
quantum theory [1,2], determination of fundamental constants
[3,4], and search for physics beyond the standard model [5,6].
Molecular hydrogen, the simplest neutral diatomic molecule,
possesses a large number of ultralong-living rovibrational
states [7]. The electric dipole transitions between these states
are either very weak in heteronuclear isotopologues (HD,
HT, and DT) or forbidden in homonuclear isotopologues
(H2, D2, and T2). In the latter case, the transitions are elec-
tric quadrupole [8] or magnetic dipole [9] in nature. These
resonances are extremely narrow—the largest transition prob-
abilities for spontaneous emission in H2 are of the order of
10−6 s−1 [10]. The presence of these narrow transitions stim-
ulates accurate spectroscopic measurements in molecular hy-
drogen and its isotopologues for fundamental studies [11–16].
The most accurate determination of the central frequency of a
rovibrational transition in the HD isotopologue has reached
the level of 13 kHz, which corresponds to the 0.12 ppb rela-
tive uncertainty [11]. Further essential experimental progress
requires trapping a cold H2 sample in either a magnetic trap
or an optical dipole trap; the latter seems to be the most
promising one as recently a magic wavelength (in infrared)
for one of the rovibrational lines was identified in H2 [17].

The hyperfine structure (HFS) of rovibrational states
in molecular hydrogen and its isotopologues has recently
gained significant attention from the spectroscopic commu-
nity [18–25]. Theoretical studies of hyperfine interactions
are driven by remarkably accurate experimental studies of
the frequencies of rovibrational transitions [11,12,14,26–36]
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and dissociation energies [37–39]. The importance of the
hyperfine structure in the saturation spectra of the 2-0 R(1)
transition in HD was recognized by Diouf et al. [34], who
attributed an outstanding discrepancy between the transition
frequencies measured by the Hefei [30] and Amsterdam [31]
groups, to crossover resonances between hyperfine compo-
nents of this line. Hyperfine components of rovibrational
transitions should also be carefully analyzed in accurate
experiments performed using Doppler-limited spectroscopy
[14,28,32,35]. We recall that measurements using cavity-
enhanced techniques have achieved the accuracy of 75 kHz
[15] for the dipole transition in HD and 117 kHz for the
weaker electric quadrupole transition in D2 [14]. Although
unresolved, the hyperfine structure of the R(1) 2-0 line mea-
sured by the group in Caserta led to the 350 kHz shift in the
determined transition frequency [15]. Since the Doppler width
of this transition is, at room temperature, of an order of GHz,
it remains an open question whether the hyperfine structure,
which spans over the range of hundreds of kHz, could in-
fluence the determined transition frequency or whether the
inclusion of a large number of components (21) could lead
to numerical problems in the fitting procedure. Interestingly,
the recent studies, by the group in Grenoble, of the 2-0 R(0)
and R(1) lines in HD, performed using Doppler-limited spec-
troscopy at 80 K, showed no deviation of the apparent line
center from the HFS-free transition frequency [40]. The lack
of hyperfine shift of the same line, which is almost two times
narrower at 80 K than at room temperature, casts a doubt
on the conclusions of Ref. [15]. Hence, there is a need for
theoretical work that could explain the apparent discrepancy
between Refs. [15,40].

The positions and intensities of hyperfine components of
dipole and quadrupole transitions in hydrogen isotopologues
were recently studied by several authors [18–25]. In particu-
lar, the authors of this manuscript reported hyperfine coupling
constants, positions and intensities of all rovibrational electric
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dipole transitions in HD [19], HT, and DT [24], and electric
quadrupole transitions in H2, D2 [20], HD [25], and the three
tritium-bearing isotopologues [22]. In some cases, hyperfine
components seem to be spread almost symmetrically around
the central frequency (as in the case of the Q lines), while
in others, several blue- or red-detuned components dominate
the spectrum. In this work, we analyze theoretically the first
moment (the barycenter) of the hyperfine structure of all rovi-
brational transitions studied in Refs. [19,20,22,24,25]. First,
we provide a rigorous proof that the barycenter vanishes for
the stick hyperfine spectra (i.e., when each component is an
infinitely sharp line). Second, we analyze the first moment
of the Doppler-broadened spectra, which is based on a well-
known property of Gaussian functions and a discussion of
the global maximum of the sum of N-Gaussian functions,
which is provided in Appendix D. Finally, we discuss the
implication of the results derived here for accurate Doppler-
limited measurements of rovibrational transitions in hydrogen
isotopologues [14,15,32,40], providing a theoretical input to
the discussion about a presence or lack of hyperfine shift in
this kind of spectroscopy. This work can also be considered
as an extension of our recent analysis of relative intensities
of hyperfine components of rovibrational transitions in the six
isotopologues of hydrogen [41]. Since the relative intensity
can be viewed as the zeroth moment of the hyperfine spec-
trum, we take this analysis a step further and we study the
first moments of this spectrum. Thus, we use the notation
introduced in Ref. [41] throughout the article.

II. THE FIRST DISTRIBUTION MOMENT
(THE BARYCENTER) OF THE HYPERFINE

STICK SPECTRA

We consider hyperfine components of rovibrational transi-
tion between the (νi, Ni ) and (νf , Nf ) states, where, ν and N
are the vibrational and rotational quantum numbers, respec-
tively. Due to hyperfine interactions, both levels are split into
states which, following Refs. [19,20,22,24,25,41], we label
as |νi; NiFimFi (±)i〉 and |νf ; Nf Ff mFf (±)f〉, respectively [42].
Here, F is the total angular momentum quantum number (the
eigenvalue of the square of the total angular momentum, F)
which originates from the coupling of three angular momenta:
the rotational angular momentum N and the nuclear spin an-
gular momenta of the two nuclei, I1 and I2. mF denotes the
projection of the total angular momentum on the space-fixed
axis of quantization. The meaning of the (±) label, as well
as a summary of the coupling schemes, coupled basis, and
the eigenstates of the hyperfine Hamiltonian, is provided in
Appendix A.

In the first step, we assume that each hyperfine component
(HF) of the rovibrational transition is infinitely sharp. Such a
spectrum is referred to as the stick spectrum [18]. The first
distribution moment of the hyperfine spectrum is defined as a

sum of products of position and intensity of each (HF-labeled)
hyperfine component,

M(1)
fi =

∑
HF

(
νHF

fi − νfi
)SnHF

fi

Sn
fi

, (1)

where (νHF
fi − νfi) is the position of a single HF component

with respect to the central frequency of a rovibrational tran-
sition, and SnHF

fi /Sn
fi is the ratio of the intensity of a HF

component to the intensity of the HF-unresolved transition.
The top index denotes the rank of the spectroscopic transi-
tion: n = 1 corresponds to the electric dipole transition and
n = 2 corresponds to the electric quadrupole transition. The
formulas for SnHF

fi and Sn
fi depend on the rank of the transition

and the considered branch. We proposed a generic form of the
SnHF

fi /Sn
fi ratio in Ref. [41], which we refer to as the relative

intensity of a given HF component,

SnHF
fi

Sn
fi

= |〈νf ; Nf Ff (±)f ||T(n)(M)||νi; NiFi (±)i〉|2
wI fn(Ni, Nf )

∣∣Mn
fi

∣∣2 . (2)

Here, Mn is the multipole moment of the rovibrational transi-
tion and corresponds to the electric dipole moment d (n = 1)
and for the electric quadrupole moment Q for (n = 2). The
reader is referred to Ref. [41] for the explicit formulas for
SnHF

fi and Sn
fi for electric dipole and quadrupole transitions. In

the following part of the derivation, we use the formalism of
spherical tensor algebra [43]. We introduce T (n)(M), an irre-
ducible spherical tensor of rank n, which describes the proper
multipole moment. wI is the nuclear degeneracy factor of
the initial rovibrational state, which equals (2I1 + 1)(2I2 + 1)
for the heteronuclear isotopologues and (2I + 1) for the
homonuclear species. The fn(Ni, Nf ) term depends on the rank
of the transition and the branch considered and originates
from the transformation of the multipole moment between
the molecule-fixed and the space-fixed frame of reference
(see Appendix A of Ref. [41]).

The position of each hyperfine component with respect to
the central frequency of a rovibrational transition, (νHF

fi − νfi),
is given by a difference between the energies of the initial
and final hyperfine levels. This can be represented as the
difference between the eigenvalues of the effective hyperfine
Hamiltonian HHF,(

νHF
fi − νfi

) = 1

h
(〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉

− 〈νi; NiFimFi (±)i|HHF|νi; NiFimFi (±)i〉. (3)

Assuming a lack of strong hyperfine couplings between dif-
ferent rotational levels, it can be shown (see Appendix B 1)
that the first distribution moment corresponds to the difference
between the sum of the diagonal elements of the effective
hyperfine Hamiltonian in the two rovibrational states. For the
coupling scheme suitable for homonuclear diatomics, this is
given as

M(1)
fi = 1

hwI

{
1

2Nf + 1

∑
If ,Ff ,mFf

〈νf ; [Nf (I1I2)If ]Ff mFf |HHF|νf ; [Nf (I1I2)If ]FmFf 〉

− 1

2Ni + 1

∑
Ii,Fi,mFi ,

〈νi; [Ni(I1I2)Ii]FimFi |HHF|νi; [Ni(I1I2)Ii]FimFi〉
}
. (4)
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TABLE I. Tensorial form of the leading hyperfine interactions in the homo- and heteronuclear isotopologues of molecular hydrogen. For a
discussion of the hyperfine interactions, as well as for formulas of matrix elements of the hyperfine Hamiltonian, see Refs. [19,20,22].

Hyperfine interaction Homonuclear case Heteronuclear case

Nuclear spin-rotation cnsrT (1)(N) · T (1)(I)
∑

j cnsrj T
(1)(N) · T (1)(I j )

Nuclear spin–nuclear spin dipole cdipT (2)(C) · T (2)(I1, I2) cdipT (1)(I2) · T (1)(C, I1)

Electric quadrupole
∑

j T (2)(∇E j ) · T (2)(Q j )
∑

j T (2)(∇E j ) · T (2)(Q j )

The corresponding formula for the coupling scheme suitable
for heteronuclear species is provided in Appendix B 2. The
effective hyperfine Hamiltonian can be represented as a se-
ries expansion of spherical tensor operators which represent
(electric or magnetic) nuclear moments, T (k)(A), and (electric
or magnetic) fields generated by the electrons and nuclei and
derivatives of these fields, T (k)(B) [43–46],

HHF =
∑
k�1

T (k)(A) · T (k)(B). (5)

Each term in this expansion is, in fact, a scalar product of
spherical tensor operators, defined as

T (k)(A) · T (k)(B) =
k∑

q=−k

T (k)
q (A)T (k)

−q (B), (6)

where q denotes the (2k + 1) components of the spherical
tensors. For the hydrogen molecule, the leading hyperfine
interactions involve the nuclear spin-rotation interaction, the
nuclear spin–nuclear spin dipole interaction, and, for the
deuterium-bearing species, the interaction of the nuclear elec-
tric quadrupole moment with molecular electric field gradient
(see Table I). We note that the notation in Eq. (5) (which stems
from Ref. [43]) might be ambiguous in this context, as the
hyperfine Hamiltonian can contain more than one term of rank
k, i.e., in the homonuclear case, we consider two terms of rank
k = 2, while in the heteronuclear case, we have two terms of
rank k = 1 (see Table I).

Matrix elements of the effective hyperfine Hamiltonian
in Eq. (4), which has a generic form introduced in Eq. (5),
are evaluated using spherical tensor algebra. For the two
irreducible spherical operators which act on two distinct com-
ponents of the coupled basis, matrix elements are given as [47]

〈ν; ( j1 j2) jm|T (k)(A) · T (k)(B)|ν; ( j1 j2) jm〉

= (−1) j1+ j+ j2

{
j2 j1 j

j1 j2 k

}

× 〈nu; j1||T (k)(A)||ν; j1〉〈ν; j2||T (k)(B)||ν; j2〉. (7)

Putting j1 = N , j2 = I , j = F , and m = mF and summing
over I , F , and mF leads to (see Appendix C)∑

I,F,mF

〈ν; (NI )FmF|T (k)(A) · T (k)(B)|ν; (NI )FmF〉

= δk0[
√

(2N + 1)〈ν; N ||T (k)(A)||ν; N〉]

×
[∑

I

√
(2I + 1)〈I||T (k)(B)||I〉

]
, (8)

which means that the sum vanishes unless k = 0. As men-
tioned earlier, each hyperfine interaction is represented by a
scalar product of two spherical tensors of rank at least 1. This
means that both sums in Eq. (4) vanish and, as a consequence,
the first distribution moment of the hyperfine stick spectrum
is zero,

M(1)
fi = 0. (9)

A similar derivation can be performed for the heteronuclear
isotopologues, although some of the tensorial forms recalled
in Table I do not fulfill the condition (7) immediately. Indeed,
the nuclear spin rotation associated with the I2 nuclear spin,
as well as the dipole interaction, involve the product of two
spherical tensors which act either on the subspace of the I2

or the coupled subspace of the F1 angular momentum. The
detailed analysis is presented in Appendix B 2.

We have numerically confirmed Eq. (9) for all 86 105
electric dipole and electric quadrupole transitions in the
six isotopologues of hydrogen, which were studied in
Refs. [19,20,20,22,24]. The result derived here is based on
an assumption that the hyperfine-induced coupling between
different rotational levels is negligible in comparison to the
energy difference between rotational states. This condition is
fulfilled by diatomic molecules in the 1� state and, in partic-
ular, by molecular hydrogen. The isotopologues of hydrogen
possess large rotational constants (B = 60.853 cm−1 for H2

[48]) and are characterized by hyperfine interactions that are
several orders of magnitude smaller than the rotational energy
intervals. The result derived here should be of interest to
the accurate spectroscopy of the light hydrogen halides, such
as HF and HCl, or isotopologues of carbon monoxide that
possess hyperfine structure (13C 16O or 12C 17O). For heavier
1� diatomics, the ratio of the largest hyperfine coupling con-
stant to the rotational constant grows considerably, and the
inclusion of the N and N ′ = N ± 2 couplings is necessary
for an accurate description of the molecular spectra [see the
discussion after Eq. (A3) in Appendix A].

III. DOPPLER-BROADENED SPECTRA

The shape of the spectrum is a result of various physical
processes that perturb molecular transitions. Thermal motion
of molecules gives rise to the Doppler broadening, while
collisions lead to the pressure broadening and shift of the
spectral lines [49]. Shapes of optical resonances in molecular
hydrogen deviate considerably from the commonly used Voigt
profile [50,51]. An accurate description of beyond-Voigt line-
shape effects is crucial for determining the central frequency
of the observed transition [14].

Here, we analyze the spectra in the low-pressure regime,
where collisional broadening and shift of spectral lines are
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negligible, and the primary broadening mechanism stems
from the Doppler effect. In such a case, the shape of an
isolated line is described by the Gaussian function. Here, we
acknowledge the presence of the underlying hyperfine struc-
ture of the resonance and we consider the spectrum which
involves the sum of N Gaussian functions, which are centered
at frequencies of respective hyperfine components. However,
unless the experimental spectra are collected at temperatures
low enough to distinguish between single components, the
hyperfine components are blended into a single line.

The position of the maximum of such spectrum can be
determined as follows. First, one can fit the experimental
data with the sum of N Gaussian functions. The number of
hyperfine components can be large and, as they are spread on
a relatively small range of frequencies, numerical problems
might lead to incorrect determination of the maximum. Sec-
ond, one might calculate the first moment of the measured
spectra [ fexp(ν)] numerically,

M(1)
fi =

∫ νmax

νmin

dνν fexp(ν), (10)

where νmin and νmax denote the range of the experimental fre-
quency scan. However, as this procedure involves numerical
integration over a wide range of frequencies, large experimen-
tal noise, which is present at frequencies far from νfi, might
lead to an incorrect determination of the resulting central
frequency. Ultimately, in certain cases, one can determine the
central frequency as the numerical derivative of the measured
spectra and look for ν, for which the derivative vanishes (see
Appendix D). This corresponds to the position of the maxi-
mum of the measured spectra. We discuss this approach at the
end of the following section.

A. Analytical considerations

We consider the spectrum which involves N Gaussian func-
tions of the form

f HF(ν) = AHF

√
πνD

e−(ν−νHF
fi )2/ν2

D , (11)

where νD = νHF
fi
c

√
2kBT/m is related to the half width at half

maximum (HWHM) of the Doppler profile, �D = √
ln 2νD,

and AHF = SHF
fi /Sfi is the relative (unitless) intensity of each

hyperfine component, defined in Eq. (2). Since hyperfine
components are distributed in close vicinity (of the order
of 106 Hz or less) of the central frequency of the rovibra-
tional transition (which is of the order of 1012–1015 Hz),
we can approximate νHF

fi ≈ νfi and we can assume that each
hyperfine component has the same Doppler width. The lat-
ter assumption is well justified since the Doppler width of
rovibrational lines in molecular hydrogen with frequencies
ranging from 1012 (for pure rotational transitions) to 1015 Hz
(for the highest overtones) is modified by less than 10−6 on a
narrow range of frequencies of the order of 106 Hz. In such
a case, the first distribution moment of the total spectrum is
given by

M(1)
fi =

∫ ∞

−∞
dνν

∑
HF

f HF(ν) =
∑
HF

AHFνHF
fi , (12)

where the symbol HF denotes the sum of all hyperfine com-
ponents of the spectrum. Here, we used the fact that the first
moment of a Gaussian distribution centered at νfi is simply
νfi. As shown in the previous section, the result is exactly
zero for all rovibrational transitions in the hydrogen molecule.
This means that when the spectrum is measured in the low-
pressure regime, where the shape of the spectral transition
is determined by a Gaussian function, the presence of the
hyperfine structure does not affect the central frequency of the
Doppler-limited rovibrational transition.

We briefly discuss finding the maximum of the spectrum
through the derivative of the spectrum. One has to realize the
obvious limitation of this approach: if the hyperfine compo-
nents can at least be partially resolved, roots of the numerical
derivative will point to the various local maxima and minima
of the spectrum, and not to the barycenter of the transition.
Careful analysis of the derivative of the spectrum consisting of
N Gaussians might indicate the range of validity of the results
presented in this work.

In Appendix D, we prove that the maximum of the spec-
trum consisting of N Gaussians of the same width νD, which
are spread over the narrow range of frequencies (significantly
smaller than νD), is

νmax (N) ≈
N∑

i=1

ν0iC̄i, (13)

where ν0 i and C̄i = Ci/(
∑

j Cj ) denote the center and the rela-
tive height of the ith Gaussian, respectively. This corresponds
to the barycenter of the resulting spectrum, which, for the
case of rovibrational transitions with hyperfine structure, is
0 [Eq. (9)].

B. Numerical confirmation—four rovibrational
transitions in molecular hydrogen

We numerically test the range of validity of the obtained
results on four rovibrational transitions in the three isotopo-
logues of hydrogen. First, similar to Ref. [52], we define a
dimensionless overlapping parameter of the hyperfine com-
ponents as the ratio between the HWHM of the line profile
(here �D) and the mean-square hyperfine splitting,

� = �D√∑
i

(
AHF

i νHF
i

)2
. (14)

We note that the root-mean-square hyperfine splitting is of
the order of 101 kHz for most of the rovibrational transi-
tions in H2, HD, and D2. In the next step, we simulate four
chosen rovibrational transitions as a sum of Gaussian func-
tions [

∑
HF f HF(ν), with f HF(ν) defined in Eq. (11)] and

we look for the maximum of the spectrum, νmax. When the
hyperfine components are well resolved, νmax corresponds
to the position of the hyperfine component with the largest
intensity. We analyze the 2-0 R(1) line in HD, studied by
Doppler-limited spectroscopy in Refs. [15,32,40], the 1-0
R(0) line in HD, which has the lowest absolute uncertainty
of all rovibrational transitions in molecular hydrogen [11], the
2-0 S(2) line in D2, analyzed by cavity-enhanced techniques in
Refs. [14,28,29,35], and the 1-0 Q(1) line in H2, investigated
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FIG. 1. Position of the maximum of rovibrational spectra, νmax
fi , with respect to the HFS-free transition frequency νfi, as a function of

the dimensionless hyperfine overlapping parameter � [defined in Eq. (14)], for the four chosen transitions in molecular hydrogen. The gray
vertical lines correspond to values of � in selected recent experiments (see the main text for details). The black vertical dashed lines in each
panel correspond to the low- and high-� limits of νmax, i.e., the position of the strongest hyperfine component and the HFS-free transition
frequency, respectively. The inset figures present the Doppler-broadened spectra for the fixed �—the red curves correspond to individual
hyperfine components, while the black curve is the total spectrum, resulting from summing individual components. We put two vertical lines
in each inset plot—the gray line corresponds to the HFS-free frequency and the black line denotes νmax

fi .

recently using stimulated Raman spectroscopy [53]. The re-
sults are presented in Fig. 1.

Both transitions in HD exhibit a typical νmax
fi (�) de-

pendence: at low values of � (well-resolved hyperfine
components), the maximum of the spectrum simply corre-
sponds to the position of the hyperfine component with the
largest intensity [νmax

fi = −52.9 kHz and −57.8 kHz for the
2-0 R(1) and 1-0 R(0) line, respectively]. As � increases,
the components blend into one line and the position of the
maximum shifts towards the HFS-free frequency, which is
achieved for � ≈ 50. The gray vertical lines in each panel
correspond to the value of � in respective experiments. For
the 2-0 R(1) line, Doppler HWHM at room temperature is
775 MHz, which [since

√∑
i(A

HF
i νHF

i )2 ≈ 19 kHz for this
line] gives � ≈ 4×104. Thus, the underlying 21 hyperfine
components have no visible effect on the position of the

maximum of the 2-0 R(1) line, not only at room temperature
[15,32] but also at 80 K, as reported by Kassi et al. [40]
(� ≈ 2×104 at 80 K). We note here that collisional effects
had a significant impact on the measurements performed by
the Caserta group, and thus the Gaussian model analyzed here
may not be directly applicable to the interpretation of the
spectra studied in Refs. [15,32].

The experiment of Fast and Meek was performed in a
different, low-density regime, using a supersonic molecular
beam [11] that offers much lower effective transverse
temperature, resulting in a sub-MHz Doppler broadening. The
gray vertical line in the top right panel of Fig. 1 corresponds
to � ≈ 18 since the mean-square hyperfine splitting is
approximately 30 kHz for the 1-0 R(0) line and the authors of
Ref. [11] assumed that the underlying Gaussians have equal
HWHMs of 400–500 kHz. We note here that the analysis of
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the hyperfine structure in Ref. [11] was more complex than
the one presented here, due to the double-resonance nature
of the experimental technique—a subsequent two-photon
UV excitation from the ν = 1, N = 1 state influenced the
relative intensities of the hyperfine components of the 1-0
R(0) transition.

A slightly different dependence of νmax
fi on (�) is seen

for the 2-0 S(2) line in D2. For � ∼ 10−2, νmax
fi corresponds

to the position of the largest hyperfine component (νmax
fi =

−38.3 kHz). As � increases, νmax
fi shifts towards −35 kHz

(the plateau near � = 1), due to the vicinity of the second
most intense hyperfine component at −29.7 kHz. Then, as
� becomes larger than 1, the 22 components blend into
a single line. The gray vertical line denotes � ≈ 4.3×104

in Refs. [14,29] [�D ≈ 570 GHz and
√∑

i(A
HF
i νHF

i )2 ≈
13 kHz].

Finally, we present an atypical example of νmax
fi (�)

dependence—the case of the 1-0 Q(1) line in H2, recently
studied by Lamperti et al. [53]. This transition involves six
hyperfine components which are spread almost symmetrically
with respect to the HFS-free frequency (the remaining two
components at −600 kHz and 587 kHz are not visible on
the inset plots in the bottom right panel of Fig. 1). The two
components located at −54 and 59 kHz have the same relative
intensity (on the bottom right panel of Fig. 1, we associate
νmax

fi with the 59 kHz component). As � increases, the two,
less intense peaks located in the vicinity of the HFS-free
frequency blend into one line, which is more intense than
the other components—this corresponds to the sudden drop
of νmax

fi (�) for � ≈ 3×10−2. For larger values of �, νmax
fi

remains within the 3 kHz distance from the central frequency
and tends to HFS free for � > 10. This is the case for the
study of Lamperti et al. [53], where � ≈ 5.7×103 justifies ne-
glecting the hyperfine structure in the experimental analysis.

The four spectroscopic transitions considered here confirm
that if the hyperfine components are spread over a narrow
range of frequencies compared to the Doppler width, there
is no significant shift of the resulting spectrum. Using the
overlapping parameter � to quantify the ratio of νD to the
mean-square hyperfine splitting indicates that no visible hy-
perfine shift is present if � > 50. For instance, for the case of
the 1-0 R(0) line in HD, � = 50 corresponds to the tempera-
ture of approximately 4 mK. In some cases, such as the Q lines
in H2, this condition is obeyed for even smaller values of �.

IV. CONCLUSION

We analyzed the first distribution moment of the hyperfine
stick spectra. Based on a well-justified assumption about the
form of the hyperfine Hamiltonian and the negligible mixing
between rotational states, we showed that the barycenter is re-
lated to a difference between the sum of diagonal elements of
the hyperfine Hamiltonian in the initial and final spectroscopic
states, respectively. Additionally, we showed that the sum of
diagonal elements of a scalar product of two spherical tensors
vanishes unless the two tensors are of rank 0. This allowed
us to state that the first distribution moment of the hyperfine
spectra vanishes.

In the next step, we analyzed the barycenter of the
Doppler-broadened spectra. We assumed that each hyperfine

component is described by the Gaussian function of the same
width and we have shown that the formula depends on exactly
the same factor as in the case of the hyperfine stick spectrum.
We also calculated the maximum of the resulting spectra (by
searching for roots of the derivative of the total spectrum) for
the case in which the Doppler width is significantly larger
than the underlying hyperfine structure. The resulting formula
involved the first distribution moment of the stick spectrum,
and thus vanishes.

Finally, we tested the extent to which the results derived
here are applicable to the four selected rovibrational transi-
tions in the three isotopologues of hydrogen. By introducing a
dimensionless overlapping parameter � (the ratio of �D to the
mean-square hyperfine splitting), we confirmed that there is
no net hyperfine shift for � > 50. This allowed us to conclude
that in the accurate experimental spectra performed in the low-
pressure regime, there should be no significant shift due to the
underlying, unresolved hyperfine spectra. This result should
be of particular importance for the recent Doppler-limited
studies of the rovibrational structure of hydrogen [14,15,32].
We note that the formulas derived here should be valid for
any diatomic molecule for which the hyperfine-induced mix-
ing is negligible. Molecular hydrogen, with its exceptionally
large rotational constant, fulfills this condition particularly
well.

The work presented here is a stepping stone toward a
deeper understanding of the influence of hyperfine structure
on accurate molecular spectra, which are used to study quan-
tum electrodynamics and put constraints on physics beyond
the standard model. However, the majority of Doppler-limited
studies suffer from collisional effects, which are not consid-
ered here. A natural extension of this work would be to study
the existence of a net hyperfine shift in collision-perturbed
spectra. For instance, a limiting case, opposite to the one
presented here, could be considered: at high pressure and low
temperature, the total spectrum should be a sum of Lorentzian
functions corresponding to individual hyperfine components.
We can immediately state that the results obtained here are
not applicable to the Lorentzian case. We recall that one of the
assumptions used here is that the hyperfine components have
the same width. This is not fulfilled in the collision-perturbed
case since the individual hyperfine components of molecular
transitions are known to have different pressure broadening
and shift coefficients. For instance, Buffa et al. [54] reported
a significant variability (≈30%) of the pressure-broadening
coefficients in the hyperfine structure of the rotational tran-
sition in CH3I. Interestingly, the hyperfine collisional effects
are expected to be less pronounced in linear molecules, as
explained by Belli et al. [55], and confirmed numerically by
Green for He-perturbed rotational lines in HCN [56] and by
Buffa and Tarini for He-perturbed DCO+ lines [52,57]. Colli-
sional effects in the hyperfine structure of molecular hydrogen
seem to be particularly interesting: hydrogen lines are known
to have an exceptionally large pressure shift [50], which can
exceed pressure broadening [58]. If a significant variability in
the pressure-shift coefficients is found for individual hyperfine
components, the order of the particular components could be
different than in the Doppler-broadened case. Moreover, line
coupling between different hyperfine components, which has
been detected in the rotational spectrum of HI [59], could lead
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to a severe deterioration of the total shape of the spectrum,
at least in the intermediate range of � (for pressures large
enough to induce overlapping of the components, but not
large enough to blend them into a single line). The study
of collisional effects in the hyperfine structure of molecular
hydrogen will be the subject of upcoming papers.
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APPENDIX A: COUPLING SCHEMES AND HYPERFINE EIGENSTATES

The effective hyperfine Hamiltonian for a given electronic state in the six isotopologues was discussed in
Refs. [19,20,22,24,25]. Here, we discuss only the parts relevant for this paper, namely, the coupled basis used in the derivation,
and the relation between the coupled basis and the eigenbasis of the hyperfine Hamiltonian.

Throughout the paper, we use the eigenbasis of the square of the total angular momentum, F, which is constructed by coupling
eigenvectors of the three angular momenta: I1, I2, and N. For the homonuclear isotopologues of hydrogen, we couple the two
nuclear spin angular momenta to form the total nuclear spin angular momentum I, which is coupled to the rotational angular
momentum N to form the total angular momentum F. The resulting state vector is denoted as |ν; [N (I1I2)I]FmF〉 and is given by

|ν; [N (I1I2)I]FmF〉 =
N∑

mN=−N

I∑
mI=−I

〈NmNImI|FmF〉|ν; NmN〉|(I1I2)ImI〉

=
N∑

mN=−N

I∑
mI=−I

〈NmNImI|FmF〉
I1∑

mI1 =−I1

I2∑
mI2 =−I2

〈
I1mI1 I2mI2

∣∣ImI
〉∣∣ν; NmN

〉∣∣I1mI1

〉∣∣I2mI2

〉
, (A1)

where 〈·|·〉 is the Clebsch-Gordan coefficient, |I1mI1〉 and |I2mI2〉 are the eigenvectors of I2
1 and I2

2, respectively, and |ν; NmN〉 =
|νN〉|NmN〉 denotes the rovibrational level. In position representation, |ν; NmN〉 is given as

〈 	R|ν; NmN〉 = χν,N (R)YNmN (R̂). (A2)

	R denotes the position vector of the internuclear axis, χν,N (R) is the solution of the nuclear radial Schrödinger equation, and
YNmN is the spherical harmonic.

In the heteronuclear case, one of the nuclear spin angular momenta, I1, is coupled to the rotational angular momentum to
form the intermediate angular momentum F1. The latter is coupled to the remaining nuclear spin angular momentum I2 to form
the total angular momentum F. The resulting vector is denoted as |ν; [(NI1)F1I2]FmF〉,

|ν; [(NI1)F1I2]FmF〉 =
F1∑

mF1 =−F1

I2∑
mI2 =−I2

〈F1mF1 I2mI2 |FmF〉
∣∣ν; (NI1)F1mF1

〉∣∣I2mI2

〉

=
F1∑

mF1 =−F1

I2∑
mI2 =−I2

〈
F1mF1 I2mI2

∣∣FmF
〉 N∑

mN=−N

I1∑
mI1 =−I1

〈
NmNI1mI1

∣∣F1mF1

〉∣∣ν; N
〉∣∣I1mI1

〉∣∣I2mI2

〉
. (A3)

The effective hyperfine Hamiltonian is diagonal with respect to F and mF. In the case of homonuclear molecules, the nuclear
spin–nuclear spin dipole and, in the case of D2, the quadrupole interaction introduce a weak coupling between the N and
N ′ = N ± 2 states. This coupling is, however, at least seven orders of magnitude smaller than the energy interval between the
N and N ′ = N ± 2 states, and is therefore neglected in the analysis. The relative weakness of this coupling with respect to the
rotational constant is particularly pronounced in hydrogen isotopologues, but it should also hold for light hydrogen halides,
such as HF and HCl, as well as for the less abundant isotopologues of carbon monoxide. The ratio of the largest hyperfine
coupling constant in the ν = 0, N = 1 state to the rotational constant, hereafter referred to as γ , is of the order of 10−7 for H 19F
[61], 10−5 for 12C 17O and 13C 17O [62,63], and 10−4 for H 35Cl and H 37Cl [64]. Indeed, in the analysis of hyperfine-resolved
rotational spectra [62,64] or molecular-beam electric resonance spectra [61,65] of these species, the couplings between the N
and N ′ = N ± 2 levels were neglected. Moving down the periodic table, we note that γ ∼ 10−3 for H 79Br and H 81Br [66], and
γ ∼ 10−2 for the H 127I [67,68]. In these cases, couplings between different rotational levels are crucial for accurate analysis
of the hyperfine spectra [66,67]. While in the case of Doppler-limited spectroscopy large γ is undesirable, strong hyperfine
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coupling might enhance the hypothetical Feshbach resonances in collisions of two 1� molecules, as predicted by Wallis and
Krems for 87Rb 133Cs (γ ∼ 10−3) [69].

In the homonuclear case, the nuclear spin–nuclear spin and the electric quadrupole interaction also couple the I and I ′ = I ± 2
states. In the case of hydrogen molecules, considered here, this coupling is only of relevance for ortho-D2. In this case, to obtain
the hyperfine eigenstates, the F -labeled blocks should be diagonalized. The relation between the hyperfine eigenstates and the
coupled basis vectors is

|ν; NFmF(±)〉 =
∑

I

aνNF (±)
I |ν; [N (I1I2)I]FmF〉. (A4)

Here, aνNF (±)
I is a mixing coefficient obtained from diagonalization, which is related to the hyperfine coupling constants. For

ortho-H2, para-D2, and ortho − T2 (I = 1), the sum is trivial and the coupled basis vectors are the eigenstates of the effective
hyperfine Hamiltonian. Note that this leads to an interesting consequence, as the relative intensities of rovibrational transitions
in these isotopologues are independent of ν [41]. In the case of ortho-D2, two out of six hyperfine states for a given rovibrational
level are a superposition of the coupled basis vectors introduced in Eq. (A1). In order to distinguish these states, we use (±)
labels, which denote states with higher (+) and lower (−) energy.

For heteronuclear isotopologues, the nuclear spin-rotation interaction associated with nuclear spin I1 (which was directly
coupled with N) is fully diagonal with respect to all quantum numbers. Coupling between different F1 states occurs due to the
nuclear spin rotation associated with the I2 spin, the nuclear spin–nuclear spin dipole interaction, and, in deuterated species, the
quadrupole interaction. This imposes the necessity to diagonalize the F -labeled blocks. The hyperfine eigenstates are related to
the coupled basis vectors as

|ν;NFmF(±)〉 =
F+I2∑

F1=|F−I2|
aνNF (±)

F1
|ν; [(NI1)F1I2]FmF〉, (A5)

where aνNF (±)
F1

is the mixing coefficient appropriate for the heteronuclear case. Similarly to the homonuclear case, we use the (±)
labels to distinguish between the superposition states which correspond to the same values of ν, N , and F , but differ in energy.

APPENDIX B: DERIVATION OF EQ. (4)

We begin with the analysis of the first distribution moment of the following form:

M(1)
fi = 1

h

∑
HF

(〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉 − 〈
νi; NiFimFi (±)i

∣∣HHF
∣∣νi; NiFimFi (±)i

〉)SnHF
fi

Sn
fi

. (B1)

We consider the two terms separately. The first one is rewritten as [Eq. (2)]

∑
Fi,(±)i

∑
Ff ,(±)f

〈
νf ; Nf Ff mFf (±)f

∣∣HHF
∣∣νf ; Nf Ff mFf (±)f

〉SHF
fi

Sfi

= 1

wI fn(Ni, Nf )
∣∣Mn

fi

∣∣2

∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉|〈νf ; Nf Ff (±)f ||T (n)(M)||νi; NiFi (±)i〉|2. (B2)

We express all the terms in Eq. (B2) in the coupled basis set introduced in Eqs. (A1) and (A3) in the next two paragraphs,
respectively.

1. Homonuclear case

We focus on the reduced matrix element of the transition operator. We explicitly write the modulus square of the reduced
matrix element of the transition operator in the coupled basis using Eq. (A4),

∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉SHF
fi

Sfi

= 1

wI fn(Ni, Nf )
∣∣Mn

fi

∣∣2

∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉

×
Ff +Nf∑

I ′=|Ff −Nf |
a(±)f ∗

I ′

Fi+Ni∑
I ′′=|Fi−Ni|

a(±)i
I ′′ 〈νf ; [Nf (I1I2)I ′]Ff ||T (n)(M)||νi; [Ni(I1I2)I ′′]Fi〉

Ff +Nf∑
I ′′′=|Ff −Nf |

a(±)f
I ′′′

Fi+Ni∑
I ′′′′=|Fi−Ni|

a(±)i ∗
I ′′′′

× 〈νf ; [Nf (I1I2)I ′′′]Ff ||T (n)(M)||νi; [Ni(I1I2)I ′′′′]Fi〉∗. (B3)
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The sum over (±)i involves only the two mixing coefficients. We note that the following orthogonality relations hold:∑
±

a(±) ∗
I ′ a(±)

I ′′ = δI ′I ′′ , (B4)

∑
I

a(±) ∗
I a(±)

I = δ+−. (B5)

In the present case, the sum over (±)i results in the Kronecker delta δI ′′I ′′′′ , which makes the last sum in Eq. (B3) trivial. In the
next step, we simplify the two reduced matrix elements using the following property of spherical tensor operators [47]:

〈νf ; [Nf (I1I2)If ]Ff ||T (n)(M)||νi; [Ni(I1I2)Ii]Fi〉

= δIf Ii (−1)Fi+Nf +n+If
√

[Fi, Ff ]

{
Ff Fi n

Ni Nf Ii

}
〈νf ; Nf ||T (n)(M)||νi; Ni〉, (B6)

where [x1, x2, . . . , xn] = (2x1 + 1)(2x1 + 2) · · · (2xn + 1). This reduction is justified by the fact that the transition operator acts
only on the subspace associated with rotational angular momentum and does not modify the nuclear spins.

These two operations lead to

∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉SHF
fi

Sfi

= (−1)2(Fi+Nf +n) |〈νf ; Nf ||T (n)(M)||νi; Ni〉|2
wI fn(Ni, Nf )

∣∣Mn
fi

∣∣2

∑
Fi,Ff ,(±)f

[Fi, Ff ]〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉

×
Ff +Nf∑

I ′=|Ff −Nf |
a(±)f ∗

I ′

Fi+Ni∑
I ′′=|Fi−Ni|

δI ′I ′′ (−1)I ′
{

Ff Fi n

Ni Nf I ′′

} Ff +Nf∑
I ′′′=|Ff −Nf |

a(±)f
I ′′′ δI ′′I ′′′ (−1)I ′′′

{
Ff Fi n

Ni Nf I ′′

}
. (B7)

The Kronecker deltas reduce the sums over I ′′′ and I ′′. Using Eq. (A12) in Ref. [41],∣∣〈νf ; Nf ||T (n)(M)||νi; Ni〉
∣∣2

fn(Ni, Nf )
∣∣Mn

fi

∣∣2 = 1, (B8)

we obtain∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉SHF
fi

Sfi

= (−1)2(Fi+Nf +n) 1

wI

∑
Fi,Ff ,(±)f

[Fi, Ff ]〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉
Ff +Nf∑

I ′=|Ff −Nf |
(−1)2I ′ ∣∣a(±)f

I ′
∣∣2

{
Ff Fi n

Ni Nf I ′

}2

. (B9)

The sum over Fi involves only the [Fi] term and the 6-j symbol. This allows us to use the orthogonality of the 6-j symbols,

∑
Fi

[Fi]

{
Ff Fi n
Ni Nf I ′

}2

= 1

[Nf ]
, (B10)

which leads to∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉SHF
fi

Sfi

= (−1)2(Fi+Nf +n) 1

wI[Nf ]

∑
Ff ,(±)f

[Ff ]〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉
Ff +Nf∑

I ′=|Ff −Nf |
(−1)2I ′ ∣∣a(±)f

I ′
∣∣2

. (B11)

Both phase factors can be reduced: N , n, and the sum Fi + I ′ are always integers. As a consequence, the sum over I ′ gives 1,
according to Eq. (B5),

∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉SHF
fi

Sfi
= 1

wI[Nf ]

∑
Ff ,(±)f

[Ff ]〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉. (B12)

We recall that in the absence of an external magnetic field, the hyperfine Hamiltonian is diagonal with respect to the projection
of the total angular momentum on the space-fixed z axis, mF. We note that this approach is applicable to experimental techniques
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in which the laser field does not considerably shift the hyperfine components (in the extreme case of cavity-enhanced saturation
experiments, the dynamical AC Stark shift can be of the order of a few kHz; see Refs. [17,31]). Using∑

mFf

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉 = [Ff ]〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉, (B13)

we obtain∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉SHF
fi

Sfi
=

∑
Ff ,mFf ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉
wI[Nf ]

. (B14)

Finally, we transform the matrix element to the coupled basis using Eq. (A4) and summing over the (±) labels, given by Eq. (B4),
we obtain the first term in Eq. (4). Using exactly the same procedure for the second term in Eq. (B1), we obtain the second term
in Eq. (4),

∑
Fi,(±)i

∑
Ff ,(±)f

〈νi; NiFimFi (±)i|HHF|νi; NiFimFi (±)f〉SHF
fi

Sfi
=

∑
Fi,mFi ,Ii

〈νi; (NiIi )FimFi |HHF|νi; (NiIi )FimFi〉
wI[Ni]

. (B15)

2. Heteronuclear case

We express the reduced matrix elements in Eq. (B1) of the transition moment in the coupled basis using Eq. (A5),

∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉SHF
fi

Sfi

= 1

wI fn(Ni, Nf )|Mn
fi|2

∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉

×
Ff +I2∑

F ′
1=|Ff −I2|

a(±)f ∗
F ′

1

Fi+I2∑
F ′′

1 =|Fi−I2|
a(±)i

F ′′
1

〈νf ; ((Nf I1)F ′
1 I2)Ff ||T (n)(M)||νi; ((NiI1)F ′′

1 I2)Fi〉

×
Ff +I2∑

F ′′′
1 =|Ff −I2|

a(±)f

F ′′′
1

Fi+I2∑
F ′′′′

1 =|Fi−I2|
a(±)i ∗

F ′′′′
1

〈νf ; ((Nf I1)F ′′′
1 I2)Ff ||T (n)(M)||νi; ((NiI1)F ′′′′

1 I2)Fi〉∗. (B16)

We note that the sum over (±)i involves only the two mixing coefficients. Similar to Eqs. (B4) and (B5), we can formulate the
orthogonality relations for the heteronuclear basis, ∑

(±)

a(±) ∗
F ′

1
a(±)

F ′′
1

= δF ′
1 F ′′

1
, (B17)

∑
F1

a(±) ∗
F ′

1
a(±)

F ′
1

= δ+−. (B18)

Using Eq. (B17) leads to the reduction of the sum over F ′′′′
1 due to the presence of δF ′′

1 F ′′′′
1

. Since the transition operator acts only
on the subspace of the eigenvectors of N2, we apply Eq. (B6) twice. Finally, we reduce the fn(Ni, Nf ) coefficients using Eq. (B8).
After applying these three operations, the expression looks as follows:

∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉SHF
fi

Sfi

= 1

wI

∑
Fi,Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉
∑

F ′
1 ,F ′′

1 ,F ′′′
1

a(±)f ∗
F ′

1
a(±)f

F ′′′
1

(−1)2(Fi+2n+I1+I2+Nf +F ′′
1 )

× (−1)F ′
1+F ′′′

1 [Fi, Ff , F ′′
1 ]

√
[F ′

1 , F ′′′
1 ]

{
Ff Fi n

F ′′
1 F ′

1 I2

}{
F ′

1 F ′′
1 n

Ni Nf I1

}{
Ff Fi n

F ′′
1 F ′′′

1 I2

}{
F ′′′

1 F ′′
1 n

Ni Nf I1

}
. (B19)

The first phase factor is reduced immediately: N , n, and the sum I1 + F1, I2 + F are always integers. The Fi symbol occurs only
in the [Fi] term and the two 6-j symbols. Using orthonormality of the 6-j symbols,

∑
Fi

[Fi]

{
Ff Fi n
F ′′

1 F ′
1 I2

}{
Ff Fi n
F ′′

1 F ′′′
1 I2

}
= δF ′

1 F ′′′
1

[F ′
1 ]

, (B20)
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we further simplify the expression for the first distribution moment,

∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉SHF
fi

Sfi

= 1

wI

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉
∑

F ′
1

(−1)2F ′
1 |a(±)f

F ′
1

|2[Ff ]
∑
F ′′

1

[F ′′
1 ]

{
F ′

1 F ′′
1 n

Ni Nf I1

}2

. (B21)

The remaining phase factor depends on whether the nuclear spin I1 is an integer [(−1)2F ′
1 = (−1)2I1 = 1] or a half integer

[(−1)2F ′
1 = (−1)2I1 = −1]. We substitute (−1)2F ′

1 with (−1)2I1 , and reduce the sum over F ′′
1 using Eq. (B20). The remaining

sum over F ′
1 , which includes only the mixing coefficient, equals 1, according to Eq. (B18),

∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉SHF
fi

Sfi

= (−1)2I1

wI [Nf ]

∑
Ff ,(±)f

[Ff ]〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉. (B22)

Finally, we use Eq. (B13) and substitute the relation between the eigenvectors of the hyperfine Hamiltonian and the coupled
basis vectors from Eq. (A3). This leads to the expected result,

∑
Fi,(±)i

∑
Ff ,(±)f

〈νf ; Nf Ff mFf (±)f |HHF|νf ; Nf Ff mFf (±)f〉SHF
fi

Sfi
= (−1)2I1

∑
Ff ,mFf F1f

〈νf ; [(Nf I1)F1f I2]Ff mFf |HHF|νf ; [(Nf I1)F1f ]Ff mFf 〉
wI [Nf ]

.

(B23)

The same mathematical operations can be applied to the second term in Eq. (B1), which results in

∑
Fi,(±)i

∑
Ff ,(±)f

〈νi; NiFimFi (±)i|HHF|νi; NiFimFi (±)i〉SHF
fi

Sfi
= (−1)2I1

∑
Fi,mFi F1i

〈νi; [(NiI1)F1i I2]FimFi |HHF|νi; [(NiI1)F1i ]FimFi〉
wI [Ni]

.

(B24)

Subtracting the two terms leads to an analog of Eq. (4) for heteronuclear molecules,

Mfi
(1) = (−1)2I1

hwI

⎛
⎝ ∑

Ff ,mFf F1f

〈
νf ; [(Nf I1)F1f I2]Ff mFf

∣∣HHF
∣∣νf ; [(Nf I1)F1f ]FfmFf

〉
[Nf ]

−
∑

Fi,mFi F1i

〈
νi; [(NiI1)F1i I2]FimFi

∣∣HHF
∣∣νi; [(NiI1)F1i ]FimFi

〉
[Ni]

⎞
⎠. (B25)

APPENDIX C: PROOF OF EQ. (8)

We seek a general formula for the trace of the scalar product of two tensors of rank k. Using a formula for matrix elements of
the scalar product of two spherical tensors which act on two distinct parts of the coupled basis [47], we obtain∑

ν, j1, j2, j,m

〈ν; ( j1 j2) jm|T (k)(A) · T (k)(B)|ν; ( j1 j2) jm〉

=
∑

ν, j1, j2

(−1) j1+ j2

⎛
⎝∑

j

(−1) j (2 j + 1)

{
j2 j1 j

j1 j2 k

}⎞
⎠〈ν; j1||T (k)(A)||ν; j1〉〈ν; j2||T (k)(B)||ν; j2〉. (C1)

Here, we intentionally distinguish a part of the formula in a bracket. In order to reduce this term, we start with the general
orthogonality rule for the 6-j symbols,

∑
j3

(2 j3 + 1)

{
j1 j2 j3
j4 j5 k

}{
j1 j2 j3
j4 j5 k′

}
= δkk′

2k + 1
, (C2)

and we put k′ = 0. We recall that in this case, the second 6-j symbol is simplified as follows:{
j1 j2 j3
j4 j5 0

}
= δ j1 j5δ j2 j4√

(2 j1 + 1)(2 j2 + 1)
(−1) j1+ j2+ j3 . (C3)
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This leads to ∑
j3

(−1) j3 (2 j3 + 1)

{
j1 j2 j3
j2 j1 k

}
= δk0(−1)− j1− j2

√
(2 j1 + 1)(2 j2 + 1). (C4)

This result, inserted into Eq. (C1) with j4 = j1, j5 = j2, and j3 = j, leads to∑
ν, j1, j2, j,m

〈ν; ( j1 j2) jm|T (k)(A) · T (k)(B)|ν; ( j1 j2) jm〉 = δk0

√
(2 j1 + 1)(2 j2 + 1)〈ν; j1||T (k)(A)||ν; j1〉〈ν; j2||T (k)(B)||ν; j2〉.

(C5)

APPENDIX D: DERIVATIVE OF
THE N-GAUSSIAN SPECTRUM

The central frequency of the N-Gaussian spectrum can
be determined by calculating the derivative of the sum of
N Gaussians, and searching for ν, for which the derivative
vanishes. Here, we prove that if the centers of the Gaussians
are spread over a narrow range of frequencies, significantly
smaller than their widths, the barycenter of the sum of N
Gaussians of the same width is given by the formula

νmax
fi ≈

∑
HF

AHFνHF
fi . (D1)

We begin with a simple case of the spectrum which involves
two Gaussian functions of different heights, but the same
width. The resulting spectrum is

f (ν) = C√
πνD

e−(ν−a)2/ν2
D + C′

√
πνD

e−(ν−b)2/ν2
D . (D2)

The two Gaussians are centered around ν = a and ν = b and
are of C and C′ heights, respectively. We slightly modify this
equation by introducing the following variables:

δ = 1
2 ln

C

C′ ,

α = a + b,

β = a − b,

ξ (ν) = eαν/ν2
D−(a2+b2 )/2ν2

D , (D3)

which allows us to rewrite Eq. (D2) as

f (ν) = 2
√

CC′
√

πνD
e−ν2/ν2

Dξ (ν) cosh

[
β

ν2
D

(ν − α) + δ

]
. (D4)

The extrema of the spectrum occur at ν for which f ′(ν) = 0.
This leads to a nonlinear equation on ν,

ν = β

2
tanh

[
β

ν2
D

(ν − α) + δ

]
+ α

2
. (D5)

An approximate solution can be found using Taylor expan-
sion. First, we use the formula for the sum of arguments of
the hyperbolic tangent,

tanh(a + b) = tanh (a) + tanh (b)

1 + tanh (a) tanh (b)
, (D6)

we rewrite the resulting equation using a new variable,
x = β

ν2
D

(ν − α), and we expand the right-hand side of Eq. (D5)

for x � 1, keeping only the terms that are linear in x,

νmax ≈ β

2

tanh (δ) + β

ν2
D

(ν − α)

1 + tanh (δ) β

ν2
D

(ν − α)
+ α

2
. (D7)

The remaining hyperbolic tangent is simply

tanh δ = C − C′

C + C′ . (D8)

If x � 1, then C−C′
C+C′ x � 1 too. Thus, in the next step, we

expand the denominator and we neglect all terms smaller than
the linear term on the right-hand side of the equation. This
leads to

νmax ≈
1
2

β(C−C′ )+α(C+C′ )
C+C′ − αβ

ν2
D

(
1 − (C−C′ )2

(C+C′ )2

)
1 − β2

2ν2
D

(
1 − (C−C′ )2

(C+C′ )2

) , (D9)

which is drastically simplified if β/νD � 1. Substituting a
and b for α and β from Eq. (D3) results in

νmax ≈ aC̄ + bC̄′, (D10)

where C̄ = C/(C + C′) and C̄′ = C′/(C + C′) are relative in-
tensities of the two components. This result resembles the
form anticipated in Eq. (D1). We thus have provided a position
of the maximum of Eq. (D2) for β/νD � 1.

Additionally, we can show that if a/νD � 1 and b/νD � 1,
the general formula from Eq. (D2) is simplified into a single
Gaussian, centered at νmax with the height of C + C′. We
approximate the exponents involving a and b as ex ≈ 1 + x in
Eq. (D2), and we keep only the terms that are linear in a/νD

and b/νD. This leads to

f (ν) ≈ (C + C′)√
πνD

e−ν2/ν2
D

(
1 + 2

ν

νD

aC + bC′

C + C′

)
, (D11)

which corresponds to the approximation of

f (ν) = (C + C′)√
πνD

e−(ν−νmax )2/ν2
D (D12)

for νmax/νD � 1. We write, symbolically, that

f (ν) = f (ν; a,C) + f (ν; b,C′) ≈ f (ν; νmax (2),C(2) ),
(D13)

which means that the sum of two Gaussians of the same width,
centered around a and b, leads to another Gaussian, centered
around νmax = νmax (2) [the (2) superscript denotes the number
of summed Gaussians], given by Eq. (D10). The resulting
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profile is of the height which is the sum of the two Gaussian
functions, C(2) = C + C′.

We apply the same procedure to another Gaussian, cen-
tered around c and of the height given by C′′. Using the same
arguments as in the two-Gaussian case, the central frequency
of the profile resulting from summing three Gaussians is given
as

νmax (3) ≈ aC̄ + bC̄′ + cC̄′′. (D14)

This iterative approach can be used for the N-Gaussian case.
If all conditions introduced throughout the derivation remain
fulfilled, the central frequency of the set of N-Gaussian func-

tions, f (ν; ν0i,Ci ) is given by

νmax (N) ≈
N∑

i=1

ν0iC̄i. (D15)

Thus, the maximum of the profile resulting from summing
N-Gaussian functions involves the first moment, defined in
Sec. II. If all Gaussians fulfill the condition,

N∑
i=1

ν0iC̄i = 0, (D16)

the maximum of the resulting profile corresponds to the zero
frequency.
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[14] M. Zaborowski, M. Słowiński, K. Stankiewicz, F. Thibault, A.
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[58] M. Słowiński, F. Thibault, Y. Tan, J. Wang, A.-W. Liu, S.-M.
Hu, S. Kassi, A. Campargue, M. Konefał, H. Jóźwiak et al.,
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