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Quantum noise spectroscopy as an incoherent imaging problem
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I point out the mathematical correspondence between an incoherent imaging model proposed by my group
in the study of quantum-inspired superresolution [M. Tsang, R. Nair, and X.-M. Lu, Phys. Rev. X 6, 031033
(2016)] and a noise spectroscopy model also proposed by us [M. Tsang and R. Nair, Phys. Rev. A 86, 042115
(2012); S. Ng et al., ibid. 93, 042121 (2016)]. Both can be regarded as random displacement models, where
the probability measure for the random displacement depends on unknown parameters. The spatial-mode
demultiplexing (SPADE) method proposed for imaging is analogous to the spectral photon counting method
proposed by Ng et al. for optical phase noise spectroscopy: Both methods are discrete-variable measurements
that are superior to direct displacement measurements (direct imaging or homodyne detection) and can achieve
the respective quantum limits. Inspired by SPADE, I propose a modification of spectral photon counting when the
input field is squeezed: The output field is simply unsqueezed before spectral photon counting. I show that this
method is quantum optimal and far superior to homodyne detection for both parameter estimation and detection,
thus solving the open problems in the work of Tsang and Nair and Ng et al.
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I. INTRODUCTION

Optical telescopes and gravitational-wave detectors are
two of the most important technologies in modern physics
and astronomy. This paper studies a remarkable connection
between them from the perspective of quantum metrology.
The key insight is that the photons from incoherent sources
received by a telescope and an optomechanical system under
a stochastic gravitational-wave background can be modeled
as quantum systems under random displacements, as depicted
in Fig. 1. In both the imaging problem and the stochastic
background sensing problem, measurements are performed
to estimate the probabilistic properties of the displacements
and the measurements for both problems turn out to share
significant similarities in a statistical sense. My group has
studied both problems [1–4], but in those works the connec-
tion was not elaborated. Inspired by the connection, here I
use the insights gained from our study of incoherent imag-
ing to devise an optimal measurement for an optical random
displacement model with squeezed light, thus solving the
open problems in Refs. [3,4]. The optimal measurement is
far superior to the standard homodyne detection in the same
way quantum-inspired imaging methods can beat direct imag-
ing. Beyond imaging, optomechanics, and gravitational-wave
detection, the random displacement model is also relevant
to magnetometers under fluctuating magnetic fields [5] and
microwave cavities driven by hypothetical dark-matter ax-
ions [6], so the insights and results here should have wider
implications.

*mankei@nus.edu.sg; https://blog.nus.edu.sg/mankei.

II. MODELS

Consider first the incoherent imaging system depicted in
Fig. 1(a). The one-photon density operator ρ on the image
plane can be modeled as [1,2]

ρ =
∫

dP UX |ψ〉〈ψ |U †
X , (1)

UX =
M∏

m=1

exp(−ikmXm), (2)

where M is the dimension of the object and image planes, |ψ〉,
an element of the Hilbert space H = H1 ⊗ · · · ⊗ HM , models
the diffraction-limited point-spread function of the imaging
system, km is a momentum operator on Hm, UX is a unitary
operator that models the photon displacement on the image
plane due to a point source, and X is a real classical M-
dimensional random vector under the probability measure P,
which models the object intensity function. Mathematically,
Eq. (1) is a Bochner integral; both dP and X in Eq. (1) depend
implicitly on x ∈ S in terms of a probability space (S, �, P)
[7].

The imaging problem can be framed as a quantum de-
tection or estimation problem [2,8], where P belongs to a
family of probability measures {Pθ : θ ∈ �} parametrized by a
parameter θ in some parameter space � and a parameter of in-
terest β(θ ) is to be estimated via measurements of the optical
fields. Studies in the area of quantum-inspired superresolu-
tion have shown that spatial-mode demultiplexing (SPADE)
can offer a far superior performance over direct imaging and
achieve the quantum limits in the resolution of two point
sources [1,9], object-size estimation [10,11], and moment es-
timation [10,12–17]. For the uninitiated, Appendixes A and B
offer a brief review of these results.
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FIG. 1. (a) Schematic of an incoherent imaging system, where
the quantum state ρ of each image-plane photon can be modeled as
a randomly displaced object, with the distribution of the incoherent
sources determining the probability measure P for the displacement
and the point-spread function of the imaging system determining the
initial state |ψ〉 of the photon. (b) Schematic of an optomechanical
sensor, where the quantum state ρ of the optical fields before the
measurement can also be modeled as a randomly displaced object,
with a probability measure P governing the displacement and the
initial state of the optical fields determining |ψ〉. In both cases, a
measurement is modeled by a positive-operator-valued measure E ,
and an estimator β̌(λ) of a parameter of P can be constructed from
the measurement outcome λ.

The incoherent imaging model turns out to be mathemat-
ically similar to a noise spectroscopy model also proposed
by my group in Refs. [3,4]. The main difference is in the
dimension M: Imaging problems usually assume that M is
1 or 2, whereas Refs. [3,4] assume that it is infinite. In the
noise spectroscopy problem, ρ is the state of a quantum dy-
namical system coupled to quantum fields, |ψ〉 is an element
of an infinite-dimensional Hilbert space H that models the
input state of the total system, X (t ) is a real classical random
process with respect to a time variable t that generalizes the m
in Eq. (2), and the unitary is

UX = T exp

(
−i

∫ T

0
dt k(t )X (t )

)
, (3)

where T denotes time ordering, T is the total observation
time, and k(t ) is a Hermitian operator on H in an interaction
picture [18]. Further, |ψ〉 and k(t ) are assumed to be indepen-
dent of X . Any sequential measurements concurrent with the
displacement can be modeled as a final measurement via the
principle of deferred measurement [19,20]. Examples include
an optical field under a random displacement or phase mod-
ulation, an optomechanical system under a stochastic force
[21,22], a gravitational-wave detector under a stochastic back-
ground [23], a spin ensemble under a stochastic magnetic field

[5], and a microwave cavity driven by dark-matter axions [6].
Figure 1(b) depicts an optomechanical system as an example.

References [3,4] assume that X (t ) is a stationary zero-
mean Gaussian random process and its power spectral density
SX (ω|θ ) depends on the unknown parameter θ . Reference
[3] assumes that � is binary with SX (ω) = 0 for one of the
hypotheses, such that the problem of interest is the detection
of a random displacement, while Ref. [4] assumes that � is
a multidimensional Euclidean space, such that the problem is
spectrum-parameter estimation. In other words, Refs. [3,4] as-
sume parametric models for the probability measure P, in the
same way parametric models for P are assumed for incoherent
imaging.

III. SPECTRUM-PARAMETER ESTIMATION

The power spectral density, being a second-order statis-
tic, is analogous to the second-order object moments in the
context of imaging. Since SPADE can enhance the estimation
of second-order moments [10,12–17], it is natural to ask if
a similar enhancement can be found for noise spectroscopy.
The answer is yes: Ref. [4] considers an optical field under
weak and random phase modulation and finds that spectral
photon counting, a discrete-variable measurement analogous
to SPADE, can be far superior to homodyne detection, a
continuous-variable measurement analogous to direct imag-
ing, when the input state |ψ〉 is a coherent state. Spectral
photon counting is quantum optimal and enjoys significant
superiority over homodyne detection in the regime of low
signal-to-noise ratios, just as SPADE is quantum optimal
and superior in the regime of subdiffraction object sizes for
imaging.

In the following, I adopt a level of mathematical rigor
typical of the physics and engineering literature [24,25] to
arrive at results quickly, following Refs. [3,4]. To derive a
quantum limit to noise spectroscopy, Ref. [4] makes the fol-
lowing assumptions.

Assumption 1. X (t ) is a zero-mean Gaussian process.
Assumption 2. The processes X (t ) and


k(t ) ≡ k(t ) − 〈ψ | k(t ) |ψ〉 (4)

are stationary in the wide sense [24,26,27] such that

CX (τ |θ ) ≡ Eθ [X (t )X (t + τ )], (5)

Ck (τ ) ≡ 〈ψ | 
k(t ) ◦ 
k(t + τ ) |ψ〉 (6)

are independent of t . [Eθ denotes the expectation with respect
to Pθ and A ◦ B ≡ (AB + BA)/2 denotes the Jordan product.]

Assumption 3. The observation time T is long enough to
justify certain approximations regarding stationary processes
[26,27].

Such assumptions are common in statistics [26,27] and
have the virtue of giving simple closed-form results for the
infinite-dimensional model. Assuming also that θ is a real
scalar for simplicity, a quantum limit to the Fisher information
J for any measurement is [4]

J � K � K̃ → T
∫ ∞

−∞

dω

2π

(∂ ln SX )2

2 + 1/SkSX
, (7)
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SX (ω|θ ) ≡
∫ ∞

−∞
dτ CX (τ |θ ) exp(iωτ ), (8)

Sk (ω) ≡
∫ ∞

−∞
dτ Ck (τ ) exp(iωτ ), (9)

where K is the Helstrom information in terms of ρ as a
function of θ [8,28], K̃ is a bound derived in Ref. [4] using the
extended convexity of K [29], ∂ ≡ ∂/∂θ , and → denotes the
long-time limit. These information quantities determine the
fundamental limits to the estimation of a parameter θ of
the power spectral density SX (ω|θ ) of the “noise” X (t ) in
noise spectroscopy. For the uninitiated, Appendixes A and C
give a brief review of the basic concepts in quantum estima-
tion theory.

Note that Eq. (7) is applicable to scenarios where the probe
is initially entangled with an ancilla, as |ψ〉 can model the
initial state of the probe plus the ancilla in a larger Hilbert
space and UX can be an operator on the probe subspace only.

At the time of Ref. [4], we were unable to find a quantum-
optimal measurement when the input state is not a coherent
state, but the correspondence with incoherent imaging offers
a new insight. We know that SPADE can remain superior and
optimal as long as its basis is adapted to |ψ〉 [1,9,12,16,30].
This fact suggests that a discrete-variable measurement is still
optimal for noise spectroscopy with a nonclassical state, as
long as the measurement basis is adapted to the input state
|ψ〉. If |ψ〉 is a squeezed state, it still has a Gaussian wave
function and is analogous to a Gaussian point-spread function
in imaging. The imaging correspondence then suggests that
an optimal basis adapted to |ψ〉 is simply a squeezed version
of an optimal basis adapted to the vacuum. A measurement in
that basis can be implemented by unsqueezing the output field,
analogous to an image magnification, before spectral photon
counting.

I now show the optimality of the unsqueezing and spectral
photon counting (USPC) method in detail. Let

k(t ) = A†(t )A(t ), [A(t ), A†(t ′)] = δ(t − t ′), (10)

where A(t ) is the annihilation operator for the slowly varying
envelope of an optical field with carrier frequency � [24,25]
and k(t ) is the photon-flux operator. Then X is a phase mod-
ulation on the optical field. Since k(t ) commutes with itself
at different times, the time ordering in Eq. (3) is redundant.
Assume also that

|ψ〉 = D(α)V |vac〉 , (11)

where |vac〉 is the vacuum state, V is a unitary operator that
models the squeezing, and D(α) is the displacement operator
that gives a constant mean field 〈ψ | A(t ) |ψ〉 = α. Note that
|α|2 is the mean photon flux. With a high |α| and weak phase
modulation, D†k(t )D can be linearized as an intensity quadra-
ture operator

D†k(t )D ≈ |α|2 + κ (t ), κ (t ) ≡ αA†(t ) + α∗A(t ), (12)

and D†UX D becomes a displacement operator. This lineariza-
tion turns the phase modulation into a displacement. The
initial squeezing V should squeeze the orthogonal phase

quadrature

η(t ) ≡ 1

2i|α|2 [αA†(t ) − α∗A(t )] (13)

and antisqueeze the intensity quadrature such that

V †ηV = h ∗ η, V †κV = g ∗ κ, (14)

where h ∗ η ≡ ∫ ∞
−∞ dt ′h(t − t ′)η(t ′) denotes the convolution

and the real Green’s functions h(t ) and g(t ) model the
squeezing and the antisqueezing, respectively [24]. Their
Fourier transforms are related by

|h̃(ω)g̃(ω)| = 1, (15)

where

g̃(ω) ≡
∫ ∞

−∞
dt g(t ) exp(iωt ), (16)

and h̃(ω) is defined similarly.
After UX , suppose that the mean field is nulled by D†(α)

and then the squeezing is undone by a unitary W , which
is the same as V except that a negative sign is introduced
to the parametric-amplifier Hamiltonian. In other words, the
experimental setup for the unsqueezing can be the same as
that for V , except that the phase of the pump beam should
be shifted by π if the parametric amplifier is implemented by
three-wave mixing. The effect of W on the quadratures can be
modeled as

W †ηW = g ∗ η, W †κW = h ∗ κ. (17)

Note that W is not V †, as the Green functions would become
anticausal and thus unphysical if W were V †. Conditioned on
X , the output state

|ψ ′〉 = W D†UX DV |vac〉 (18)

is a coherent state with mean field

α′(t ) ≡ 〈ψ ′| A(t ) |ψ ′〉 = −iαg ∗ X, (19)

where the displacement in the phase quadrature is amplified
by the unsqueezing. This model is also applicable to the dark
port of a Michelson interferometer [31], where the squeezing
V and the unsqueezing W should be applied to the input and
output of the dark port, respectively, the displacements D and
D† are naturally implemented by a strong beam at the other
input port and the beam splitter in the interferometer, and X
is proportional to the relative phase between the two arms, as
depicted by Fig. 2. Any radiation-pressure-induced noise is
assumed to be negligible or eliminated [32,33].

To facilitate the analysis of the subsequent step of spectral
photon counting, I discretize frequency by assuming that X (t )
is given by the Fourier series

X (t ) = 1√
T

∞∑
m=−∞

X̃m exp(−iωmt ), ωm ≡ 2πm

T
, (20)

X̃m ≡ 1√
T

∫ T

0
dt X (t ) exp(iωmt ). (21)
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FIG. 2. Michelson implementation of the model given by
Eqs. (11)–(19).

Then the mean field of the output coherent state given by
Eq. (19) can be expressed as

α′(t ) = − iα√
T

∞∑
m=−∞

g̃(ωm)X̃m exp(−iωmt ). (22)

Suppose that a spectrometer disperses the output field in terms
of frequency modes defined by the annihilation operators

am ≡ 1√
T

∫ T

0
dtA(t ) exp(iωmt ), m ∈ Z, (23)

where ωm is a sideband frequency relative to the carrier �

[34]. Each frequency mode is then in a coherent state with a
displacement given by

α̃m ≡ 〈ψ ′| am |ψ ′〉 = αg̃(ωm)X̃m. (24)

Since X (t ) is real, X̃−m = X̃ ∗
m. Assume that {X̃m : m > 0} are

independent zero-mean complex Gaussian random variables,
each with variance

Eθ (|X̃m|2) = SX (ωm|θ ). (25)

Assume also that X̃0 is a zero-mean real Gaussian random
variable that is independent of the rest. These assumptions
allow the Fourier series given by Eq. (20) to approach any real
stationary zero-mean Gaussian process in the long-time limit
[27]. By summing the photon counts at each pair of sideband
frequencies −ωm and ωm, one obtains a set of photon counts
that follow the Bose-Einstein distribution

fθ (n) =
∏
m>0

1

1 + N̄m

(
N̄m

1 + N̄m

)nm

, (26)

N̄m(θ ) = 2Eθ (|α̃m|2) = 2|αg̃(ωm)|2SX (ωm|θ ). (27)

The m = 0 mode has a more complicated photon counting dis-
tribution that need not be considered, as there is a continuum

of modes in the long-time limit and the information provided
by one mode should be negligible. The Fisher information for
USPC is hence

JUSPC ≡
∑

n

fθ (n)[∂ ln fθ (n)]2 (28)

=
∑
m>0

(∂ ln N̄m)2

1 + 1/N̄m
(29)

→ T
∫ ∞

−∞

dω

2π

(∂ ln SX )2

2 + 1/|αg̃|2SX
, (30)

where the long-time limit gives
∑

m>0 → T
∫ ∞

0 dω/2π and
the integral

∫ ∞
0 dω for an even integrand is rewritten as the

double-sided integral
∫ ∞
−∞ dω/2 for easier comparison with

Eq. (7).
To compare this result with the quantum bound, note that

the power spectral density of 
k(t ) with respect to |ψ〉 =
DV |vac〉 is the same as that of 
k′(t ) with respect to |vac〉,
where k′(t ) ≡ V †D†k(t )DV , and the antisqueezing of the in-
tensity quadrature by V leads to

Sk (ω) = |αg̃(ω)|2. (31)

With this Sk (ω), the USPC information given by Eq. (30)
matches the quantum bound K̃ given by Eq. (7) and is hence
quantum optimal.

For comparison, the Fisher information for homodyne de-
tection of the phase quadrature U †

X ηUX = η + X is [4,35]

Jhom → T
∫ ∞

−∞

dω

2π

(∂ ln SX )2

2 + 4Sη/SX + 2(Sη/SX )2
, (32)

where η is assumed to be a stationary zero-mean Gaussian
process with power spectral density Sη. For the squeezed |ψ〉,

Sη(ω) = 1

4Sk (ω)
, (33)

and SηSk � 1
4 in general [24]. Compared with the optimal

information given by Eqs. (7) and (30), the homodyne in-
formation with a quantum-limited Sη has an extra factor
2(Sη/SX )2 in the denominator, which is significant when the
spectral signal-to-noise ratio (SNR) SX /Sη is low. To see their
difference more clearly, assume that

SX

Sη

= 4SkSX � 1 (34)

and perform Taylor approximations of Eqs. (7), (30), and (32),
which give

JUSPC ≈ K̃ ≈ T
∫ ∞

−∞

dω

2π
SkSX (∂ ln SX )2, (35)

Jhom ≈ 8T
∫ ∞

−∞

dω

2π
(SkSX )2(∂ ln SX )2. (36)

The Jhom is much lower because of an extra factor of 8SkSX in
the integrand.

For a simple example, suppose that SX (ω|θ ) = θ2R(ω),
where θ is the magnitude of the displacement and R(ω) is
a known spectrum. In other words, the shape of the noise
spectrum is assumed to be known and one is simply interested
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FIG. 3. Comparison of USPC and homodyne detection in terms
of their Fisher information given by Eqs. (42) as a function of θ

in log-log scale. The Fisher information has been normalized with
respect to the time-bandwidth product BT . The θ has been normal-
ized so that θ 2 is the ratio of the displacement spectrum SX to the
quantum-limited phase-quadrature spectrum Sη = 1/4Sk . Both axes
are dimensionless.

in estimating the height of
√

SX (ω|θ ). Then

JUSPC ≈ K̃ → T
∫ ∞

−∞

dω

2π

4

2θ2 + 1/SkR
, (37)

Jhom → T
∫ ∞

−∞

dω

2π

4

2θ2 + 1/SkR + 1/8(θSkR)2
. (38)

As θ → 0, Jhom scales quadratically with θ and vanishes,
while JUSPC tends to a positive constant. These behaviors are
analogous to the phenomenon of Rayleigh’s curse for direct
imaging and the superiority of SPADE in two-point resolution
and object-size estimation [1,10,11].

To be even more concrete, suppose that both Sk (ω) =
|αg̃(ω)|2 and R(ω) are flat within the band |ω| � 2πB and
R(ω) = 0 otherwise. Furthermore, assume an R(0) so that θ2

is the spectral SNR. In other words, assume that

Sk (ω) = Sk (0) if |ω| � 2πB, (39)

R(ω) =
{

Sη(0) = 1/4Sk (0) for |ω| � 2πB

0 otherwise,
(40)

θ2 = SX (0|θ )

Sη(0)
= 4Sk (0)SX (0|θ ). (41)

Then

JUSPC → 4BT

θ2 + 2
, Jhom → 4BT

θ2 + 2 + 1/θ2
, (42)

which are plotted in log-log scale in Fig. 3. Notice the differ-
ence in the scalings for θ � 1 and the substantial widening
gap.

In practice, the unknown parameter of the noise spectrum
is of course often multidimensional or even the function SX

itself with no simple parametric model. The results on mul-
tiparameter or semiparametric estimation in imaging offer

encouragement that the superiority of USPC should still per-
sist for those more complicated problems.

IV. STOCHASTIC-DISPLACEMENT DETECTION

Consider now the detection problem studied in Ref. [3]. Let
θ ∈ � = {0, 1}, P0 be the measure that gives the deterministic
X = 0 when the displacement is absent, P1 be the measure for
X when the displacement is present, and ρθ be the quantum
state as a function of θ . Since ρ0 = |ψ〉〈ψ | is pure in this
problem, the Uhlmann fidelity is given by

F ≡ tr
√√

ρ0ρ1
√

ρ0 =
√

〈ψ | ρ1 |ψ〉, (43)

while the quantum Chernoff exponent ζ [36] is given by

ξ � ζ ≡ − ln inf
0�s�1

tr(ρ1−s
0 ρs

1) = −2 ln F, (44)

where ξ is the classical Chernoff exponent for any measure-
ment. F and ζ can be used to set a variety of lower and
upper bounds on the error probabilities under the Bayesian
or Neyman-Pearson criterion; see Appendix D for a quick
summary of the Bayesian theory.

In addition to Assumptions 1–3 for P1 and |ψ〉, assume also
the following.

Assumption 4. The initial state |ψ〉 is a Gaussian state.
Assumption 5. The Hermitian operator k(t ) is a linear func-

tion of bosonic creation and annihilation operators such that
UX is a displacement operator.

The quantum exponent is then given by [3]

ζ → T

2

∫ ∞

−∞

dω

2π
ln(1 + 2SkSX ). (45)

We also considered in Ref. [3] the performances of the
Kennedy receiver and the homodyne detection for the op-
tical model, but we were unable to find the exact optimal
measurement at the time. Here I solve the open problem by
showing that USPC is also optimal for the detection problem,
in analogy with the optimality of SPADE for the binary-source
detection problem [9]. Assuming again weak phase modula-
tion, the USPC distribution given by Eqs. (26) and (27), and

SX (ω|0) = 0, f0(n) = δn0, SX (ω|1) = SX (ω), (46)

the Chernoff exponent is

ξUSPC ≡ − ln inf
0�s�1

∑
n

[ f0(n)]1−s[ f1(n)]s (47)

=
∑
m>0

ln[1 + N̄m(1)] (48)

→ T

2

∫ ∞

−∞

dω

2π
ln(1 + 2|αg̃|2SX ). (49)

With the Sk given by Eq. (31), ξUSPC matches the quantum
limit ζ given by Eq. (45).

For comparison, consider the classical Chernoff exponent
for homodyne detection given by [3,27]

ξhom → sup
0�s�1

T

2

∫ ∞

−∞

dω

2π
ln

(
1 + (1 − s)SX /Sη

(1 + SX /Sη )1−s

)
. (50)

The imaging correspondence suggests that there should be
a significant gap between ζ and ξhom, although we did not
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FIG. 4. Comparison of USPC and homodyne detection in terms
of their Chernoff exponents given by Eqs. (49) and (50), assuming
the flat spectra given by Eqs. (39) and (40). The horizontal axis
φ is the square root of the spectral SNR defined by Eq. (54). The
Chernoff exponent has been normalized with respect to the time-
bandwidth product BT . The plot is in log-log scale and both axes
are dimensionless.

realize it at the time of Ref. [3]. To demonstrate the gap now,
assume again a low spectral SNR as per Eq. (34) and perform
Taylor approximations of Eqs. (45), (49), and (50), which give

ξUSPC ≈ ζ ≈ T
∫ ∞

−∞

dω

2π
SkSX , (51)

ξhom ≈ sup
s

s(1 − s)T

4

∫ ∞

−∞

dω

2π

(
SX

Sη

)2

(52)

= T
∫ ∞

−∞

dω

2π
(SkSX )2. (53)

The optimal exponent is linear with respect to SX , whereas
the homodyne exponent is only quadratic. These scalings are
analogous to the scalings of the optimal exponent and the
direct-imaging exponent with respect to the source separation
in the binary-source detection problem [9].

For a more concrete example, assume the flat spectra given
by Eqs. (39) and (40) and define

SX (ω) = φ2R(ω) (54)

so that the spectral SNR is now φ2 and φ plays the same role
as θ in Fig. 3. Figure 4 plots the resulting Chernoff exponents
given by Eqs. (49) and (50) against φ in log-log scale.

It is possible to study the error probabilities of the detection
problem more precisely under the Neyman-Pearson criterion
[3,28,37,38], although the insights offered by such calcula-
tions should not deviate much from the ones reported here.

V. DISCUSSION

Since homodyne detection is the current standard measure-
ment method in gravitational-wave detection [39], the supe-
rior scalings of the USPC information quantities indicated by

Eqs. (35), (36), (51), and (53) are important discoveries. They
suggest that USPC can substantially enhance the detection and
spectroscopy of stochastic gravitational-wave backgrounds
when the spectral SNR is low, in the same way SPADE can
enhance incoherent imaging. Considering that squeezed light
is now being used in gravitational-wave detectors [40], the
unsqueezing step proposed here is important, as it optimizes
the measurement for squeezed light beyond the coherent-state
case considered in Refs. [3,4] and allows the full potential
of quantum-enhanced interferometry to be realized for noise
spectroscopy.

A potential practical issue with the proposal is its assump-
tion of quantum-limited squeezing and unsqueezing in both
quadratures. Optical squeezers in current technology often
introduce excess noise in the antisqueezed quadrature, which
has little impact on the homodyne detection of the squeezed
quadrature but may add significant noise to the photon count-
ing step here. With two squeezers in the proposed setup, the
issue of excess noise is even worse. In view of the amazing
achievements of the experimentalists in LIGO and squeezing,
however, one should never underestimate their skills, and the
superiority of USPC should motivate the current and future
generations to reach even greater heights in squeezing tech-
nology in order to achieve the promised improvement.

The correspondence between the incoherent imaging
model and the random displacement model is used implicitly
in Sec. 6 of Ref. [10] and briefly mentioned in Ref. [13] but not
elaborated there. References [41,42] point out the correspon-
dence between incoherent imaging and noise spectroscopy
more explicitly, although they assume a low dimension for
the Hilbert space and somewhat different parametric models.
A more recent outstanding work by Górecki et al. [43] also
notices the correspondence and also uses the convexity of the
Helstrom information to derive a quantum bound for a random
displacement model with one optical mode. They discovered
independently that unsqueezing before photon counting is
optimal for a squeezed input state and superior to homodyne
detection. Another outstanding relevant work is Ref. [44] by
Shi and Zhuang, who also discovered independently the op-
timality and superiority of unsqueezing and photon counting
for a somewhat different random displacement model, which
can be obtained by applying a rotating-wave approximation to
the unitary given by Eq. (3) and imposing a thermal channel.
References [41–44] all do not consider the detection problem
and are not aware of the prior Refs. [3,4].

As there exist many other results in quantum-inspired
superresolution that have not yet been translated to noise
spectroscopy, and vice versa, the correspondence between the
two models should have much more to give.
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APPENDIX A: QUANTUM ESTIMATION THEORY

Let {ρθ : θ ∈ �} be a family of density operators. Given a
parameter θ and after a measurement modeled by a positive-

012611-6



QUANTUM NOISE SPECTROSCOPY AS AN INCOHERENT … PHYSICAL REVIEW A 107, 012611 (2023)

operator-valued measure (POVM) E , the probability measure
Qθ for the measurement outcome λ being in a set A is given
by [7]

Qθ (A) = trE (A)ρθ , (A1)

where tr is the operator trace. Let the parameter of interest be
a real scalar β(θ ) and an estimator be β̌(λ). The mean-square
error is defined as

MSE(θ ) ≡ Eθ {[β̌ − β(θ )]2} (A2)

=
∫

dQθ (λ)[β̌(λ) − β(θ )]2, (A3)

where Eθ denotes the expectation given θ . Let θ be a real
scalar and suppose that each Qθ possesses a probability den-
sity fθ (λ) with respect to a θ -independent reference measure
ν. Assuming the local unbiased condition for the estimator
given by

Eθ (β̌ ) = β(θ ), (A4)∫
dν(λ)β̌(λ)∂ fθ (λ) = Eθ (β̌∂ ln fθ ) = ∂β(θ ), (A5)

∂ ≡ ∂

∂θ
, (A6)

the classical Cramér-Rao bound is

MSE(θ ) � [∂β(θ )]2

J (θ )
, J (θ ) ≡ Eθ [(∂ ln fθ )2], (A7)

where J (θ ) is called the Fisher information. The bound is
also achievable with the maximum-likelihood estimator in an
asymptotic sense and can be generalized for more relaxed
conditions [26].

A quantum bound on J for any POVM E is [28]

J (θ ) � K (θ ) ≡ trρθL2
θ , (A8)

where K (θ ) is the Helstrom information [8], Lθ is a solution
to

∂ρθ = ρθ ◦ Lθ , (A9)

and ◦ denotes the Jordan product of two operators defined as

A ◦ B ≡ 1
2 (AB + BA). (A10)

Generalization of these results for a multidimensional pa-
rameter can be done by considering the matrix versions of
the information quantities [28] or adopting the parametric-
submodel approach [16,45,46].

APPENDIX B: QUANTUM-INSPIRED SUPERRESOLUTION

Consider the incoherent imaging model given by Eqs. (1)
and (2) in one dimension (M = 1). For the estimation of the
separation between two point sources, the probability measure
Pθ as a function of the separation θ ∈ R can be modeled as

Pθ = 1
2 (δ−θ/2 + δθ/2), (B1)

where

δx(A) ≡
{

1 for x ∈ A
0 otherwise (B2)

is the Dirac measure for a unit point mass at position x. With
direct imaging, which can be modeled as a measurement of
the continuous photon position, the Fisher information J (θ ) is
roughly constant for large θ relative to Rayleigh’s criterion,
but it decreases when θ becomes sub-Rayleigh and drops
to zero when θ = 0. To distinguish this soft penalty to the
Fisher information from the more heuristic Rayleigh’s crite-
rion, Ref. [1] calls the penalty Rayleigh’s curse.

Unlike the direct-imaging Fisher information under
Rayleigh’s curse, the Helstrom information K (θ ) for this
problem is constant regardless of θ , meaning that the ulti-
mate information in the photons is substantially higher than
the direct-imaging information for sub-Rayleigh separations.
Moreover, a measurement in the discrete Hermite-Gaussian
basis called SPADE has Fisher information that coincides with
the Helstrom information for all θ , meaning that SPADE is an
optimal measurement and can be far superior to direct imaging
for sub-Rayleigh separations [1].

A similar scenario plays out when one attempts to estimate
the size of an object, for which the probability density of Pθ

can be expressed as

dPθ

dX
= 1

θ
w

(
X

θ

)
(B3)

in terms of a known function w [10,11]. For this problem,
Rayleigh’s curse can also be observed in the direct-imaging
information, while the Helstrom information and the SPADE
information approach a nonzero constant for sub-Rayleigh
separations.

References [10,12–17] study the moment estimation prob-
lem, assuming that θ = P and � is the set of all probability
measures, while the parameter of interest is

β(P) =
∫

dP(X )b(X ), (B4)

such as the second moment with b(X ) = X 2. As the parameter
space is now infinite dimensional, the theory becomes much
more formidable. However, with some effort, it can still be
shown that SPADE enjoys significant superiority over direct
imaging for sub-Rayleigh object sizes and is close to quantum
optimal.

APPENDIX C: EXTENDED CONVEXITY

As the Helstrom information K (θ ) is often difficult to
compute, especially if the density operators are mixed, one
may have to settle for looser bounds. If the density operator
can be expressed as the mixture

ρθ =
∫

dPθ (Z )σθ (Z ), (C1)

where σθ (Z ) is a density operator conditioned on the random
element Z , then a useful bound on K (θ ) called the extended
convexity is [4,29]

K (θ ) � K̃ (θ ) ≡
∫

dPθ (Z )K[σθ (Z )] + J[Pθ ], (C2)

where K[σθ (Z )] is the Helstrom information in terms of σθ (Z )
and J[Pθ ] is the Fisher information in terms of Pθ .

To offer some intuition about the use of the extended-
convexity bound in Ref. [4], consider the model given by
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Eqs. (1) and (2) in one dimension (M = 1) for simplicity. Let

dPθ = 1√
2πvX (θ )

exp

(
− X 2

2vX (θ )

)
dX (C3)

such that the variance vX (θ ) of the displacement X depends
on the unknown parameter. A trick to derive a good bound is
to change the random variable to Z = X/γ (θ ) in terms of a
judiciously chosen function γ (θ ) such that

dPθ = γ (θ )√
2πvX (θ )

exp

(
−γ (θ )2Z2

2vX (θ )

)
dZ, (C4)

σθ (Z ) = Uγ (θ )Z |ψ〉〈ψ |U †
γ (θ )Z . (C5)

These expressions lead to

K[σθ (Z )] = 4vk (∂γ )2Z2, (C6)

vk ≡ 〈ψ | k2 |ψ〉 − (〈ψ | k |ψ〉)2, (C7)∫
dPθ (Z )K[σθ (Z )] = 4vkvX (∂ ln γ )2, (C8)

J[Pθ ] = 1

2

[
∂ ln

(
vX

γ 2

)]2

, (C9)

K̃ (θ ) = 4vkvX (∂ ln γ )2 + 1

2
(∂ ln vX − 2∂ ln γ )2, (C10)

where Eq. (C8) assumes that vk and γ do not depend on the
random variable. Picking

∂ ln γ = ∂ ln vX

2 + 4vkvX
(C11)

hence leads to

K̃ (θ ) = (∂ ln vX )2

2 + 1/vkvX
, (C12)

which resembles Eq. (7). The derivation of Eq. (7) in Ref. [4]
indeed follows a similar procedure.

If Pθ is not Gaussian, a bound may still be obtained by
using the convexity of the Helstrom information; Sec. 6 of
Ref. [10] uses the convexity to derive a quantum limit to
object-size estimation in the context of imaging and shows
that SPADE can approach the limit. The trick is to change the
variable in Eq. (B3) to Z = X/θ , leading to

ρθ =
∫

dZ w(Z )σθ (Z ), σθ (Z ) = UθZ |ψ〉〈ψ |U †
θZ . (C13)

As w(Z ) no longer depends on θ , Eq. (C2) gives the convexity
bound

K̃ (θ ) =
∫

dZ w(Z )K[σθ (Z )] = 4vk

∫
dZ w(Z )Z2, (C14)

which is independent of θ . It turns out that SPADE can achieve
this bound in the limit of θ → 0 [10]. Reference [43] has
obtained similar results.

APPENDIX D: QUANTUM DETECTION THEORY

Assume two hypotheses � = {0, 1}. Let A be the set of
measurement outcomes with which one decides on θ = 0 and
Ac be the set with which one decides on θ = 1. Then the type-I
and type-II error probabilities are, respectively,

Q0(Ac) = trE (Ac)ρ0, Q1(A) = trE (A)ρ1. (D1)

Let πθ be the prior probability of the hypothesis θ . Then the
average error probability is

Pe ≡ π0Q0(Ac) + π1Q1(A). (D2)

Given a measurement, the classical detection problem is to
choose a set A that minimizes the error probabilities. In par-
ticular, Pe can be minimized by a likelihood-ratio test [26].
Denote this minimum Pe by Pe,min and assume π0 = π1 = 1

2
for simplicity. A useful lower bound on Pe,min is [47]

Pe � Pe,min � 1
2 (1 −

√
1 − B2), (D3)

where

B ≡
∫

dν(λ)
√

f0(λ) f1(λ) (D4)

is the Bhattacharyya coefficient. Another useful bound is the
Chernoff bound given by [26]

Pe,min � 1
2 exp(−ξ ), (D5)

ξ ≡ − ln inf
0�s�1

∫
dν(λ)[ f0(λ)]1−s[ f1(λ)]s. (D6)

The error exponent − ln Pe,min approaches the Chernoff expo-
nent ξ in an asymptotic sense [48].

For any POVM E , a quantum lower bound on B is [28]

B � F ≡ tr
√√

ρ0ρ1
√

ρ0, (D7)

where F is the Uhlmann fidelity, while a quantum upper
bound on ξ is [36]

ξ � ζ ≡ − ln inf
0�s�1

tr
(
ρ1−s

0 ρs
1

)
. (D8)
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