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Information reconciliation (IR) ensures the correctness of quantum key distribution systems by correcting
the error bits that existed in the sifted keys. In this article, we propose a polar-code-based IR scheme with the
frozen-bit erasure strategy, where an equivalent transmission of sifted keys is conducted so that each frozen bit
in the decoding procedure is erased to zero. Thus, our IR scheme is no longer limited by the assumption of true
random numbers and can be implemented simply and efficiently. Furthermore, we implement the proposed IR
scheme with the fast simplified successive-cancellation list decoder and its throughput reaches 0.68 Mbps with
the yield of 0.8333; when the decoder list size is 16, the block size is 1 Mb and the quantum bit error rate is 0.02.
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I. INTRODUCTION

Quantum key distribution (QKD) can provide information-
theoretically-secure keys for distant users [1]. After the
quantum communication phase and basis sifting procedure,
the users (Alice and Bob) generate the sifted keys (KA

s and
KB

s ). However, these contain errors in realistic QKD systems
[2]. Information reconciliation (IR) ensures the correctness of
QKD systems by correcting the error bits with exchanged syn-
drome information via a classical channel and, finally, returns
the corrected bit string KIR [3]. IR is widely applied to various
secure communication scenarios, such as physical layer secu-
rity [4–7], underwater acoustic communication [8,9], and so
on.

IR schemes mainly contain interactive IR schemes and
one-way IR schemes [7]. The interactive IR schemes (BBBSS
and Cascade) have limited applications due to the heavy com-
munication latency, although they reach high efficiency [3,10–
12]. The one-way IR schemes are based on the forward error
correction codes, e.g., Turbo codes, low-density parity-check
(LDPC) codes, and polar codes [12–14]. An LDPC-code-
based IR scheme is widely applied in the QKD systems and
can achieve high efficiency when the error correction matrix
corresponding to the quantum bit error rate (QBER) is used.
Nevertheless, it is impossible to generate the error correction
matrix in real time for arbitrary QBER and the efficiency is
limited by the mismatched error correction matrices [12,15].
Recently, polar codes have been applied to IR for the fol-
lowing advantages: The potential to reach the Shannon limit
and the low complexity O(n log n) of the encoding (decoding)
procedure [16,17].
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The first polar-code-based IR scheme was proposed by
Jouguet and Kunz-Jacques and reached the efficiency of
1.121 and the failure probability of 0.08 with the successive-
cancellation (SC) decoder when the QBER is 0.02 and the
block size is 16 Mb [14]. Then, three configuration strategies
were developed to adapt the polar codes into IR schemes:
Direct decoding (DD), bits flipping decoding (BFD), and
length-adaptive BFD [18]. The DD and BFD strategies, hav-
ing a higher efficiency than the length-adaptive BFD strategy,
are widely used in the polar-code-based IR schemes. Us-
ing the DD strategy, the efficiency of 1.176 and the failure
probability of 0.001 were achieved by the further improved
polar-code-based IR schemes with the successive-cancellation
list (SCL) decoder, the list size of 16, and the QBER of 0.02
[18,19]. In our previous work [20], we proposed a polar-code-
based feedback IR scheme (with the BFD strategy), which
decreased the failure probability to 10−8 with the efficiency
of 1.055 when the list size of the SCL decoder is 16, the
block size is 1 Gb, and the QBER is 0.02. Nevertheless, the
throughput of the polar-code-based IR scheme is limited by
inefficient implementations. The polar-code-based IR scheme
with the BFD strategy can be implemented with the efficient
decoder whose frozen bits are constant (usually fixed to zero),
such as the simplified SC decoder, the fast simplified SCL
(FSSCL) decoder, and so on [18,21]. However, true random
numbers (TRNs) are indispensable to the polar-code-based
IR scheme with the BFD strategy, which would increase the
complexity of the practical systems and might open security
loopholes with the inappropriate implementation [22].

In this article, we propose the polar-code-based IR scheme
with the frozen-bit erasure (FBE) strategy, which can be im-
plemented efficiently without the TRNs. The proposed IR
scheme mainly contains two phases: The equivalent trans-
mission of sifted keys with FBE strategy and the error bits
correction of the equivalent sifted keys. In the former, Alice
distills the syndrome vector W and sends W to Bob via the
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classical channel. Alice and Bob both conduct the “XOR”
operation between the sifted keys and the encoded vector
of W to generate a new couple of vectors (X and X ′). In
the latter, Alice extracts the key KA

IR by encoding X and
sends the cyclic redundancy check (CRC) value of KA

IR to
Bob. Bob decodes the generated vector X ′ to U ′ with the
received CRC value and the frozen bits of zero. Afterwards,
Bob extracts the key KB

IR from U ′. Compared with the exist-
ing IR schemes performing the DD and BFD strategies, our
proposed polar-code-based IR scheme with the FBE strategy
can adapt the low-computational-complexity decoder and re-
move the assumption of TRN simultaneously. Furthermore,
we implemented our IR scheme with the FSSCL decoder
on a commercial computer. The implementation reaches the
throughput of 0.68 Mbps and the yield of 0.8333 (efficiency
of 1.176 and failure probability of 0.0004) with the decoder
list size of 16, the block size of 1 Mb, and the QBER of 0.02.

II. RELATED WORKS

A. Information reconciliation

In quantum key distribution (QKD) systems, the commu-
nication parties (Alice and Bob) gain the sifted keys (KA

s and
KB

s ) of length n after the quantum communication and key and
basis sifting procedures [23–25]. However, the imperfection
of the QKD systems causes the error bits between the sifted
keys in the quantum communication procedure [26–29]. As-
sume the quantum bit error rate is E .

Alice and Bob exchange the syndrome string S via the
classical channel and correct the sifted keys to the weak
secure keys (KA

IR and KB
IR) in the information reconciliation

(IR) procedure [3,29]. The failure probability ε represents the
correctness of IR as [14]

ε � Pr
(
KA

IR �= KB
IR

)
. (1)

Assume KIR = KA
IR = KB

IR, when the IR procedure is con-
ducted successfully. The syndrome S through the classical
channel discloses partial information of the key and decreases
the secure key rate. The leaked information is represented by
the efficiency of IR, defined as [7]

f (E ) = I (S; KIR )

nH2(E )
, (2)

where I (S; KIR ) is the mutual information between S and KIR,
and H2(x) is the binary Shannon entropy as

H2(x) = −x log2(x) − (1 − x) log2(1 − x). (3)

Furthermore, the yield γ of each sifted bit evaluates the
performance of the IR scheme and is calculated as [18,20]

γ = (1 − ε)[1 − f (E )H2(E )]. (4)

B. Polar codes

Polar codes, invented by Arikan in 2008, have the potential
to reach the Shannon limit of binary discrete memoryless
channels (B-DMC) in theory [16,17]. In polar codes, transmit-
ting the n-bit vector in the B-DMC is regarded as transmitting
the bits in n copies of B-DMC, respectively (n = 2m, m ∈
N+). The n copies of B-DMC are polarized to a new set

of bit channels composed of k error-free (“good”) channels
and n − k noisy (“bad”) channels. The bits at the error-free
(noisy) channels are called information (frozen) bits. The
positions of the frozen bits can be determined according to
the channel capacity, the Bhattacharyya parameter, or the
error probability of each polarized channel [17,30]. Frozen
vector V = [v0, v1, . . . , vn−1] is usually used to represent the
positions of the frozen bits, where vi = 0 (vi = 1) means the
position i is the information (frozen) bit.

In the encoding procedure of the polar codes, k information
bits and n − k preshared frozen bits are filled into error-free
positions and noisy positions of an n-length vector U , re-
spectively. Usually, the frozen bits are set to zero. Then, U
is encoded to a codeword X as

X = UGn = UF⊗mBn, (5)

where Gn is the generation matrix of polar codes, F = [1 0
1 1],

F⊗m represents the m-fold Kronecker product of F , and Bn

is the permutation matrix for bit-reversal operation. GnGn is
an identity matrix In [31]. In the encoding, the calculations
are Boolean calculations. Afterwards, the codeword X is sent
through the B-DMC.

The receiver gets the measured codeword as X ′ from B-
DMC. The received codeword X ′ can be decoded to U with
the preshared frozen bits.

Arikan et al. first proposed the successive-cancellation
(SC) decoder, whose complexity is O(n log n) [17]. Then,
the successive-cancellation list (SCL) decoder was proposed
to decrease the frame error rate with the complexity of
O(Ln log n), where L is the list size [32]. In the SC and
SCL decoding, the recursion decoding of the constituent
code can be simplified with the constant frozen bits [33,34].
And some efficient decoders are developed from SC and
SCL decoders with the same correction performance, e.g.,
simplified successive-cancellation decoder [33], simplified
successive-cancellation list decoder [34], and fast simpli-
fied successive-cancellation list (FSSCL) decoder [21]. In
addition, the hardware-based decoders of polar codes with
constant frozen bits were improved to reach the throughput
of 237 Gbps [35].

C. Polar-code-based information reconciliation strategies

IR is essentially the same as Slepian-Wolf compression,
which can be implemented with polar codes [36,37]. Then,
the polar-code-based IR schemes were proposed with three
configuration strategies [14,18]. These strategies guide how
to adopt polar codes into IR schemes and comprise the direct
decoding (DD) strategy, the bits flipping decoding (BFD)
strategy, and the length-adaptive BFD strategy [18]. The
length-adaptive BFD strategy is suitable for any input length,
but has a lower efficiency than the DD and BFD strategies.
In QKD systems, the input length of IR can be fixed to 2m

(m ∈ N+), so that the polar-code-based IR schemes are mainly
based on the DD strategy and the BFD strategy to achieve high
efficiency. Figure 1 shows the diagram of the DD and BFD
strategies.
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FIG. 1. The diagram of polar-code-based IR schemes with
(a) DD strategy and (b) BFD strategy. The block size is n and
the length of information bits is k. V is the frozen vector precal-
culated according to QBER E . TRN means true random number.
Encode(U ) represents encoding U to UGn. U = Decode(X,V,Y )
represents decoding X to U with the frozen vector of V and the
frozen bits value of Y . In (a), W = Ext(U,V ) represents extract-
ing a vector W from U , W is composed of the elements ui when
vi = 1, U = [u0, u1, . . . , un−1], and V = [v0, v1, . . . , vn−1]. In (b), W
is composed of the k random bits. Fill(U,V,W ) means filling W into
the information bits of U when V is the frozen vector.

In the DD strategy, the frozen vector is preshared by the
communication parties (Alice and Bob), and the length of the
sifted keys n is 2m, m ∈ N+. Alice encodes KA

s to U and sends
the frozen bits of U to Bob. Bob directly decodes KB

s to U ′
with the received frozen bits. Alice (Bob) chooses U (U ′) or
KA

s (U ′Gn) as KIR, respectively. When KIR is U (U ′), the frozen
bits of U (U ′) can be discarded directly. The frozen bits in
decoding are determined by KA

s and vary in each run. Thus,
the DD strategy cannot adapt the improved efficient decoders
that require constant frozen bits.

In the BFD strategy, the input length n is 2m and the frozen
vector is V . Alice generates a vector U whose frozen bits are
zero and information bits are true random bits. Afterwards,
Alice calculates X as Encode(U ) ⊕ KA

s and sends X to Bob.
Bob decodes the vector X ⊕ KB

s to U ′ with the frozen bits
zero. Alice (Bob) has three choices of KIR: U (U ′), UGn

(U ′Gn), and KA
s (U ′Gn ⊕ X ). The BFD strategy can be ac-

celerated by the efficient decoders and is widely used in the
recent polar-code-based IR schemes [20,38]. However, the
generation of true random numbers (TRNs) would increase
the complexity of systems and might open security loopholes
with inappropriate implementation. In addition, n syndrome
bits are transmitted via a public channel, which increases the
overload of the public channel.

III. POLAR-CODE-BASED IR SCHEME
WITH THE FBE STRATEGY

Polar codes are employed in IR for the following advan-
tages: The potential to achieve Shannon-limit efficiency, and
low complexity O(n log n) of the encoding and decoding pro-
cedure [16,17]. However, the previous polar-code-based IR
schemes cannot be accelerated by efficient decoders without
TRNs. In this article, we propose the frozen-bit erasure (FBE)

TABLE I. Feature comparison of the DD, BFD, and FBE
strategies.

Syndrome Frozen With
Strategy Complexity bits bits TRNs?

DD O(n log n) n − k Variable No
BFD O(n log n) n Constant Yes
FBE O(n log n) n − k Constant No

strategy to address this issue and design an IR scheme based
on the FBE strategy.

Before the IR procedure, Alice and Bob generate the sifted
keys (KA

s and KB
s ) of length n (n = 2m, m ∈ N+), respectively,

estimate the QBER as E , and preshare the frozen vector V ,
which represents the positions of k information bits and n − k
frozen bits. The following calculations are Boolean calcula-
tions.

Definition 1. Ext(U,V ) represents the vector composed of
the elements ui when vi = 1, U = [u0, u1, . . . , un−1], and V =
[v0, v1, . . . , vn−1].

A. Frozen-bit erasure strategy

In our proposed FBE strategy, Alice calculates syndrome
vector W as

W = Encode
(
KA

s

) ∧ V = KA
s Gn ∧ V. (6)

Then, Alice sends the vector W to Bob via the classical chan-
nel. Afterwards, Alice generates a novel codeword X as

X = KA
s ⊕ W Gn. (7)

Bob receives the syndrome vector W . Then, Bob encodes
the vector W and generates a codeword X ′ with error bits as

X ′ = KB
s ⊕ W Gn. (8)

According to Eqs. (6) and (7), the codeword X can be
further calculated as

X = KA
s ⊕ (

KA
s Gn ∧ V

)
Gn = KA

s GnGn ⊕ (
KA

s Gn ∧ V
)
Gn

= [(
KA

s Gn
) ⊕ (

KA
s Gn ∧ V

)]
Gn = (

KA
s Gn ∧ ¬V

)
Gn. (9)

Assume U = Encode(X ). According to Eq. (9), U equals
KA

s Gn ∧ ¬V for GnGn = In and the frozen bits of U are zero.
The positions of error bits between X and X ′ are the same

as KA
s and KB

s . Thus, the errors between X and X ′ can be
corrected by decoding X ′ with the frozen bits zero of U .
Assume the decoded vector is U ′. U ′ equals U when the
decoding procedure is conducted successfully.

The users can choose the information bits of U and U ′ as
the output weak secure keys.

In the realistic implementation, Alice only needs to trans-
mit n − k frozen bits of W via the classical channel and Bob
can reconstruct W with the received n − k bits and the frozen
vector V . Table I shows the feature comparison of the DD,
BFD, and FBE strategies.
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FIG. 2. The diagram of the polar-code-based IR scheme with
FBE strategy. Y = Ext(U,V ) represents extracting the vector
Y , which is composed of the elements ui when vi = 1, U =
[u0, u1, . . . , un−1], and V = [v0, v1, . . . , vn−1]. T = CRC(X ) rep-
resents calculating the CRC value T of vector X . U, σ =
DecodeCA(X,V, 0, T ) represents conducting the CRC-aided decod-
ing procedure on the codeword X with the CRC value of T , the frozen
vector of V , and the frozen bits of zero, and output the decoded vector
U and the decoding flag σ , which represents whether X is decoded
successfully.

B. The IR Scheme with FBE strategy

Based on the proposed FBE strategy, we designed a polar-
code-based IR scheme, which contains two phases: Equivalent
transmission of sifted keys with FBE strategy and error bits
correction of equivalent sifted keys. In the scheme, the cyclic
redundancy check (CRC) [39] is used to check whether the er-
rors are corrected successfully. The diagram of this IR scheme
is shown in Fig. 2. Before the IR procedure, Alice and Bob
preshare the CRC length d and the frozen vector V via the
classical channel.

Equivalent transmission of sifted keys with FBE strategy.
Alice distills the syndrome vector W according to Eq. (6)
and calculates the codeword vector X as Eq. (7). Then, Alice
sends the syndrome vector W to Bob via the classical channel.
Bob receives the vector W and calculates the codeword X ′ as
Eq. (8).

Error bits correction of equivalent sifted keys. Alice en-
codes codeword X to vector U and extracts the information
bits of X as KA

IR. Then, Alice calculates the CRC value T
of KA

IR and sends T to Bob through the classical channel.
Bob performs a CRC-aided (CA) decoding procedure to de-
code X ′ to U ′ and output the decoding flag σ with the CRC
value T and frozen vector V [40]. Afterwards, Bob extracts
the information bits of U ′ as KB

IR and notifies Alice whether
the IR procedure is conducted successfully via the classical
channel.

In the CA decoding procedure, the decoder generates mul-
tiple temporary decoded vectors. The temporary vectors are
CRC checked one by one until one of them passes the CRC
checking. If there is a temporary vector U ′ that passes the
CRC checking, then the output is vector U ′ and decoding flag
σ = 1. If no temporary vectors pass the CRC checking, then
the output U ′ = ∅ and σ = 0 [40].

In the realistic implementation, the procedures at Alice’s
side can be simplified as (1) encode KA

s to vector Y , (2)

TABLE II. Experimental environment settings.

Parameters Value

Polar codes Block size 1 Mb
CRC length 32
Decoder FSSCL decoder [21]
Construction Upgrading and degrading

method [30]
Computer Operation System Windows 10

CPU Intel I5-9300H
Cores per CPU 4
Treads per core 2
Memory 16 GB
Programming language C++
Compiler VISUAL STUDIO 2019

generate the syndrome vector W = Y ∧ V and send W to Bob,
(3) extract the information bits of Y as KA

IR = Ext(Y,¬V ),
and (4) calculate the CRC value T = CRC(KA

IR ) and send to
Bob.

In our IR scheme, the leakage syndrome information S
contains the CRC value T and the frozen bits of W (the
information bits of W are zero). The mutual information
I (KIR; S) is less than the Shannon entropy H (S). And H (S) �
n − k + d because the total length of S is n − k + d . Thus, the
reconciliation efficiency of our scheme is calculated as

f (E ) = I (S; KIR )

nH2(E )
� n − k + d

nH2(E )
. (10)

IV. PERFORMANCE ANALYSIS

In this article, we proposed a polar-code-based IR scheme
with FBE strategy, which can be implemented efficiently
without TRNs. We implemented the IR scheme on a com-
mercial computer. Then, a series of experiments is conducted
to evaluate its performance. In the experiments, the decoder
is the FSSCL decoder, the block size n is 1 Mb, the length
of CRC is 32, and the locations of the frozen bits are deter-
mined by the optimized upgrading and degrading channels’
construction [30,41]. The sifted keys are collected from our
reference-frame-independent QKD experiment and are ex-
tended to the targeted length and QBER [42]. Table II shows
the experimental environment settings.

A. Yield of IR

The yield γ of each sifted key bit represents the per-
formance of IR schemes and is calculated from the failure
probability ε and the efficiency f according to Eqs. (1)–(4).
The lower bound of the efficiency value is determined by the
failure probability ε.

To evaluate the optimal yield of IR, we tested our IR
scheme with L ∈ {1, 2, 8, 16, 32, 64}, E = 0.02, and ε from
10−4 to about 10−1 for 10 000 times each round.

Figure 3 shows the yield γ against the failure probability ε.
The increase of list size improves the yield of IR by improving
the correction performance. The yield γ first slowly increases
to the maximum with the increase of ε because f is improved
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FIG. 3. The yield of the polar-code-based IR schemes with
FBE strategy against the failure probability, when the decoder
is the FSSCL decoder, QBER equals 0.02, the list size is in
{1, 2, 8, 16, 32, 64}, and the block size is 1 Mb. The data of Tang’s
scheme are from the forward reconciliation phase [20].

(the value decreases) by the increase of ε. Then, as the failure
probability ε increases, the discard failure cases increase and
the yield γ decreases rapidly. Figure 4 shows the yield γ

against the efficiency f .
The efficiency and the failure probability are shown

in Table III when the optimal yield is achieved and
the list size L ∈ {1, 2, 8, 16, 32, 64}. The performance of
polar-code-based IR schemes could be further improved by
appending the feedback procedure or improving the decoders,
such as the scheme in Ref. [20].

B. Throughput of IR

The “bottleneck” of IR is the decoding procedure at Bob’s
side. In this article, we use the throughput of the IR scheme at
Bob’s side to represent the whole IR scheme.

We implemented the polar-code-based IR scheme in
Ref. [20] (forward reconciliation) with the FSSCL decoder.
Meanwhile, the IR scheme in Ref. [19] is also imple-
mented with the SCL decoder because the scheme cannot
adapt the FSSCL decoder. The throughput of the imple-

FIG. 4. The yield of the polar-code-based IR schemes with FBE
strategy against the corresponding efficiency. The data of Tang’s
scheme are from the forward reconciliation [20].

TABLE III. The optimal yield and the throughput of our
polar-code-based IR scheme with the FBE strategy. n = 1Mb, L ∈
{1, 2, 4, 8, 16, 32, 64} and E = 0.02.

Throughput
L f ε γ (Mbps)

1 1.293 0.0015 0.8159 8.60
2 1.239 0.0016 0.8234 4.46
4 1.202 0.0020 0.8283 3.26
8 1.172 0.0035 0.8313 1.66
16 1.176 0.0004 0.8333 0.68
32 1.158 0.0011 0.8353 0.33
64 1.140 0.0030 0.8362 0.14

mentations is evaluated with n = 1Mb, E = 0.02, and L ∈
{1, 2, 4, 8, 16, 32, 64}. The efficiencies of the schemes are set
as Table III by adjusting the size of information bits to ensure
the same amount of decoding calculation. Figure 5 shows the
evaluated throughput result, and the detailed throughput of
our scheme is shown in Table III. The increase of list size
improves the efficiency, but decreases the throughput. Tang’s
scheme and our scheme reach 60% higher throughput than
the implementation of Yan’s scheme for adapting the effi-
cient FSSCL decoder. Although our scheme reaches a slightly
lower throughput than Tang’s scheme for one more encoding
procedure, our scheme does not require TRNs. Furthermore,
the polar-code-based IR scheme with FBE strategy can also
apply state-of-the-art decoders to reach higher throughput and
efficiency without TRNs.

V. CONCLUSION

In this article, we propose the polar-code-based informa-
tion reconciliation (IR) scheme with the frozen-bit erasure
(FBE) strategy, where an equivalent transmission of the sifted
keys is conducted so that each frozen bit in the de-
coding procedure is erased to zero. Compared with the
existing IR schemes, our proposed polar-code-based IR
scheme with the FBE strategy can be implemented with the
low-computational-complexity decoder and removes the

FIG. 5. Throughput comparison of the polar-code-based IR
schemes with FSSCL and SCL decoders. The block size is 1 Mb and
the QBER is 0.02.
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assumption of true random numbers simultaneously. Fur-
thermore, we implemented the scheme with the fast sim-
plified successive-cancellation list decoder on a commercial
computer. The implementation reaches the throughput of
0.68 Mbps and the yield of 0.8333 (efficiency of 1.176 and
failure probability of 0.0004) with the decoder list size of 16,
the block size of 1 Mb, and QBER of 0.02.
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