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Sharing preparation contextuality in a Bell experiment by an arbitrary pair of sequential observers
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Based on the quantum violation of the bipartite Bell inequality, it has been established that the sharing of
nonlocality can be demonstrated for at most two sequential observers at one end and at most one pair of observers
at both ends. In this work we study the sharing of nonlocality and preparation contextuality based on a bipartite
Bell inequality, involving arbitrary n measurements by one party and 2n−1 measurements by another party. Such
a Bell inequality has two bounds, the local bound and the preparation noncontextual bound, which is smaller than
the local bound. We show that while nonlocality can be shared only by the first pair of the sequential observers,
the preparation contextuality can be shared by an arbitrary pair of independent sequential observers at both ends.
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I. INTRODUCTION

Bell’s theorem [1] is one of the most famous discov-
eries of quantum theory. It is the first no-go theorem that
demonstrates that an ontological model satisfying locality
cannot reproduce all the statistics of quantum theory. Such
a feature is widely known as quantum nonlocality, which is
demonstrated through the quantum violation of suitable Bell
inequalities. It is one of the elegant routes to demonstrate
the supremacy of quantum theory over its classical coun-
terpart. In addition to the extensive importance of the Bell
inequality in quantum foundations, it plays a pivotal role in
quantum information processing such as secure quantum key
distribution [2–5], randomness certification [6–9], witnessing
Hilbert space dimension [10–17], and achieving advantages in
communication complexity tasks [18].

There is another important no-go theorem, the Kochen-
Specker (KS) theorem [19], which provides a way of
discriminating quantum theory from classical noncontextual
theories. Over the years, many simpler proofs of the KS theo-
rem have been proposed [20–23]. Importantly, contextuality
can be revealed for a single system in contrast to nonlo-
cality, which requires spatially separated entangled systems.
However, the KS theorem only involves the measurement
noncontextuality and it is not applicable to unsharp mea-
surement. Later, Spekkens [24] generalized the notion of
noncontextuality for arbitrary operational theories and ex-
tended the formulation to preparation, transformation, and
unsharp measurement. In recent times, the quantum prepara-
tion contextuality has been extensively studied [25–33].

The aim of this work is to demonstrate the sharing of
preparation contextuality by multiple independent sequential
observers. Sharing of various forms of quantum correlations
has gained considerable attention in recent times. Based on
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the quantum violation of the Clauser-Horne-Shimony-Halt
(CHSH) inequality [34], Silva et al. [35] first demonstrated
that at most two independent observers can share the nonlo-
cality sequentially when sharing is considered for one party.
Let a bipartite two-qubit entangled state be shared by two
distant observers, Alice and Bob, such that one qubit is in
possession of Alice and the other qubit is with Bob, who
performs unsharp measurements and relays the qubit to the
second Bob (next sequential observer), who does the same.
Then the sharing of nonlocality implies that by recycling
the qubit of sequential Bobs, the Bell inequality is violated
by independent sequential observers. If two sequential Bobs
violate Bell’s inequality, both of them cannot get the optimal
quantum nonlocality; rather, they share the nonlocality. In
a recent work Brown and Colbeck [36] demonstrated that
the CHSH nonlocality can be shared by an arbitrarily long
sequence of independent observers. However, for every se-
quential observer, the unsharpness parameter and a new set of
observables have to be chosen. This is in contrast to earlier
works [35], where every sequential observer performs the
same set of observables. Very recently, Cheng et al. [37,38]
showed that at most one pair of observers can share non-
locality while considering the sharing for both parties. In
recent years, a flurry of works have examined the number of
independent sequential observers sharing different quantum
correlations, viz., entanglement [39], steering [40–42], nonlo-
cality [35,36,43–47], and preparation contextuality [32,48].

In this paper we study the sharing of nonlocality and
preparation contextuality by multiple independent sequential
observers at both ends. For this we use a suitable Bell in-
equality proposed in [27] involving n measurements by one
party and 2n−1 measurements by another party. Such a Bell
inequality has a local bound and a preparation noncontextual
bound. The preparation noncontextual bound is considerably
lower than the local bound. Such an inequality arises from a
communication game known as the parity-oblivious random
access code (PORAC). We show that the sharing of non-
locality is restricted only to a single pair of observers, but
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sharing of preparation contextuality can be demonstrated for
an unbounded pair of sequential observers at both ends. For
simplicity, we consider the symmetric case sharing when the
kth observer at both ends can share preparation contextuality.

This paper is organized as follows. In Sec. II we demon-
strate the PORAC game, which is used as a tool to
demonstrate our results. In Sec. III we discuss the Bell expres-
sion and its local, preparation noncontextual, and quantum
bounds. In Sec. IV we derive the sequential quantum value of
the Bell expression. The condition of sharing of nonlocality
and preparation contextuality at both ends are demonstrated
in Secs. V and VI, respectively. In Sec. VII we provide the
analytical proof of sharing by an unbounded pair of sequential
observers at both ends. In Sec. VIII we discuss our results.

II. ARBITRARY INPUT BELL INEQUALITY AND ITS
LOCAL, PREPARATION NONCONTEXTUAL, AND

QUANTUM BOUND

We briefly discuss the notion of the PORAC, which is a
two-party one-way communication game, used as a tool to
demonstrate our results. An n-bit random access code [25,49]
involves a sender Alice and a receiver Bob. Alice has an n-bit
string x chosen randomly from x ∈ {0, 1}n and Bob receive
inputs y ∈ {1, 2, . . . , n} uniformly at random and outputs b.
Bob’s task is to recover the yth bit of Alice’s input with a
probability, i.e., the winning condition of the game is b = xy.
The average success probability of the game is defined as

P = 1

2nn

∑
x,y

p(b = xy|x, y). (1)

The task of Alice and Bob is to maximize the success
probability. To help Bob, Alice can communicate some in-
formation with him. However, there is a parity-oblivious
condition which dictates that Alice can communicate any
number of bits to Bob but no information about the parity of
x should be transmitted.

Spekkens et al. [25] defined the parity-oblivious condition
with respect to a parity set Pn = {x | x ∈ {0, 1}n,

∑
r xr � 2}

with r ∈ {1, 2, . . . , n}. For any s ∈ Pn, no information about
sx = ⊕rsrxr (s parity) is to be transmitted to Bob, where ⊕ is
the sum modulo 2. The maximum average success probability
in such a classical n-bit PORAC is [25]

PPNC � 1

n
+ n − 1

2n
= 1

2

(
1 + 1

n

)
. (2)

It has been demonstrated in [24,25,29,33] that the parity
obliviousness at the operational level must be satisfied at the
level of ontic states if the ontological model of quantum theory
is preparation noncontextual. Thus, in a preparation noncon-
textual model, the classical bound remains the same as that
given in Eq. (2). Quantum violation of this bound thus demon-
strates a form of nonclassicality, the preparation contextuality.
Throughout this paper, by quantum preparation contextuality
we refer to the violation of the preparation noncontextuality
inequality in Eq. (2).

In quantum mechanics, Alice encodes her n-bit string of
x ∈ {1, 2, . . . , 2n} into quantum states ρx. Here we consider
an entanglement assisted version of the PORAC so that Alice
and Bob share a suitable entangled state. By performing 2n−1

dichotomic measurements, Alice can steer the state ρx to Bob.
After receiving the state ρx, for every y ∈ {1, 2, . . . , n}, Bob
performs a dichotomic measurement and reports the outcome
b as his output. The quantum success probability can be writ-
ten as [27]

pQ = 1

2
+ 1

2nn

n∑
y=1

2n−1∑
i=1

(−1)xi
y〈Ai ⊗ By〉. (3)

It is seen from Eq. (3) that the quantum success probability
is dependent solely on the Bell expression

Bn =
n∑

y=1

2n−1∑
i=1

(−1)xi
y An,i ⊗ Bn,y, (4)

where n is an arbitrary integer with n > 2. For n = 2 and 3, the
Bell expressions Bn become the well-known CHSH [34] and
Gisin elegant Bell [50] expressions. Using an elegant sum-of-
squares decomposition [27], the optimal quantum value of the
Bell expression was derived as [17](

Bopt
n

)
Q = 2n−1√n. (5)

This is achieved when Alice and Bob share a number � n−1
2 	

of two-qubit maximally entangled states and Bob performs
the measurements of a number n of mutually anticommuting
observables. Then the optimal quantum success probability
for an n-bit PORAC is

Popt
Q = 1

2

(
1 + 1√

n

)
. (6)

Since for any n, popt
Q > Popt

PNC = 1
2 (1 + 1

n ), the quantum
preparation contextuality is demonstrated. In other words,
using quantum resources, the success probability of the n-
bit PORAC exceeds the preparation noncontextual bound. In
this paper we use the Bell expression (4) to demonstrate the
sharing of nonlocality and preparation contextuality at both
ends.

The local bound of the Bell expression (4) is derived as
[32]

(Bn)L � n

(
n − 1

� n−1
2 	

)
. (7)

For n = 2 and 3 we have (Bn)L � 2 (the CHSH inequality)
and (Bn)L � 6 (Gisin’s elegant Bell inequality [50]).

Importantly, the optimal quantum value derived in Eq. (5)
automatically satisfy the parity-oblivious condition in Eq. (8)
[27]. In quantum theory, the parity-oblivious condition de-
mands that

1

2n−1

∑
x|x.s=0

ρx = 1

2n−1

∑
x|x.s=1

ρx ∀ s. (8)

For the n-bit case, the total Cn = 2n−1 − n nontrivial parity-
oblivious condition between Alice’s observables [27] needs to
satisfy

2n−1∑
i=1

(−1)s.xi
An,i = 0 ∀ s. (9)
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The parity-oblivious conditions in Eq. (9) will have equiva-
lent representation in an ontological model, which is, in the
premise of the preparation noncontextuality assumption, in an
ontological model. Putting the condition (9) into Eq. (4), we
have [27]

(Bn)PNC � 2n−1, (10)

which is preparation noncontextual bound of the Bell expres-
sion in Eq. (4). Comparing the local bound in Eq. (7) and the
preparation noncontextual bound in Eq. (10), we can see that
(Bn)L > (Bn)PNC. Then there may be instances when nonlo-
cality may not be revealed but a nonclassicality in the form of
preparation contextuality can be revealed. This indicates that
there is a higher chance of sharing the preparation contextual-
ity for more pairs of sequential observers than nonlocality. In
this work we examine the maximum number of pairs of Alice
and Bob that can share the nonlocality and the preparation
contextuality across both Alice’s and Bob’s ends based on the
quantum violations of Eqs. (7) and (10), respectively.

III. SEQUENTIAL QUANTUM VALUE OF THE BELL
EXPRESSION

We start by pointing out that the sharing of any quantum
correlation protocol requires the prior observers to perform
unsharp measurements [51] represented by a set of positive-
operator-valued measures (POVMs). Although sharp mea-
surement seems advantageous from an information-theoretic
perspective, there remain certain tasks where unsharp mea-
surement showcases its supremacy over sharp measurement
[52–54]. An ideal sharp measurement extracts maximum in-
formation by collapsing the system state into one of the
eigenstates of the measured observable. This causes a maxi-
mum disturbance to the initial system. For an entangled state,

if a sharp measurement is performed by one party the sys-
tem becomes a mixed state. No quantum violation of Bell’s
inequality can be found by a sequential observer. However,
if previous observers perform an unsharp measurement, the
initial entangled state is partially disturbed. This can be con-
trolled by tuning the degree of the unsharpness parameter. In
such a case some amount of entanglement may remain in the
system, which can be used by sequential observers. Then, by
using this residual entanglement there remains a chance of
sharing nonlocality through the quantum violation of Bell’s
inequality.

In order to demonstrate sharing of nonlocality and prepa-
ration contextuality, we consider that an entangled state is
shared between multiple independent observers. For the Bell
expression Bn in Eq. (4), each sequential Alice and Bob
perform dichotomic measurements upon receiving inputs x ∈
{1, 2, . . . , 2n−1} and y ∈ {, 2, . . . , n}, respectively. Here it
should be noted that Alice’s and Bob’s choices of measure-
ment settings are completely random and in each run they
use the same set of respective measurement settings. For any
arbitrary n, the respective POVMs that are performed by a
number k of sequential Alices and a number l of sequential
Bobs are represented by

E±
n,x,p = 1 ± ηn,p

2
�+

An,x,p
+ 1 ∓ ηn,p

2
�−

An,x,p
(11)

and

E±
n,y,q = 1 ± χn,q

2
�+

Bn,y,q
+ 1 ∓ χn,q

2
�−

Bn,y,q
, (12)

with p = (1, 2, . . . , k) and q = (1, 2, . . . , l ). Here ηn,p (χn,q)
is the sharpness parameters of the pth Alice (qth Bob) satisfy-
ing 0 � ηn,p, χn,q � 1. Then the postmeasurement state after
an unsharp measurement of the (k − 1)th Alice (Alicek−1) and
an unsharp measurement of the (l − 1)th Bob (Bobl−1) can be
written as

ρn,k,l = 1

2n−1n

∑
a,b∈{+,−}

2n−1∑
x=1

n∑
y=1

[(√
Ea

n,x,k−1 ⊗
√

Eb
n,y,l−1

)
ρn,k−1,l−1

(√
Ea

n,x,k−1 ⊗
√

Eb
n,y,l−1

)]

=
√

1 − η2
n,k−1σn,k−1,l−1 +

1 −
√

1 − η2
n,k−1

2n−1

∑
a∈{+,−}

2n−1∑
x=1

(
�a

An,x,k−1
⊗ I

)
σn,k−1,l−1

(
�a

An,x,k−1
⊗ I

)
, (13)

where σn,k−1,l−1, the reduced state after an unsharp measurement of the (l − 1)th Bob, is given by

σn,k−1,l−1 =
√

1 − χ2
n,l−1ρn,k−1,l−1 +

1 −
√

1 − χ2
n,l−1

n

∑
b∈{+,−}

n∑
y=1

(
I ⊗ �b

Bn,y,l−1

)
ρn,k−1,l−1

(
I ⊗ �b

Bn,y,l−1

)
. (14)

If the initial system state shared by Alice1 and Bob1 is a maximally entangled state as mentioned earlier, the quantum value
of the Bell expression (4) for Alicek and Bobl is obtained as

(
Bk,l

n

)
Q = 2n−1√n

k−1∏
p=1

γ A
p

l−1∏
q=1

γ B
q ηn,kχn,l , (15)

where γ A
n,p = 1+(n−1)

√
1−η2

n,p

n and γ B
n,q = 1+(n−1)

√
1−χ2

n,q

n . Now
the nonlocality and the preparation contextuality can be

shared by Alicek and Bobl , if (Bk,l
n )Q > (Bn)L and (Bk,l

n )Q >

(Bn)PNC are respectively satisfied.
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IV. SHARING NONLOCALITY WITH an EQUAL NUMBER
OF SEQUENTIAL ALICEs AND BOBs

We first examine how many sequentially independent pairs
of Alices and Bobs can share nonlocality through the quantum
violation of (Bn)L in Eq. (7). In order to share nonlocality by
Alicek and Bobl , (Bk,l )Q > n

( n−1
� n−1

2 	
)

should be satisfied. For
the case of n = 2, the Bell inequality in Eq. (7) reduces to
the CHSH inequality. The quantum expression (13) shared
between Alice1 and Bob1 reduces to (B1,1

2 )Q = 2
√

2η2,1χ2,1.
Then quantum violation of the Bell inequality by Alice1 and
Bob1 requires η2,1 = χ2,1 � 0.841 and the maximum viola-
tion of 2

√
2 is obtained for η2,1 = χ2,1 = 1. The quantum

value of the CHSH expression for Alice2 and Bob2 is obtained
as

(
B2,2

2

)
Q

= 2
√

2

4

[(
1 +

√
1 − η2

2,1

)(
1 +

√
1 − χ2

2,1

)
η2,2χ2,2

]
,

(16)

which is dependent on the sharpness parameters of Alice1 and
Bob1. By considering the critical values η∗

2,1 = χ∗
2,1 = 0.841

such that Alice1 and Bob1 just violate the Bell inequality,
the maximum quantum value for Alice2 and Bob2 is obtained
to be 1.679 when η2,2 = χ2,2 = 1. It approaches 2 for either
or both of η2,2 and χ2,2 greater than 1. Hence, within the
valid range of sharpness parameters the nonlocality cannot
be shared by Alice2 and Bob2. This result has already been
studied in [37,38].

For n = 3, the Bell inequality in Eq. (7) becomes Gisin’s
elegant Bell inequality with local bound 6. The quantum ex-
pression of the Bell inequality for Alice1 and Bob1 is obtained
as 4

√
3η3,1χ3,1. The quantum violation of the Bell inequal-

ity by Alice1 and Bob1 requires η3,1 = χ3,1 � 0.931 and the
maximum violation of 4

√
3 is obtained for η2,1 = χ2,1 = 1.

The quantum value of the elegant Bell expression for Alice2

and Bob2 is

(
B2,2

3

)
Q
=4

√
3

9

[(
1+2

√
1 − η2

3,1

)(
1+

√
1 − 2χ2

3,1

)
η3,2χ3,2

]
.

(17)

By considering the critical values η∗
3,1 = χ∗

3,1 = 0.931, the
maximum quantum value for Alice2 and Bob2 is obtained to
be 2.304 at η3,2 = χ3,2 = 1, which is much less than the local
bound 6. Hence, also for the case of n = 3, the nonlocality
cannot be shared by Alice2 and Bob2.

It is not expected that more than one pair of Alice and Bob
can share the nonlocality for large n, but for completeness we
examine a higher value of n. In Fig. 1 we have plotted the
local bound (Bn)L (blue solid line with circles) and maximum
quantum values obtained by the Alice1-Bob1 pair, (B11

n )Q (red
dashed line with squares), and the Alice2-Bob2 pair, (B22

n )Q

(orange dashed line with diamonds), up to n = 10. From
Fig. 1 it can be seen that the maximum quantum value of
(B2,2

n )Q for the Alice2-Bob2 pair (orange diamonds) always
remains less than the respective local bound (Bn)L (blue cir-
cles). It can also be seen that the difference between (Bn)L

(blue circles) and (B2,2
n )Q (orange diamonds) increases as n in-

creases. We then can say that if both Alice and Bob perform an
unsharp measurement, using the violation of the local bound

FIG. 1. Local bound (blue line with circles) and maximum quan-
tum value obtained by the Alice1-Bob1 pair (red dashed line with
squares) and the Alice2-Bob2 pair (orange dashed line with dia-
monds) up to n = 10 bits.

of the Bell expression Bn in Eq. (4), the possibility of sharing
a nonlocality by the second pair of Alice and Bob decreases
as n increases, i.e., sharing of nonlocality remain restricted to
one pair of sequential observers as claimed in [37,38]. Now,
since (Bn)L > (Bn)PNC, we may expect that the sharing of
preparation contextuality can be demonstrated by more pairs
of sequential Alices and Bobs. In the next section we study
this through the violation of the preparation noncontextual
inequality in Eq. (10).

V. SHARING PREPARATION CONTEXTUALITY

Note that for the case of n = 2, the Bell inequality in
Eq. (4) reduces to the CHSH inequality for which both the
local and preparation noncontextual bounds are the same.
Hence, the analysis for n = 2 remains the same as we did
for sharing the nonlocality. As mentioned, the Bell inequality
in Eq. (4) has two classical bounds, the local bound and
the preparation noncontextual bound, but the quantum bound
remains same. The quantum expression for Alice1 and Bob1

for n = 3 is again 4
√

3η3,1χ3,1. The quantum violation of the
preparation noncontextuality bound (Bn)PNC � 4 requires that
η3,1 = χ3,1 � 0.840, which is less than what is required for
sharing the nonlocality. For the case of Alice2 and Bob2, the
quantum expression of the Bell inequality is given in Eq. (16).
Then, by considering the critical values η∗

3,1 = χ∗
3,1 = 0.840

such that Alice1 and Bob1 just violate the Bell inequality, the
maximum quantum value of the Bell expression for Alice2

and Bob2 is obtained to be 4.073 at η3,2 = χ3,2 = 1. Thus,
for n = 3, sharing of the preparation contextuality can be
demonstrated for the second pair of sequential observers.

Next the quantum value of the elegant Bell expression for
Alice3 and Bob3 can be written as

(
B3,3

3

)
Q = 4

√
3

81

[(
1 + 2

√
1 − η2

3,1

)(
1 + 2

√
1 − η2

3,2

)

× (
1+

√
1 − 2χ2

3,1

)(
1+

√
1−2χ2

3,2

)
η3,3χ3,3

]
,

(18)
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FIG. 2. Preparation noncontextuality bound (blue solid line
with circles) and the maximum quantum value obtained by the
Alice1-Bob1 pair (red dashed line with squares), the Alice2-Bob2 pair
(orange dashed line with diamonds), and the Alice3-Bob3 pair (brown
dashed line with triangles) up to n = 10 bits.

which depends on the sharpness parameter of all the previous
observers Alice1, Bob1, Alice2, and Bob2. Substituting the
critical values η∗

3,1 = χ∗
3,1 = 0.840 and η∗

3,2 = χ∗
3,2 = 9.742,

the maximum quantum value of (B3,3
3 )Q is obtained to be

0.727 at η3,3 = χ3,3 = 1. Hence, for n = 3 only two pairs of
Alices and Bobs can share preparation contextuality.

Further, we have numerically studied the case for n = 4
and found that the quantum value for Alice3 and Bob3 in-
creases with n, but cannot beat preparation noncontextuality
bound. From Fig. 2 it can be seen that the sharing of prepa-
ration contextuality is restricted for Alice2 and Bob2 up to
n = 7. For n = 8, the preparation noncontextuality bound is
128 and the maximum quantum value obtained for Alice3

and Bob3 is 134.012; thereby Alice3 and Bob3 can also share
the preparation contextuality. In Fig. 2 we show the result
up to n = 10. However, for a higher value of n, the sharing
of preparation contextuality can be demonstrated for more
sequential Alices and Bobs. We analytically show that for a
sufficiently large value of n, an unbounded number of Alices
and Bobs can share preparation contextuality.

VI. GENERALIZATION OF SHARING NONTRIVIAL
PREPARATION CONTEXTUALITY

In order to show the sharing of preparation contextuality
by an arbitrary pair of sequential observers, from Eq. (15) we
write the general condition on the sharpness parameters for
Alicek and Bobl for sequentially sharing preparation contex-
tuality, given by

ηn,kχn,l >
1√

n
∏k−1

p=1 γ A
n,p

∏l−1
q=1 γ B

n,q

. (19)

For convenience let us assume that l = k and the unsharp-
ness parameters of Alicek and Bobk for a given k are equal,
i.e., χn,l = ηn,k . Then the condition on the unsharpness pa-
rameter for sharing preparation contextuality becomes

η2
n,k >

1
√

n
( ∏k−1

p=1 γn,p

)2 . (20)

Using Eq. (20), the critical value of the sharpness parameter
of Alicek and Bobk above which violation of noncontextual
inequality in Eq. (10) is obtained is given by

η2
n,k = 1

√
n
(
γn,k−1

∏k−2
p=1 γn,p

)2 . (21)

Then, in order to share the contextuality by Alicek and
Bobk , the sharpness parameter requires

η2
n,k � 1

√
n
( ∏k−1

p=1 γn,p

)2 . (22)

Now, for Alicek−1 and Bobk−1, the critical value of the
sharpness parameter is

η2
n,k−1 = 1

√
n
(∏k−2

p=1 γn,p

)2 . (23)

Using Eq. (23), the condition on the sharpness parameter
for sharing nontrivial preparation contextuality for Alicek and
Bobk in Eq. (22) reduces to

ηn,k � ηn,k−1

γn,k−1
. (24)

Since γn,k−1 = 1+(n−1)
√

1−η2
n,p

n >
√

1 − η2
n,k−1, we can

rewrite Eq. (24) as

ηn,k � ηn,k−1√
1 − η2

n,k−1

. (25)

Here it should be noted that the critical value of the
unsharpness parameter for Alice1 and Bob1 requires η∗2

n,1 =
1/

√
n, i.e., η∗

n,1 = (1/n)1/4. Using Eq. (25), we have the crit-
ical value of unsharpness parameter for Alice2 and Bob2 as
ηn,2 = 1√√

n−1
and for Alice3 and Bob3, ηn,3 = 1√√

n−2
. Thus,

the unsharpness parameter for Alicek and Bobk has to satisfy

ηn,k � 1√√
n − (k − 1)

. (26)

In other words, preparation contextuality can be shared by
k arbitrary pairs of Alice and Bob if Eq. (26) is satisfied. If the
final pair of Alice and Bob performs the sharp measurement,
we have the condition

n(k) � k2 (27)

as k is very large. Hence, using the Bell expression for n = k2,
the preparation contextuality can be shared by k independent
sequential pairs of Alice and Bob. In Fig. 3 we have shown
that using quantum violation of the Bell inequality for n =
100, at most ten pairs of Alices and Bobs can sequentially
share preparation contextuality.

VII. CONCLUSION

In summary, we have examined the maximum number of
pairs of Alice and Bob that can share the nonlocality and the
preparation contextuality. Our study is based on the quantum
violation of suitable bipartite Bell inequality, arising from
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FIG. 3. Minimum value of the sharpness parameter of ten pairs
of Alice and Bob required for violating the preparation noncontextual
bound for the family of Bell expressions for n = 100.

a communication game known as parity-oblivious random
access code. Such a Bell inequality involves n arbitrary mea-
surements by one party and 2n−1 measurements by the other
party. As mentioned, it has two different classical bounds, the
local bound and the preparation noncontextual bound, which
is lower than the local bound for n > 2.

We demonstrated that if the sharing is considered for both
parties then at most one pair of Alice and Bob can share
the nonlocality irrespective of the value of n. This result is
in accordance with previous works [37,38] which considered

the n = 2 case. Since the preparation noncontextual bound is
lower than the local bound and the optimal quantum value
remains the same, there may be more pairs that can share
the preparation contextuality. Indeed, we have shown that the
preparation contextuality can be shared by an arbitrary pair of
independent sequential observers at both ends of the bipartite
Bell experiment for a sufficiently large value of n.

Our work has a potential application for generating
certified device-independent randomness in the sequential
scenario following the line of work developed in [54]. Further
studies along this line are thus called for. Finally, we note here
that the preparation contextuality is a weaker correlation than
the nonlocality. It is worthwhile to explore the possibility of
formulating a suitable local realistic inequality to investigate
the sharing of nonlocality for more than one pair of sequential
observers. It would also be interesting to formulate a new
preparation noncontextual inequality for multioutcome and
multiparty scenarios to demonstrate the sharing of preparation
contextuality. Studies along this line could be an interesting
avenue of research.
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