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Quantum particle statistics fundamentally controls the way particles interact and plays an essential role in
determining the properties of the system at low temperature. Here we study how the quantum statistics affects
the computational power of quantum annealing. We propose an annealing Hamiltonian describing quantum
particles moving on a square lattice and compare the computational performances of the atomic quantum
annealers between two statistically different components: spinless fermions and hard-core bosons. In addition,
we take an Ising quantum annealer driven by traditional transverse-field quantum fluctuations as a baseline. The
potential of our quantum annealers to solve combinatorial optimization problems is demonstrated on random
3-regular graph partitioning. We find that the bosonic quantum annealer outperforms the fermionic case. The
superior performance of the bosonic quantum annealer is attributed to larger excitation gaps and the consequent
smoother adiabatic transformation of its instantaneous quantum ground states. Along our annealing schedule, the
bosonic quantum annealer is less affected by the glass order and explores the Hilbert space more efficiently. Our
theoretical finding could shed light on constructing atomic quantum annealers using Rydberg atoms in optical
lattices.
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I. INTRODUCTION

One of the central challenges in computer science is to
design efficient algorithms to solve combinatorial optimiza-
tion problems [1] that are of practical importance in a broad
range of fields. Most of such computational tasks are NP-hard
or NP-complete problems, which require minimizing a cost
function having a large number of local minima, making it
intractable for classical algorithms.

Quantum annealing [2–7] is a promising quantum comput-
ing approach that may have significant quantum speedup in
solving combinatorial optimization problems. It is a heuristic
algorithm that formulates the cost function into a quantum
many-body Hamiltonian, typically an Ising spin Hamiltonian
[8], then utilizes quantum fluctuations to escape from trapping
by local minima, and explores the spin-glass-like energy land-
scape for the ground state that encodes the optimal solution.
The theoretical foundation of quantum annealing is built on
the adiabatic theorem of quantum mechanics [9,10], which
ensures that the quantum system will stay close to the instanta-
neous ground state if the initial Hamiltonian changes into the
problem Hamiltonian slowly enough, and the annealing time
scales inversely proportional to a polynomial of the minimal
energy gap [11–13].

Holding the expectation of quantum speedups over algo-
rithms running on classical computers, numerous efforts have
been devoted to the realization of large-scale programmable
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quantum devices, from superconducting qubits to trapped
ions [7,14]. There have been rapid technological advances
in recent years in fabricating quantum annealers having a
large number of spins, which have been attracting extensive
attention in industry and academia [15–17]. Nevertheless, for
technical issues such as quantum decoherence and control
errors, whether quantum annealing could fulfill its promise of
significant quantum speedup over classical computing is still
an open question. In the noisy intermediate-scale quantum
era [18], developing alternative quantum annealing protocols
and architectures with near-term technology is still in great
demand for reaching the quantum computation advantage on
combinatorial optimization problems.

With remarkable experimental progress in the past two
decades, ultracold atoms in optical lattices, originally engi-
neered as a highly controllable quantum simulator for exotic
many-body physics, provide new opportunities to build a
scalable quantum annealer [19,20]. In addition to refined
measurement techniques, free programmability in optical lat-
tices has been recently achieved via single-site control and
cavity-mediated long-range interactions [21–29], generically
necessary to carry out classical optimization on a quantum
annealer. Based on the atomic platform, it is a natural choice
to encode a qubit into the occupation number of a lattice
site, which can be either zero or one of intrinsically repulsive
spinless fermions or hard-core bosons. The atomic tunneling,
in which the effect of quantum statistics is embodied, plays
the role of quantum fluctuation to drive the search for the op-
timal occupation configurations. Quantum particle statistics,
as a fundamental concept in quantum physics, is an important
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factor in determining the dynamical properties of the sys-
tem and can give rise to big contrasts in the nature of the
ground state [30–33]. From both theoretical interests and prac-
tical considerations, it is worth pursuing the answers of the
questions of which of fermionic or bosonic tunneling, serv-
ing as the driver Hamiltonian, leads to better computational
performance and how the two atomic quantum annealers
with different quantum statistics behave differently during
annealing.

Here we propose an atomic quantum annealer under
fermionic or bosonic statistics and investigate the effect of
quantum statistics in this context. A commonly used model
for quantum annealing is the Ising spin Hamiltonian, which
is universal for classical problems [34] and has been imple-
mented in a range of different physical platforms [15,35,36].
For this reason, we also compare the atomic quantum an-
nealer with the Ising-model approach. To carry out a concrete
analysis, we focus on the performance of the three quan-
tum annealers to solve the random instances of 3-regular
graph partitioning using a fixed amount of annealing time. By
numerical simulation of the time evolution of our quantum
annealers, we find that, on average, the bosonic quantum an-
nealer reaches higher success probability than the fermionic
one and the performance of the bosonic quantum annealer
is comparable to the Ising-model quantum annealer. How
the three quantum annealers perform is directly related to
their low-energy spectra and the bottlenecks can be diagnosed
by the ground-state fidelity susceptibility which measures
the transformation smoothness of the instantaneous quantum
ground state. Looking into their behavior during annealing,
the bosonic quantum annealer is always less affected by the
glass order and explores a larger portion of the many-body
Hilbert space compared to the fermionic one.

The paper is organized as follows. In Sec. II we first intro-
duce the graph partitioning problem and describe the setup of
our atomic quantum annealers. In Sec. III we compare numer-
ically the computational performances of the three quantum
annealers and study several properties to illustrate their be-
havior difference. Finally, a discussion and conclusions are
presented in Sec. IV.

II. QUANTUM ANNEALING SETUP

A. Graph partitioning

Partitioning is one of the six basic NP-complete prob-
lems proposed by Garey and Johnson in [37]. This class of
problems bears close resemblance to the spin-glass problem.
Studying the complexity hardness of partitioning problem and
understanding the physics behind spin glasses are auxiliary to
each other [38,39].

Here we focus on the well-studied problem graph partition-
ing [8], which is defined on an undirected graph G = (V, E ),
with an even number N = |V | of vertices connected by a set
of edges E = {(vi, v j )}. The task is to partition the vertex set
V into two subsets V1 and V2 with equal size N/2 such that the
number of edges connecting V1 and V2 is minimized. Then the
cost function can be formulated as this edge number

C(V1,V2) =
∑

vi∈V1,v j∈V2

Ai j, (1)

y

x

(a) (b)

FIG. 1. (a) Illustrative example of a 12-vertex instance of 3-
regular graph partitioning. Its optimal partitioning is indicated by
the closed and open vertices. (b) Schematic illustration of spinless
fermions or hard-core bosons in a two-dimensional optical lattice.
Each lattice site represents a vertex on the graph and the site occupa-
tion denotes the corresponding vertex being in either of two subsets.
The graph connectivity is embedded in the interactions between
atoms and the nearest-neighbor tunneling plays the role of quantum
fluctuation in the quantum adiabatic evolution.

where Ai j is the adjacent matrix element of the graph, equal
to one when there is an edge between vertex vi and vertex v j

and zero when there is no edge. We consider random graph
instances in a specific ensemble where the degree of every
vertex is set equal to 3, i.e., 3-regular graphs, and by definition
each row and column of the adjacent matrix A sums to this
fixed degree. Figure 1(a) shows an illustrative example of a
3-regular graph with 12 vertices and its optimal partitioning.

B. Atomic quantum annealer

Considering that spinless fermions or hard-core bosons
can only occupy a lattice site by particle number zero or
one, we naturally encode a qubit into a site occupation and
the solutions of combinatorial optimization problems into the
occupation configurations. For graph partitioning, each vertex
vi on the graph corresponds to a lattice site i and the graph
connectivity is embedded in the interactions between atoms.
In this way, the problem Hamiltonian in the atomic quantum
annealer is of the form

H atomic
P =

∑
(vi,v j )∈E

1

2
[1 − (1 − 2ni )(1 − 2n j )], (2)

where the site occupation ni = {0, 1} denotes the correspond-
ing vertex being in either of two subsets. The nonlocal graph
connectivity can be realized by adopting the quantum wiring
scheme [40], which has been realized by controlling Ryd-
berg excitations in an atomic experiment [41]. As proposed
in this scheme, the required long-range interaction is medi-
ated by a ferromagnetic quantum wire coupling two distant
qubits by exploiting the controllability of atomic systems.
The ancilla qubits introduced as quantum wires are carefully
organized such that the quantum annealing architecture can
be embedded into a three-dimensional cubic lattice [40] or
a two-dimensional square lattice [42] with nearest-neighbor
interactions only. Since the total particle number is conserved
in an atomic system, the equal-partitioning constraint is sat-
isfied by taking the particle number to be at half filling Np =∑N

i=1 ni = N/2. A half-filled optical lattice encoding a 12-bit
problem instance is illustrated in Fig. 1(b).
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The nearest-neighbor atomic tunneling on the two-
dimensional lattice

HT =
∑

〈i, j〉,i< j

−(a†
i a j + a†

j ai ) (3)

serves as the driver Hamiltonian to provide quantum fluctua-
tions of occupation configurations, where 〈i, j〉 labels a pair
of nearest-neighbor sites and a†

i (ai) creates (annihilates) a
spinless fermion or a hard-core boson at site i. The index i
relates to the two-dimensional site index (m, n) by i ≡ m +
(n − 1)Lx, with m = 1, . . . , Lx (n = 1, . . . , Ly) denoting the
index along the x and y directions, respectively. We adopt an
open boundary condition here mainly considering the experi-
mental feasibility.

To initialize the quantum annealer with an easily imple-
mented ground state that is unique and finitely gapped, the
initial Hamiltonian is chosen to be a set of on-site potentials

HV =
N∑

i=1

Vini. (4)

We take a specific occupation configuration |n1n2n3n4 · · · 〉 =
|0101 · · · 〉 as its ground state by setting Vi = −2 for even i and
Vi = 0 for odd i. The bias of this artificial choice is expected
to be eliminated by random graph sampling.

We propose an annealing schedule that linearly interpolates
from HV to H atomic

P with

H atomic(s) = (1 − s)HV + λs(1 − s)HT + sH atomic
P . (5)

Here the Hamiltonian HT is introduced to generate quantum
fluctuations. This is necessary in our scheme because the ini-
tial and final Hamiltonians commute, i.e., [HV, H atomic

P ] = 0.
The parameter s(t ) = t/T ∈ [0, 1] determines the annealing
path with the total annealing time T , and the parameter λ,
set to be λ = 3, controls the driving strength. Our annealing
schedule follows the same time-dependent form of reverse
annealing [43–47], which is proposed to enhance performance
via choosing an appropriate initial state. In contrast, we take
a specific configuration as an initial state just out of consider-
ation for experimental implementation on an atomic platform
and the initial configuration can be any convenient choice.

The quantum statistics of an atomic quantum annealer is
practically determined by whether the particles loaded into
optical lattices are fermions (e.g., 6Li [29,48,49], 40K [50–52],
and 173Yb [53]) or bosons (e.g., 87Rb [54,55] and 133Cs
[56,57]). We consider two atomic quantum annealers that
are assembled with spinless fermions and hard-core bosons,
respectively, in order to investigate the effect of quantum
statistics on the annealing performance. Although their an-
nealing processes are described by a Hamiltonian of the same
form (5), the two annealers are fundamentally different, for
the underlying quantum particles obey different statistics. This
difference can be readily seen via the Jordan-Wigner trans-
formation [58] of the atomic tunneling term. The bosonic
tunneling is equivalent to the XXZ model defined on the same
two-dimensional (2D) lattice

HBose
T,JW =

∑
〈i, j〉,i< j

−1

2

(
σ x

i σ x
j + σ

y
i σ

y
j

)
. (6)

The XXZ-model-based quantum annealing has been
suggested for performing constrained optimization [59].
Fermionic anticommutation rules, as the consequence of
Fermi-Dirac statistics, give rise to the appearance of nonlocal
Jordan-Wigner strings in the transformation. The resulting
2D Ising model has nonlocal interactions between spins

HFermi
T,JW =

∑
〈i, j〉,i< j

− i

2

⎛
⎝ j−1∏

k=i

σ z
k

⎞
⎠(

σ
y
i σ x

j + σ x
i σ

y
j

)
, (7)

which explicitly shows highly nontrivial sign structures for the
Hamiltonian matrix in the computational basis. Although both
Ising-form Hamiltonians (6) and (7) conserve the total mag-
netization Sz = ∑N

i=1 σ z
i , i.e., [HT,JW, Sz] = 0, their quantum

dynamics are drastically different.
It is not a priori clear whether the nonlocal Fermi sign

structure would be helpful or harmful to the quantum anneal-
ing [60–64]. On the one hand, it generates nonlocal couplings,
which would tend to make the many-body system more er-
godic and potentially weaken the spin-glass problem [65];
on the other hand, it involves nonstoquastic Hamiltonians at
intermediate times whose ground states are in general difficult
to reach [66–68].

C. Ising quantum annealer

Encoded as an Ising model, the problem Hamiltonian for
graph partitioning consists of two parts

H Ising
P =

∑
(vi,v j )∈E

1

2

(
1 − σ z

i σ z
j

) + α

(
N∑

i=1

σ z
i

)2

, (8)

where the first term carries the energy cost of edges connect-
ing vertices from different subsets and the second provides
an energy penalty representing the size imbalance of the two
subsets. In order to ensure the balancing constraint in the
equal-partition problem, the factor α for graph partitioning
must satisfy the condition α � 1

8 min(2�, N ), with � the
maximal degree of graph [8]. We choose a fairly small value
for α = 1 that satisfies this condition, as a too large penalty
would suppress quantum fluctuations in the adiabatic quantum
evolution and make the quantum annealing inefficient.

Since we focus on analyzing the effect of quantum statis-
tics on the quantum annealing in this study, we take a
Hamiltonian schedule for the Ising-model-based quantum an-
nealing,

H Ising(s) = (1 − s)HZ + λs(1 − s)HX + sH Ising
P . (9)

This Hamiltonian schedule is chosen to be similar to the
atomic quantum annealer in Eq. (5) for a fair comparison.
The Hamiltonian schedule starts from the longitudinal-field
Hamiltonian

HZ =
N∑

i=1

hiσ
z
i , (10)

where on-site fields have equal amplitude but alternating
signs, hi = −1 for even i and hi = 1 for odd i, in correspon-
dence with the initial potential (4) of the atomic quantum
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annealer. At intermediate time with 0 < s < 1, we have in-
troduced the transverse-field Hamiltonian HX = −∑N

i=1 σ x
i

to drive quantum fluctuations. This Ising quantum annealer
offers a performance reference point to benchmark the
fermionic and bosonic atomic quantum annealers.

III. NUMERICAL RESULTS

In what follows, we present the numerical results on close-
system quantum annealing and compare the computation
performances of the fermionic, bosonic, and Ising quantum
annealers. The computation performance is obtained by sim-
ulating the quantum time evolution based on the Schrödinger
equation. Then we investigate their relevant low-energy prop-
erties by exact diagonalization, aiming at characterizing the
performance difference among the three quantum annealers.

A. Success probability

Aiming at comparing the computation performances of
different theoretical models with different quantum statistics,
we characterize the computation performance of quantum an-
nealers by the success probability. This quantity is defined
as the total probability of finding the correct solution in the
projective measurement of the final quantum state |ψf〉,

Ps(T ) =
D∑

i=1

∣∣〈ψ i
s

∣∣ψf
〉∣∣2

, (11)

with |ψ i
s〉 the ground states of the final Hamiltonian, i =

1, 2, . . . , D labeling the ground-state degeneracy. When it
comes to investigating the performance of the actual real-
ization on quantum computing hardware, time to solution
[69] is a preferred metric, especially for comparing different
quantum computing platforms having different computation
timescales. Nonetheless, since we aim at studying the compu-
tation performance of quantum annealers caused by different
quantum statistics, we use the success probability (11) in com-
paring the bosonic, fermionic, and Ising quantum annealers.

We study three problem sizes with the 2D lattice geome-
tries N = 4 × 3, 4 × 4, and 4 × 5 and sample 1000 random
instances of the 3-regular graph for each system size. Each
graph instance is generated by randomly adding an edge be-
tween a pair of vertices with the constraint that each vertex
is connected with exactly three other different vertices and
then saved in the form of an adjacent matrix. We exclude the
repeated graphs by checking whether there are two identical
adjacent matrices. With that, there still remain a small number
of equivalent graphs related by permutation of vertices. We
note that the initial state of the quantum adiabatic evolution
does not respect the permutation symmetry, so the quantum
annealing performances on equivalent graphs are actually not
identical. The total annealing time is set equal to T = 50,
and for each instance we calculate the success probabili-
ties of our fermionic, bosonic, and Ising quantum annealers.
The performance comparison among the three quantum an-
nealers is presented in Fig. 2. As shown in Fig. 2(a), the
fermionic quantum annealer has the worst performance for
all problem sizes compared to bosonic and Ising quantum
annealers. The performances of the bosonic and Ising quan-

FIG. 2. Success probabilities of our fermionic, bosonic, and
Ising quantum annealers with the total annealing time T = 50.
(a) Instance-averaged success probabilities of the three quantum
annealers for the problem sizes N = 4 × 3, 4 × 4, and 4 × 5. The
individual success probabilities for the problem size N = 4 × 4 are
compared between (b) the fermionic and bosonic quantum annealers,
(c) the fermionic and Ising quantum annealers, and (d) the bosonic
and Ising quantum annealers. Each symbol represents one instance
and its color and shape denote the solution degeneracy D of this
instance.

tum annealers are more or less comparable. Focusing on the
problem size N = 4 × 4, we then look into the success proba-
bility for each instance and compare the success probability
distributions of the three quantum annealers. The pairwise
comparisons of the individual success probabilities are shown
in Figs. 2(b)–2(d), and the instances with different solution
degeneracy are represented by the symbols of different colors
and shapes. For almost all instances (97.3%), the success
probabilities of the bosonic quantum annealer are higher than
those of the fermionic annealer. Comparing the two atomic
quantum annealers with the Ising quantum annealer, the
fermionic annealer produces higher success probabilities than
the Ising annealer only for very rare instances with a small
percentage of 0.095%, whereas the rate of the bosonic quan-
tum annealer outperforming the Ising annealer is significant,
reaching 36.4%. There are a number of problem instances for
which the bosonic quantum annealer far outperforms the Ising
annealer.

For our three quantum annealers, the individual success
probabilities exhibit consistent correlations with the solution
degeneracy D. As a result of the bit-flip symmetry of graph
partitioning σ z

i → −σ z
i , the solution degeneracy D only takes

even numbers and the two final ground states up to a bit
flip produce two equivalent partition solutions. The solution
degeneracy D of our generated instances for the problem size
N = 4 × 4 has a broad distribution from D = 2 up to D = 96.
The distribution of D is shown in Fig. 3(a). The problem
instances with D = 2, i.e., having one unique partition solu-
tion, count as 1

3 of all instances. We then divide all problem
instances into different classes according to the degeneracy D
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FIG. 3. (a) Solution degeneracy distribution of our 1000 problem
instances for the system size N = 4 × 4. (b) Success probabilities of
our fermionic, bosonic, and Ising quantum annealers for the problem
size N = 4 × 4, which are averaged over the instances with the same
solution degeneracy D and presented as functions of D.

and average over the quantum annealing success probability
within each class. The results are shown in Fig. 3(b). We find
consistent correlations between the success probability and
the solution degeneracy for the average success probabilities
of all three quantum annealers, in all of which the success
probability grows monotonically with D. This implies that
solving partitioning problems by quantum annealing becomes
less difficult as the number of its solutions gets larger. For
problem instances with a solution degeneracy D, diabatic tran-
sitions during the quantum dynamical evolution among the
lowest D states will not compromise the final success prob-
ability because all of them will evolve into the ground-state
manifold of the problem Hamiltonian at the end of the an-
nealing [70]. The fermionic quantum annealer has much lower
average success probabilities than the bosonic and Ising ones
for all classes of different solution degeneracies. The overall
performance of the bosonic quantum annealer is comparable
to the Ising case.

The above comparison of success probabilities indicates
that the bosonic tunneling, which drives the quantum fluctu-
ations at intermediate time, possesses stronger computational
power than the fermionic tunneling. The computation perfor-
mance of the bosonic quantum annealer is comparable to the
Ising model. One common feature between bosonic and Ising
quantum annealers is that their Hamiltonians in the computa-
tional basis are both stoquastic [71]. This is in sharp contrast
to the fermionic quantum annealer, where the Hamiltonian is
nonstoquastic.

B. Relevant gap and low-energy property

A fundamental limitation on the successful probability
of quantum annealing is posed by the quantum adiabatic
theorem [9,10]. Despite various attempts to circumvent the
adiabatic requirement by Hamiltonian path design [72–77],
finding optimized Hamiltonian protocols for generic compu-
tation problems is in general difficult. The required annealing
time is largely determined by the inverse of the minimum gap
between the instantaneous ground state and first excited state.
This energy gap thus characterizes the computation hardness
of quantum annealing. In our situation where the ground state
of the problem Hamiltonian is degenerate, it is reasonable to
define a relevant gap between the instantaneous ground state
and the first excited state outside the degenerate ground-state

2 4 6 8 10 12
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Bose
Ising
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FIG. 4. (a) Relevant gaps of the interpolating Hamiltonians fol-
lowed by the fermionic, bosonic, and Ising quantum annealers to
solve the problem with size N = 4 × 4, which are averaged over
the instances with the same solution degeneracy D and presented
as functions of D. Also shown are the 12 lowest energy levels of
the interpolating Hamiltonians in solving a specific problem instance
by the (b) fermionic, (c) bosonic, and (d) Ising quantum annealers.
This instance, as a typical example, is randomly chosen. The two
lowest gray dashed lines represent the energy levels converging to
the two-degenerate ground states of the problem Hamiltonian and
the other colored solid lines correspond to excited states.

subspace,

�ER = mins∈[0,1][ED(s) − E0(s)], (12)

which sets an upper bound for the minimum gap between the
ground state and the first excited state of the instantaneous
Hamiltonian during the whole annealing process.

Along our annealing schedule to solve the problem with
size N = 4 × 4, the relevant gaps are numerically determined
for each instance and averaged over the instances with the
same solution degeneracy D. The results for our three quan-
tum annealers are presented in Fig. 4(a) as functions of D.
We observe a systematic increase in the averaged relevant
gap with the solution degeneracy, which is consistent with
the behavior of success probability as shown in Fig. 3(b).
A larger solution degeneracy makes it more difficult for the
quantum annealer to excite out of the subspace of the lowest
D states and thus help the system stay in this low-energy
subspace, morphing into the ground-state manifold at the end
of the quantum annealing. The fermionic quantum annealer is
found to have the smallest relevant gaps for all the solution
degeneracies, which we expect to be the main reason for its
computation performance being the worst compared to the
bosonic and Ising models. Consequently, the required evolu-
tion time for the fermionic quantum annealer to reach a certain
success probability threshold is expected to be significantly
larger than for the other two cases.

We further concentrate on the problem instances with D =
2, the largest proportion and the hardest to solve, and look
into their low-energy properties relating to the performance
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difference. Since the performance of quantum annealing can
be directly reflected by the low-energy spectrum, we ran-
domly choose a problem instance and show the typical
structure of the low-energy levels of the interpolating Hamil-
tonians to solve this instance by the three quantum annealers
in Figs. 4(b)–4(d). For our two atomic quantum annealers,
there are two minimum gaps located at the two stages where
quantum fluctuations are turning on and off. The minimum
gaps of the fermionic quantum annealer are much smaller than
the bosonic annealer. In addition, the low-energy spectrum
of the fermionic quantum annealer, compared to that of the
bosonic one, has a denser structure and involves more level
crossings during the annealing process. The Ising quantum
annealer has a low-energy spectrum very different from the
atomic ones. It develops only one minimum gap at the late
stage where quantum fluctuations are turning off. The fea-
tures of the low-energy spectra are expected to be generic
for the three quantum annealers in solving different problem
instances. This is demonstrated by investigating a number of
independent problem instances (see Appendix A).

Gap closing during the annealing process is generally in-
duced by a quantum phase transition [78–81]. Among various
probes of the quantum phase transition, the ground-state fi-
delity susceptibility per site is a universal indicator, regardless
of the transition mechanism, to locate the quantum critical
point and the attendant minimum gap [82]. This quantity is
defined as the second derivative of the fidelity F (s, s + δs) =
|〈ψg(s)|ψg(s + δs)〉| to measure the degree of criticality by
the rapidity of the ground-state variation as a function of the
system parameters:

S(s) = lim
δs→0

−2 lnF (s + δs)

N (δs)2
. (13)

A peak in this fidelity susceptibility signals approaching a
certain quantum critical point where the ground-state wave
function changes dramatically. It is more difficult to maintain
quantum adiabaticity at high S(s).

The average ground-state fidelity susceptibility per site
along the annealing process to solve the instances with N =
4 × 4 and D = 2 by our three quantum annealers is shown in
Fig. 5. For the atomic quantum annealers, two obvious peaks
in the fidelity susceptibility occur, corresponding to the two
minimum gaps at the two stages with quantum fluctuations
turning on and off, respectively. The peaks for bosonic quan-
tum annealer, especially the first one, are less prominent than
the fermionic one, which indicates that the ground state of the
bosonic quantum annealer transforms more smoothly along
the annealing process. As expected, the fidelity susceptibility
of the Ising quantum annealer increases significantly at the
appearance of its minimum gap and the peak value is compa-
rable to that of the bosonic annealer at the same location.

Although a general framework describing the quantum an-
nealing efficiency is absent, it is widely believed that quantum
annealing might be bottlenecked by the glass phase [83]. The
glass phase appears below some critical value of quantum
fluctuations and is characterized by an energy spectrum near
the ground state. In this phase, small changes in Hamiltonian
parameters may lead to a chaotic reordering of associated
energy levels, which causes level crossings with exponentially
small energy gaps. In order to examine the glass physics in the

FIG. 5. Ground-state fidelity susceptibilities per site along the
annealing process of the fermionic, bosonic, and Ising quantum
annealers, which are averaged over the instances with N = 4 × 4 and
D = 2.

quantum annealers, we calculate the Edwards-Anderson order
parameters of the glass phase [84]. For the atomic quantum
annealers, we measure the fluctuations of occupation numbers
on each lattice site,

qn = 1

N

N∑
i=1

〈2ni − 1〉2. (14)

For the Ising quantum annealer, we measure the fluctuations
of spin orientation

qz = 1

N

N∑
i=1

〈
σ z

i

〉2
. (15)

These two expressions are both normalized to the range
of [0,1].

The glass order strength along the annealing process of
the three quantum annealers is shown in Fig. 6, which is
averaged over different problem instances with N = 4 × 4
and D = 2. We calculate the ground-state glass order as well
as the low-energy glass order that is averaged over the 12
lowest eigenstates of the interpolating Hamiltonian. The two
quantities involving the low-energy states are largely related
to the performance of quantum annealers. Along the whole
annealing process, from an initial product state to the final
ground state, the bosonic quantum annealer is consistently
less affected by the glass order compared to the fermionic
one. This is consistent with our observation on the low-energy
spectra in Figs. 4(b) and 4(c), where the bosonic quantum
annealer develops fewer anticrossings. Although the compa-
rable computation performance is with the bosonic quantum
annealer, the Ising quantum annealer always stays in stronger
glass order, indicating its instantaneous states are very differ-
ent from the bosonic ones.

C. Annealing dynamical behavior

We further investigate the difference of the three quantum
annealers in terms of the dynamical behavior. The problem
instances with N = 4 × 4 and D = 2 are still taken for
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FIG. 6. (a) Ground-state glass order and (b) average glass order
of the 12 lowest eigenstates along the annealing process of the
fermionic, bosonic, and Ising quantum annealers. Both are averaged
over the instances with N = 4 × 4 and D = 2.

illustration. We calculate the effective dimension of the
dynamical state, which characterizes how efficiently the
intermediate dynamical state explores the entire Hilbert
space. It is defined as

Deff(|ψ〉) =
( D∑

i=1

|ci|4
)−1

, (16)

where the ci are the amplitudes of the state |ψ〉 on each
computational basis and D is the dimension of the Hilbert
space. This quantity has been widely used in the study of
delocalization or thermalization [85–87].

We consider the effective dimensions of the time-evolving
state |ψ (t )〉 along the annealing process for each quantum
annealer, with the ones of the instantaneous ground state
|ψg(t )〉 as an adiabatic reference. The results are shown in
Fig. 7(a). All of the three quantum annealers drive their initial
states to a large fraction of the Hilbert space as quantum
fluctuation turns on. The quantum dynamical state gradually
converges to the solution configurations with the ramp-off
of the quantum fluctuation. The bosonic quantum annealer
expands its dynamical state to the large Hilbert space with
a faster rate than the fermionic annealer. The resultant peak
value of the effective dimension at the intermediate time is
also significantly larger for the bosonic quantum annealer
than for the fermionic case. Although the value of effective
dimensions of the Ising quantum annealer is significantly
smaller than that of the bosonic annealer, their qualitative
behaviors are similar. For both of them, with the ramp-up of
quantum fluctuations, the dynamical quantum state follows
closely with the instantaneous ground state and the increase
of the effective dimensions in the dynamical state agrees with

FIG. 7. (a) Effective dimensions of the time-evolving state |ψ (t )〉
(solid lines), with the ones of the instantaneous ground state |ψg(t )〉
(dotted lines) as an adiabatic reference, and (b) instantaneous values
of the success probability (solid lines) and the ground-state prob-
ability (dotted lines) along the annealing process of the fermionic,
bosonic, and Ising quantum annealers. The above results are aver-
aged over the instances with N = 4 × 4 and D = 2.

the instantaneous ground state. This is in sharp contrast to the
fermionic quantum annealer where the effective dimension of
the dynamical state deviates significantly from the instanta-
neous ground state.

Furthermore, we look into the instantaneous values of the
success probability and the ground-state probability along
the annealing process of our three quantum annealers. The
success probability Ps(t ) follows the definition of Eq. (11) and
the instantaneous ground state probability Pg(t ) is defined as
the probability of the time-evolving state |ψ (t )〉 populating on
the instantaneous ground state |ψg(t )〉,

Pg(t ) = |〈ψg(t )|ψ (t )〉|2. (17)

As shown in Fig. 7(b), the success probabilities Ps(t ) of
all three quantum annealers stay almost vanishing for about
half of the annealing process and then increase at dif-
ferent rates to their final success probabilities Ps(T ) as
the annealing Hamiltonian approaches the problem Hamil-
tonian. Regarding the ground-state probability Pg(t ), the
three quantum annealers exhibit distinct behaviors within
our annealing time. The value of the bosonic quantum
annealer goes through two obvious drops: one relatively
smooth drop near the beginning and the other a steeper
drop near the final. The fermionic quantum annealer devel-
ops an abrupt drop at the early stage and its ground-state
probability remains small until the end. As for the Ising
quantum annealer, its ground-state probability Pg(t ) does not
drop until a late time when quantum fluctuations are turning
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off. The dynamical behaviors of the ground-state probability
Pg(t ) of the three quantum annealers are consistent with our
observations on their minimum gaps in Figs. 4(b)–4(d) and
the deviations of their effective dimensions in Fig. 7(a).

The localization property shown by the effective dimension
[88,89] in Fig. 7(a), which is expected to compromise the
performance of adiabatic quantum computing at large scale
[68,90], does not exhibit an evident correlation with the suc-
cess probability shown in Fig. 7(b). This suggests localization
may not be the key factor that determines the performance of
moderate-size adiabatic quantum computing.

IV. DISCUSSION AND CONCLUSION

In this work we have carried out a systematic analysis of
the effect of quantum statistics on the computational power
of atomic quantum annealers. We proposed an annealing
schedule for our atomic quantum annealers, and the effect
of quantum statistics is embodied in the driver Hamilto-
nian, i.e., the fermionic or bosonic tunneling. In addition,
an Ising quantum annealer was considered to provide a per-
formance reference. The performance comparison among the
three quantum annealers was demonstrated by solving ran-
dom problem instances of 3-regular graph partitioning in a
fixed annealing time. For all the problem sizes considered, the
numerical results of their final success probabilities showed
that the bosonic quantum annealer outperforms the fermionic
one, reaching a performance comparable to the Ising quantum
annealer.

To shed light on the difference among the three quantum
annealers, we studied the problem instances with N = 4 × 4
as an illustration and further concentrated on the subset with
D = 2 for more details. The computational performance of

the three quantum annealers was largely determined by their
minimum gaps, which were reflected by their low-energy
spectra. For two atomic quantum annealers, two minimum
gaps emerged respectively when the quantum fluctuations
were turned on and off. The first minimum gap of the
fermionic quantum annealer was much smaller than that of
the bosonic annealer, which was the major bottleneck of its
computational performance. The Ising quantum annealer had
only one minimum gap at the late stage when quantum fluctu-
ations were turning off. The emergence of their minimum gaps
was consistent with the peaks in their ground-state fidelity
susceptibility, which measures the smoothness of the state
transformation during the annealing. Along our annealing
schedule, the bosonic quantum annealer suffered from weaker
glass order and explored the Hilbert space more extensively
than the fermionic one.

From the consideration of experimental realization, the
atomic quantum annealer is particularly suitable for optimiza-
tion problems with the constraint of the form

∑N
i=1 σ z

i = c,
which is automatically satisfied under particle conservation.
For the traditional Ising quantum annealer, it is a standard
method to impose constraints by adding penalty terms [8]. The
penalty terms generally require all-to-all connectivity, which
presents an enormous challenge to the near-term quantum
device. The atomic quantum annealer is free of all compli-
cations resulting from penalty terms and reduces dramatically
the resources to encode a problem.
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APPENDIX A: GENERIC FEATURES OF LOW-ENERGY
SPECTRA FOR OUR THREE QUANTUM ANNEALERS

Here we illustrate that the features of the low-energy
spectra shown in Figs. 4(b)–4(d) are generic for the quan-

tum annealers in solving different problem instances. We
have checked this generality for many problem instances
and randomly chosen five of them as an illustration. In
Fig. 8 we provide the low-energy spectra of the interpolating
Hamiltonians of the three quantum annealers. For all three
quantum annealers, including Ising, bosonic, and fermionic,
we confirm that the low-energy spectra indeed have a similar
behavior as described in Sec. III B.

APPENDIX B: COMPLEMENTARY COMPUTATIONAL
POWER OF BOSONIC AND ISING

QUANTUM ANNEALERS

We provide in Fig. 9 the histogram of the success prob-
ability difference between the bosonic and Ising quantum
annealers in solving 1000 random instances with N = 4 ×
4 and T = 50. As shown in Fig. 9, the success probabil-
ity differences between the two approaches have a roughly
symmetric distribution and are concentrated in the range
−0.1 � Ps(T )[Bose] − Ps(T )[Ising] < 0.1. The problem in-
stances falling in this range count as 48.0%. There are indeed
some relatively rare problem instances for which one signif-
icantly outperforms the other. These problem instances are
very much symmetrically distributed. This implies bosonic
and Ising quantum annealers are complementary in solving
difficult optimization problems. Whether there are underlying
principles to select one from these two annealers based on the
problem features is worth studying further, for example, with
machine-learning-based automated algorithm selection. This
is left for future investigation.
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