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Phase randomness in a semiconductor laser: Issue of quantum random-number generation
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Gain-switched lasers are in demand in numerous quantum applications, particularly in systems of quantum
key distribution and in various optical quantum random number generators. The reason for this popularity is
natural phase randomization between gain-switched laser pulses. The idea of such randomization has become so
familiar that most authors use it without regard to the features of the laser operation mode they use. However,
at high repetition rates of laser pulses or when pulses are generated at a bias current close to the threshold, the
phase randomization condition may be violated. This paper describes theoretical and experimental methods for
estimating the degree of phase randomization in a gain-switched laser. We consider in detail different situations
of laser pulse interference and show that the interference signal remains quantum in nature even in the presence
of classical phase drift in the interferometer provided that the phase diffusion in a laser is efficient enough.
Moreover, we formulate the relationship between the previously introduced quantum reduction factor and the
leftover hash lemma. Using this relationship, we develop a method to estimate the quantum noise contribution
to the interference signal in the presence of phase correlations. Finally, we introduce a simple experimental
method based on the analysis of statistical interference fringes, providing more detailed information about the
probabilistic properties of laser pulse interference.
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I. INTRODUCTION

Phase randomness between pulses of a gain-switched semi-
conductor laser is an essential ingredient of quantum key
distribution (QKD) systems and quantum random number
generators (QRNGs). Inasmuch as amplified spontaneous
emission dominates below threshold in a semiconductor laser
[1,2], phase correlations of the electromagnetic field are de-
stroyed very quickly between laser pulses under the gain
switching. Therefore, many authors often assume implicitly
that pulses from a gain-switched laser have no phase re-
lationship with each other. The security analysis of QKD
protocols, particularly decoy-BB84 protocol [3–5], assumes
that the laser emits light pulses that are a mixture of coherent
states with uniformly distributed phases. A similar assumption
is usually made when considering laser pulse interference as
a quantum entropy source for some optical QRNGs [6–12].
In real experiments, however, phase correlations may still
occur and may thus lead to loss of security. Therefore, phase
diffusion between laser pulses should be treated carefully in
these applications.

*r.shakhovoy@goqrate.com

The main reason for correlations between phases of pulses
emitted by a gain-switched semiconductor laser is an in-
sufficient delay between subsequent pulses, during which
the phase does not have enough time to “diffuse.” Also, a
high value of the bias current does not allow the attenuation
between laser pulses to be high enough to provide fast deco-
herence. It was estimated in [6] that enough for application
in QRNG randomness could be achieved with the laser pulse
repetition rate up to 20 GHz under the assumption that at-
tenuation between pulses reaches 100 dB. The same authors
demonstrated later an optical QRNG with the distributed feed-
back (DFB) gain-switched laser operating at a pulse repetition
rate of 5.825 GHz [7]. In [13] the phase randomness between
pulses with the repetition rate of 10 GHz was demonstrated to
be enough for QKD applications.

The issue of the phase randomness of attenuated laser
pulses used as quantum states for QKD has been widely
discussed in the literature [13–16]. It was shown that
phase correlations enhance the distinguishability of quantum
states [14], which is directly related to the security of the
decoy-BB84 protocol; therefore, when the phase between
coherent states is not well randomized, the performance
of the QKD system will be substantially reduced. In fact,

2469-9926/2023/107(1)/012616(18) 012616-1 ©2023 American Physical Society

https://orcid.org/0000-0003-2750-0518
https://orcid.org/0000-0001-8601-8196
https://orcid.org/0000-0001-7003-7149
https://orcid.org/0000-0002-5510-0899
https://orcid.org/0000-0001-7542-3954
https://orcid.org/0000-0002-1529-4481
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.012616&domain=pdf&date_stamp=2023-01-30
https://doi.org/10.1103/PhysRevA.107.012616


ROMAN SHAKHOVOY et al. PHYSICAL REVIEW A 107, 012616 (2023)

it was demonstrated experimentally that Eve could employ
phase correlations to compromise the quantum key [15,16].
The dependence of the state distinguishability (imbalance of
the quantum coin [17]) on the degree of phase correlations
between laser pulses or rather on the value of the stan-
dard deviation σϕ of phase fluctuations has been investigated
numerically in [13]. The authors demonstrated that the imbal-
ance decreases as the standard deviation increases converging
to finite values for large σϕ .

Reference [12] introduced the concept of the quantum re-
duction factor, which allows estimating the contribution of
classical noise to the interference of laser pulses. The pro-
posed approach assumes that σϕ is large enough (σϕ > 2π ),
such that one may consider any classical contribution to phase
fluctuations to be buried under the noise of spontaneous emis-
sion. The situation σϕ < 2π has not been considered in [12];
however, the definition of the quantum reduction factor now
should be modified to take the lack of phase randomness
into account. In this paper we propose a method which al-
lows including these correlations into the model for a QRNG
based on the interference of laser pulses. We discuss this in
Sec. II C.

Another motivation for this paper was that there is no well-
established theoretical approach in the literature that would
allow estimating the pulse repetition rate and appropriate
values of the pump current at which the phase randomness
could be still considered purely quantum and thus sufficient
for application in a QRNG. Here we intend to formulate a
theoretical approach which provides a clear criterion for the
phase diffusion efficiency at any pulse repetition rate and any
value of the pump current.

In addition to a theoretical model, which allows analyzing
the dependence of σϕ on laser parameters, it is useful to have
a reliable experimental method to measure the phase diffusion
between pulses of a gain-switched laser. A standard approach
is to use visibility of interference fringes as a criterion of
phase randomness (see, e.g., [13]). Such an approach provides
a useful experimental probe to estimate the effectiveness of
the phase diffusion. However, it does not allow distinguishing
various noise contributions to the interference signal, such as
the photodetector noise or intrinsic fluctuations of laser pulse
intensity. We will demonstrate here that it is possible to set up
the experiment in such a way that the experimental data would
be sensitive to the mentioned classical noises, so that they
could be separated from the phase fluctuations by choosing an
appropriate mathematical model. We discuss this in Sec. IV
(for more details see [12]).

In Sec. II we consider the most essential features of the
interference of laser pulses with random phases, provide a
method to estimate the quantum noise contribution to the
interference signal in the presence of phase correlations,
and develop a numerical approach to follow the depen-
dence of the phase diffusion on the pump current and the
pulse repetition rate. In Sec. III we provide the reader with
experimental results on the phase diffusion measurements.
Finally, in Secs. IV and V discussions and conclusions are
given.

II. THEORETICAL CONSIDERATIONS

A. On the interference of laser beams

1. Monochromatic plane wave

In most textbooks on optics, the interference of light in a
Mach-Zehnder interferometer is usually considered using the
example of a plane-polarized monochromatic wave, which is
divided by a first beam splitter and gets into the interferometer
arms. In the general case, one of the arms can be longer
or, e.g., may contain some object. After passing through the
interferometer arms, the two resulting waves are then met
at the second beam splitter, where the interference occurs.
The result of the interference depends on the phase acquired
by the wave in the long arm of the interferometer (or rather
by the phase difference between the arms). In the case of a
quasimonochromatic wave, the result of the interference will
also depend on the relationship between the time delay �T of
the long arm and the coherence time τc of light. If �T � τc,
one may assume that electric fields meeting at the second
beam splitter have the form

E1(t ) = E0 exp (iϕ0 + iω0t ),

E2(t ) = E0 exp [iϕ0 + iω0(t + �T )], (1)

where ω0 is the midfrequency of the field and where we
assume for simplicity that both beam splitters of the interfer-
ometer are ideal 50:50 beam splitters. We also assume that
losses in the interferometer arms are the same (or may be
neglected), so that the real amplitudes of the interfering fields
are equal to E0. The result of the interference S in one of
the output ports of the interferometer will then be written as
follows:

S ≡ |E1 + E2|2 = 4E2
0 cos2

(
ω0�T

2

)
. (2)

It is clear from Eq. (2) that the interference depends on the
carrier frequency of the field, which is a standard result.

2. Two independent monochromatic waves

A somewhat different result is obtained when considering
the interference of the two monochromatic waves from in-
dependent laser sources [18]. To observe the interference in
this case, it is sufficient to take a single beam splitter and to
send laser beams into its input ports. If the intensities of the
two laser beams are the same, then the monochromatic waves
interfering at the beam splitter can be written as follows:

E1(t ) = E0 exp
(
iϕ0

1 + iω0t
)
,

E2(t ) = E0 exp
[
iϕ0

2 + iω0(t + τ )
]
, (3)

where ϕ0
1 and ϕ0

2 are random initial phases of the fields and
ω0τ corresponds to a phase difference due to the optical path
difference of the light beams. The result of the interference in
one of the output ports of the beam splitter can be written as
follows:

S = 4E2
0 cos2

[
1
2 (ω0τ + �ϕ)

]
, (4)
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where �ϕ = ϕ0
2 − ϕ0

1 . In the general case, the phase differ-
ence �ϕ is a random function of time, and for incoherent
beams it fluctuates very quickly, so that the interference
cannot be observed. In the case of independent quasi-
monochromatic laser beams, �ϕ is still a function of time,
but its variations occur quite slowly, so that the interference
can be easily observed.

Note that if the two independent laser beams with fields,
as in Eq. (3), are brought into the same input port of an
unbalanced interferometer, the result of the interference will
be determined by the following relation:

S = 4E2
0 cos2

(
ω0�T

2

)
cos2

[
1

2
(ω0τ + �ϕ)

]
. (5)

An important difference between the interference of indepen-
dent coherent laser beams [Eq. (5)] from the interference of
a monochromatic wave with itself [Eq. (2)] is that the former
depends on the phase difference �ϕ, as well as on the addi-
tional phase change ω0τ associated with the “prehistory” of
the interfering beams.

3. Laser pulses from a continuous beam

Let us now consider the interference of pulses from a
semiconductor laser when the pump current does not fall
below threshold, i.e., when the laser operates in a continuous
mode, and the modulation current “cuts out” pulses from the
continuous laser beam (we neglect the effect of chirp). We
will further assume that the sequence of laser pulses obtained
in this way is fed into the unbalanced interferometer with the
time delay equal to the pulse repetition period (�T = 1/ fp;
fp is the pulse repetition frequency). With such an interferom-
eter, we will observe the interference of the two neighboring
pulses. Obviously, this case is similar to the interference of a
monochromatic wave with itself with the only difference that
the envelopes of the interfering components now depend on
time, and instead of Eq. (1) we should write

E1(t ) =
√

Q1(t ) exp (iϕ0 + iω0t ),

E2(t ) =
√

Q2(t ) exp [iϕ0 + iω0(t + �T )], (6)

where Q1 and Q2 are field intensities. Here we will assume
that optical pulses have a Gaussian shape:

Q1(t ) = Q0e− t2

2w2 , Q2(t ) = Q0e− (t−�t )2

2w2 , (7)

where w is the width of the pulse and �t takes into account
the inaccuracy of the pulse overlap. In the general case, �t can
be associated with a difference between the pulse repetition
period and the time delay in the interferometer, as well as with
the time jitter of laser pulses. Below we will assume that �t
is associated only with jitter, whereas the time delay �T in
the long arm of the interferometer ideally matches the pulse
repetition period.

The result of the interference of laser pulses with fields
from Eq. (6) is

S = Q1 + Q2 + 2
√

Q1Q2 cos(ω0�T ). (8)

In the case of the pulse interference, it is useful to determine
the integral signal S̃ corresponding to the “area” under the in-
terference pulse normalized to the “area” of the signal passing

through one of the interferometer arms:

S̃ =
∫ �T /2
−�T /2 S(t ) dt∫ �T /2

−�T/2 Q1(t ) dt
, (9)

whence using Eqs. (7) and (8) and extending integration limits
up to ±∞ (this can be done if the width w is significantly
smaller than the pulse repetition period �T ) we will have

S̃ = 2[1 + η cos(ω0�T )], (10)

where visibility η = exp[−�t2/(8w2)] depends on the ratio
between jitter �t and the pulse width w. It is important to note
here that visibility of the interference in this extreme case does
not depend on the spectral composition of light, but depends
only on jitter, i.e., on the quality of the electrical pattern that
sets the sequence of laser pulses. However, if the time jitter
is small, �t � w, one may assume that η ≈ 1, which yields
S̃ = 4cos2(ω0�T /2), and the result of the pulse interference
is determined by the phase evolution ω0�T and does not
depend on jitter.

4. Independent laser pulses

Now let us consider the above scheme of laser pulse inter-
ference (�T = 1/ fp), but now with the semiconductor laser
operating under the gain switching. If the coherence of radia-
tion in the cavity is destroyed during the time while the laser is
under the threshold, then we may assume that the pulses meet-
ing at the interferometer’s output originate from independent
sources. The result of the interference, therefore, should be
similar to that obtained in Eq. (4). In fact, by analogy with
Eq. (3), let us write the fields in the interfering pulses:

E1(t ) =
√

Q1(t ) exp
(
iϕ0

1 + iω0t
)
,

E2(t ) =
√

Q2(t ) exp
[
iϕ0

2 + iω0(t + �t )
]
, (11)

where the phase change ω0τ from Eq. (3) is replaced here by
ω0�t since the “prehistory” is related in this case with jitter,
due to which different pairs of pulses do not always arrive
at the second beam splitter simultaneously. Moreover, we will
assume that Q1 and Q2 in Eq. (11) are again defined by Eq. (7).

Let us first consider the case when there is no jitter. The
integral signal S̃ will then have a simple form:

S̃ = 4cos2 �ϕ

2
. (12)

As can be seen from a comparison of Eqs. (12) and (10), the
result of the interference of independent laser pulses does not
include the carrier frequency of the electromagnetic field. This
means that if we take a laser of another wavelength and use it
to prepare a similar pair of pulses with the same initial phases,
then the result of the interference of this new pair of pulses
will be the same as in the previous case. This result differs
significantly from the interference of a continuous monochro-
matic wave in an unbalanced interferometer, for which the
shift of the carrier frequency leads to the change in the result
of the interference.

Now let us consider the interference of independent pulses
in the presence of jitter. In this case, the result of the in-
terference of fields from Eq. (11) will have the following
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form:

S̃ = 2[1 + η cos(ω0�t + �ϕ)]. (13)

If �t � w, we may put η ≈ 1, which yields S̃ = 4cos2

[(ω0�t + �ϕ)/2], whence it is clear that the result of the
interference is strongly dependent on jitter since the latter is
included in the cosine argument. Moreover, for a fixed �ϕ,
the interference of pulses in this case will, in essence, be de-
termined by jitter. Indeed, for frequencies commonly used in
telecommunications, ω0/(2π ) ∼ 1014 Hz, even highly stable
frequency oscillators with jitter of hundreds of femtoseconds,
�t ∼ 10−13, will not allow obtaining the stable interference
(at fixed �ϕ), because ω0�t � 1. It should be noted here that
the time jitter of laser pulses from a gain-switched laser is
generally much larger than the intrinsic jitter of the driving
electrical signal. This fact is related to a delay between the
leading edge of the pump current pulse and the onset of
lasing (the so-called turn-on delay [19]), which depends on the
amplitude (peak-to-peak value Ip) of the modulation current.
Due to fluctuations in Ip, the turn-on delay will also fluctuate,
which will lead to an additional contribution to jitter.

Comparing Eqs. (13) and (10), we may write the following
condition (on the assumption that the influence of jitter on
visibility can be neglected):

4cos2

(
ω0�t + �ϕ

2

)
→ 4cos2

(
ω0�T

2

)
, (14)

which determines the transition of the laser from the gain-
switching mode to continuous generation. It is important to
note that the left-hand side of Eq. (14) is valid when the
bias current Ib is significantly below threshold current Ith,
whereas the right-hand side is valid when Ib is much higher
than Ith. Obviously, the transition given by Eq. (14) is equiv-
alent to the following conditions: �ϕ → ω0�T and �t → 0,
which are satisfied if we assume that �ϕ and �t are random
variables with Gaussian distributions, whose average values
are ω0�t and 0, respectively, and whose standard deviations
σϕ ≡ σϕ (Ib) and σ�t ≡ σ�t (Ib) are decreasing functions of the
bias current, and they tend to zero when Ib is much higher
than Ith.

In a QRNG based on the interference of laser pulses, the
phase difference �ϕ plays the role of a quantum entropy
source since its random values are determined by quantum
nature of spontaneous emission. In contrast, the jitter-related
phase change ω0�t should be treated as classical noise. For
typical jitter values (10−12 s), the phase evolution ω0�t can
take on very large values, significantly exceeding �ϕ; there-
fore, at first glance, it seems that randomness obtained from
the interference of laser pulses cannot be considered quantum.
This could be true if, with a large range of ω0�t values,
the spread of �ϕ values was small enough. However, the
influence of jitter on the phase difference between laser pulses
can be also ignored at small values of σϕ (small spread of �ϕ

values). Indeed, in this case, adjacent laser pulses cannot be
considered as pulses from two independent sources since they
are now phase correlated. This means that such pulses should
be considered “cut out” from a continuous quasimonochro-
matic wave (albeit with a short coherence time), for which the
effect of jitter on the phase evolution is absent.

The above reasoning shows that substantiation of quantum
nature of laser pulse interference is a “thin place” of QRNG
implementation. Indeed, continuing the above reasoning, one
can come to the conclusion that for a sufficiently large value
of σϕ (at least for σϕ > π ) interfering laser pulses can be
considered independent and one should take into account
the jitter-related phase change ω0�t . Inasmuch as classical
contribution from ω0�t can significantly exceed quantum
contribution from �ϕ, a reasonable question arises: does the
QRNG cease to be quantum in this case? In fact, it is easy to
see that QRNG still should be considered quantum. Indeed,
inasmuch as the sum ω0�t + �ϕ is in the argument of the
cosine, an adversary who knows all the �t values in advance
or may even control them will not be able to say anything
definite about the result of the interference (beyond what he a
priori knows about the probability density of the interference
signal), if �ϕ exhibits a large spread of values. In other words,
even in the presence of a classical contribution from ω0�t
the result of the interference from Eq. (13) remains nondeter-
ministic, unpredictable, and uncontrollable, i.e., satisfies the
requirements for the quantum noise [12]. This means that
when considering the interference of laser pulses with random
phases in the context of a QRNG, the phase change associated
with jitter can be excluded from consideration.

Finally, note that the result of interference is also influ-
enced by the spread in the intensities of laser pulses associated
with fluctuations of the pump current. We will assume below
that such fluctuations are sufficiently small, so that we can
neglect the change in the shape of the laser pulse and assume
that only its “area” changes slightly from pulse to pulse. Thus,
the fields in interfering pulses can be written in the following
form:

E1(t ) =
√

s1Q1(t ) exp
(
iϕ0

1 + iω0t
)
,

E2(t ) =
√

s2Q2(t ) exp
(
iϕ0

2 + iω0t
)
, (15)

where we have introduced two independent random variables,
s1 and s2, associated with the spread of intensities of interfer-
ing pulses. For simplicity, we may assume that both s1 and s2

exhibit Gaussian distribution with the mean value s̄1 = s̄2 = 1
and a standard deviation of σs. The integral interference signal
S̃ for the fields from Eq. (15) will then have the form

S̃ = s1 + s2 + 2η
√

s1s2 cos(�ϕ). (16)

B. Probability density function and the quantum
reduction factor

Probabilistic properties of laser pulse interference are well
described by the probability density function (PDF) of the
interference signal. In this section we will consider it both
for the case of efficient phase diffusion (σϕ > 2π ) and for
correlated neighboring laser pulses (σϕ < 2π ).

The PDF fS̃ of the integral signal S̃ can be defined as a
derivative of a corresponding cumulative distribution func-
tion. The latter represents an integral of the PDF defining joint
fluctuations of �ϕ, s1, s2, ζ , and η, where ζ is the Gaussian
classical detector noise, which should be added to the integral
signal: S̃ → S̃ + ζ , and fluctuations of η are caused by the
jitter. The influence of chirp, jitter, and relaxation oscillations
on the probability density of the integral interference signal S̃
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has been considered in [20]. In particular, the chirp has been
shown to enhance the influence of jitter on visibility η, so
that the condition �t � w does not always allow neglecting
fluctuations of η. Nevertheless, it was shown that the “chirp
+ jitter” effect could be significantly decreased for relatively
short laser pulses by cutting off the high-frequency part of the
spectrum. As for sufficiently long laser pulses, the effect of
the chirp on the interference can be neglected (even without
spectral filtering) if the “area” under the main relaxation peak
is much smaller than the “area” under the rest of the pulse.
With this in mind, we will assume below that we deal with
quite long laser pulses or use spectral filtering, so that the
chirp has no significant effect on the interference. We will thus
neglect jitter-related fluctuations of the visibility. However,
even in this case an analytical expression for fS̃ cannot be
found; therefore, the analysis of various contributions to fS̃
is performed numerically with Monte Carlo simulations.

1. Uniform distribution of �ϕ

It was shown in [12] that one can extract quantum noise
from the interference signal by introducing the parameter
called the quantum reduction factor (QRF) 
. This parameter
shows how much the raw random sequence should be reduced
(or compressed) by the randomness extractor in order to fil-
ter out possible hidden correlations associated with classical
noise. The idea of the QRF is based on a comparison of the
experimentally observed PDF fS̃ with ideal (or quantum) PDF
f Q
S̃

. The latter can be found from Eq. (16) on the assumption
that the only random variable is �ϕ (whereas s1 and s2 are
fixed to their average values), and

f�ϕ =
{

1/π, �ϕ ∈ [0, π )
0, �ϕ /∈ [0, π ) . (17)

One can easily show that

f Q
S̃

(y) =
[
π

√
(y − S̃min)(S̃max − y)

]−1

, (18)

where

S̃min = s1 + s2 − 2η
√

s1s2,

S̃max = s1 + s2 + 2η
√

s1s2. (19)

The function given by Eq. (18) with s1 = s2 = 1 and η = 1 is
shown in Fig. 1 with black dashed lines; one can see that f Q

S̃
is U-shaped and tends to infinity at S̃min and S̃max (in the case
under consideration, S̃min = 0 and S̃max = 4).

It was shown that the definition of 
 depends on the
method of digitizing the random signal [12]. When digitizing
with a comparator, one can define 
 as follows:


 = 1

2 − H∞
, (20)

where the min-entropy is defined as

H∞ = −log2

(∫ S̃th

S̃min

fS̃ (y) dy

)
, (21)

and S̃th is a threshold value, which should be chosen such that
the area under the PDF curve to the left and to the right of S̃th

FIG. 1. Probability density functions f̃ Q
S̃

defined by Eq. (29) at
different values of σϕ and �θ .

was 1/2. (With such a definition, we may also treat S̃th as a
mean value of the distribution.) The quantum PDF f Q

S̃
is im-

plicitly contained in Eq. (21) via the lower limit of the integral.
If we insert f Q

S̃
instead of fS̃ into Eq. (21), the min-entropy

will have the sense of an ideal or quantum min-entropy, which
we denote as HQ

∞ and which, obviously, equal to 1. Note
that generally H∞ > 1 inasmuch as the experimental PDF is
broadened due to fluctuations of s1 and s2 as well as due to the
detector noise ζ . In this case S̃min lies inside the experimental
PDF, and the integral under the logarithm in Eq. (21) is less
than 1/2. Note also that definitions of the quantum reduction
factor [Eq. (20)] and the min-entropy [Eq. (21)] are valid only
when digitization is performed with the comparator. Other
definitions should be chosen when the signal is digitized with
an analog-to-digital converter (see [12] for more details).

2. Gaussian distribution of �ϕ

It is important to keep in mind that the definition of the
QRF given by Eqs. (20) and (21) is directly related to the
assumption that f�ϕ is uniform. In the general case, however,
f�ϕ is Gaussian:

f̃�ϕ (x) = 1

σϕ

√
2π

exp

(
− (x − �θ )2

2σ 2
ϕ

)
, (22)

where �θ = ω0�T , and the value of the random variable �ϕ

we have denoted as x. [The tilde sign above f in Eq. (22)
means also that in contrast to Eq. (17) the PDF depends
now on �θ .] To find the quantum PDF f̃ Q

S̃
in this case, we

use a well-known theorem applicable to monotonic functions,
according to which the probability density fY (y) of a random
variable Y = g(X ) is given by the following formula:

fY (y) = fX
(
g−1(y)

)∣∣∣∣ d

dy

(
g−1(y)

)∣∣∣∣, (23)

where y is the value of a random variable Y , fX is a PDF
of a random variable X , and g−1(y) is the inverse function.
To apply this theorem to a random function S̃(�ϕ) defined
by Eq. (16), we have to divide the domain of S̃(�ϕ) into
intervals, where it is piecewise monotonic. Obviously, S̃(�ϕ)
is monotonically decreasing in the intervals �ϕ ∈ Im

↓ ≡
[2mπ, (2m + 1)π ) (m is integer), whereas it is monotonically
increasing in the intervals �ϕ ∈ Im

↑ ≡ [(2m − 1)π, 2mπ ) (we
introduced here the notation Im

↓ and Im
↑ for the intervals of
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monotonicity). In the intervals of monotonicity, there exist
inverse functions, which we will denote as S̃−1

Im
↓

≡ S̃−1
↓ (y) and

S̃−1
Im
↑

≡ S̃−1
↑ (y). It is easy to see from Eq. (16) that

S̃−1
↓,↑(y) = ± arccos

(
2y − S̃max − S̃min

S̃max − S̃min

)
+ 2πm, (24)

where the “plus” sign refers to S̃−1
↓ , and the “minus” sign

refers to S̃−1
↑ (the value of the random variable S̃ we have

denoted as y). According to Eq. (23), the PDF of a piecewise
monotonic function defined in such a way can be written in
the following form:

f̃ Q
S̃

=
∑

i=Im
↓ ,Im

↑

f�ϕ

(
S̃−1

i

)∣∣(S̃−1
i

)′|, (25)

where

(S̃−1
↓,↑)′ ≡ d

dy
S̃−1

↓,↑(y) = ∓
[√

(y − S̃min)(S̃max − y)

]−1

, (26)

and where the “minus” sign refers to the derivative of S̃−1
↓ ,

whereas the “plus” sign refers to the derivative of S̃−1
↑ . Substi-

tuting Eq. (26) into Eq. (25) and using Eqs. (22) and (24) we
will obtain

f̃ Q
S̃

(y) =
[
σϕ

√
2π (y − S̃min)(S̃max − y)

]−1

×
∑
p=±1

+∞∑
m=−∞

exp

[
− 1

2σ 2
ϕ

(
pay + 2πm − �θ

)2]
,

(27)

where we used the shorthand notation

ay = arccos

(
2y − S̃max − S̃min

S̃max − S̃min

)
. (28)

The sum in Eq. (27) converges to

f̃ Q
S̃

(y) =
∑
p=±1

J
(

pay

2 − �θ
2 , e−σ 2

ϕ /2
)

2π
√

(y − S̃min)(S̃max − y)
, (29)

where J (u, q) is the Jacobi θ function:

J (u, q) = 1 + 2
∞∑
j=1

q j2
cos(2 ju). (30)

An important difference between PDFs given by Eqs. (18)
and (29) is that the latter depends on �θ . The form of the
f̃ Q
S̃

function at various values of �θ for the cases σϕ =
π/4, π/2, π is shown in Fig. 1, where it is assumed that
s1 = s2 = 1 and η = 1. When σϕ = π/4, the function f̃ Q

S̃

substantially differs from f Q
S̃

at any value of �θ [recall that

the f Q
S̃

function given by Eq. (18) is shown with the black
dashed line]. The values �θ = 0 and �θ = π yield in the
substantial shift of the PDF into the region of constructive and
destructive interference, respectively, whereas at �θ = π/2
the PDF exhibits a maximum at S̃ = 2. When σϕ = π/2, the
shift is still clearly visible at �θ = 0 and �θ = π , whereas
f̃ Q
S̃

and f Q
S̃

become almost indistinguishable at �θ = π/2.

Finally, when σϕ = π , the f̃ Q
S̃

function is weakly dependent

FIG. 2. Calculated dependences S̃th (σϕ ) for the three values of
�θ : 0, π/2, and π .

on �θ and is almost indistinguishable from f Q
S̃

at any value
of �θ .

Let us return to the definition of the QRF. At first glance,
we are not prohibited from using formulas (20) and (21) in the
case when σϕ is quite small. The only difference here would be
the dependence of the threshold value S̃th in Eq. (21) on both
σϕ and �θ . To clarify this, let us consider the calculated de-
pendences S̃th(σϕ ) for the three values of �θ shown in Fig. 2.
One can see from the figure that S̃th is almost independent on
both σϕ and �θ when σϕ > π ; in addition, the threshold value
remains equal to (S̃max + S̃min)/2 and does not depend on
σϕ , when �θ = π/2. However, S̃th differs significantly from
(S̃max + S̃min)/2 at smaller values of σϕ , if �θ is far from π/2.
Thus, S̃th → S̃max at �θ = 0 and S̃th → S̃min at �θ = π when
σϕ approaches zero. It seems that such a dependence of S̃th

on σϕ and �θ should not affect the quantum noise extraction
method itself since S̃th is explicitly included in the definition
of 
. Nevertheless, one can show that the use of Eqs. (20) and
(21) is hardly possible when σϕ < π .

The main reason for this statement is that f̃ Q
S̃

function

averaged over �θ becomes equal to f Q
S̃

:

1

2π

∫ 2π

0
f̃ Q
S̃

d (�θ ) = f Q
S̃

. (31)

It follows from Eq. (31) that an adversary may “mimic” the
large-σϕ PDF via controlling �θ , such that the user employing
fS̃ to monitor the contribution of classical noise will believe
that he or she is still working with a quantum entropy source.
In fact, the phase �θ in the long arm of the interferometer
should be considered as a “classical” parameter, which can be
predicted or even controlled (at least in principle) by a third
party. Indeed, since �θ is related to the optical path difference
of the interferometer arms, it is enough for an adversary to
control the temperature near the device to gain insight into
the value of the signal S̃. Thus, using the dependence of S̃th

on �θ , an adversary may predict (with a probability different
from 1/2) each bit of the random sequence digitized by a
comparator when σϕ < π .

In contrast, it can be shown that the PDF of the phase
difference �ϕ may be assumed uniform with high accuracy
when σϕ > 2π ; in other words, we may neglect the difference
between f̃ Q

S̃
and f Q

S̃
in this case. Indeed, inasmuch as �ϕ is

in the argument of the cosine in Eq. (16), the Gaussian PDF
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f�ϕ from Eq. (22) may be substituted for x ∈ [0, π ) by the
following one (see the Appendix in [12]):

f̃�ϕ (x) = 1

2π

∑
p=±1

J

(
x

2
+ p�θ

2
, e−σ 2

ϕ /2

)
(32)

and should be put to 0 when x /∈ [0, π ). Here J (u, q) is again
the Jacobi θ function defined by Eq. (30). Inasmuch as q < 1
in this case, the series in Eq. (32) rapidly converges, so the
value of the θ function may be estimated with just the two
first terms: J (u, q) ≈ 1 + 2q cos(2u), whence one can see that
J (u, q) deviates from 1 by a value 2q ∼ 10−8 at σϕ = 2π .

Thus, we may conclude that fluctuations of the phase dif-
ference �ϕ in Eq. (16) can be considered quantum when
σϕ > 2π , whereas they become highly sensitive to variations
of �θ when σϕ < π and cannot be used as a quantum entropy
source. But what about the range from π to 2π? We may
just look at Fig. 1 and Fig. 2 and repeat again that f̃ Q

S̃
is

almost indistinguishable from f Q
S̃

, when σϕ is in this range.
At first sight, one may just soften the restriction imposed on
the values of σϕ and assume for simplicity that everything still
works and the formulas (18), (20), and (21) are valid when
σϕ > π . Nevertheless, it would be useful to have a quantitative
estimate for the difference between f̃ Q

S̃
and f Q

S̃
when σϕ is

in the range from π to 2π and, if necessary, to modify the
QRF in order to take into account the possible influence of an
adversary.

3. Nonuniformity in terms of statistical distance

In the information theory, the difference between the two
distributions, PX and PY , is generally measured in terms of
a statistical distance d , which for the countable set � of
elementary events can be defined as follows [21]:

d = 1

2

∑
a∈�

|PX (a) − PY (a)|, (33)

where PX (Y )(a) is a probability that the random variable X (Y )
takes a value a. By analogy with Eq. (33), the statistical
distance between the PDFs f̃ Q

S̃
and f Q

S̃
can be written in the

form of the following integral:

d = 1

2

∫ S̃max

S̃min

∣∣ f̃ Q
S̃

(y) − f Q
S̃

(y)
∣∣dy, (34)

where f̃ Q
S̃

and f Q
S̃

are defined by Eqs. (29) and (18), re-
spectively. It is not very convenient, however, to calculate
numerically the integral in Eq. (34) since f̃ Q

S̃
and f Q

S̃
have

singularities at S̃min and S̃max; therefore, it is reasonable to
define d as a statistical distance between f̃�ϕ and f�ϕ , namely,

d = 1

2

∫ π

0

∣∣ f̃�ϕ (x) − π−1
∣∣dx, (35)

where f̃�ϕ is defined by Eq. (32). One can check (e.g., numer-
ically) that both definitions, Eqs. (34) and (35), are equivalent.

The dependence of the statistical distance defined by
Eq. (35) on σϕ and �θ in the form of a color map is shown
in Fig. 3(a). The slices of the map at different values of �θ

are shown in Fig. 3(b). First of all, it is clear that the statistical
distance is highly sensitive to the value of �θ . Thus, d is at

FIG. 3. The dependence of the statistical distance d defined by
Eq. (35) on σϕ and �θ in the form of a color map (a). The slices of
the map at different values of �θ are shown in (b).

least seven orders of magnitude smaller at �θ = π (m + 1/2)
than at �θ = πm. In fact, one can see from Fig. 3(b) that d ≈
10−9 at �θ = π/2 and d ≈ 10−2 at �θ = 0 when σϕ = π .
Another interesting feature is that the d (σϕ ) curves are not
significantly different from each other in the range of �θ

close to πm, whereas significant difference between them is
clearly seen in the vicinity of �θ = π (m + 1/2) [compare,
e.g., curves at �θ = 90◦ and �θ = 89.9◦ in Fig. 3(b)]. It is
also seen from Fig. 3(b) that the greatest value of d does not
exceed 10−9 when σϕ > 2π , which confirms that f�ϕ can be
considered uniform at these values of σϕ . On the other hand,
d has quite high values in the range of σϕ between π and 2π ,
particularly when �θ is close to πm. Random numbers ob-
tained at such d cannot be considered enough random in terms
of cryptographic security. Therefore, one should additionally
improve the randomness of the digitized interference signal
when π < σϕ < 2π . As far as we know, such an analysis has
not been yet carried out in the literature. In the next section,
we show how this can be performed in terms of the QRF.

C. Improving randomness in the range π < σϕ < 2π

The choice of the statistical distance as a measure of the
deviation of f̃ Q

S̃
from f Q

S̃
is also convenient because d is

used in the definition of a randomness extractor and in the
formulation of the leftover hash lemma (see below), which
can be used to relate d with the QRF. To demonstrate this
relation more consistently, let us first provide some necessary
definitions.

Recall that the two distributions, PX and PY , are called
ε-close if their statistical distance defined by Eq. (33) does
not exceed ε: d � ε. Roughly speaking, one can distinguish
ε-close distributions only with the probability not exceeding
ε, such that ε may be also considered as an error parameter.
If a distribution PX is ε-close to the uniform distribution, then
PX is referred to as quasiuniform. Recall further that a random
variable X is called a k source (k is a some real number), if
the min-entropy H∞ of X does not exceed k or, equivalently,
PX (x) � 2−k for any value x of a random variable X . If the
discrete random variable X is defined on a set of elemen-
tary events representing binary vectors of a length n, then
such a set is denoted as � = {0, 1}n. Such a random variable
is also called the (n, k) source, if X obeys the inequality
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H∞(X ) � k/n, where H∞ is a min-entropy per bit. Thus,
the random signal digitized with an eight-bit analog-to-digital
converter (ADC) can be considered as an (8, k) source if the
min-entropy of the obtained binary sequence does not exceed
k. Here the value of n in the definition of the (n, k) source was
put to a bit resolution b of an ADC; however, the digitized
random signal may be also grouped into much longer binary
sequences with arbitrary n, which will be then considered as a
random variable on {0, 1}n with n > b.

Using the above definitions, we may now give a strict
definition of a (seeded) randomness extractor. Let us first
recall that a seed is an additional random binary sequence
with (quasi-) uniform distribution. Further, let there be an
(n, k)-source X with distribution PX and a seed having a
uniform distribution on {0, 1}l . Then the function E (PX ) :
{0, 1}n×{0, 1}l → {0, 1}m is called a (k, ε) extractor if the
resulting distribution on {0, 1}m is ε-close to uniform. Obvi-
ously, the length l of a seed should be quite small, or at least
it should be shorter than the output, l < m, because otherwise
the extractor would become trivial, i.e., it would be possible
to output the seed itself.

Seeded randomness extractors are generally implemented
via the so-called 2-universal hash functions, whose effec-
tiveness is guaranteed by the leftover hash lemma (LHL)
[21]. According to this lemma, the transformation {0, 1}n →
{0, 1}m defined by a set of 2-universal hash functions and
performed on the (n, k) source is a (k, ε) extractor if

m = k − 2log2(1/ε), (36)

where ε is the required error parameter. The sense of this
theorem can be roughly reformulated as follows. If there is a
binary string of length n obtained from a weak entropy source,
then one can extract m truly random bits with the use of a set
of 2-universal hash functions, and the upper bound for m is
the value of the min-entropy of the raw sequence. Generally,
nH∞ bits could be extracted from the raw sequence with a
hypothetical ideal randomness extractor; however, according
to the LHL, 2-universal hash functions allow extracting such
a number of bits (m = k = nH∞) only with ε = 1, which
does not guarantee the uniformity of the output sequence.
In other words, the number of truly random bits that can be
extracted with the use of 2-universal hash functions is less
than nH∞; however, we can guarantee the uniformity of the
resulting distribution (up to the error parameter ε). In crypto-
graphic applications, ε is chosen over a wide range of values:
ε ∼ 10−10–10−30.

Instead of the error parameter ε one can use the ratio
between the lengths of the input and output binary se-
quences, which is sometimes referred to as a reduction factor:
γ = n/m. Using the leftover hash lemma, one can easily find
the relationship between ε and γ . Indeed, inserting m = n/γ

into Eq. (36) we will find

ε = 2−nr, (37)

where

r = kγ /n − 1

2γ
. (38)

In a similar way, we can find the relationship between the QRF
and ε. However, it should be noted here that the raw binary se-

quence, obtained by digitizing (with a comparator) a random
interference signal, is already uniform from the point of view
of classical randomness (of course, with the proper choice
of the threshold voltage on the comparator). Obviously, such
a raw sequence does not require additional postprocessing;
therefore, the LHL is not applicable here in the usual sense.
That is why the definition of the QRF dispenses with LHL.
Nevertheless, we can formally insert m = n/
 into Eq. (36)
taking also into account that we are interested in quantum
entropy, so that we should write k = nHQ

∞ = n, which yields

n



= n − 2log2(1/εc), (39)

where we have introduced an effective error parameter εc,
which is related with the contribution of classical noise and
not with the nonuniformity of the raw binary sequence. One
can easily find from Eq. (39) that

εc = 2−nR, (40)

where

R = 
 − 1

2

. (41)

Continuing to develop this approach, we can use Eq. (39)
to solve the problem indicated in the title of this section. First,
we note that to consider the classical contribution from �θ in
S̃, it is necessary to increase the value of the QRF introducing
a modified factor 
̃, such that 
̃ > 
 at σϕ ∈ [π, 2π ] and

̃ = 
 at σϕ > 2π . As was shown in the previous section, the
statistical distance between f�ϕ and the uniform distribution
exhibits maximum when �θ = πm [let us denote the corre-
sponding value of d as dπm(σϕ )]; therefore, it makes sense to
use dπm(σϕ ) as a parameter characterizing the nonuniformity
of f�ϕ . Since we neglect the nonuniformity of f�ϕ at σϕ > 2π ,
it seems appropriate to determine the error parameter as

εQ ≡ εQ(σϕ ) = dπm(2π )

dπm(σϕ )
. (42)

The modified quantum reduction factor 
̃ can be then defined
as follows:

n


̃
= n − 2log2(1/εc) − 2log2(1/εQ), (43)

whence, using Eq. (40), we may find the relation between 
̃

and 
:


̃(σϕ ) = n


n − 2
log2(1/εQ)
. (44)

One can see from Eqs. (42) and (44) that εQ = 1 at σϕ = 2π ,
so 
̃ becomes equal to 
. We may thus write for QRF:

QRF =
⎧⎨
⎩

∞, σϕ < π ;

̃, σϕ ∈ [π, 2π ];

, σϕ > 2π.

(45)

D. Stochastic rate equations

A fundamental noise source in the output of a laser is the
quantum shot noise due to the random electron transitions
producing spontaneous emission events [22–26]. Probability
properties of spontaneous transitions are determined by their
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relation to zero-point (vacuum) fluctuations of the electro-
magnetic field [27,28], which are generally considered to be
perfectly uncorrelated and broadband. Therefore phase fluc-
tuations in a semiconductor laser are generally assumed to
have the same properties. It is sometimes argued that the
description of quantum noise in a semiconductor laser should
be performed with the method developed by Lax [29,30].
Namely, one should use a Markovian model for a set of atoms
and a radiation field interacting with some reservoirs, which
are defined mathematically by a set of damping constants and
a set of noncommuting noise operators (quantum Langevin
forces). In many cases, however, it is preferable to employ
the simple model developed by Henry [22], who showed how
the spontaneous emission should be incorporated into the
classical field rate equation for a semiconductor laser, such
that the drift and diffusion coefficients for the field intensity
and the phase remained consistent with the fully quantum
description. For our purposes, a standard system of laser rate
equations with classical Langevin terms [1,22,26,31,32] is
well suited; therefore, we will use here this approach. (See
Appendix A for more details on stochastic rate equations we
use here for simulations.)

E. Phase diffusion: Monte Carlo simulations

For the numerical study of the phase diffusion between
the pulses of a single-mode gain-switched semiconductor
laser, we performed Monte Carlo simulations of the phase
evolution between adjacent optical pulses using Eq. (A16).
The pump current was assumed to have a form of a square
wave, I (t ) = Ib + Ip(t ), where Ib is the bias current and Ip(t )
changed abruptly from 0 to Ip. We performed integration of
Eq. (A16) from 0 to time Tp corresponding to a period of pulse
repetition, i.e., the phase was allowed to diffuse during the
time between two adjacent pulses. Initial conditions (N0, Q0

and ϕ0) were chosen so that there were no transients. After
each such integration, we obtained a value ϕ(Tp) of a random
phase, which exhibited Gaussian distribution, whose standard
deviation we have denoted as σϕ (Tp) ≡ σϕ . Fifty iterations
[random values of ϕ(Tp)] were found to be enough to find
a value of σϕ for given values of Ib, Ip and a given set of
laser parameters. In Fig. 4 we present the dependence of σϕ

on the bias current Ib at different values of the pulse repetition
rate fp = 1/Tp; we used three different values of fp: 2.5 GHz,
5 GHz, 10 GHz. At each pulse repetition rate, we calculated
several curves corresponding to different values of Ip. For
each Ip, we chose the range of the bias current variation from
the value Imin

b corresponding to stable pulsation at a given Ip

up to the threshold value defined by Ith = Nthe/τe. The gain
compression factor γP in Fig. 4 was put to 20 W−1. Other laser
parameters used in simulations are listed in Table I. In order to
achieve high performance and reduce the computation time,
we performed computations on a Compute Unified Device
Architecture (CUDA) platform with the Nvidia video card
equipped by a CUDA-powered graphics processing unit.

One can see from Fig. 4 that σϕ increases towards lower
values of the bias current. This reflects the fact that the number
of carriers decreases faster at a lower pump current between
laser pulses, which leads to a faster decrease of the field
intensity inside the laser cavity and, consequently, to a faster

FIG. 4. Theoretical dependences of the phase diffusion standard
deviation (σϕ) on the bias current Ib and modulation current ampli-
tude Ip at different pulse repetition rates.

decoherence due to spontaneous emission. An interesting fea-
ture here is a nonmonotonic behavior of σϕ (Ib) curves, which
exhibit “damped oscillations.” In Sec. IV we will discuss this
result and provide an explanation of these “oscillations.”

A comparison of simulations in Fig. 4 may also provide
some insight into the dependence of σϕ on the modulation
frequency at fixed Ib and Ip. Thus, one can see that for Ib = 8
mA and Ip = 30 mA, the standard deviation of the phase
diffusion decreases from σϕ ≈ 1.9π at 2.5 GHz to σϕ ≈ 1.4π

at 5 GHz and to σϕ ≈ 0.8π at 10 GHz. Although the de-
pendence of σϕ on the modulation frequency is complicated
by the “oscillations,” the general trend towards a decrease in
σϕ with an increase in fp can be clearly seen. Note that this
result should be used with caution, since in a real experiment,
a change in the pulse repetition rate generally changes the
peak-to-peak value of the modulation current (see the end of
the Sec. III B 1), such that the increase of fp may lead to a
much more pronounced decrease of σϕ .

TABLE I. Laser parameters used in simulations.

Parameter Value

Photon lifetime τph, ps 1.0
Electron lifetime τe, ns 1.0
Quantum differential output η 0.3
Transparency carrier number Ntr 6.0×107

Threshold carrier number Nth 6.5×107

Spontaneous emission coupling factor Csp 10−5

Confinement factor 
 0.12
Linewidth enhancement factor α 6
Central lasing frequency ω0/(2π ), THz 193.548
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FIG. 5. Schematic representation of the experimental setup to
measure phase diffusion in a gain-switched laser.

III. EXPERIMENT

A. Experimental setup description

An obvious way to measure the phase diffusion between
pulses of a gain-switched laser is to measure the pulse in-
terference using an unbalanced Mach-Zehnder interferometer
(uMZI), whose time delay is chosen to be equal to the laser
pulse repetition period. It should be noted that it is difficult to
use a fiber-optic interferometer for phase diffusion measure-
ments due to the temperature drift in the fiber. In fact, due to
its relatively large size, it is quite problematic to stabilize it
in temperature; therefore, thermal fluctuations may introduce
significant errors to the measured values of σϕ , especially if
a measurement takes a long time. Also, it is difficult to make
the fiber-optic delay line that would precisely correspond to
a predetermined value of the pulse repetition rate using just
a fiber fusion splicer. Because of this, we used an integrated
uMZI, where it is quite simple to implement active tempera-
ture stabilization and to perform fine adjustment of the phase
difference between the interferometer arms.

Schematic representation of the experimental setup used
to measure phase diffusion between laser pulses is shown
in Fig. 5. We employed the 1550 nm distributed feedback
(DFB) laser module (Gooch & Housego, AA0701) of 12 Gbps
modulation bandwidth. The bias current was controlled by the
high-stability laboratory power supply, whereas modulation
signals of 2.5 and 1.25 GHz were generated by a phase-
locked loops followed by a broadband amplifier. The optical
signal was detected with the InGaAs fixed gain amplified
detector (Thorlabs, PDA8GS) of 9.5 GHz bandwidth (PD in
Fig. 5), and the signal processing was performed using the
Teledyne Lecroy digital oscilloscope (WaveMaster 808Zi-A)
with 8 GHz bandwidth and temporal resolution of 25 ps.

The laser diode with the polarization-maintaining fiber
output was coupled to the photonic integrated circuit (PIC)
containing a cascade of uMZIs. For simplicity, we present in
Fig. 5 only two uMZIs with delay lines of 400 and 800 ps.
The PIC contained also additional balanced MZIs (three of
them are shown in Fig. 5), which were used to control the
splitting ratios of the interferometers, as well as to choose
the uMZI with the desired delay line. Each MZI on the chip
was equipped by a thermo-optical phase modulator (TOPM)
in the form of a resistive heater (a metal band) deposited over
a waveguide corresponding to one of the interferometer arms.
Heaters were controlled via a multichannel digital-to-analog
converter (DAC) indicated as a TOPM controller in Fig. 5.

FIG. 6. Theoretical dependence of the probability density func-
tion of the normalized interference signal S̃ [Eq. (16)] on the standard
deviation of phase fluctuations σϕ (a) and the corresponding depen-
dence of its standard deviation σS̃ (b).

To set the desired configuration of DAC voltages, we applied
to the laser a low-frequency (312.5 MHz) modulation signal,
which yielded in a train of short laser pulses with the repetition
period of 3.2 ns. We then set up the controller so that each
of these pulses was split at the output of the chip into a pair
of pulses of the same intensity. The time delay between the
pulses in a pair was set either to 400 ps or to 800 ps depending
on the choice of the delay line. (Some details concerning the
control over delay lines are given in Appendix B.)

To maintain a stable temperature, the chip was mounted on
the Peltier thermoelectric cooler controlled by a commercially
available temperature controller (PID controller in Fig. 5).
Note that the Peltier element can be used along with TOPMs
to control the phase difference between the interferometer
arms; moreover, the change in the chip temperature allowed
for much greater modulation depth than resistive heaters, al-
though the latter allowed for much faster phase modulation
(up to several kilohertz). Since for our experiments there was
no need to change the phase with such a frequency, we used
the Peltier element to vary the phase in the interferometer
arms.

B. Phase diffusion measurements

The main object of measurements in our experiments was
the probability density function of laser pulse interference fS̃ .
Before proceeding to the study of experimental PDFs, it seems
appropriate to simulate the interference statistics. For simula-
tions, we used Eq. (16) with η = 1, and random amplitudes
s1, s2 with Gaussian PDFs: s̄1 = s̄2 = 1 and σs = 0.05. The
same value of the standard deviation was assumed for the
additive Gaussian noise: σζ = 0.05. We varied the standard
deviation of phase diffusion σϕ from π to 0 with a step of
π/10. The theoretical evolution of the interference PDF with
such a change of σϕ is shown in Fig. 6(a). One can see that
when σϕ is close to π , the PDF has two pronounced maxima
near S̃ = 0 and S̃ = 4 with the left maximum noticeably thin-
ner and higher than the right one. When decreasing σϕ (and
assuming that the phase change �θ in the interferometer is
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FIG. 7. Experimental dependence of the probability density
function of the normalized interference signal S̃ on the bias current
Iexp
b (on the left) and the corresponding dependence of its standard de-

viation σS̃ (on the right) at pulse repetition frequency fp = 1.25 GHz.

zero), the right maximum of the PDF starts to grow, and when
σϕ tends to zero, the PDF turns into Gaussian curve with stan-
dard deviation equal to 2σs + σζ . Corresponding evolution of
σS̃ (standard deviation of fS̃) is shown in Fig. 6(b): when
σϕ > π , σS̃ tends to the value σS̃ = √

2, which corresponds
to the standard deviation of the quantum PDF f Q

S̃
defined by

Eq. (18).

1. Experimental PDFs

Figures 7 and 8(a) show experimental statistics of the
normalized interference signal, which were recorded as his-
tograms with the oscilloscope at a laser pulse repetition rate
of 1.25 and 2.5 GHz, respectively, at various bias currents Iexp

b
(the procedure of normalization is explained in Appendix C).
As was shown in Sec. II E (see Fig. 4), at sufficiently high
values of the modulation current (Ip > 30 mA) and not very

FIG. 8. Experimental dependence of the probability density
function of the normalized interference signal S̃ on the bias current
Iexp
b (a) and the corresponding dependence of its standard deviation
σS̃ (b) at pulse repetition frequency fp = 2.5 GHz.

high values of the pulse repetition frequency ( fp < 5 GHz),
σϕ below the 2π value decreases linearly when increasing the
bias current Ib. So we may consider that the linear increase
of the bias current in the experiment is equivalent to a linear
decrease in σϕ .

One can see that experimental PDFs repeat the evolution
shown in Fig. 6. Note, however, that experimental statistics
(particularly in case of short optical pulses without spectral
filtering) is generally affected by the “chirp + jitter” effect
[20]. Therefore, to achieve a good correspondence between
theoretical and experimental PDFs, we put the optical filter
between the interferometer output and the photodetector. (We
used the Santec OTF-980 optical tunable filter; the bandpass
was put to 6.25 GHz.)

When performing simulations in Fig. 4, it was convenient
to define the bias current Ib as the minimum value of the pump
current. (The peak-to-peak value Ip of the modulation cur-
rent was “measured” from Ib.) However, in the experiment, it
was convenient to define the pump current as Iexp(t ) = Iexp

b +
Iexp

p (t ), where Iexp
p (t ) is changed from −Iexp

p /2 to Iexp
p /2. In

this case, the minimum value of the pump current is Iexp
b −

Iexp
p /2. In Fig. 7 the pump current axes are plotted in terms of

Iexp
b .

The dependences of the standard deviation σS̃ of the nor-
malized signal S̃ on the bias current at fp = 1.25 and fp =
2.5 GHz are shown in Figs. 7 and 8(b). (For each value of Iexp

b
we set �θ = 0 by adjusting the temperature of the interferom-
eter.) One can see that the experimental dependences σS̃ (Iexp

b )
are in a good agreement with the theoretical dependence
σS̃ (σϕ ) shown in Fig. 6. Comparing theoretical dependence
σS̃ (σϕ ) in Fig. 6 with experimental dependences σS̃ (Iexp

b ) in
Figs. 7 and 8, one can easily estimate (just by eye) what value
of the bias current approximately corresponds to σϕ = π/2 [at
this value the curve σS̃ (Iexp

b ) starts to bend] and to σϕ = π [at
this value the curve σS̃ (Iexp

b ) reaches the maximum].
We can also employ the σS̃ (Iexp

b )-curves to estimate the
peak-to-peak value of the modulation current. In fact, the
bend in these curves in Figs. 7 and 8(b) occurs when Iexp

b −
Iexp

p /2 = Ith. The threshold current Ith of our laser was ap-
proximately 10 mA, so, at 1.25 GHz we had Iexp

p ≈ 70 mA,
whereas at 2.5 GHz we had Iexp

p ≈ 40 mA.

2. Interference fringes

A more accurate estimate of σϕ can be obtained by analyz-
ing conventional interference fringes (the dependences of the
mean value 〈S̃〉 on the phase change �θ in the interferometer)
and by investigating the curves σS̃ (�θ ), which we refer here
to as σS̃ fringes or statistical interference fringes. To measure
fringes at a given value of the bias current, we varied the
temperature of the interferometer (with the step of 10 mK for
the delay line of 800 ps and with the step of 20 mK for the
delay line of 400 ps) and for each temperature recorded the
PDF. The result of such measurements at fp = 1.25 GHz for
Iexp
b = 54 mA is shown in Fig. 9 as an example. Experimental

fringes extracted from these data at some selected values of
the bias current are shown in Fig. 10 for fp = 1.25 GHz and
in Fig. 11 for fp = 2.5 GHz.

It can be easily shown [13,33] that standard deviation
of the phase diffusion σϕ can be calculated via the relation
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FIG. 9. An example of measured probability density function
of the laser pulse interference as a function of the interferometer
temperature. Pulse repetition rate was 1.25 GHz; the bias current was
Iexp
b = 54 mA. The temperature shift �τ was measured with respect

to 300 K.

σϕ = √−2 ln η, where η is the visibility of the pulse interfer-
ence. Visibility, in turn, can be obtained by fitting interference
fringes (filled circles in Figs. 10 and 11) with the formula
〈S̃〉 = 2[1 + 2η sin(�θ + ϕ0)], where ϕ0 is an auxiliary fit-
ting parameter, which allows taking into account the “initial
phase” of the fringe. However, we will use here another ap-

FIG. 10. Experimental dependences of the mean value 〈S̃〉 of
the interference signal on the phase shift �θ (filled circles) and
corresponding statistical interference fringes σS̃ (�θ ) (empty circles)
at pulse repetition frequency of 1.25 GHz. In all panels one division
on the �θ axis equals to π .

FIG. 11. Experimental dependences of the mean value 〈S̃〉 of
the interference signal on the phase shift �θ (filled circles) and
corresponding statistical interference fringes σS̃ (�θ ) (empty circles)
at pulse repetition frequency of 2.5 GHz. In all panels one division
on the �θ axis equals to π .

proach; namely, we will perform the joint fit of both 〈S̃〉 and
σS̃ dependences on �θ with the use of Eqs. (16) and (22).
The main advantage of such an approach is that it allows
determining not only σϕ but also σs (standard deviation of
normalized laser pulse intensity fluctuations). In the context
of a QRNG, this is extremely useful because intensity fluc-
tuations are generally treated as classical noise, which should
be properly taken into account when extracting quantum noise
from the interference of laser pulses. The result of the joint fit
for each pair of curves is shown in Figs. 10 and 11 with solid
red lines.

Statistical interference fringes differ significantly from the
sinusoid and cannot be generally fitted as conventional inter-
ference fringes. Particularly, they may exhibit different depth
of a dip at constructive and destructive interference, which
is clearly seen in some experimental curves (see, e.g., the
curve in Fig. 10 at Iexp

b = 49 mA). (To demonstrate that this
is not related to experimental imperfections, we plotted some
theoretical statistical fringes in Fig. 14 in Appendix D.)

The results obtained by fitting the curves in Figs. 10 and 11
are presented in Fig. 12. As was discussed above, experimen-
tal PDFs at various values of σϕ (or rather at various values of
Iexp
b ) are almost indistinguishable when σϕ > π ; therefore, we

may measure the standard deviation of phase diffusion with
acceptable precision only when σϕ < π . However, assuming
linear evolution of σϕ and σs with Iexp

b (at least in the range
from π to 2π ), we may always extrapolate these dependences
as shown in Fig. 12 with dashed lines.
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FIG. 12. Experimentally measured standard deviations of phase
diffusion (σϕ) and normalized pulse intensity fluctuations (σs) as
functions of the bias current at 1.25 and 2.5 GHz of pulse repetition
rate. Orange asterisks denote values of σs that were used when fitting
σS̃ fringes at Iexp

b < 47 mA (for 1.25 GHz) and Iexp
b < 33 mA (for

2.5 GHz).

IV. DISCUSSION

In the context of a QRNG, the main result of the phase
diffusion measurements is dependences σϕ (Iexp

b ) and σs(I
exp
b )

shown in Fig. 12. These dependences clearly show what Iexp
b

values should be used to ensure that interference of laser
pulses acts as uncorrelated quantum entropy source. We see
from Fig. 12 that for 1.25 GHz the bias current values Iexp

b >

43 mA yield σϕ < π . According to Eq. (45), this means that
the phase between neighboring laser pulses correlates signifi-
cantly, such that these pulses cannot be used for QRNG. In the
range between 43 and 37 mA, σϕ belongs to the range [π, 2π ],
such that we should use the factor 
̃ [Eq. (44)] for randomness
extraction. Finally, when Iexp

b < 37 mA, we may neglect any
phase correlations between laser pulses and assume that f�ϕ is
uniform, which allows employing the factor 
 from Eq. (20).
At 2.5 GHz the laser should be employed at values Iexp

b < 28
mA: between 19 and 28 mA we should use the QRF 
̃,
whereas at Iexp

b < 19 mA one may use 
.
Equally important are dependencies σs(I

exp
b ). As was

shown in [12], experimental estimation of the QRF is ham-
pered by the fact that the definition of the min-entropy
[Eq. (21)] contains the quantity S̃min, which is difficult to
determine in practice. It was therefore proposed to determine

 via precalculated curves 
(B), where B is defined by the
following ratio:

B = whole PDF width

distance between PDF maxima
. (46)

The curve 
(B) can be computed with the use of Eqs. (16) and
(17) in assumption of a certain value of σs. Experimentally
measured dependencies σs(I

exp
b ) thus allow computing proper

dependencies 
(B).
The nature of the damped oscillations in theoretical curves

σϕ (Ib) in Fig. 4 can be understood by referring to the work of
Henry [34], where the author provides an explanation for the
additional peaks appearing in a spectrum of a semiconductor
laser. The satellite peaks were related to the time dependence

of the mean square phase change 〈�ϕ2〉, which, in addition
to a linear dependence, exhibits damped periodical variations
caused by relaxation oscillations. It was shown that

〈�ϕ2〉 ∝ exp(−γdt ) cos(ωrt − 3δ), (47)

where γd and ωr are the damping rate and the angu-
lar frequency of relaxation oscillations, respectively, and

cos δ = ωr/

√
ω2

r + γ 2
d . Obviously, the quantity σϕ we have

considered so far corresponds to
√

〈�ϕ2〉; however, the mean
square phase change 〈�ϕ2〉 in Eq. (47) was derived for the
continuous wave lasing (i.e., above threshold), whereas the
standard deviation plotted in Fig. 4 was calculated for the
“large signal.” In other words, σϕ in Fig. 4 contains the evolu-
tion of the phase below threshold (when the laser does not
emit) as well as above threshold (when the laser emits the
pulse). We may thus divide σϕ into two parts: the one part
is related to the phase evolution below threshold and should
decrease monotonically with the increase of Ib, whereas the
second part is related to the phase diffusion above threshold
(during the laser pulse emission) and should exhibit oscilla-
tions according to Eq. (47). In fact, increase of the bias current
leads to the increase of the laser pulse duration, which is
equivalent to the increase of time t in Eq. (47). So damped
oscillation in the σϕ (Ib) curves is driven by the competition
between the oscillating growth of 〈�ϕ2〉 with Ib during laser
pulse emission and monotonic decrease of 〈�ϕ2〉 with Ib

between laser pulses. At sufficiently high values of Ib, when
the width of the laser pulse becomes approximately equal to
the width of the electric pulse and thus ceases to grow with
increasing Ib, the dependence σϕ (Ib) becomes monotonically
decreasing.

V. CONCLUSIONS

In this work we provided a general description of a quan-
tum entropy source based on the interference of laser pulses.
We have considered in detail the different modes of laser
pulse interference and have shown that the interference signal
remains quantum in nature even in the presence of classical
phase drift in the interferometer if the phase diffusion obeys
the relation σϕ > 2π . In other words, correlations between
lasers pulses are absent if this inequality holds. We also em-
phasize that the influence of jitter as a source of classical
noise can be neglected for large as well as for small val-
ues of σϕ . In the former case, the classical noise of jitter is
buried under the quantum noise, whereas in the latter case,
laser pulses should be considered “cut out” from a continuous
quasimonochromatic wave, for which the effect of jitter on the
phase evolution is absent.

From an experimental point of view, the optimal mode
of operation of a semiconductor laser in a quantum random
number generator is achieved by using the lowest possible bias
current, Ib, and the highest possible modulation current, Ip,
for which the laser may generate pulses of the required inten-
sity. At not very high pulse repetition rates (<2–3 GHz) and
with laser drivers providing high enough modulation currents
(Ip ∼ 70–100 mA), such a choice automatically provides ef-
ficient phase diffusion, which allows neglecting interpulse
correlations. Insufficiently high values of the modulation cur-
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rent do not allow the use of high pulse repetition rates due
to an insufficient delay between subsequent pulses and the
requirement to use small bias currents (or even the reverse-
biased laser diode). As a first approximation for estimating
phase diffusion, one can use the PDF of the interference sig-
nal: if the form of the PDF does not vary when changing the
bias current, then one can definitely conclude that σϕ > π . If it
is suspected that available modulation current does not allow
reaching the desired value of σϕ , one may use techniques
described in Sec. III to estimate it experimentally.

We have explicitly formulated the relationship between the
previously introduced quantum reduction factor [12] and the
leftover hash lemma, which allows us to develop a method
to estimate the quantum noise contribution to the interference
signal when π < σϕ < 2π . With this approach, even in the
presence of (partial) interpulse correlations, one can use laser
pulse interference as a quantum entropy source with reduced
entropy rate determined by the modified quantum reduc-
tion factor 
̃. Also, in addition to conventional interference
fringes, we proposed to use statistical interference fringes to
obtain more detailed information about the probabilistic prop-
erties of laser pulse interference. We hope that the theoretical
and experimental results presented here will be useful for the
developers of QRNGs and may also help in the preparation
of probabilistic models necessary for the certification of such
devices.
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APPENDIX A: DERIVATION OF STOCHASTIC
RATE EQUATIONS

According to Henry [22], a spontaneous emission event
is described as a randomly occurring increase of the field
amplitude and an accompanying random change in the phase
ϕ of the optical field. The complex field amplitude E (t ) is
assumed to increase by �Ek , which has an absolute value
equal to 1 and the phase ϕ + θk , i.e., �Ek = exp[i(ϕ + θk )],
where θk is a random angle. Note that the electric field E is
assumed here to be normalized such that its absolute square
corresponds to the average photon number Q inside the laser
cavity: Q = |E |2 or E = √

Q exp(iϕ). It is important to em-
phasize that despite its correspondence to the average photon
number, the quantity should be referred to as a normalized
intensity rather than to as a photon number, Nph. This feature
is not relevant when considering dynamics of averaged quanti-
ties since 〈Q〉 = 〈Nph〉 (here angular brackets denote ensemble
averaging); however, it becomes relevant when considering
stochastic equations, inasmuch as Nph and Q have different
distributions and diffusion coefficients [26].

It is assumed that different events producing the change
�Ek are uncorrelated, such that the spontaneous emission
noise FE (t ) may be written as a sequence of δ pulses:

FE (t ) =
∑

k

�Ekδ(t − tk ) (A1)

with uncorrelated tk . The rate of these events obviously corre-
sponds to the average rate of radiative spontaneous emission
into the lasing mode, which can be written as CspRsp, where
Rsp is the total average rate of radiative spontaneous emission
and the Csp factor corresponds to the fraction of spontaneously
emitted photons that end up in the active mode under con-
sideration. According to a general approach, the spontaneous
emission noise may be introduced just by adding the complex
Langevin force FE (t ) to the right-hand side of the single-mode
laser rate equation for the complex slowly varying electric
field amplitude [1,22,26,31,32]:

dE = 1

2τph
(1 + iα)(GL − 1)Edt + FE (t ) dt, (A2)

where α is the linewidth enhancement factor (the Henry
factor [22]), τph corresponds to the inverse decay rate of
the field intensity and is generally treated as a photon life-
time, and the normalized dimensionless linear gain GL =
(N − Ntr )/(Nth − Ntr ) depends on the carrier number N ,
where Ntr and Nth are the carrier numbers at transparency and
threshold, respectively. According to Eq. (A1), FE (t ) satisfies
the general relations

〈FE (t )〉 = 0, 〈FE (t )FE (t − τ )〉 = 0 (A3)

and

〈FE (t )F ∗
E (t − τ )〉 = 2DEEδ(τ ), (A4)

where the asterisk means the complex conjugate. To deter-
mine the coefficient DEE one should compute 〈FE (t )F ∗

E (u)〉,
where u = t − τ . According to Eq. (A1), this quantity is the
product of two sums of δ functions, where all cross terms are
zero since δ(t − tk )δ(u − tl ) is zero unless tk = tl ; hence

FE (t )F ∗
E (u) =

∑
k

δ(t − u)δ(u − tk ). (A5)

Finally, the averaging can be performed by replacing
∑

k in
Eq. (A5) by CspRsp

∫
dtk . Thus, we have after averaging

〈FE (t )F ∗
E (t − τ )〉 = CspRspδ(τ ). (A6)

Comparing this to Eq. (A4) we obtain 2DEE = CspRsp, such
that we can write

FE =
√

CspRsp

2
(ξ1 + iξ2), (A7)

where ξ1 and ξ2 are independent random variables repre-
senting the normalized white Gaussian noise and obey the
following relations:

〈ξi(t )〉 = 0, 〈ξi(t )ξ j (t − τ )〉 = δi jδ(τ ). (A8)

Writing the normalized electric field as E = x1 + ix2 and
separating the real and imaginary parts of Eq. (A2) we will
obtain the following system:

dx1 = h1dt + g11ξ1 dt + g12ξ2 dt,

dx2 = h2dt + g21ξ1 dt + g22ξ2 dt, (A9)
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where

h1 = 1

2τph
(GL − 1)x1 − α

2τph
(GL − 1)x2,

h2 = 1

2τph
(GL − 1)x2 + α

2τph
(GL − 1)x1,

g11 = g22 =
√

CspRsp

2
, g12 = g21 = 0.

(A10)

Introducing variables x′
1 and x′

2 by the relations

x′
1 = u1(x1, x2) ≡ Q = x2

1 + x2
2,

x′
2 = u2(x1, x2) ≡ ϕ = arctan(x2/x1), (A11)

and using the Itô formula [35] written for our case as

dx′
i =
⎛
⎝∂ui

∂t
+

2∑
k=1

hk
∂ui

∂xk
+ 1

2

2∑
j=1

2∑
k,m=1

gm jgk j
∂2ui

∂xm∂xk

⎞
⎠dt

+
2∑

j=1

2∑
k=1

gk j
∂ui

∂xk
dWj, (A12)

we will obtain the following set of stochastic rate equations:

dQ = (GL − 1)
Q

τph
dt + CspRsp dt + FQ dt,

dϕ = α

2τph
(GL − 1)dt + Fϕ dt (A13)

with

FQ dt = √2CspRspQ[cos(ϕ) dW1 + sin(ϕ) dW2],

Fϕ dt =
√

CspRsp

2Q
[cos(ϕ) dW2 − sin(ϕ) dW1], (A14)

where W1, W2 are two independent Wiener processes, which
may be defined via the notation dW1 = ξ1 dt and dW2 = ξ2 dt .
[It should be remembered, however, that the Wiener pro-
cess W (t ) is nowhere differentiable, so the equality dW (t ) =
ξ (t ) dt cannot be treated as a differential in the usual sense,
and it is better to consider it just as a symbolic notation [35].]

Since the gain GL depends on the carrier number N ,
Eqs. (A13) should be supplemented by the rate equation for
N . If one can neglect carrier diffusion effects, such as in
index-guided lasers, the rate equation for the carrier number

can be written in the following form:

dN = I

e
dt − N

τe
dt − GLQ


τph
dt + FN dt, (A15)

where I is the pump current, e is the absolute value of the
electron charge, τe is the effective carrier lifetime, and 
 is
the confinement factor, which can be estimated as a ratio
between the cross-sectional areas of the transverse mode and
the active layer. We also added in Eq. (A15) the Langevin
force FN , which drives fluctuations of N ; however, due to
relatively short (∼1 ns) carrier lifetime, perturbations to the
carrier density do not persist long enough to make significant
low-frequency contributions, while at higher frequencies they
are damped by diffusion [36]. Therefore, carrier fluctuations
are usually assumed to be negligible when modeling stochas-
tic properties of laser radiation. We will thus assume below
that FN = 0.

Finally, rate equations for N and Q should be modified
to take into account the gain saturation [37,38]. This can
be performed by substituting GL by G = GL/

√
1 + 2γQQ ≈

GL(1 − γQQ), where γQ is the dimensionless gain compres-
sion factor. (The rate equation for the phase is generally left
unchanged.) Sometimes, it is more convenient to use instead
of γQ the gain compression factor γP related to the output opti-
cal power P, which can be defined as γP = 2γQ
τph/(ηd h̄ω0),
where ηd is the differential quantum output (don’t confuse it
with visibility, for which we used similar notation above), and
h̄ω0 is the photon energy. For typical semiconductor lasers,
γP may reach a few dozens of W−1 [20]; here we will assume
that it is in the range 10–40 W−1.

The system of stochastic differential equations (SDEs)
(A13) and (A15) with stochastic terms given by Eq. (A14)
can be solved numerically with the Euler-Maruyama method
[35], which is the simplest time discrete approximation used
for integration of SDEs. In this method, each component
of the solution of the vector-valued SDE is approximated
by a continuous time stochastic process defined via the it-
erative scheme with the time differential dt substituted by
the conventional time increment � = tn+1 − tn and the in-
dependent “differentials” dW1 and dW2 approximated by
the increments �W1,2 = W1,2(tn+1) − W1,2(tn), which are as-
sumed to be normally distributed with zero mean value and
variance equal to �. We can write �W1,2 = ξ1,2

√
�, where

ξ1,2 are discrete Gaussian random variables with zero mean
and variance equal to 1. Thereby, our system of SDEs can be
written in the following form suitable for the direct numerical
integration:

Qn+1 = Qn +
(

Nn − Ntr

Nth − Ntr

1√
1 + 2γQQn

− 1

)
Qn

τph
� + Csp

Nn

τe
+ 2

√
CspNnQn

2τe

(
ξ n

1 cos ϕn + ξ n
2 sin ϕn

)√
�,

ϕn+1 = ϕn + α

2τph

(
Nn − Ntr

Nth − Ntr
− 1

)
� +

√
CspNn

2τeQn

(
ξ n

2 cos ϕn − ξ n
1 sin ϕn

)√
�,

Nn+1 = Nn + In

e
� − Nn

τe
� − Qn


τph

Nn − Ntr

Nth − Ntr

1√
1 + 2γQQn

�, (A16)

where we used the notations Qn ≡ Q(tn), Nn ≡ N (tn), ϕn ≡
ϕ(tn), In ≡ I (tn), ξ n

1,2 ≡ ξ1,2(tn).
It should be taken into account that direct implementation

of the Euler-Maruyama scheme may lead to an unphysical
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result, namely, to negative values of N and Q; therefore,
Eq. (A16) should be solved with constraint that N and Q
are nonnegative. Note that this feature persists for the second
order scheme (e.g., the Milstein scheme [35]), albeit the latter
somewhat minimizes such unphysical trajectories. In simula-
tions shown below, we used the first order (Euler-Maruyama)
scheme. Note that we performed integration at different rea-
sonable integration steps � < 0.1τph; the results obtained at
different � were the same for all simulations.

APPENDIX B: CONTROLLING THE INTERFEROMETERS

As was discribed in Sec. III A, we used for measurements
a chip with a cascade of unbalanced Mach-Zehnder inter-
ferometers (two of them are shown in Fig. 5). To choose
the desired delay line, we used an additional balanced inter-
ferometers placed between the unbalanced ones; there were
seven interferometers on the chip in total: four balanced
and three unbalanced with the delay lines �T1 = 200 ps,
�T2 = 400 ps, and �T3 = 800 ps (each MZI was also
equipped by a thermo-optical phase modulator). Due to such
a configuration, the evolution of phase in the interferometers
have a cumulative effect, such that splitting ratios depend on
the set of phases in all four balanced interferometers. To deter-
mine the phases that must be set on thermo-optical modulators
in order to select the required delay line, let us write a system
of recursive equations that describe propagation of an optical
pulse through a cascade of interferometers:

E±
12(t ) = Ein(t )

(
1 ± eiϕ1

c
)
/4,

E±
23(t ) = [E−

12(t − �T1) ± E+
12(t )eiϕ1

u
]
/
√

2,

E±
34(t ) = [E−

23(t ) ± E+
23(t )eiϕ2

c
]
/
√

2,

E±
45(t ) = [E−

34(t − �T2) ± E+
34(t )eiϕ2

u
]
/
√

2,

E±
56(t ) = [E−

45(t ) ± E+
45(t )eiϕ3

c ]/
√

2,

E±
67(t ) = [E−

56(t − �T3) ± E+
56(t )eiϕ3

u
]
/
√

2,

E±
out (t ) = [E−

67(t ) ± E+
67(t )eiϕ4

c
]
/
√

2, (B1)

where Ein(t ) is the electric field in the input laser pulse, E±
mn(t )

stands for the electric field in the laser pulse being between the
mth and nth interferometers at time t , and the signs “+” and
“−” correspond to different ports of the corresponding direc-
tional coupler. Photodetectors connected to the output ports +
and − measure the intensities |E+

out| and |E−
out|, respectively.

[We will assume for simplicity that |Ein(t )|2 is defined by the
Gaussian curve: |Ein(t )|2 = exp[−t2/(2w2)], where w is the
rms width of the pulse.]

It is easy to see that configuration of splitting ratios, which
defines the choice of the delay line, does not depend on phases
ϕk

u determining phase shifts in unbalanced interferometers;
therefore, for simplicity, they can be put to zero. It is inter-
esting to note that if we put also ϕ1

c = ϕ2
c = ϕ3

c = ϕ4
c = 0, we

will obtain using (B1)

|E−
out| = 0, |E+

out| = exp

[
− (t − �T2)2

2w2

]
, (B2)

FIG. 13. Schematic representation of a cascade of interferome-
ters on the chip we used in the experiment (on the top) and the output
of the system for various configurations of phases ϕk

c in assumption
that a single laser pulse of the Gaussian shape with the rms width of
20 ps arrives at the input of the interferometer.

i.e., the incoming laser pulse passes through the delay line
�T2 = 400 ps and outputs to the port “+” (and nothing is
output to the port “−”).

To “close” all the delay lines, the following phase config-
uration should be used: ϕ1

c = ϕ4
c = 0, ϕ2

c = ϕ3
c = π , which

yields

|E−
out| = 0, |E+

out| = exp[−t2/(2w2)]. (B3)

To choose the interferometer with �T3 = 800 ps, one should
put ϕ1

c = 0, ϕ2
c = π , ϕ3

c = ϕ4
c = π/2, which provides

|E±
out|2 = 1

4

[
e− t2

4w2 + e− (t−�T3 )2

4w2

]2

. (B4)

To choose the interferometer with �T2 = 400 ps, one may use
ϕ1

c = ϕ4
c = 0, ϕ2

c = ϕ3
c = π/2, which gives

|E+
out|2 = 1

4

[
e− t2

4w2 + e− (t−�T2 )2

4w2

]2

,

|E−
out|2 = 1

4

[
e− (t−�T3 )2

4w2 + e− (t−�T2−�T3 )2

4w2

]2

. (B5)

The results corresponding to Eqs. (B3)–(B5) are shown in
Fig. 13 on the assumption that a single laser pulse of the
Gaussian shape with the rms width of 20 ps arrives at the input
of the interferometer.
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APPENDIX C: SIGNAL NORMALIZATION

When constructing experimental PDFs, it is extremely
important to perform proper normalization. To obtain the nor-
malized signal defined by Eq. (9), it was taken into account
that even in the absence of optical power, the “area” under
the signal from the photodetector (i.e., the measured energy
contained in the pulse) can be different from zero; therefore, in
all experiments we preliminary determined the “origin” Szero.
In addition, we estimated the losses in the interferometer arm.
For this, we set the pulse repetition rate to 312.5 MHz (the
repetition period of 3.2 ns) and set the voltage on the TOPM-
controller such that the optical pulse does not enter any of the
delay lines, and all the corresponding optical power goes out
to the port connected to the photodetector. The optical energy
per pulse was determined as the area under the photodetector
signal (in picowebers) in the range from 0 to 3.2 ns (the
position of zero on the time axis was chosen arbitrarily). (Szero

was measured as the area of the photodetector signal in the
same range, but with the laser turned off.) Then the delay line
of 800 ps was selected, and the area under the photodetector
signal was again measured in the same range, the value of
which we designated now S800. It is clear from Eq. (B4) (see
also Fig. 13) that the insertion loss of the delay line �T3 =
800 ps (in dB) can be estimated using the formula α800 =
10 log10{(S0 − Szero)/[2(S800 − Szero)]}. We obtained α800 ≈
1.3 dB. The pulse repetition rate was then set to 1.25 GHz
and the pulse energy S0 (without entering the delay line) was
measured in the range from 0 to 800 ps. Then, the histogram
of the interference PDF (over the pulse area) was recorded.
Each value along the x axis was normalized according to the
formula

S̃ = 10α800/10 x − Szero

S0 − Szero
. (C1)

FIG. 14. Theoretical statistical fringes at various values of σϕ

and σs.

In a similar way, we normalized the signal at 2.5 GHz. For the
delay line �T2 = 400 ps we obtained α400 ≈ 0.7 dB.

APPENDIX D: σS̃ FRINGES

Figure 14 demonstrates theoretical statistical interference
fringes at various values of σϕ and σs. One can see that the
depth of the dip in the σS̃ curve at constructive interference
(�θ = 0) decreases when increasing σs, and such an asymme-
try of the fringe is more pronounced at smaller σϕ . Although
the analysis of σS̃ fringes is not as straightforward as fitting
conventional interference fringes, it allows gaining deeper
insight into statistical features of the pulse interference and
can be thus a useful tool.
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