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The march towards successful global quantum internet requires introducing all-quantum networks and
signal processing techniques. In this paper, we develop and discuss methods for various wavelength-division-
multiplexing and multiple-access (WDM) communication systems and networks in fully quantum mechanical
terms to obtain all-quantum WDM (QWDM) systems and networks. We begin the paper with a detailed discus-
sion on various possible narrow-band and wideband sources of light signals used in typical WDM systems, such
as coherent, number, and Poissonian mixed states. After introducing a generic and fully quantum mechanical
WDM network, we develop methodologies for obtaining the necessary mathematical evolutions through wave-
length distributors such as arrayed-waveguide-grating multiplexers and demultiplexers, and wavelength-sensitive
and -insensitive broadcasting star couplers. In particular, using the methodologies introduced, one can use
the results to obtain a complete and exact expression for any evolved pure quantum light signal through a
typical WDM network using the aforementioned optical components. To test the validity and robustness of
our mathematical expression for the evolved QWDM light signals, we use two opposing and extreme signals,
namely, coherent state and number state, as inputs to various WDM communication and network systems and
architecture. The methodologies and the required mathematical QWDM models introduced here can be extended
to any fully quantum network architecture deemed necessary in a future global quantum internet, e.g., fiber to
the home, Lambdanet-based broadcast WDM networks, and quantum routers based on a waveguide grating
router.

DOI: 10.1103/PhysRevA.107.012613

I. INTRODUCTION

The successful emergence of various quantum communi-
cation systems and networks in the futuristic quantum internet
will highly depend on developing all-quantum signal process-
ing techniques and models embedded in quantum network
applications [1–3]. All-quantum signal processing techniques
within vast and complex networks face many challenges
due to the wide range of optical and photonic devices and
subsystems used in such networks. The core challenge in
developing all-quantum signal processing in the aforemen-
tioned networks lies in preserving the quantumness of the
state of quantum light to keep its quantum advantage while
transforming from one module (device) to another with dif-
ferent functionalities. For example, in a typical multiuser
wavelength-division-multiplexing (WDM) network, due to
multiple users, an array of output quantum light sources needs
to pass through an arrayed waveguide grating (AWG) device
followed by a broadcasting star coupler, and prior to detection,
the array passes through optical routers and filters [4]. In an
all-quantum network, one needs to describe the evolution of
the quantum state of light at each stage of the network prior
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to entering the next stage, thereby making the development
of such techniques with a precise mathematical model into a
Herculean task.

Due to its immense bandwidth, optical fiber communica-
tion systems and networks dominate the essential backbone
and the building blocks of today’s global communication net-
works. The wide bandwidth in optical fiber makes it possible
to send information on channels with different wavelengths in
a single optical fiber. Using WDM techniques, classical bits
of information associated with different users are indepen-
dently modulated on a particular wavelength with a specific
frequency space from the other user’s channel. WDM is one
of the principal methodologies in conventional and global
optical fiber communication networks [5], ranging from a
point-to-point long-haul communication topology illustrated
in Fig. 1(a) to local area networks such as the passive pho-
tonic loop and Lambdanet networks [6] depicted, respectively,
in Figs. 1(b) and 1(c) [7]. In the passive photonic loop
[Fig. 1(b)], different wavelengths (channels) are distributed
among the end users by multiplexing and demultiplexing of
the wavelengths. On the other hand, in the Lambdanet network
[Fig. 1(c)], a star coupler broadcasts the wavelengths among
many end users. Extensive works have been done thus far
related to adapting WDM techniques for quantum communi-
cation systems [8–11].

Like the conventional classical network, any quantum
network requires a backbone in charge of connecting
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FIG. 1. (a) Wavelength division multiplexing optical network via
a multichannel point-to-point long-haul fiber link [7], (b) passive
photonic loop [7], and (c) single-hop WDM access network topolo-
gies (Lambdanet [6]). See Appendix A for more description. Tx and
Rx, respectively, stand for transmitter and receiver systems. Mux
and DeMux are abbreviations of multiplexing and demultiplexing,
respectively.

long-distance nodes to local networks, including access net-
works such as fiber-to-the-home (FTTH) networks [12,13].
The access networks connect every two local users via
various topologies. In point-to-multipoint network topolo-
gies, users exchange information indirectly through a central
node at a higher rate, while in the multipoint-to-multipoint
scheme, all users connect directly or via a star coupler or
arrayed waveguide gratings. In addition, different dimensions
such as time, frequency, wavelength, code, and space can
be employed for assigning a unique channel to different
users [14–18]. The two key properties of access network
topologies are cost effectiveness and reliability. In this re-
gard, passive optical networks (PONs), which utilize passive
network elements such as optical power splitters and com-
biners and wavelength multiplexers and demultiplexers, have
also been adapted for quantum local networks and quan-
tum key distribution (QKD) networks [19–25]. As a result
of the possibility of utilizing existing optical fiber infras-
tructure economically, quantum engineers are increasingly
investigating quantum and classical network hybridization
[26–29]. Therefore, investigating the same existing classi-
cal networks for usage in quantum communications could
be intriguing and quite challenging, since the consolidation
between conventional and quantum channels without proper
modifications could considerably degrade the quantum chan-
nel performance. As a result of the hybridization of strong
classical and weak quantum signals, communication systems
encounter serious challenges related to crosstalk and noise.
However, there are various methods, engineering approaches,
and protocols to overcome these difficulties; for example,
by choosing proper channel spacing, we can dissociate clas-
sical WDM networks from quantum WDM networks [29].
Therefore, this paper focuses on the networks containing
only quantum signals and their evolution in the QWDM
networks.

In this paper, we study all-quantum multiaccess WDM
(QWDM) communication systems. In the context of QWDM,

we develop a systematic approach to the evolution of generic
quantum signals among WDM devices. The quantum oper-
ation of a general WDM quantum communication system,
which includes quantum transmitters, a passive quantum
wavelength distributor, and quantum receivers, is analyzed.
Hence, the operation of various possible configurations of
passive quantum wavelength distributors in fully quantum
terms is realizable. We further assume that the quan-
tum transmitters prepare individual quantum light signals,
and at the quantum receiver end, each quantum receiver
measures its corresponding transmitted signal; this scheme
is known as a prepare-and-measure quantum communica-
tion system [30]. Indeed, the upcoming futuristic internet
requires entanglement-based networks utilizing quantum re-
peaters specifically in long-haul communications [31–33].
For the entanglement-based networks, one requires revisiting
the methodologies and modeling introduced in this paper.
However, this work focuses on prepare-and-measure access
networks.

The paper is organized as follows. Section II analyzes the
evolution of quantum signals in a generic QWDM communi-
cation system. Section III qualitatively discusses the evolution
of wave-packet creation operators through QWDM networks.
We examine three particular input states, coherent, mixed
Poissonian, and single-photon states, in Sec. IV. We study the
measurement results for coherent, single-photon, and mixed
Poissonian states based on spectral intensity and projective
measurements, respectively, in Sec. V. Finally, we conclude
the paper in Sec. VI.

We would like to emphasize that our methodologies can
be applied to various applications based on QWDM, such
as QWDM Lambdanet broadcasting, router-based scheme
(WGR), and the quantum counterpart of conventional FTTH
topologies.

II. GENERAL QWDM NETWORK

As depicted in Fig. 2, the building block of a passive
quantum communication system based on WDM consists
of N quantum transmitters (QTx) emitting quantum signals
toward a global N × N quantum wavelength distributor com-
ponent (G). Then, the evolved quantum light-wave signals
at the output of G are guided to N local quantum receivers
(QRx), where their outputs are detected by each receiver’s
quantum detector (QD). We assume unitary operators G and
QR

j
as lossless devices. However, the lossy devices can also

be mathematically modeled by unitary operators with the help
of adding extra ancillary ports as external degrees of freedom
coming from the interaction of the ambient environment sur-
rounding the devices [34–36]. Moreover, one can model the
transmittance loss of the network inside the receiver losses
[35,37].

Theorem 1. Consider a prepare-and-measure-based
QWDM network depicted in Fig. 2. Let each transmitter i
prepare a pure quantum state of light signal with an arbitrary
normalized wave packet ζi(ω) and a function of creation
modes â†(1)

i,ζi
as |ψζi〉(1) = fi(â

†(1)
i,ζi

)|0〉, where fi is an arbitrary
analytical function that leads to normalized quantum states.
Then the simultaneous evolution of all transmitters’ signals

012613-2



QUANTUM WAVELENGTH-DIVISION-MULTIPLEXING AND … PHYSICAL REVIEW A 107, 012613 (2023)

FIG. 2. Schematic of a generic quantum wavelength division multiplexing (QWDM) network. Depending on chosen network topology, G
can be a star coupler, a combination of multiplexer/fiber/demultiplexer, and or a wavelength grating router (WGR). Depending on opted G,
quantum transmitters (QTs) can be narrow and/or broadband lasers or single-photon sources. Input signals can be either weak coherent pulses
(WCHs) or single-photon pulses (SPPs). Quantum receivers (QR), depending on a particular choice of G, are a demultiplexer and/or a single
frequency filter. Quantum detectors (QDs) can be either single-photon detectors (SPDs) or conjugate homodyne detectors (CHDs). PD jl stands
for a photodetector that receives the optical signal from the lth output of the jth receiver. LO is a local oscillator. X1 and X2 indicate field
quadratures.

through the global quantum wavelength distributer Ĝ
†

and

local quantum receivers Q̂R
†

results in receivers’ signals as

|ψ〉(3) =
N∏

i=1

fi

⎛
⎝ N∑

j=1

G ji(ζi )
L∑

l=1

QR j,ls(η ji)â
†(3)
j,l,γls ji

⎞
⎠|0〉,

where η ji and γls ji are the normalized wave packets of signals

after evolution from the global operator Ĝ
†

and the local

operators Q̂R
†
, respectively. The superscripts (1), (2), and

(3) indicate the signal evolution in three stages, namely, (1)
after quantum transmitters, (2) after the quantum wavelength
distributor, and (3) after quantum receivers.

Proof. The simultaneous evolution of input signals in a
generic QWDM network, as depicted in Fig. 2, is obtained
through three stages in Secs. II A–II C.

A. QWDM signal sources

Any generic communication network consists of signals
carrying information transmitted by senders to their corre-
sponding receivers. It is, therefore, essential to accurately
describe the signals that carry information. In QWDM net-
works, quantum signals are distinguished by their frequency
contents and quantum states. The former indicates the quan-

tum signal’s spectrum, and the latter specifies the photon
number distribution of the quantum signal.

A typical pure state of a monochromatic single-mode light-
wave signal is written as |ψ〉 = ∑∞

n=0 cn|n〉, where |n〉 is the
number state that can be written according to the monochro-
matic single-mode creation operator â† acting n times on
the vacuum state |0〉 as |n〉 = â†n

√
n!

|0〉. However, since there
is no perfect monochromatic single-mode source, signals
are described with the help of wave-packet representations,
which contain a finite bandwidth spectrum of a field mode.
Thereby, the annihilation and creation operators related to
the normalized finite bandwidth spectrum ζ (ω) are written
as [38]

âζ =
∫ ∞

−∞
ζ ∗(ω)â(ω) dω, (1a)

â†
ζ =

∫ ∞

−∞
ζ (ω)â†(ω) dω, (1b)

where â(ω) and â†(ω) are the annihilation and creation oper-
ators, corresponding to the frequency ω, and the commutation
relation [âζ , â†

ζ ] = 1 is fulfilled due to the normalized spectral

wave-packet ζ (ω) condition
∫ ∞
−∞ |ζ (ω)|2 dω = 1. Besides,

other degrees of freedom related to field modes, such as polar-
ization and orbital angular momentum (structured light), can
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be considered as additional indices on âζ [39–41]. As a result,
any signal prepared in an arbitrary pure state is given by

|ψζ 〉 =
∞∑

n=0

cn|nζ 〉 =
∞∑

n=0

cn√
n!

â†n

ζ |0〉 = f (â†
ζ )|0〉, (2)

where f is an analytical function specified by coefficients cn

[18,42]. For instance, consider two prevalent pure states in
quantum optics and engineering: coherent states,

|αζ 〉 = e−|α|2/2
∞∑

n=0

αn

n!
â†n

ζ |0〉, (3)

and single-photon states,

|1ζ 〉 = â†
ζ |0〉. (4)

Accordingly, the coefficients cn of f associated with the co-
herent and single-photon states can be easily determined. It is
worth noting that the coherent state can also be represented by
acting unitary displacement operator

D̂(αζ ) = exp[αâ†
ζ − α∗âζ ] (5)

on the vacuum state, which is related to the function f as

|αζ 〉 = f (â†
ζ )|0〉 = exp

[
−|α|2

2
+ αâ†

ζ

]
|0〉 = D̂(αζ )|0〉,

(6)

by use of Baker-Campbell-Hausdorff formula in addition to
the relations [â(ω), â†(ω′)] = δ(ω − ω′), and â(ω)|0〉 = 0.
Since the displacement operator, D̂(α), is a unitary opera-
tor that simplifies mathematical manipulations, in this paper,
whenever the signals are in coherent states, f is replaced with
the displacement operator according to Eq. (6).

Quantum sources can also be classified as narrow- and
broad-bandwidth sources. For the former, it is assumed the
central frequency of the wave packet ωc is sufficiently larger
than the bandwidth 	ω, i.e., ωc � 	ω. On the other hand,
broad-bandwidth sources involve several different frequency
(wavelength) components.

The output signals of lasers, as conventional sources in
optical and quantum communications, are approximated by
a coherent state with a spectral density described by a Voigt
function (convolution between a Gaussian and a Lorentzian
function) [43]. For example, near the center of the spec-
trum corresponding to a diode laser, the absolute square of
the wave packet of the output signal is approximated by

Gaussian profile |ζ (ω)|2 =
√

1
π	ω2 e−(ω−ωc )2/	ω2

. In contrast,

the Lorentzian profile |ζ (ω)|2 = 1
π

	ω
(ω−ωc )2+	ω2 describes the

output signal spectrum near the tails of the line shape. As
highlighted, a single-photon source is the other practical quan-
tum source that has many applications in quantum information
processing as well as secure quantum communications. Sev-
eral configurations and experimental demonstrations have
been performed to fabricate an ideal quantum single-photon
source [44]. One of these can be an atom-cavity system where
the cavity transmission profile can adjust the spectrum width
of the single-photon source [45]. Furthermore, a broadband
entangled photon source generated by a spontaneous paramet-

ric down-conversion procedure can also introduce a heralded
broad-bandwidth single photon [46].

Despite the availability of single-photon sources, they still
have to overcome some technological challenges to become
commercially available communication sources. Alterna-
tively, weak coherent states with random phases generated via
a commercial laser followed by a phase randomizer and an
attenuator can emulate a single-photon state for some specific
applications [47]. Nevertheless, this state is no longer a pure
state, and indeed it is a mixed state with Poissonian distribu-
tion as follows [48]:

ρC = 1

2π

∫ 2π

o
|αζ 〉〈αζ | dφ = e−|α|2

∞∑
n=0

|α|2n

n!
|nζ 〉〈nζ |. (7)

For weak coherent pulses, it is assumed the mean photon
number |α|2 	 1, where α = |α|eiφ . The Poissonian mixed
states are signals used in decoy state-QKD protocols [49].

B. QWDM signal evolution through a global
wavelength distributor

According to Fig. 2, in a generic QWDM network, quan-
tum signals are independently prepared by each quantum
transmitter and are received by individual receivers. Mean-
while, the global state prepared by all transmitters experiences
three stages prior to reaching their corresponding receivers’
detectors. The global state in stage 1 is the tensor product of
all prepared states by each transmitter as

|ψ〉(1) =
N∏

i=1

|ψζi〉(1) =
N∏

i=1

fi
(
â†(1)

i,ζi

)|0〉(1), (8)

where the subscript i indicates that the ith quantum transmitter
emits a quantum signal with photon number distribution spec-
ified by fi, and its wave-packet profile ζi. Besides, the vacuum
state in stage 1 is denoted by |0〉(1) = |0, . . . , 0〉(1), where the
total number of zeros is equal to N [18]. Then, |ψ〉(1) passes

through the global unitary operator Ĝ
†

corresponding to a
wavelength distributor. As a result, the correlated output state
in stage 2 becomes

|ψ〉(2) = Ĝ
†|ψ〉(1) =

N∏
i=1

Ĝ
†

fi
(
â†(1)

i,ζi

)
Ĝ|0〉(1)

=
N∏

i=1

fi
(
Ĝ

†
â†(1)

i,ζi
Ĝ

)|0〉(1), (9)

where the unitary operator Ĝ
†

leads to the evolution of the

state in the Schrödinger picture, i.e., |ψ〉(1) Ĝ
†

−→ |ψ〉(2). It is

important to note that, in Eq. (9), the term Ĝ
†
â†(1)

i,ζi
Ĝ can be

realized as the quantum evolution of the creation operator â†(1)
i,ζi

with respect to the unitary evolution operator Ĝ (not Ĝ
†
) in the

Heisenberg picture, i.e., â†(1)
i,ζi

Ĝ−→ Ĝ
†
â†(1)

i,ζi
Ĝ. The representation

of the term Ĝ
†
â†(1)

i,ζi
Ĝ based on the output creation modes of the
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system is

Ĝ
†
â†(1)

i (ω)Ĝ =
N∑

j=1

G ji(ω) â†(2)
j (ω), (10)

where G ji(ω) are the elements of the transform matrix G(ω).
The mathematical details leading to Eq. (10) are reviewed
in Appendix B and follow the same approach as given in
Ref. [18]. Now, by use of Eqs. (1b) and (10), the term

Ĝ
†
â†(1)

i,ζi
Ĝ is written based on the output creation modes as

Ĝ
†
â†(1)

i,ζi
Ĝ =

∫
ζi(ω)

N∑
j=1

Ĝ
†
â†(1)

i (ω)Ĝ dω

=
N∑

j=1

∫
ζi(ω)G ji(ω)â†(2)

j (ω) dω

=
N∑

j=1

G ji(ζi)â
†(2)
j,η ji

. (11)

In Eq. (11), the creation mode â†(2)
j,η ji

related to the modified
normalized wave packet η ji(ω) is defined as

â†(2)
j,η ji

=
∫

η ji(ω)â†(2)
j (ω) dω, (12)

where

η ji(ω) = ζi(ω)G ji(ω)/G ji(ζi ), (13a)

G ji(ζi ) = eiφ ji

√∫
|ζi(ω′)|2|G ji(ω′)|2 dω′. (13b)

The phase φ ji is a specific parameter that guarantees the
unitarity of the matrix made by elements G ji(ζi ). The inter-
relationship between the coefficients G ji(ζi ) and G ji(ω) is
discussed in Appendix C.

As a result, by inserting Eq. (11) into Eq. (9), the state in
stage 2 becomes

|ψ〉(2) =
N∏

i=1

fi

⎛
⎝ N∑

j=1

G ji(ζi )â
†(2)
j,η ji

⎞
⎠|0〉(2). (14)

The superscript (2) on the creation operators written in
Eqs. (11) and (14) indicates the system has evolved to stage 2.

C. Outputs of quantum wavelength demultiplexers and filters

This section considers the evolution of signals towards
stage 3. In this regard, the multiplication of all local unitary

operators, i.e., Q̂R
† = ∏N

j=1 Q̂R
†
j , where Q̂R

†
j corresponds to

the jth quantum wavelength demultiplexers and filters, acts
on the global state |ψ〉(2) as

|ψ〉(3) = Q̂R
†|ψ〉(2) =

N∏
j=1

Q̂R
†
j |ψ〉(2). (15)

To determine |ψ〉(3), the linear transform matrix QR
j

corre-

sponding to Q̂R
†
j is characterized by an L × L unitary matrix,

where L � min{k + 1, K} and 1 � k � K is the number of
wavelengths that the jth user’s receiver chooses to have, and

the maximum number of the wavelengths that the communica-
tion system can support is K , where K � N . For example, for
a single wavelength narrow-band filter, k = 1 and the QR

j
can

be mathematically modeled by a 2 × 2 unitary transform ma-
trix where the first input of the filter passes the filter frequency
towards the first output and the second output emits all other
frequency components of the input signal. Incidentally, an
ideal K × K quantum demultiplexer can also be a good model
for a filter where we assume one of its output ports related
to the filter frequency is open (detected), and the remaining
outputs are blocked. Without loss of generality, in this paper,
every quantum receiver QR

j
is modeled by an identical L × L

demultiplexer where L = K (see Appendix D).
Here the same mathematical steps are performed as in

Appendix B [Eqs. (B1)–(B6)], only Q̂R
†

is replaced by Ĝ
†
,

and the mode evolution between stages 2 and 3 is accounted
for. Moreover, since the output of G is connected to one of
the inputs of QR

j
labeled by s, this label as an additional

subindex must be considered to the related creation modes as
â†(2)

j,η ji
→ â†(2)

j,s,η ji
and it is important to note that â†(2)

j,η ji
≡ â†(2)

j,s,η ji

(without considering the transmittance loss). In other words,
we are dealing with the same field operator coming out of the
port j of G to the input port s of QR

j
. We also assume label

s is the same for all quantum receivers QR
j
s. To realize why

this assumption does not impose any restriction on our model,
see Appendix D.

From the above discussion, one can write the relation be-
tween input creation mode â†(2)

j,s (ω) related to port s and output

creation modes â†(2)
j,l (ω) due to the quantum receiver operator

Q̂R
†
j as

Q̂R
†
j â

†(2)
j,s (ω)Q̂R j =

L∑
l=1

QR j,ls(ω) â†(3)
j,l (ω), (16)

and the output wave packet of G given in Eq. (12) is rewritten
as

â†(2)
j,s,η ji

=
∫

η ji(ω)â†(2)
j,s (ω) dω. (17)

Therefore, according to Eqs. (16) and (17) the unitary operator

Q̂R
†
j gives rise to the evolution of the wave-packet creation

mode â†(2)
j,s,η ji

, in the following form:

Q̂R
†
j â

†(2)
j,s,η ji

Q̂R j =
∫

η ji(ω)
L∑

l=1

(QR†
j
(ω))∗sl â

†(3)
j,l (ω) dω

=
L∑

l=1

∫
η ji(ω)QR j,ls(ω)â†(3)

j,l (ω) dω

=
L∑

l=1

QR j,ls(η ji )â
†(3)
j,l,γls ji

, (18)

where in Eq. (18), another normalized modified wave packet
γls ji(ω) related to the photon-wave-packet creation mode

â†(3)
j,l,γls ji

=
∫

γls ji(ω)â†(3)
j,l (ω) dω (19)
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is defined as

γls ji(ω) = η ji(ω)QR j,ls(ω)/QR j,ls(η ji ), (20a)

QR j,ls(η ji ) = eiφ′
ls

√∫
|η ji(ω′)|2|QR j,ls(ω′)|2 dω′. (20b)

In Eq. (20b), the phase φ′
ls is accounted for to obtain the

unitarity matrix QR
j
(η ji) (see Appendix C). Note that â†(3)

j,l (ω)
is the creation operator of frequency ω related to the jth
receiver at the output port number l of the Q̂R j . The subscript
s is a fixed input port number for all QR

j
s (â†(2)

j,ηi j
≡ â†(2)

j,s,ηi j
∀ j).

Consequently, the state before each quantum detector (QD) is
a correlated state which is not separable in general. Accord-
ingly, the global state at stage 3, the output of the quantum
network, becomes

|ψ〉(3) = Q̂R
†|ψ〉(2) = Q̂R

†
Ĝ

†|ψ〉(1)

=
N∏

i=1

fi(Q̂R
†
Ĝ

†
â†(1)

i,ζi
ĜQ̂R)|0〉(3)

=
N∏

i=1

fi

⎛
⎝ N∑

j=1

G ji(ζi )Q̂R
†
j â

†(2)
j,s,η ji

Q̂R j

⎞
⎠|0〉(3)

=
N∏

i=1

fi

⎛
⎝ N∑

j=1

G ji(ζi )
L∑

l=1

QR j,ls(η ji )â
†(3)
j,l,γls ji

⎞
⎠|0〉(3).

(21)

Equation (21) is an essential result of this paper. It presents
a complete picture of the evolution of the transmitted quantum
state of light through a generic QWDM network. The choices

of Ĝ
†

and Q̂R
†
j indicate whether we want to use a passive

optical star coupler [18] or arrayed waveguide grating mul-
tiplexers and demultiplexers or wavelength-sensitive filters

[34] in our QWDM network. Various choices of Ĝ
†

and Q̂R
†
j

will depend on the application and topology of our QWDM
network.

Note that Eq. (21) (Theorem 1) is a general result that in-
cludes possible crosstalk effects among the frequency content
of users’ signals; for instance, these effects may arise from the

wavelength distributor Ĝ
†
.

The main result of the evolution of quantum signals within
the QWDM network is highlighted in the following.

Highlighting the main results. A prepare-and-measure
QWDM network described in this work yields the following
results:

(i) Assume various single-mode pure quantum signals
given in Eq. (8) emitted by individual transmitters evolve
within a generic WDM network presented in Fig. 2. In this
case, the global and correlated quantum output state can be
expressed by Eq. (21) (Theorem 1). Comparing Eq. (8) with
Eq. (21), one can conclude the mode evolution is as follows:

â†(1)
i,ζi

→
N∑

j=1

G ji(ζi )
L∑

l=1

QR j,ls(η ji)â
†(3)
j,l,γls ji

.

(ii) The imperfect devices can be mathematically mod-
eled by adding extra input ports related to the ambient
medium. Therefore, for any imperfect network device, it can
also be described by unitary operators considered in this
work by G and QR

j
. For the auxiliary ports used to model

system-environment interaction, the corresponding inputs are
substituted by the vacuum states, i.e., fi(â

†(1)
i,ζi

)) = 1. These
extra ports are responsible for vacuum fluctuations as well as
loss. For instance, the vacuum noises degrade the signal-to-
noise ratio of received signals in homodyne detection [50].
One can analyze these effects through Eq. (21) (Theorem 1).

(iii) Equation (21) (Theorem 1) also includes the crosstalk
effects expressed in terms of the explicit form of G and QR

j
.

(iv) The evolution of mixed states, such as Poissonian
mixed states or thermal states, which can be expressed
based on the coherent state densities, is straightforward using
Eq. (27b) (Corollary 1) (see Sec. IV B). Therefore, thermal
noises arising from the environment can be modeled by en-
tering a thermal state into the input port corresponding to the
ambient environment [37].

D. Coexistence of quantum-classical signals

As mentioned briefly in the Introduction, the existing in-
frastructure of conventional WDM networks (Fig. 1) has a
similar structure as a generic QWDM network depicted in
Fig. 2. Therefore, hybridizing quantum and classical signals
in the existing infrastructure is desirable since it would be cost
effective. However, conventional signals that pass through
these networks are strong classical optical signals since the
launch power of these light sources must be such that it
satisfies the classical receivers’ sensitivity. Due to the higher
intensity of the classical signals, the consolidation between
conventional and quantum channels can degrade the quantum
channel performance via background crosstalk noises [4,51].

Several methods have been proposed to reduce the back-
ground crosstalk in hybrid quantum-classical WDM networks
so far, such as filtering methods in frequency and time
domains [52,53], controlling the launch power of classi-
cal channels [52,53], inherent optical filtering (orthogonal
frequency division multiplexing) [28], allocating higher wave-
length to classical channels (O band) and lower wavelength to
quantum channels (C band) [54], optimal wavelength assign-
ment [29], and using dual feeder fibers [27].

For instance, Ref. [29] shows, by choosing a channel spac-
ing of 200 GHz, the launch power of classical signals leading
to the receiver’s sensitivity −28 dBm or −25 dBm, and using
proper narrow-band filters (15 and 125 GHz) on the quantum
receivers, one can suppress the adverse effects of the back-
ground crosstalk noises.

As a result, classical and quantum signals can coexist
in the conventional WDM infrastructure network using the
above-mentioned methodologies. Therefore, without loss of
generality, this paper only examines the quantum evolution
of quantum signals in a generic QWDM network, assuming
the utilization of the most optimum values of the classical
launch power, channel spacing, and the narrow-band filter’s
bandwidth that can mitigate the quantum signal degradation
by classical signals.
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FIG. 3. Evolution of a single-photon wave-packet operator â†(1)
i,ζi

through a generic communication system’s components towards all
the receivers’ detectors.

III. QUALITATIVE DISCUSSION ON WAVE-PACKET
CREATION OPERATOR EVOLUTION

Figure 3 illustrates the evolution of a single-photon wave
packet with spectral amplitude ζi(ω) emitted by the ith trans-
mitter through various stages of a QWDM system. As shown

in Fig. 3, the quantum distributor Ĝ
†

distributes a single
photon with wave packet ζi(ω) by weight of G ji(ζi ) towards
the jth receiver’s site. Accordingly, the related wave packet is
modified to η ji(ω) in stage 2. Then, the new single-photon
wave packet passes through the quantum receiver operator

Q̂R
†
j . Therefore, in stage 3, we obtain the evolved single-

photon wave packet denoted by γls ji(ω) in the lth output of the
quantum receiver with the weight QR j,ls(η ji ). Therefore, the
probability amplitude at stage 3 that the single-photon wave
packet, specified by the normalized wave packet γls ji(ω),
reaching the jth receiver, is determined by

Nls ji = G ji(ζi )QR j,ls(η ji). (22)

This definition simplifies Eq. (21) (Theorem 1) as follows:

|ψ〉(3) =
N∏

i=1

fi

⎛
⎝ N,L∑

j=1,l=1

Nls jiâ
†(3)
j,l,γls ji

⎞
⎠|0〉(3). (23)

Each receiver operator discriminates its signals based on
frequency content. For example, the spectral amplitude at out-
put port jl [associated with creation operator â†(3)

j,l (ω)] from
the ith transmitter equals the spectral amplitude of the ith
transmitter’s photon wave packet at output port jl , which is
γls ji(ω), times the probability of the ith transmitter’s photon
arriving at the port jl , which is Nls ji, i.e.,

γ̄ls ji(ω) = Nls jiγls ji(ω) = QR j,ls(ω)G ji(ω)ζi(ω), (24)

where Eqs. (13a) and (20a) are used.
To sum up, Nls ji represents the total probability amplitude

that a single photon with wave packet ζi(ω) transmitted by
the ith sender reaches the jth receiver along the s-l path
of QR

j
(see Fig. 2). Correspondingly, γ̄ls ji(ω) denotes the

probability amplitude of each single photon with wave packet
ζi(ω) transmitted by the ith sender reaching the jth receiver at
frequency ω.

IV. QWDM EXAMPLES BASED ON INPUT
QUANTUM LIGHTS

Following are three corollaries resulting from Theorem 1
for three different inputs, coherent states, Poissonian mixed
states, and single-photon states, prepared by all transmitters.

A. Coherent-state inputs

Corollary 1. According to Theorem 1, if all input signals
are pure coherent states, the output signals become uncorre-
lated (tensor product) as

|ψ〉(3)
C =

N,L∏
j=1,l=1

D̂

(
N∑

i=1

αiγ̄ls ji

)
|0〉(3).

Proof. As discussed before, for the coherent state, the dis-
placement operator D̂ replaces fi [see Eq. (8)]. Using Eq. (24)
and the relations

[
â(3)

j,l (ω), â†(3)
j′,l ′ (ω

′)
] = δ j j′δll ′δ(ω − ω′), (25)

D̂(αiγ̄ls ji + αiγ̄l ′s j′i ) = D̂(αiγ̄ls ji )D̂(αiγ̄l ′s j′i ), (26)

Eq. (21) (Theorem 1) becomes

|ψ〉(3)
C = Q̂R

†
Ĝ

†
N∏

i=1

D̂(αiζi )|0〉(1)

=
N∏

i=1

D̂

⎛
⎝ N,L∑

j,l=1

αiγ̄ls ji

⎞
⎠|0〉(3)

=
N,N,L∏

i=1, j=1,l=1

D̂(αiγ̄ls ji )|0〉(3) (27a)

=
N,L∏

j=1,l=1

D̂

(
N∑

i=1

αiγ̄ls ji

)
|0〉(3). (27b)

Equation (27a) is a tensor product of N × N × L coherent
states distinguished by mode â†(3)

j,l,γls ji
. Equation (27b) is re-

duced to the tensor product of N × L displacement operators,
D̂(

∑N
i=1 αiγ̄ls ji ), corresponding to N distinct output ports of

G and L output ports of QR
j
. Thus, Eq. (27b) (Corollary 1)

shows no correlation between the states at the outputs of all
quantum receivers (QR

j
s) indicated by two indices j and l .

In other words, the final state is separable, and there is no
entanglement between different jl output ports of quantum
receivers (QR

j
s).

B. Poissonian mixed-state inputs

In contrast to the evolution of the coherent states as com-
munication system inputs, one can recognize correlations
between receivers when the transmitters prepare the mixed
state given in Eq. (7).

Corollary 2. According to Theorem 1, if all input sig-
nals are Poissonian mixed states, the output signals become
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correlated as

ρ
(3)
C =

N∏
i=1

∫ 2π

0

dφi

2π

N,L∏
j=1,l=1

D̂(αiγ̄ls ji )|0〉(3) (3)〈0|D̂†(αiγ̄ls ji ).

Proof. By use of Eq. (27) (Corollary 1) in this case, the
state in stage 3 turns into

ρ
(3)
C = Q̂R

†
Ĝ

†
N∏

i=1

ρ
(1)
C,iĜ Q̂R

=
N∏

i=1

∫ 2π

0

dφi

2π
Q̂R

†
Ĝ

†
D̂(αiζi )|0〉(1) (1)〈0|D̂†(αi, ζi )Ĝ Q̂R

=
N∏

i=1

∫ 2π

0

dφi

2π

N,L∏
j=1,l=1

D̂(αiγ̄ls ji )|0〉(3) (3)〈0|D̂†(αiγ̄ls ji ),

(28)

where αi = |αi|eiφi and the integration on φi is in charge of
correlations between receivers’ states.

The importance of analyzing the Poissonian mixed-state
inputs rests on two facts. First, in practice, the coherent-state
inputs require a common local oscillator to overcome random
phases. On the other hand, due to random phases, Poissonian
mixed-state inputs do not require any local oscillator. There-
fore, it simplifies the implementation of QWDM systems.
Second, the weak Poissonian mixed state is utilized widely
in QKD networks in place of a single-photon state as a cost-
effective source [49,55].

C. Single-photon inputs

Corollary 3. According to Theorem 1, if all input signals
are single-photon states, the output signals can be quantum
correlated (entangled) as

|ψ〉(3)
S =

N∏
i=1

⎛
⎝ N∑

j=1

L∑
l=1

Nls jiâ
†(3)
j,l,γls ji

⎞
⎠|0〉(3). (29)

Proof. To derive Eq. (29), it suffices to replace fi(â
†(1)
i,ζi

)

with â†(1)
i,ζi

in Eq. (8) and to use Eq. (22). As is clear from
Eq. (29), due to superposition among different mode opera-
tors â†(3)

j,l,γls ji
, the output states can gain quantum correlations

(entanglement). Therefore, the received state at the jth re-
ceiver is necessarily no longer a pure state. The following
two examples are worth noting. First, a quantum Lambdanet
broadcasting communication system with a star coupler as
its wavelength distributor entangles the input single-photon
states. Second, in contrast, an ideal router as a wavelength
distributor of a router-based communication system guides
uncorrelated input single-photon states to separate outputs
without introducing any correlation (entanglement).

It is noteworthy that the evolution of other pure states,
such as the single-mode squeezed states, can be derived using
Eq. (21) (Theorem 1) and writing the squeezed state based
on the number states [56,57]. However, the evolution of two-
mode squeezing states that are employed in quantum networks
such as a Gaussian quantum network [32] requires a further
generalization of Eq. (8).

V. QUANTUM WDM SIGNAL MEASUREMENT

The encoded information on the input signals can be ex-
tracted via quantum WDM signal measurement in each output
port of a quantum receiver in the QWDM Network. The
measurement on the final state of input lights at stage 3 is
categorized by two different measurement schemes:

(a) We use the intensity measurement operator for the
separable coherent state [Eq. (27b)].

(b) We use projection operators for potentially quantum-
correlated single-photon states [Eq. (29)] and Poissonian
mixed states [Eq. (28)]; as a result, we will obtain the col-
lapsed state arising from the projective measurement at one
particular output of a specific receiver’s site.

In the following, we analyze the measurement results of
received signals for three cases when the input signals are
coherent, single-photon, and Poissonian mixed states.

A. Coherent states: Intensity operator

Theorem 2. Let the input signals of the QWDM net-
work be coherent states. Then the intensity spectrum of
the output signal related to the port jl , i.e., I jl (ω) =
(3)
C, jl〈ψ |â†(3)

j,l (ω)â(3)
j,l (ω)|ψ〉(3)

C, jl , becomes

I jl (ω) ≈
{∣∣ ∑N

i=1 αiG ji(ω)ζi(ω)
∣∣2

, |ω − ωls| � 	ωA/2
0 otherwise,

where ωls is the central transmissible frequency with band-
width 	ωA from input port s to output port l of the QR j .

Proof. According to Eq. (27b) (Corollary 1), the state of
the signal at the output port indicated by the mode of â(3)

j,l in
Fig. 2 is

|ψ〉(3)
C, jl = D̂

(
N∑

i=1

αiγ̄ls ji

)
|0〉(3). (30)

Thus, the intensity related to the mode of â(3)
jl (ω) which is

detected by QD j at the jth receiver’s site corresponding to the
lth output port of QR j is calculated as

I jl (ω) = (3)
C, jl〈ψ |â†(3)

j,l (ω)â(3)
j,l (ω)|ψ〉(3)

C, jl

= ∣∣â(3)
j,l (ω)|ψ〉(3)

C, jl

∣∣2

=
∣∣∣∣∣

N∑
i=1

αiG ji(ζi )QR j,ls(η ji )γls ji(ω)

∣∣∣∣∣
2

=
∣∣∣∣∣

N∑
i=1

αiQR j,ls(ω)G ji(ω)ζi(ω)

∣∣∣∣∣
2

. (31)

To derive Eq. (31), Eq. (24), as well as the relation

D̂†(αiγ̄ls ji )â
(3)
j,l (ω)D̂(αiγ̄ls ji ) = â(3)

j,l (ω) + αiγ̄ls ji(ω),

is utilized. Since quantum receivers are demultiplexers or
filters, a specific carrier frequency (wavelength) with the fre-
quency band 	ωA is allowed to exit from each output port
according to the input port number. Therefore, the frequency
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dependency of elements of QR
j

are approximated as

|QR j,ls(ω)|2 ≈
{

1, |ω − ωls| � 	ωA/2
0 otherwise. (32)

The frequency band associated with central frequency ωls

specifies the transmissible frequencies where the signal is
inserted into input port s of the quantum receiver from output
port j of the wavelength distributor and exits from output port
l of QR j (see Fig. 2). As a result, Eq. (31) for the transmissible
frequency ωls is approximated by

I jl (ωls) ≈
∣∣∣∣∣

N∑
i=1

αiG ji(ωls)ζi(ωls)

∣∣∣∣∣
2

, (33)

which shows the receiver indicated by j ∈ {1, . . . , N} gains
the ith user’s information, i.e., ζi(ωls), from the lth output of
the QR j .

In demultiplexers, crosstalk effects are essential sources of
noise that need to be considered. In practice, a narrow-band
filter can diminish the crosstalk effects, e.g., the out-of-band
crosstalk in each output of the quantum receiver. Furthermore,
the quantum receiver output channels must be adequately fre-
quency separated to eliminate in-band crosstalk. Preparing the
signal with the narrow-band spectrum mitigates the in-band
crosstalk for the transmitted signals that are distinguishable
only by their frequency contents. It was shown in Ref. [34]
that for weak quantum signals, noises caused by the crosstalk
at outputs of AWGs as demultiplexers are in the same order of
magnitude as the commercial dark count noise of the single-
photon detectors, hence diminishing the degrading effects of
the crosstalk in such networks.

B. Single-photon states: Projective measurement operator

Where the transmitters emit single-photon states, we ana-
lyze the output signal through a projective measurement since
the local state related to each output port becomes a mixed
state.

Definition. The projector operator P̂jl (ωls) is defined as

P̂jl (ωls) = |1 jl (ωls)〉(3) (3)〈1 jl (ωls)|
= â†(3)

j,l (ωls)|0 jl (ωls)〉(3) (3)〈0 jl (ωls)|â(3)
j,l (ωls),

where |1 jl (ωls)〉(3) is the single-photon state produced by
acting creation mode â†(3)

j,l (ωls) on the related vacuum state
|0 jl (ωls)〉(3). Empirically, this projective measurement can be
realized by detecting a single photon preceded by a ωls fre-
quency filter placed at the output port number l of the jth
quantum receiver.

Theorem 3. Let the input signals of the QWDM network be
single-photon states. Then the collapsed state after the projec-
tive measurement P̂jl (ωls) on |ψ〉(3)

S [see Eq. (29)] becomes

P̂jl (ωls)|ψ〉(3)
S = |1 jl (ωls)〉(3)

N∑
i=1

{
γ̄ls ji(ωls)

∏
i′ �=i

×
∑

( j′,l ′ )�=( j,l )

Nl ′s j′i′ â
†(3)
j′,l ′,γl′s j′ i′

}
|0〉(3). (34)

Proof. The proof is given in Appendix E 1.

Further analysis of the result of this projective measure-

ment needs to identify Ĝ
†

and ζi(ω). This equation states that
whenever a single-photon detector is activated in the output
port of mode â j,l (ωls), other detectors corresponding to the
same frequency ωls will never be triggered provided only
one transmitter sends a signal containing ωls. This implies
that only one receiver can receive information encoded in
frequency ωls transmitted by the transmitter at any given time
(sampling time). However, each receiver may gain informa-
tion in ωls transmitted by the ith transmitter during the next
run with a certain probability (see Appendix F 1).

C. Poissonian mixed states: Projective measurement

In some applications, the Poissonian mixed state with a
mean photon number much less than one (|αi|2 	 1) can be a
practical alternative for single-photon sources [49].

Theorem 4. Let the input signals of the QWDM network be
Poissonian mixed states. Then the collapsed state in stage 3
after projective measurement P̂jl (ωls) on ρ

(3)
C [see Eq. (28)]

becomes

P̂jl (ωls)ρ (3)
C P̂jl (ωls)

= |1 jl (ωls)〉(3) (3)〈1 jl (ωls)|
∫ (

N∏
i=1

dφi

2π

)
e−|cls j |2 |cls jβls j

×(ωls)|2
N∏

i=1

N,L∏
j′=1,l ′=1

( j′,l ′ )�=( j,l )

D̂(αiγ̄l ′s j′i )|0〉(3) (3)〈0|D̂†(αiγ̄l ′s j′i ),

(35)

where βls j (ω) is a normalized wave packet, i.e.,∫ |βls j (ω)|2dω = 1, and cls j is the norm of
∑N

i=1 αiγ̄ls ji(ω).
Proof. The proof is given in Appendix E 2.
It is worth noting that the signal with the same frequency

ωls transmitted by the ith sender can also be detected in the site
of other receivers ( j′ �= j). Therefore, more than one receiver
can access the information transmitted by the ith transmitter.
In other words, information leakage occurs when random-
phased weak coherent states are used instead of single-photon
sources (see Appendix F 2). For example, in QKD protocols,
decoy states are utilized to overcome this difficulty [49].

D. Comparison of the measurement results for various input
quantum signals

Although the complete comparison between the mea-
surement results related to various inputs (coherent states,
single-photon states, and Poissonian mixed states) requires the
indication of the exact form of deployed network topology,
we can still compare the measurement results of each kind of
input quantum signal.

According to Eqs. (33) (Theorem 2), (34) (Theorem 3),
and (35) (Theorem 4), the detection rate mainly depends on
the factors γls ji. These factors are determined based on the
specific WDM devices in the network. For instance, in the
Lambdanet topology, the matrix G as the mathematical rep-
resentation of a star coupler with the matrix elements |G ji| ≈

1√
N

[18] limits the number of users for a specific rate [58].
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However, as expected, the weak coherent states and Poisso-
nian mixed states have another critical factor, i.e., αi. For these
weak signals, since αi is less than one, the detection rates of
these two states are lower than in single-photon states [59].

As discussed before, the effects of losses and noises can
be modeled via additional degrees of freedom [34,60]. These
extra modes can lead to information leakage from all three
input types. Moreover, vacuum fluctuation arising from these
extra modes affects the quality of the signal, for instance,
in homodyne detection [50]. Besides, entangling the actual
receivers’ outputs with these ambient modes [see Eq. (34)]
reduces the coherency of the signals [61–63]. Finally, the
effects of crosstalk noise can also be considered via a better
approximation than Eq. (32) [34].

VI. CONCLUSION

This paper presents a general structure for a wide range of
WDM communication systems’ topologies and applications.
It mathematically models the general WDM system in purely
all-quantum terms, i.e., QWDM. Furthermore, the quantum
signal evolution is described in a global and unified approach
for various quantum light sources such as coherent, single-
photon, and Poissonian mixed states with arbitrary spectral
wave-packet profiles.

We introduced three main all-quantum evolutionary stages,
namely, signal preparation, distribution, and reception stages.
In particular, we obtain a key result in representing the quan-
tum light signals at the final stage as a function of any desired
input quantum signals and arbitrary distribution and reception
quantum operators. The unitary distribution and reception
quantum operators can be used to model the common devices
in QWDM, such as star couplers, wavelength routers, multi-
plexers, demultiplexers, and filters.

We consider two different schemes, intensity and pro-
jection measurement operators, to evaluate the information
encoded on the quantum signal sent from each transmitter
to the receivers. We observe potentially correlated output
states for single-photon and Poissonian mixed-state inputs.
Moreover, depending on a particular application and using
single-photon input states, we can show highly entangled
states at the receiver end.

Using our methodology and modeling in this paper, one
can describe equally the output statistics of classical sources
of light (such as coherent states) and quantum sources of light
(such as single photons). We show that if one uses single-
photon sources, the quantum correlations can appear at the
outputs of the network depending upon the quantum wave-
length distributor (G). For example, a quantum Lambdanet
broadcasting communication system with a star coupler as
its wavelength distributor entangles the input single-photon
states, while an ideal router as a wavelength distributor of a
router-based communication system guides uncorrelated input
single-photon states to separate outputs without introducing
any quantum correlation (entanglement). Furthermore, the re-
ceived signals are separable for coherent-state inputs, and no
quantum correlation exists regardless of choosing any distrib-
utor mentioned above.

Although the current work does not directly consider the
effects of losses and noises on the output signals, these ef-

fects can be included using the methodologies and models
presented in this paper. The unitary operators can comprise
both the real network system parameters and spurious ambient
modes. One can also analyze the noises arising from crosstalk
effects, phase drifts, etc., by considering an actual model of
the network elements (such as star couplers, array waveguide
grating, and optical fibers).

The results of this paper can be applied to various advanced
QWDM applications such as fiber-to-the-home, Lambdanet,
and router-based systems.

APPENDIX A: DESCRIPTION OF VARIOUS
CONVENTIONAL WDM NETWORKS

The most popular conventional WDM network topologies
depicted by Fig. 1 are explained as follows. In the long-haul
fiber link network [Fig. 1(a)], the optical signal emitted by,
e.g., a narrow-band laser source specified by the wavelength
λi from the ith transmitter (Tx i) multiplexes with other
emitted signals, and the multiplexed signals are transmitted
via a common fiber link. A wavelength demultiplexer near
the receivers separates signals and guides them toward the
related receiver (Rx i) [7]. In a passive photonic loop ac-
cess network [Fig. 1(b)], a central office is responsible for
establishing communication between home users via sending
and receiving specific signals by wavelength multiplexing and
demultiplexing signals, respectively. A common fiber link
between the central office and a remote node near the users
is in charge of this communication. The remote node multi-
plexes the transmitted signals from users and demultiplexes
the received signals from the central office. For instance, the
first user receives a signal that is indicated by wavelength λ1

and sends a signal that is indicated by wavelength λN+1. At
the same time, the central office receives the signal indicated
by wavelength λN+1 and sends a signal indicated by wave-
length λ1 to the first user [7]. Lambdanet [Fig. 1(c)] is a fully
connected network that can be utilized as an access network.
Each node (user) in this topology has a transmitter emitting a
specific wavelength. Each user’s receiver can demultiplex and
identify all the wavelengths used by all users. A star coupler
distributes each signal equally to all users. Therefore, every
user fully connects to others [6].

APPENDIX B: CREATION MODE EVOLUTION THROUGH
THE WAVELENGTH DISTRIBUTOR

Using our paper indexing and terminology, we provide a
review of quantum input-output relations in optical devices.
Some textbooks and journal papers have addressed these rela-
tions, such as Refs. [18,38,64].

Any generic lossless passive quantum wavelength distrib-
utor depicted in Fig. 2 can be described by a frequency-
dependent N × N linear matrix, G (ω). The field linear
transform matrix G relates the output annihilation modes of
the frequency ω to input annihilation modes of the frequency
ω as follows [64]:

�̂a(2)(ω) ≡ G (ω) �̂a(1)(ω), (B1)

where �̂a(s)(ω) = (â(s)
1 (ω), . . . , â(s)

N (ω))T, s ∈ {1, 2}. Super-
script T stands for transpose. As illustrated in Fig. 4(a), i
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FIG. 4. Illustration of the distribution of field operators from the
input (solid red line) of the general distributor to the specific output
(blue dashed line) (a) from stage 1 to stage 2 and (b) vice versa. Note
that (G†)i j = G∗

ji.

and j indices indicate the ith transmitter and the jth receiver,
respectively. Therefore, the elementwise form of Eq. (B1) is
rewritten as

â(2)
j (ω) ≡

N∑
i=1

(G) ji(ω)â(1)
i (ω) =

N∑
i=1

G ji(ω)â(1)
i (ω). (B2)

In the Heisenberg picture, the field operator evolution can be

described according to the unitary operator Ĝ
†

as â(2)
j (ω)

Ĝ
†

−→
Ĝ â(2)

j (ω) Ĝ
†
. Therefore,

â(2)
j (ω)

Ĝ
†

−→ Ĝ â(2)
j (ω) Ĝ

† =
N∑

i=1

G ji(ω) â(1)
i (ω). (B3)

Due to the conservation of energy and reciprocity theorem,
the matrix G is unitary and symmetric at each frequency,
respectively [36,56,65]. The unitarity of G implies that
G(ω) G†(ω) = G†(ω)G(ω) = I . Here we also use a dagger
symbol (†) to denote matrix transpose conjugate, i.e., G† =
(G∗)T. Since the field transform matrix G is a unitary matrix,
one can write input modes of the frequency ω with respect
to the output modes of the frequency ω by applying the con-
jugate transpose of the matrix G from the left-hand side of
Eq. (B1). Thus, as shown in Fig. 4(b),

â(1)
i (ω) ≡

N∑
j=1

(G†)i j (ω)â(2)
j (ω) =

N∑
j=1

G∗
ji(ω)â(2)

j (ω). (B4)

Equivalently, the unitary operator acting on the Hilbert
space which relates input modes with respect to output modes

is the inverse of Ĝ
†
, i.e., Ĝ which gives rise to â(1)

i (ω)
Ĝ−→

Ĝ
†

â(1)
i (ω) Ĝ. Thus,

â(1)
i (ω)

Ĝ−→ Ĝ
†
â(1)

i (ω)Ĝ =
N∑

j=1

G∗
ji(ω) â(2)

j (ω). (B5)

Moreover, using the conjugate transpose of Eq. (B5), the
matrix elements [G ji], where j denotes the jth output and
i denotes the ith input (see Fig. 2), relate the input creation
modes of the frequency ω to the output as

â†(1)
i (ω)

Ĝ−→ Ĝ
†
â†(1)

i (ω)Ĝ =
N∑

j=1

G ji(ω) â†(2)
j (ω). (B6)

APPENDIX C: RENORMALIZATION OF THE MODIFIED
WAVE PACKET BY A WDM DISTRIBUTOR

The distributing operator Ĝ transforms a photon
wave-packet creation operator at input port i (â†(1)

i,ζi
=∫

ζi(ω)â†(1)
i (ω) dω) according to Eqs. (10) and (B6) as

follows:

Ĝ
†
â†(1)

i,ζi
Ĝ =

∫
ζi(ω)

N∑
j=1

G ji(ω)â†(2)
j (ω) dω

=
N∑

j=1

∫
ζi(ω)G ji(ω)â†(2)

j (ω) dω

=
N∑

j=1

√∫
|ζi(ω′)|2|G ji(ω′)|2 dω′

×
∫

ζi(ω)G ji(ω)√∫ |ζi(ω′)|2|G ji(ω′)|2dω′
â†(2)

j (ω) dω.

(C1)
The integral term of the above equation in the last line
is normalized and, therefore, can be considered as a
single-photon wave-packet creation operator up to a global
phase, e.g., the wave function |η〉 is physically equivalent to
eiφ |η〉. Hence, we keep this global phase (degree of freedom)
to define the single-photon wave function known as the
photon wave packet. This degree of freedom allows us to
determine the transformation on the input photon wave packet
ζi as a unitary matrix with elements G ji(ζi ), which becomes
evident in the following. Inserting phase φi j (ei φ ji e−i φ ji = 1)
in Eq. (C1) gives

Ĝ
†
â†(1)

i,ζi
Ĝ =

N∑
j=1

√∫
|ζi(ω′)|2|G ji(ω′)|2 dω′ei φ ji

×
∫

e−i φ jiζi(ω)G ji(ω)√∫ |ζi(ω′)|2|G ji(ω′)|2dω′
â†(2)

j (ω) dω

=
N∑

j=1

G ji(ζi )
∫

η ji(ω)â†(2)
j (ω) dω

=
N∑

j=1

G ji(ζi ) â†(2)
j,η ji

, (C2)
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where the transformation amplitude G ji(ζi ) and the output
photon wave packet η ji(ω) are defined as follows:

G ji(ζi ) = ei φ ji

√∫
|ζi(ω′)|2|G ji(ω′)|2 dω′,

η ji(ω) = e−i φ jiζi(ω)G ji(ω)√∫ |ζi(ω′)|2|G ji(ω′)|2 dω′
. (C3)

Let us compare the transformation of operator Ĝ on a
generic photon wave packet ζi [Eq. (C2)] with its corre-
sponding transformation on a single-frequency-mode photon
[Eq. (10)]:

Ĝ
†
â†(1)

i (ω)Ĝ =
N∑

j=1

G ji(ω) â†(2)
j (ω),

Ĝ
†
â†(1)

i,ζi
Ĝ =

N∑
j=1

G ji(ζi ) â†(2)
j,η ji

. (C4)

As you see, the format of the above two equations is simi-
lar. The transform matrix G(ω) with elements G ji(ω) is the
transform matrix for photons with frequency ω, while the
transform matrix G(ζi ) with elements G ji(ζi ) is the transform
matrix for photons with wave packet ζi. The main difference
in the above two equations is that the device operator Ĝ
keeps the spectral shape (wave packet) of a single-frequency-
mode photon â†(ω). However, it changes the shape of the
continuous-mode single photon â†

ζi
from input ζi at the input

port i into η ji at the output j.
To make the above two equations more comparable, we

assume the distributor device’s transform matrix elements
G ji(ω) remain unchanged for the spectral width of the
photon wave packet ζi(ω). Therefore, we can approximate
G ji(ω)ζi(ω) with G ji(ω0)ζi(ω), where ω0 is the central fre-
quency of the photon wave packet ζi(ω). Therefore, Eq. (C3)
reduces to

G ji(ζi ) = ei φ ji

√∫
|ζi(ω′)|2|G ji(ω′)|2 dω′

= ei φ ji

√
|G ji(ω0)|2

∫
|ζi(ω′)|2 dω′

= ei φ ji |G ji(ω0)|,

η ji(ω) = e−i φ jiζi(ω)G ji(ω)√∫ |ζi(ω′)|2|G ji(ω′)|2 dω′

= e−i φ jiζi(ω)G ji(ω0)√
|G ji(ω0)|2 ∫ |ζi(ω′)|2 dω′

= ζi(ω)G ji(ω0)

ei φ ji |G ji(ω0)| . (C5)

Let us assume the phase φ ji equals the phase of G ji(ω0),
which makes Eq. (C5) as follows:

G ji(ζi ) = G ji(ω0), η ji(ω) = ζi(ω). (C6)

Therefore, Eqs. (C4) become completely equivalent:

Ĝ
†
â†(1)

i (ω)Ĝ =
N∑

j=1

G ji(ω) â†(2)
j (ω),

Ĝ
†
â†(1)

i,ζi
Ĝ =

N∑
j=1

G ji(ζi) â†(2)
j,η ji

=
N∑

j=1

G ji(ω0) â†(2)
j,ζi

, (C7)

where both equations do not change the photon wave-packet
ζi representation from the input to the output ports.

1. Single frequency mode: |ζ(ω)|2 = δ(ω − ω0)

The photon wave packet of a single-mode photon with
frequency ω0 is defined as |ζi(ω)|2 = δ(ω − ω0). For such
a photon wave packet the transform matrix elements G ji(ζi )
[Eq. (C5)] reduce to

G ji(ζi ) = ei φ ji

√∫
|ζi(ω)|2|G ji(ω)|2 dω

= ei φ ji

√∫
δ(ω − ω0)|G ji(ω)|2 dω = G ji(ω0),

(C8)

where we have assumed the phase φ ji equals the phase of
G ji(ω0), i.e., G ji(ω0) = ei φ ji |G ji(ω0)|. Therefore, G ji(ζi) is
the extension of G ji(ω) for photon wave packet ζi.

APPENDIX D: QUANTUM RECEIVERS FOR QWDM
COMMUNICATION SYSTEMS

In the language of WDM, QR
j

is a wavelength demulti-
plexer or a filter. In the context of QWDM, these devices are
modeled by unitary L input and L output quantum demul-
tiplexers for separating the different wavelengths inserted in
one input port of QR

j
to specific output ports, which depends

on frequency assignments. Input and output port numbers
are labeled by s and l indices. The transmissible frequency
ωls of QR

j
relates the sth input to the lth output, respec-

tively. Since only one of the input ports is fed by the jth
output of G, vacuum states feed the other input ports. In other
words, a quantum demultiplexer can be realized by an L × L
router wherein only one of its inputs is used. For instance, in
an arrayed-waveguide-grating-based quantum demultiplexer,
the relation between ωls and its related wavelength is ωls =
2πc/λl−s+1modL [7,34]. Therefore, we supply the creation
mode from output j of G related to each input of QR

j
with

an additional subindex s corresponding to the input index of
the receiver device as â†(2)

j,s (ω). It is important to note that

â†(2)
j (ω) ≡ â†(2)

j,s (ω) for the arbitrary input s ∈ {1, . . . , L} of
QR

j
that our model chooses to feed. For example, Fig. 5 illus-

trates a 3 × 3 quantum receiver for two different users, j and
j′. In this paper, as shown in Fig. 2, the jth quantum receiver’s
site is defined as a combination of output j of G, the quantum
demultiplexer or filter QR

j
, followed by their corresponding

photodetectors. In Figs. 5(a) and 5(b), we assume the output
port of the wavelength distributor of the communication sys-
tem goes to the port labeled s = 1 of the jth receiver and s = 2
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FIG. 5. Schematic of a router-based model of a 3 × 3 QR
j

utilized in QWDM. Input port number is fixed to (a) s = 1 and
(b) s = 2.

of the j′th receiver, respectively. Assume a communication
system with three different wavelengths, i.e., K = 3 and from
L � min{k + 1, K} the number of the input-output port of
both receivers’ quantum demultiplexers can be L = 3. Thus,
all three wavelengths supported by the communication system
are accessible to both receivers’ sites j and j′. However, the
order of the received wavelengths with respect to the output la-
bels of various receiver devices is different. Consider the same
input port number for both quantum demultiplexers, e.g., s =
1 for j and j′. Thus, the same wavelength will exit from the
output port number l of both demultiplexers, provided QR

j

and QR′
j

are identical devices. Note that if the devices are not
identical in a very general case, the frequency ωls exited from
the lth output of different demultiplexers is not necessarily
the same. This frequency is determined based on the infor-
mation from the device’s catalog. Having said that, by proper
rearrangement of the output port numbers, we assume that the
frequency ordering of our quantum model for every QR

j
is

the same; i.e., the ωls corresponding to QR
j
∀ j ∈ {1, . . . , N}

is identified by a similar wavelength. Consequently, using the

same input label, s, does not compromise the generality of our
model. We emphasize that in this paper, the quantum model
of QR

j
is an L × L demultiplexer (quantum router), where

L, the dimension of QR
j
, equals K , the maximum number of

wavelengths used in the communication system, i.e., L = K .

APPENDIX E: MATHEMATICAL DETAILS OF
PROJECTIVE MEASUREMENT ON THE EVOLVED

SINGLE-PHOTON AND POISSONIAN MIXED STATES

1. Single-photon states

To derive Eq. (34) (Theorem 3), first note that for an arbi-
trary mode âi(ω)

âi(ω)â†
j (ω

′)|0〉 = [δi jδ(ω − ω′) + â†
j (ω

′)âi(ω)]|0〉
= δi jδ(ω − ω′)|0〉 = [âi(ω), â†

j (ω
′)]|0〉,

(E1)

where [âi(ω), â†
j (ω

′)] = δi jδ(ω − ω′). Then, using Eq. (19),
the following equation is deduced:

â(3)
j,l (ωls)â†(3)

j′,l ′,γl′s j′ i
|0〉(3) = [

â(3)
j,l (ωls), â†(3)

j′,l ′,γl′s j′ i

]|0〉(3), (E2)

where (also see Ref. [18])[
â(3)

j,l (ωls), â†(3)
j′,l ′,γl′s j′ i

] =
∫

dωγl ′s j′i(ω)
[
â(3)

j,l (ωls), â†(3)
j′,l ′ (ωl ′s)

]
=

∫
dωγl ′s j′i(ω)δ(ωls − ωl ′s)δ j j′δll ′

= γls ji(ωls)δ j j′δll ′ . (E3)

Furthermore, from Eq. (E3), the following relation is ob-
tained:

â(3)
j,l (ωls)

∑
j′l ′

Nl ′s j′iâ
†(3)
j′,l ′,γl′s j′ i

= γ̄ls ji(ωls) +
∑
j′l ′

Nl ′s j′iâ
†(3)
j′,l ′,γl′s j′ i

â(3)
j,l (ωls), (E4)

where γ̄ls ji is defined in Eq. (24). By recursive use of Eqs. (E2)
and (E4), the action of P̂jl (ωls) on |ψ〉(3)

S is obtained via trans-
porting the annihilation operator â(3)

j,l (ωls) to the right-hand

side of creation operators â†(3)
j′,l ′,γl′s j′ i

according to the commu-
tation relation between these operators [Eq. (E3)]. Therefore,
the following result is acquired:

P̂jl (ωls)|ψ〉(3)
S = â†(3)

j,l (ωls)|0 jl (ωls)〉(3) (3)〈0 jl (ωls)|â(3)
j,l (ωls)

∏
i′

∑
j′l ′

Nl ′s j′i′ â
†(3)
j′,l ′,γl′s j′ i′

|0〉(3)

= |1 jl (ωls)〉(3)〈0 jl (ωls)|
∑
j′l ′

Nl ′s j′1â(3)
j,l (ωls)â†(3)

j′,l ′,γl′s j′1

∏
i′ �=1

∑
j′l ′

Nl ′s j′i′ â
†(3)
j′,l ′,γl′s j′ i′

|0〉(3)

= |1 jl (ωls)〉(3)〈0 jl (ωls)|
{

γ̄ls j1(ωls) +
∑
j′l ′

Nl ′s j′1â†(3)
j′,l ′,γl′s j′1

â(3)
j,l (ωls)

}∑
j′l ′

Nl ′s j′2â†(3)
j′,l ′,γl′s j′2

∏
i′ �=1,2

×
∑
j′l ′

Nl ′s j′i′ â
†(3)
j′,l ′,γl′s j′ i′

|0〉(3)
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= |1 jl (ωls)〉(3)〈0 jl (ωls)|
{

γ̄ls j1(ωls)
∑
j′l ′

Nl ′s j′2â†(3)
j′,l ′,γl′s j′2

+ γ̄ls j2(ωls)
∑
j′l ′

Nl ′s j′1â†(3)
j′,l ′,γl′s j′1

+
∑
j′l ′

Nl ′s j′1â†(3)
j′,l ′,γl′s j′1

∑
j′l ′

Nl ′s j′2â†(3)
j′,l ′,γl′s j′2

â(3)
j,l (ωls)

} ∏
i′ �=1,2

∑
j′l ′

Nl ′s j′i′ â
†(3)
j′,l ′,γl′s j′ i′

|0〉(3)

= |1 jl (ωls)〉(3)

{
γ̄ls j1(ωls)

∏
i′ �=1

∑
( j′,l ′ )�=( j,l )

Nl ′s j′i′ â
†(3)
j′,l ′,γl′s j′ i′

+ γ̄ls j2(ωls)
∏
i′ �=2

∑
( j′,l ′ )�=( j,l )

Nl ′s j′i′ â
†(3)
j′,l ′,γl′s j′ i′

+ · · ·

+γ̄ls jN (ωls)
∏
i′ �=N

∑
( j′,l ′ )�=( j,l )

Nl ′s j′i′ â
†(3)
j′,l ′,γl′s j′ i′

}
|0〉(3)

= |1 jl (ωls)〉(3)
N∑

i=1

{
γ̄ls ji(ωls)

∏
i′ �=i

∑
( j′,l ′ )�=( j,l )

Nl ′s j′i′ â
†(3)
j′,l ′,γl′s j′ i′

}
|0〉(3). (E5)

Since 〈0 jl (ωls)|â†(3)
j,l (ωls) = 0, there remains no term related to the mode â†(3)

j,l (ωls) in the last line brackets.

2. Poissonian mixed states

According to the material of Sec. IV B, Eq. (28) gives the evolved Poissonian mixed states to stage 3, i.e., ρ
(3)
C . Moreover, in

Sec. V C, the action of projective operator P̂jl (ωls) on ρ
(3)
C gives rise to Eq. (35) (Theorem 4). Here, we elucidate the details of

the mathematical procedure leading to the final result of Eq. (35) (Theorem 4) as

P̂jl (ωls)ρ (3)
C P̂jl (ωls) = |1 jl (ωls)〉(3) (3)〈1 jl (ωls)| ×

∫ (
N∏

i=1

dφi

2π

)
(3)〈1 jl (ωls)|

{
N∏

i=1

D̂(αiγ̄ls ji )|0〉(3) (3)〈0|D̂†(αiγ̄ls ji )

}
|1 jl (ωls)〉 (3)

×
N∏

i=1

N,L∏
( j′,l ′ )�=( j,l )

D̂(αiγ̄l ′s j′i )|0〉(3) (3)〈0|D̂†(αiγ̄l ′s j′i )

= |1 jl (ωls)〉(3) (3)〈1 jl (ωls)|
∫ (

N∏
i=1

dφi

2π

)
(3)〈1 jl (ωls)|D̂

(
N∑

i=1

αiγ̄ls ji

)
|0〉(3) (3)〈0|D̂†

(
N∑

i=1

αiγ̄ls ji

)
|1 jl

× (ωls)〉 (3)
N∏

i=1

N,L∏
( j′,l ′ )�=( j,l )

D̂(αiγ̄l ′s j′i )|0〉(3) (3)〈0|D̂†(αiγ̄l ′s j′i )

= |1 jl (ωls)〉(3) (3)〈1 jl (ωls)|
∫ (

N∏
i=1

dφi

2π

)
e−|cls j |2 |cls jβls j (ωls)|2

N∏
i=1

N,L∏
( j′,l ′ )�=( j,l )

D̂(αiγ̄l ′s j′i )|0〉(3) (3)〈0|

× D̂†(αiγ̄l ′s j′i ), (E6)

where cls jβls j (ω) = ∑N
i=1 αiγ̄ls ji(ω). As also mentioned in

Sec. V C, βls j (ω) is a normalized wave packet, and cls j is the
norm of

∑N
i=1 αiγ̄ls ji(ω). To obtain the last line of Eq. (E6),

the following relation is used:

(3)〈1 jl (ωls)|D̂
(

N∑
i=1

αiγ̄ls ji

)
|0〉(3)

=(3) 〈1 jl (ωls)|D̂(cls jβls j (ω))|0〉(3) = e−|cls j |2/2cls jβls j (ωls),

(E7)

where

D̂(cls jβls j (ω))|0〉(3) = e−|cls j |2/2
∑

n

cn
ls j

n!
â†(3)n

j,l,βls j
|0〉(3),

â†(3)
j,l,βls j

=
∫

βls j (ω)â†(3)
j,l (ω)dω, (E8)

and (see Eq. (E2) and Ref. [18])

(3)〈1 jl (ωls)|â†(3)n

j,l,βls j
|0〉(3) = (3)〈0 jl (ωls)|[â j,l (ω jl ), â†(3)n

j,l,βls j
]|0〉(3)

= (3)〈0 jl (ωls)|â†(3)n−1

j,l,βls j
nβls j (ωls)|0〉(3)

= δ1nβls j (ωls). (E9)
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FIG. 6. Schematic configuration of a QWDM system for two
transmitters and two receivers. QTx1 and QTx2 are two narrow-band
sources with central frequencies ω11 and ω21, respectively.

APPENDIX F: EXAMPLES OF QUANTUM SIGNAL
MEASUREMENT IN QWDM COMMUNICATION SYSTEMS

WITH TWO QUANTUM TRANSMITTERS AND TWO
QUANTUM RECEIVERS

Figure 6 illustrates a generic QWDM system where the
input-output number of the wavelength distributor G and the
quantum receivers QR

j
j ∈ {1, 2} are N = 2 and L = 2, re-

spectively. As mentioned previously, QR
j

is a demultiplexer
that can be implemented by an AWG. The element QR j,11(ω)
[QR j,21(ω)] has a narrow frequency band around the guided
frequency ω11 (ω21). For the sake of simplicity, we assume
ζ1(ω) [ζ2(ω)] has a narrow-band spectrum with the central fre-
quency ω11 (ω21). Regardless of a physical model for G (being
a star coupler or an AWG), since ζ1(ω) [ζ2(ω)] and QR j,21(ω)
[QR j,11(ω)] do not overlap [i.e., ζ1(ω)QR j,21(ω) ≈ 0 and
ζ2(ω)QR j,11(ω) ≈ 0], one can consider the following approx-
imation according to Eqs. (13a) and (20a) as γ2111(ω) ≈ 0,
γ2121(ω) ≈ 0, γ1112(ω) ≈ 0, and γ1122(ω) ≈ 0.

1. Example for single-photon states: Projective measurement

Consider a single-photon state as the quantum state of
each transmitted signal. Therefore, Eq. (29) for the particular
QWDM system presented in Fig. 6 becomes

|ψ〉(3)
S =

2∏
i=1

(
2∑

j=1

2∑
l=1

Nls jiâ
†(3)
j,l,γls ji

)
|0〉(3)

= (
N1111â†(3)

1,1,γ1111
+ N2111â†(3)

1,2,γ2111
+ N1121â†(3)

2,1,γ2111

+N2121â†(3)
2,2,γ2121

)(
N1112â†(3)

1,1,γ1112
+ N2112â†(3)

1,2,γ2112

+N1122â†(3)
2,1,γ2112

+ N2122â†(3)
2,2,γ2122

)|0〉(3)

≈ (
N1111â†(3)

1,1,γ1111
+ N1121â†(3)

2,1,γ1121

)
×(

N2112â†(3)
1,2,γ2112

+ N2122â†(3)
2,2,γ2122

)|0〉(3)

= N1111N2112|1100〉(3) + N1111N2122|1001〉(3)

+N1121N2112|0110〉(3) + N1121N2122|0011〉(3),

(F1)

where â†(3)
1,1,γ1111

|0〉(3) = |1000〉(3), â†(3)
1,2,γ2112

|0〉(3) = |0100〉(3),

â†(3)
2,1,γ1121

|0〉(3) = |0010〉(3), and â†(3)
2,2,γ2122

|0〉(3) = |0001〉(3) indi-
cate the presence of a single photon at the outputs labeled
by ( j, l ) = (1, 1), ( j, l ) = (1, 2), ( j, l ) = (2, 1), and ( j, l ) =
(2, 2), respectively.

The projective measurement operator P̂11(ω11) =
|111(ω11)〉(3) (3)〈111(ω11)| performed on Eq. (F1)
yields

P̂11(ω11)|ψ〉(3)
S = N1111N2112

(3)〈111(ω11)|1100〉(3)

+N1111N2122
(3)〈111(ω11)|1001〉(3).

(F2)

Equation (F2) is simplified with the help of

(3)〈111(ω11)|1100〉(3) = γ1111|100〉(3), (F3)

(3)〈111(ω11)|1001〉(3) = γ1111|001〉(3), (F4)

in which, using Eqs. (E2) and (E3), we utilize the following
relation:

(3)〈111(ω11)|1〉(3) = (3)〈011(ω11)|â(3)
1,1(ω11)â†(3)

1,1,γ1111
|0〉(3)

= γ1111. (F5)

As a result, the collapsed state of Eq. (F1) due to the projective
measurement, up to a global phase, is

P̂11(ω11)|ψ〉(3)
S√

(3)
S 〈ψ |P̂2

11(ω11)|ψ〉(3)
S

= 1√
N 2

2112 + N 2
2122

|111(ω11)〉(3)

×{N2112|100〉(3) + N2122|001〉(3)},
(F6)

where (3)
S 〈ψ |P̂2

11(ω11)|ψ〉(3)
S = |γ̄1111|2(N 2

2112 + N 2
2122) is the

probability of the event (i.e., PD11 clicks). As is clear from
Eq. (F6), the state at the input of detector PD21 is a vacuum
state. Thus, the transmitted information by the first sender
(QTx1) is only accessible to the first receiver j = 1.

2. Example for Poissonian mixed states:
Projective measurement

Consider a Poissonian mixed state as the quantum state of
each transmitted signal. Therefore, Eq. (28) for the particular
QWDM system presented in Fig. 6 becomes

ρ
(3)
C =

2∏
i=1

∫ 2π

0

dφi

2π

2,2∏
j=1,l=1

D̂(αiγ̄ls ji )|0〉(3) (3)〈0|D̂†(αiγ̄ls ji )

≈
∫ 2π

0

dφ1

2π
D̂(α1γ̄1111)D̂(α1γ̄1121)|0〉(3) (3)〈0|

× D̂†(α1γ̄1111)D̂†(α1γ̄1121)
∫ 2π

0

dφ2

2π
D̂(α2γ̄2112)

×D̂(α2γ̄2122)|0〉(3) (3)〈0|D̂†(α2γ̄2112)D̂†(α2γ̄2122).

(F7)
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Using Eqs. (35) and (E6), the projective measurement
P̂11(ω11) on ρ

(3)
C leads to

P̂11(ω11)ρ (3)
C P̂11(ω11)

= |111(ω11)〉(3) (3)〈111(ω11)|
×

∫
dφ1

2π

dφ2

2π
e−|c111|2 |c111β111(ω11)|2 × · · ·

× D̂(α1γ̄1121)D̂(α2γ̄2112)D̂(α2γ̄2122)|0〉(3) (3)〈0|
× D̂†(α1γ̄1121)D̂†(α2γ̄2112)D̂†(α2γ̄2122). (F8)

After this projective measurement, the probability that the
detector PD21 detects one photon with the frequency ω11 is
not zero since∣∣ (3)〈121(ω11)|D̂(α1γ̄1121)|0〉(3)

∣∣2 = e−|α1N1121|2 |α1γ̄1121(ω11)|2
�= 0.

As a result, the first transmitter (QTx1) can talk simul-
taneously with both receivers. However, from the security
side, the term D̂(α1γ̄1121)|0〉(3) (3)〈0|D̂†(α1γ̄1121) in Eq. (F8)
is related to information leakage in applications such
as QKD.

[1] G. Fürnkranz, The Quantum Internet: Ultrafast and Safe from
Hackers (Springer Nature, Berlin, 2020).

[2] P. P. Rohde, The Quantum Internet: The Second Quantum Rev-
olution (Cambridge University Press, Cambridge, UK, 2021).

[3] I. Djordjevic, Quantum Communication, Quantum Networks,
and Quantum Sensing (Elsevier, Amsterdam, 2022).

[4] M. Razavi, An Introduction to Quantum Communications Net-
works, 2053-2571 (Morgan & Claypool Publishers, California,
2018).

[5] C. A. Brackett, IEEE J. Sel. Areas Commun. 8, 948 (1990).
[6] M. S. Goodman, H. Kobrinski, M. P. Vecchi, R. M. Bulley, and

J. L. Gimlett, IEEE J. Sel. Areas Commun. 8, 995 (1990).
[7] G. P. Agrawal, Fiber-Optic Communication Systems, 5th ed.

(John Wiley & Sons, Hoboken, NJ, 2021).
[8] V. Giovannetti, S. Lloyd, L. Maccone, and P. W. Shor, Phys.

Rev. A 68, 062323 (2003).
[9] V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. H. Shapiro,

and H. P. Yuen, Phys. Rev. Lett. 92, 027902 (2004).
[10] A. Waseda, M. Takeoka, M. Sasaki, M. Fujiwara, and H.

Tanaka, J. Opt. Soc. Am. B 27, 259 (2010).
[11] X. Wang, IEEE Trans. Inf. Theory 67, 4524 (2021).
[12] A. Ciurana, J. Martinez-Mateo, M. Peev, A. Poppe, N. Walenta,

H. Zbinden, and V. Martín, Opt. Express 22, 1576 (2014).
[13] R. Asif and W. J. Buchanan, Recent Progress in the Quantum-

to-the-Home Networks (IntechOpen, London, 2018).
[14] P. D. Townsend, Nature (London) 385, 47 (1997).
[15] G. Brassard, F. Bussieres, N. Godbout, and S. Lacroix, in Appli-

cations of Photonic Technology 6, Vol. 5260 (SPIE, Bellingham,
WA, 2003), pp. 149–153.

[16] P. L. K. Reddy, B. R. B. Reddy, and S. R. Krishna, Int. J.
Comput. Network Inf. Security 4, 43 (2012).

[17] M. Razavi, IEEE Trans. Commun. 60, 3071 (2012).
[18] M. Rezai and J. A. Salehi, IEEE Trans. Inf. Theory 67, 5526

(2021).
[19] B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, Z. Yuan,

and A. J. Shields, Nature (London) 501, 69 (2013).
[20] N. Hosseinidehaj, Z. Babar, R. Malaney, S. X. Ng, and L.

Hanzo, IEEE Commun. Surv. Tutorials 21, 881 (2018).
[21] M. Alshowkan, B. P. Williams, P. G. Evans, N. S. V. Rao, E. M.

Simmerman, H.-H. Lu, N. B. Lingaraju, A. M. Weiner, C. E.
Marvinney, Y.-Y. Pai, B. J. Lawrie, N. A. Peters, and J. M.
Lukens, PRX Quantum 2, 040304 (2021).

[22] S. K. Joshi, D. Aktas, S. Wengerowsky, M. Lončarić, S. P.
Neumann, B. Liu, T. Scheidl, G. C. Lorenzo, Ž. Samec, L. Kling
et al., Sci. Adv. 6, eaba0959 (2020).

[23] S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R.
Ursin, Nature (London) 564, 225 (2018).

[24] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, Rev. Mod.
Phys. 92, 025002 (2020).

[25] Y. Cao, Y. Zhao, Q. Wang, J. Zhang, S. X. Ng, and L. Hanzo,
IEEE Commun. Surv. Tutorials 24, 839 (2022).

[26] B. Qi, W. Zhu, L. Qian, and H.-K. Lo, New J. Phys. 12, 103042
(2010).

[27] I. Choi, R. J. Young, and P. D. Townsend, Opt. Express 18, 9600
(2010).

[28] S. Bahrani, M. Razavi, and J. A. Salehi, Sci. Iran. 23, 2898
(2016).

[29] S. Bahrani, M. Razavi, and J. A. Salehi, Sci. Rep. 8, 3456
(2018).

[30] G. Cariolaro, Quantum Communications (Springer, Berlin,
2015).

[31] W. Kozlowski and S. Wehner, in Proceedings of the Sixth
Annual ACM International Conference on Nanoscale Comput-
ing and Communication, edited by T. M. Christopher Contag
(ACM, New York, USA, 2019), pp. 1–7.

[32] F. Centrone, F. Grosshans, and V. Parigi, in Quantum Infor-
mation and Measurement VI 2021 (Optica Publishing Group,
Washington, DC, 2021), p. W3B.2.

[33] N. B. Lingaraju, H.-H. Lu, S. Seshadri, D. E. Leaird,
A. M. Weiner, and J. M. Lukens, Optica 8, 329
(2021).

[34] J. Capmany, J. Mora, C. R. Fernández-Pousa, and P. Muñoz,
Opt. Express 21, 14841 (2013).

[35] T. Kiss, U. Herzog, and U. Leonhardt, Phys. Rev. A 52, 2433
(1995).

[36] S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, Phys. Rev. A
57, 2134 (1998).

[37] M. Lasota, R. Filip, and V. C. Usenko, Phys. Rev. A 95, 062312
(2017).

[38] R. Loudon, The Quantum Theory of Light (Oxford University
Press, Oxford, UK, 2000).

[39] M. Rezai and J. A. Salehi, IEEE Trans. Quantum Eng. 4, 1
(2023).

[40] M. de Oliveira, I. Nape, J. Pinnell, N. TabeBordbar, and A.
Forbes, Phys. Rev. A 101, 042303 (2020).

[41] Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and
G.-C. Guo, Light: Sci. Appl. 5, e16019 (2016).

[42] R. J. Glauber, Phys. Rev. 131, 2766 (1963).
[43] G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu,

Phys. Rev. A 71, 043809 (2005).

012613-16

https://doi.org/10.1109/49.57798
https://doi.org/10.1109/49.57802
https://doi.org/10.1103/PhysRevA.68.062323
https://doi.org/10.1103/PhysRevLett.92.027902
https://doi.org/10.1364/JOSAB.27.000259
https://doi.org/10.1109/TIT.2021.3068818
https://doi.org/10.1364/OE.22.001576
https://doi.org/10.1038/385047a0
https://doi.org/10.5815/ijcnis.2012.06.06
https://doi.org/10.1109/TCOMM.2012.072612.110840
https://doi.org/10.1109/TIT.2021.3087959
https://doi.org/10.1038/nature12493
https://doi.org/10.1109/COMST.2018.2864557
https://doi.org/10.1103/PRXQuantum.2.040304
https://doi.org/10.1126/sciadv.aba0959
https://doi.org/10.1038/s41586-018-0766-y
https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1109/COMST.2022.3144219
https://doi.org/10.1088/1367-2630/12/10/103042
https://doi.org/10.1364/OE.18.009600
https://doi.org/10.24200/sci.2016.3999
https://doi.org/10.1038/s41598-018-21418-6
https://doi.org/10.1364/OPTICA.413657
https://doi.org/10.1364/OE.21.014841
https://doi.org/10.1103/PhysRevA.52.2433
https://doi.org/10.1103/PhysRevA.57.2134
https://doi.org/10.1103/PhysRevA.95.062312
https://doi.org/10.1109/TQE.2022.3224799
https://doi.org/10.1103/PhysRevA.101.042303
https://doi.org/10.1038/lsa.2016.19
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRevA.71.043809


QUANTUM WAVELENGTH-DIVISION-MULTIPLEXING AND … PHYSICAL REVIEW A 107, 012613 (2023)

[44] A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-
Photon Generation and Detection: Physics and Applications
(Academic Press, New York, 2013).

[45] X. Zhang, C. Xu, and Z. Ren, Sci. Rep. 8, 1 (2018).
[46] C. Chen, E. Y. Zhu, A. Riazi, A. V. Gladyshev, C. Corbari, M.

Ibsen, P. G. Kazansky, and L. Qian, Opt. Express 25, 22667
(2017).

[47] X.-B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, Phys.
Rep. 448, 1 (2007).

[48] X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005).
[49] X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, Phys. Rev. A 72, 012326

(2005).
[50] W. Liu, J. Peng, P. Huang, D. Huang, and G. Zeng, Opt. Express

25, 19429 (2017).
[51] N. Peters, P. Toliver, T. Chapuran, R. Runser, S. McNown, C.

Peterson, D. Rosenberg, N. Dallmann, R. Hughes, K. McCabe
et al., New J. Phys. 11, 045012 (2009).

[52] K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon,
Z. L. Yuan, R. V. Penty, and A. J. Shields, Phys. Rev. X 2,
041010 (2012).

[53] K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z.
Yuan, R. Penty, and A. Shields, Appl. Phys. Lett. 104, 051123
(2014).

[54] T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R.
Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe
et al., New J. Phys. 11, 105001 (2009).

[55] J. Malbouisson, S. Duarte, and B. Baseia, Physica A 285, 397
(2000).

[56] C. Gerry, P. Knight, and P. L. Knight, Introductory Quantum
Optics (Cambridge University Press, Cambridge, UK, 2005),
Chap. 6, p. 138.

[57] T. S. Woodworth, K. W. C. Chan, C. Hermann-Avigliano, and
A. M. Marino, Phys. Rev. A 102, 052603 (2020).

[58] J. Capmany and C. R. Fernández-Pousa, J. Opt. Soc. Am. B 27,
A146 (2010).

[59] A. Jain, P. V. Sakhiya, and R. K. Bahl, in 2020 IEEE
International Conference on Electronics, Computing and Com-
munication Technologies (CONECCT) (IEEE, New York,
2020), pp. 1–5.

[60] M. M. Wilde, Quantum Information Theory, 2nd ed. (Cam-
bridge University Press, Cambridge, 2017), pp. xi–xii.

[61] W. H. Zurek, Decoherence and the transition from quantum
to classical — revisited, in Quantum Decoherence: Poincaré
Seminar 2005, edited by B. Duplantier, J.-M. Raimond, and V.
Rivasseau (Birkhaüser Basel, Basel, 2007), pp. 1–31.

[62] W. H. Zurek, Entropy 24, 1520 (2022).
[63] A. K. Ekert, C. M. Alves, D. K. L. Oi, M. Horodecki, P.

Horodecki, and L. C. Kwek, Phys. Rev. Lett. 88, 217901 (2002).
[64] U. Leonhardt, Rep. Prog. Phys. 66, 1207 (2003).
[65] R. G. Newton, Scattering Theory of Waves and Particles

(Springer Science & Business Media, Berlin, Heidelberg,
2013), Chap. 2, p. 46.

012613-17

https://doi.org/10.1038/s41598-018-21481-z
https://doi.org/10.1364/OE.25.022667
https://doi.org/10.1016/j.physrep.2007.04.005
https://doi.org/10.1103/PhysRevLett.94.230503
https://doi.org/10.1103/PhysRevA.72.012326
https://doi.org/10.1364/OE.25.019429
https://doi.org/10.1088/1367-2630/11/4/045012
https://doi.org/10.1103/PhysRevX.2.041010
https://doi.org/10.1063/1.4864398
https://doi.org/10.1088/1367-2630/11/10/105001
https://doi.org/10.1016/S0378-4371(00)00241-7
https://doi.org/10.1103/PhysRevA.102.052603
https://doi.org/10.1364/JOSAB.27.00A146
https://doi.org/10.3390/e24111520
https://doi.org/10.1103/PhysRevLett.88.217901
https://doi.org/10.1088/0034-4885/66/7/203

