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Proposal for the distribution of multiphoton entanglement with optimal rate-distance scaling
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We propose a protocol to perform long-range distribution of near-maximally entangled multiphoton states,
allowing versatile applications such as quantum key distribution (QKD) and quantum metrology which can pro-
vide alternatives to state-of-the-art protocols. Our scheme uses resources available within the current integrated
quantum photonic technology: squeezed vacuum states and photon-number-resolving detectors. The distributed
entanglement can be certified by Bell tests which have the potential to be loophole free, and may be directly used
in well-established QKD protocols. Generally, this provides measurement-device-independent levels of security,
which may be upgraded to fully device-independent security if the Bell test is loophole free. In both cases, the
protocol is robust to extremely high transmission losses, matching the optimal O(

√
η) scaling of key rate with

channel transmittance.

DOI: 10.1103/PhysRevA.107.012607

I. INTRODUCTION

Distribution of photonic entanglement is key to building
quantum networks which facilitate secure long-distance quan-
tum communications [1], distributed quantum computation
[2], and sensing [3,4], leading finally to a full realization
of the quantum internet [5]. A fundamental problem is that
entanglement becomes easily corrupted by losses in the trans-
mitting channels, which results in low transmission rates of
entangled states. Since amplification of quantum signals is
impossible [6], alternative remedies are in high demand. A
popular option is to use quantum repeaters [7,8]. However,
this approach necessitates numerous intermediate stations,
quantum memories, and multiple two-photon Bell pairs, a
resource that is often created nondeterministically. Despite
rapid advances in the field [9–18], experimental realizations
of quantum repeaters currently show deterioration with dis-
tance which is insufficient for most quantum communications
applications [19]. Another possibility is to use satellites to dis-
tribute two-photon Bell pairs, which is advantageous thanks
to photons traveling the majority of the distance in free space
and thus experiencing less loss than in atmospheric links or
optical fibers, while connecting arbitrarily distant locations.
This approach has seen much progress recently [19–34], al-
though the losses are still detrimental, with typically only
approximately 1 in 106 of produced Bell pairs surviving the
trip to the detection stations on the ground [34]. Thus, the
distribution of entanglement in a way that is resource efficient,
verifiable, and well suited to the existing quantum-photonic
technologies continues to be an open problem.

Quantum key distribution (QKD) uses quantum correla-
tions to distribute cryptographic keys between remote parties
which enables secure communication. In the long-distance
regime, the current state of the art is twin-field (TF)-QKD

*Corresponding author: magdalena.stobinska@gmail.com

[35], which displays a groundbreaking improvement over pre-
vious methods, exemplified by the key-rate scaling O(

√
η)

with channel transmittance η, allowing efficient demonstra-
tions of QKD over 600 km [36–38]. There, weak coherent
pulses are phase encoded and sent to an untrusted node for
measurement. This is an example of measurement-device-
independent (MDI)-QKD [39], which closes all detector side
channels but remains susceptible to eavesdropping attacks
at the source, for example, photon-number-splitting attacks
[40] which must be carefully avoided via decoy-state meth-
ods [41]. Entanglement-based versions, which benefit from
the same key-rate scaling, were soon theorized [42,43]. Gen-
erally, entanglement-based approaches make security easier
to verify and have the potential for loophole-free Bell tests
which could close all possible side channels. This is called
device-independent (DI)-QKD [23,44]. It is clear that for en-
tanglement distribution protocols to remain competitive for
QKD at long distances, they must achieve the same optimal
O(

√
η) key-rate scaling.

Here, we propose a protocol that uses multiphoton bipartite
entanglement and photon-number-resolving (PNR) detectors
to establish long-distance near-maximal entanglement dis-
tribution, allowing entanglement-based QKD protocols that
match the O(

√
η) scaling. It is robust to high transmission

losses which, remarkably, deteriorate only its efficiency, but
not the amount of generated entanglement, a feature until now
seen only in protocols based on Bell pairs. As a result, the
protocol has the potential to outperform other methods of en-
tanglement distribution which have transmission rates scaling
as O(η). This is particularly true in high-loss scenarios, for
example, satellite-based Earth-space channels and long fiber
networks. Once distributed, the multiphoton entanglement of
the states may be verified by a Clauser-Horne-Shimony-Holt
(CHSH) Bell inequality [45], forming a basis for establishing
a cryptographic key. Depending on the detection efficiencies
available, this can be achieved either by DI-QKD [42] or
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entanglement-based phase-matching QKD [43]. The higher-
photon-number states generated are additionally useful for
quantum metrology which has been extensively covered in our
previous work [46].

Bipartite entanglement between two physical systems such
as, e.g., two photons can be revealed by their Bell nonlocality,
i.e., the fact that outcomes of local measurements on these two
subsystems exhibit correlations which cannot be described by
local hidden variable models [47]. In this paper, we focus
on multiphoton bipartite entanglement, engineered from two-
mode squeezed-vacuum (SV) states, which are used as our
primary resource. This Gaussian quantum state is naturally
and deterministically produced from a pulsed coherent light
via the spontaneous parametric down-conversion (SPDC) pro-
cess, the most ubiquitous source of quantum light [48]. It
carries entanglement between the quadratures of the electric
field (continuous variables, CVs) but also between photon
numbers in the two modes (discrete variables, DVs), which
are unbounded [49]. The latest advances in experimental in-
tegrated quantum photonics facilitate precise generation and
manipulation of near-single-mode SV states in optical chips
[50], as well as detection of their photon number statistics
using state-of-the-art PNR detectors [51]. The most successful
PNR detectors are transition edge sensors (TESs), which have
negligible dark count rates and quantum efficiencies which
can exceed 95% [52,53]. Integrated photonic devices have
also contributed to the development of practical quantum
communications scenarios [54,55].

In our protocol, a verifiable DV entanglement of high local
dimension is created from two sources of an SV state using
an entangling measurement at a remote station. The measure-
ment is realized by multiphoton quantum interference on a
beam splitter (BS) followed by PNR detectors. The protocol
can also be carried out in a delayed-choice scheme which frees
the parties from using quantum memories and allows them to
share near-maximally entangled states in realistic implemen-
tations. These states have been proven to be useful not only for
QKD, as specified above, but also find an immediate applica-
tion in quantum metrology. These are multiphoton generalized
Holland-Burnett (HB) states, which have been experimentally
proven to allow near-optimal quantum-enhanced optical phase
estimation in a lossy environment [46].

II. RESULTS

A. Resources

We employ two copies of an SV state |�〉 coming from
a pulsed source as our input, |�in〉 = |�〉a ⊗ |�〉b. In its
Schmidt basis, |�〉 takes the form of a superposition of n-
photon pairs with real-valued probability amplitudes

√
λn =

tanhn g
cosh g :

|�〉 =
∞∑

n=0

√
λn |n〉1 |n〉2 , (1)

where g is the parametric gain, which is the key parameter
characterizing an SPDC source, setting the mean photon num-
ber in |�〉 to 2 sinh2 g for each pulse. Quantum correlations
in |�〉 are manifested by equal photon numbers in modes
1 and 2, called the signal and idler, which can be spatially

resolved. The subsequent photon-number contributions to the
SV state—the vacuum, single-photon, and higher-order (n >

1) emissions—occur with a probability which follows a geo-
metric progression with common ratio λn+1

λn
= tanh2 g. Thus,

the SPDC generates a considerable amount of multiphoton
events which are utilized to our benefit in our protocol.

A schematic explanation of the proposed entanglement dis-
tribution protocol is shown in Fig. 1. The setup consists of two
pulsed SPDC sources, one held by Alice and one by Bob, each
generating |�〉. The idler beams emitted into modes a2 and b2

are sent to Charlie at a remote station, who holds a balanced
(50:50) BS, where the two modes interfere, and then detects
them with PNR detectors. This is an entangling measurement,
whereby the signal modes a1 and b1 become photon-number
correlated.

B. Protocol in ideal circumstances

Let us consider the lossless case first. The detection of σ

photons in total in the entangling measurement means that σ

photons were distributed between the two idler beams enter-
ing the BS and thus that the total number of photons, S, in
the output state shared by Alice and Bob is S = σ . The BS
performs a linear operation on the input idler creation oper-
ators, U †

BS a†
2 UBS = 1√

2
(a†

2 − ib†
2), U †

BS b†
2 UBS = 1√

2
(−ia†

2 +
b†

2), while the signal modes a1 and b1 are intact. Applying this
operation to Fock states

|n〉a2
= (a†

2)n

√
n!

|0〉 , |σ −n〉b2
= (b†

2)σ−n

√
(σ − n)!

|0〉 , (2)

requires taking powers of the transformed operators. This
results in a transformation on a†

2 and b†
2 governed by a

binomial distribution and an output state described by an
arcsine probability distribution. Through such a multiphoton
Hong-Ou-Mandel (HOM) effect, entanglement between the
BS output modes is generated [56]. The probability ampli-
tudes of detecting k and σ −k photons behind the BS are equal
to [57]

Aσ (k, n) = 〈k, σ −k|UBS|n, σ −n〉
= ik−n φk (n − σ

2 , σ ),

where k = 0, . . . , σ and φk are symmetric Kravchuk
functions—orthonormal discrete polynomials which converge
to Hermite-Gauss polynomials for large σ [58]. The output
state in our protocol is therefore∣∣� (k,σ )

out

〉 = N 〈k, σ −k|UBS |�〉⊗2

= N
∞∑

n,m=0

√
λnλm |n, m〉a1,b1

× 〈k, σ −k|UBS |n, m〉a2,b2
,

(3)

where N is the normalization and |�〉 is defined in Eq. (1).
Since n + m = σ must hold true,

∣∣� (k,σ )
out

〉 = σ∑
n=0

Aσ (k, n) |n, σ − n〉a1,b1
. (4)

We now see that |� (k,σ )
out 〉 lives in a Hilbert space of dimension

(σ + 1) and is parametrized by the entangling measurement
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(a)

(b)

FIG. 1. Distribution of multiphoton bipartite entanglement. An explanation of the protocol as shown by (a) a schematic of the setup and
(b) a sequence diagram. Alice and Bob locally generate a pulsed, photon-number-entangled two-mode squeezed vacuum state each, obtained
by spontaneous parametric down-conversion (SPDC)—the most ubiquitous source of quantum light. They send their idler modes a2 and b2 to
a remote station Charlie, who holds a balanced (50:50) BS, where the two modes interfere, and performs a photon-number-resolving (PNR)
detection on the BS output modes d1 and d2. This is an entangling measurement by which Charlie creates the heralded mixed state ρ

(k,σ )
out (or,

in the lossless case, the pure state |� (k,S=σ )
out 〉) in Alice and Bob’s signal modes a1 and b1. The state and the amount of shared entanglement is

parametrized by the outcomes of Charlie’s measurement, k and σ − k. In general, this entanglement is multiphoton, with S � σ (S = σ for
a pure state) photons in total distributed between Alice and Bob. After Charlie informs the parties classically of the measurement outcome,
Alice and Bob know which state ρ

(k,σ )
out they possess and may employ it for quantum applications.

readouts k and σ − k which define its photon-number statis-
tics. The probability of detecting n photons in mode a1 (and
σ − n in mode b1) is |Aσ (k, n)|2 = |φk (n − σ

2 , σ )|2. Example
photon-number distributions, and details of the derivation, are
given in Figs. 6 and 7 and in Appendix A.

This protocol can also be realized in a delayed-choice
scheme. Then, the measurements taken by Alice and Bob
on the signal modes a1 and b1 precede the ones performed
on the idler modes a2 and b2 at the remote station. By the
no-signaling principle, the photon-number statistics observed
by Alice and Bob is again determined by |Aσ (k, n)|2.

To quantify entanglement in |� (k,σ )
out 〉 we employ the log-

arithmic negativity EN = log2 ||ρ�||1, where ρ denotes a
density operator, � is the partial transpose operation, and
|| · ||1 is the trace norm. This entanglement measure is easily
computable and gives an upper bound to the distillable entan-
glement, reflecting the maximal number of Bell states that can
be extracted [59,60]. Inserting ρ = |� (k,σ )

out 〉 〈� (k,σ )
out | we obtain

EN
( ∣∣� (k,σ )

out

〉 〈
�

(k,σ )
out

∣∣ )
= 2 log2

{
σ∑

n=0

∣∣φk
(
n − σ

2 , σ
)∣∣} (5)

(see Appendix B for the full derivation). Since the readouts
k and σ − k uniquely define the state |� (k,σ )

out 〉, they also

determine the amount of entanglement in it. The maximum
amount of entanglement which can be created in Hilbert space
of dimension (σ + 1) is ENmax = log2(σ + 1). Our protocol
allows one to achieve values close to this maximum, as shown
in the lossless case for σ = 4 in Fig. 2, with the maximal
value ENmax ≈ 2.3. The decrease in entanglement for k = σ

2
results from the multiphoton HOM effect, whereupon all
odd-photon-number components disappear. This leads to an
effective reduction in the Hilbert space dimension to ( σ

2 + 1)
where the maximal entanglement is log2( σ

2 + 1), or ≈1.6 at
σ = 4. For comparison, Bell states have logarithmic negativ-
ity, ENBell = 1. This is the same as we obtain for σ = 1.

C. Operation in lossy conditions

Depending on the application of our protocol, the amount
of losses in the photon transmission may vary, ranging from
0.2 dB/km for optical fibers to approximately 40 dB for an
uplink ground-to-satellite channel [61]. In addition, the effi-
ciency of a PNR detection system may drop to 50–60% (by
2–3 dB) if one includes uncorrelated background counts and
inefficient coupling [46].

Losses are modeled by inserting additional beam split-
ters into the pathways of the photons, whose reflectivity r
quantifies the amount of loss. In the case of symmetric idler
mode losses, the state shared by Alice and Bob is no longer the
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(a) (b)

FIG. 2. The amount of distributed entanglement in the shared state ρ
(k,σ )
out . The entanglement is quantified by the value of the logarithmic

negativity EN and is calculated for g = 0.1 and (a) σ = 1 and (b) σ = 4 photons detected in total by Charlie. The value of EN = log2(σ + 1)
for the maximally entangled state possible with the same number of photons is shown by the dashed black line. The dark blue diamonds depict
the lossless case, Eq. (5). At k = σ/2, as a result of the multiphoton Hong-Ou-Mandel (HOM) effect, all odd photon-number components
disappear, halving the basis and reducing the maximal entanglement to log2(σ/2 + 1). This is reflected by the dip at k = 2. The blue squares
represent the numerically computed values for a system where 40 dB losses were experienced by the photons in the idler modes a2 and b2.
It is remarkable that these values match almost exactly the ideal case. This is one of the two main results of this work. For comparison, the
results for two other scenarios of losses in the system are also shown. The green circles indicate the situation where the photons in the idler
modes a2 and b2 experience different losses: 37 dB in one mode and 40 dB in the other (50% higher attenuation in one arm). The orange
triangles illustrate the situation where a small amount of losses (20%) are present in the signal modes a1 and b1 only. Losses in signal modes
are detrimental to the amount of distributed entanglement but can be overcome using the delayed-choice scheme. All nonideal cases were
computed for 50% detection efficiency at the PNR detectors. Vertical grid lines separate the photon-number bins.

pure state |� (k,σ )
out 〉, but a mixed state described by the density

operator

ρ
(k,σ )
out =

∞∑
S=σ

pS|σ ρ
(σ,k,S)
int , (6)

where ρ
(σ,k,S)
int is a density operator of a state with S photons

in total in the signal modes which are assumed lossless. The
full representation can be found in Appendix C. Unlike in the
lossless case, S is not always equal to σ , and instead the prob-
ability for Alice and Bob to detect S photons between them is
given by pS|σ = Ñ 2χσ,S where χσ,S = rS−σ λS

(S+1
σ+1

)
and Ñ

is a normalization constant independent of S. As shown in
Fig. 3, in the limit r tanh2(g) � 1, the most likely event is S =
σ , with additional components S > σ becoming increasingly
less relevant as χσ,S drops rapidly towards zero. The primary
component of the mixed state is then ρ

(σ,k,σ )
int , which is iden-

tical to the lossless state |� (k,σ )
out 〉 〈� (k,σ )

out |. Provided that the
gain g is at typical low levels, g2 � 1, the limit r tanh2(g) � 1
holds even as r → 1, so that the entanglement of the final
states remains high even in the presence of arbitrarily high
losses in the idler modes.

To understand how realistic conditions affect the dis-
tributed entanglement we consider different scenarios of
losses. Figure 2 shows numerically calculated logarithmic

negativity at g = 0.1 in the ideal case, the case of large sym-
metric losses in the idler beams (ra2,b2 =99.99%, i.e., 40 dB),
the case of unbalanced losses in the idler beams with relative
transmittance ε = 1−rb2

1−ra2
= 0.5 (ra2 =99.98%, rb2 =99.99%,

i.e., 37, 40 dB, respectively), and the case of nonideal signal
modes with 20% losses in those arms. Losses in decibels
are given by −10 log10(1 − r). We do not assume perfect
entangling measurements, instead setting realistic losses at
the detectors (rd1,d2 =50%); however, we found that their in-
fluence is negligible since they can be viewed as a minor
addition to the already large idler losses. For more examples
of scenarios involving losses see Figs. 8–10 and 12–15, and
Appendixes C–E. As can be seen in Fig. 2, the amount of
entanglement obtained in the case of large symmetric losses
is almost exactly the same as in the ideal case. In fact, the
entangling measurement can be viewed as a g(2) correlation
function measurement, which is known to be immune to
losses [62].

As for the asymmetrical transmission losses, the loga-
rithmic negativity stays within 90% of the lossless values
provided that the relative transmittance of the channels, ε,
stays above 0.4 (see Fig. 13 and Appendix D for an explana-
tion of this effect). One should note that relative transmittance
ε < 0.4 is unlikely to occur in reality [29,61] and artificial
losses may always be introduced to balance the channels.
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(a) (b)

FIG. 3. Multiphoton character of the state ρ
(k,σ )
out shared by Alice and Bob. The probability, pS|σ , that Alice and Bob share S total photons

given (a) σ = 1 and (b) σ = 4 photons was measured by Charlie, plotted for a realistic value of parametric gain, g = 0.1. The blue diamonds
depict the case of lossless idler modes (r = 0), and here S is always equal to σ because the signal and idler modes have equal photon numbers
and Charlie’s entangling measurement is photon-number preserving. The orange triangles depict idler losses of 3 dB (r = 0.5), as might be
present in laboratory conditions, while green circles depict 40 dB (r = 0.9999), as in an Earth-space channel or 200 km of optical fiber. Idler
losses introduce higher-order contributions S > σ but the primary component and lower bound is still S = σ since, in the absence of dark
counts and background (stray) photons, Charlie cannot measure more photons than were sent to him in Alice and Bob’s idler modes. Losses in
the signal modes may introduce components S < σ but these can be significantly reduced by using a delayed-choice scheme where Alice and
Bob’s measurements precede that of Charlie. Vertical grid lines separate the photon-number bins.

Another consideration is that losses for each channel will
vary with time [61], especially with atmospheric losses when
applied to a satellite-based scheme. However, losses fluctuate
on timescales an order of magnitude higher than the time of
flight of photons between the ground and satellite; therefore,
it suffices to take the average of Alice and Bob’s output loga-
rithmic negativity. The effect of fluctuations on the average is
not detrimental, as shown in Fig. 16.

In contrast to idler mode losses, detection inefficiencies or
losses in signal modes a1 and b1 are critical since they spoil
generated entanglement (see Fig. 10 for more examples of
how signal losses affect the entanglement). However, these
losses may be significantly reduced by using a delayed-choice
scheme. In such a scheme, Alice and Bob would perform
their measurements immediately before waiting for the de-
tection by Charlie at the remote station. By the no-signaling
principle, all measurement outcomes are independent of this
modification. If Alice, Bob, and Charlie’s measurements have
spacelike separation from each other, this can allow Bell
tests which simultaneously close the locality and detection
loopholes, as in “event-ready” Bell tests [63]. In our case
the event-ready signal is Charlie’s successful measurement.
The delayed-choice scheme also mitigates the effect of phase
damping. After Alice and Bob perform their near-immediate
measurement of the signal beams, from their reference frame,
the idlers are projected onto Fock states which are unaf-
fected by phase damping. Remaining synchronization errors
and phase damping may be further reduced by using two
reference pulses, one to measure the delay in the arrival

times of the two idler beams, and one to measure the rate
of phase shifting. These errors can then be corrected in
postprocessing [36–38].

D. Protocol performance

The probability to generate the state ρ
(k,σ )
out is equal to the

probability for Charlie to obtain the measurement outcomes k
and σ − k photons after the BS,

p(k,σ ) = λσ

cosh2 g

(1 − r)σ

(1 − r tanh2 g)σ+2
, (7)

which is independent of k (see Appendix F for the calcu-
lation). This probability is useful to calculate the efficiency
of our protocol, which we define as the probability of Char-
lie receiving at least one photon. When that happens, we
are certain that Alice and Bob share entangled states, which
may be multiphoton. The protocol’s efficiency, 1 − p(0,0) ≈
2(1 − r)λ1/ cosh2(g), increases with the parametric gain g and
decreases with idler losses r. Investigating the dependence
on transmission losses more closely, we see that it is propor-
tional to the transmittance t = 1 − r between Alice or Bob
and Charlie. It is customary to instead use the transmittance
η = t2 of the summed distance from Alice to Bob [35], as-
suming that Charlie is approximately at the midpoint between
them. In this context, it is clear that our protocol’s efficiency
scales as O(

√
η). This should be contrasted to schemes where
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FIG. 4. Protocol performance. The performance of the entan-
glement distribution is quantified by the amount of generated
entanglement, as measured by the logarithmic negativity EN (solid
lines) and the protocol efficiency, 1 − p(0,0) (dashed lines), plotted
here for the example state ρ

(0,1)
out . The idler losses between Alice or

Bob and Charlie are expressed in decibels, rdB = −10 log10(1 − r).
The protocol efficiency decreases gradually with idler losses, having
the favorable scaling O(

√
η) where η = (1 − r)2 is the effective

transmittance between Alice and Bob. Charlie is assumed to be ap-
proximately at the midpoint between them. The amount of generated
entanglement also decreases with idler losses, but quickly saturates
to a finite value. Provided that the parametric gain g is at realistically
low levels (g2 � 1), this decrease is negligible and the protocol is
robust to extremely high losses [red (light gray) lines, g = 0.1]. In-
creasing the parametric gain [dark red (medium gray) lines, g = 0.2;
and cyan (dark gray) lines, g = 0.4] leads to an increase of protocol
efficiency at the cost of reduced entanglement of the generated states.

Charlie directly distributes Bell pairs to Alice and Bob
[29,34], which have efficiencies O(η). The reason for the
quadratic improvement is that only a single photon has to
survive the trip between Alice or Bob and Charlie, since an
entangled state is established even with σ = 1. In contrast,
distributing a Bell pair requires two photons to survive the
trip; therefore, losses are more significant.

Figure 4 depicts the protocol efficiency and generated en-
tanglement as a function of the idler losses for three values of
the parametric gain: g = {0.1, 0.2, 0.4}. Provided that g2 � 1,
as can be seen for the case g = 0.1, the idler losses influence
only the efficiency of the protocol without changing its prin-
ciple of operation or the generated entanglement. This feature
is characteristic to protocols based on two-photon Bell pair
entanglement, and now we have shown it for all multiphoton
schemes based on our setup. If g is increased, the efficiency of
the protocol is improved but at the cost of reducing the gener-
ated entanglement, as can be seen for g = 0.2 and g = 0.4.

E. Applications

1. Quantum key distribution

Depending on the detection efficiencies available, two dif-
ferent Bell tests are possible for Alice and Bob to verify
the amount of entanglement in their shared state, with each
test being associated with a well-established QKD proto-
col: single-photon entanglement-based DI-QKD [42,64], and

single-photon entanglement-based phase-matching (SEPM)-
QKD [43]. Both of these protocols display the optimal O(

√
η)

scaling of key rate with channel transmittance η. They rely on
Alice and Bob interfering their signal modes with coherent
states |α〉 and |β〉 on local beam splitters with reflectivities
ra and rb, respectively, and then measuring the output photon
numbers.

The first test is specifically suited to cases where Alice and
Bob’s detector efficiencies and signal mode transmittances are
high enough for the test to be performed without any postse-
lection. Alice and Bob interfere their signal modes with coher-
ent states to perform the displacement operations D(−δα ) =
exp(δ∗

αa1 − δαa†
1) and D(−δβ ) = exp(δ∗

βb1 − δβb†
1), where

δα = iα
√

ra and δβ = iβ
√

rb, and finally measure their trans-
mitted photon numbers with PNR detectors. They evaluate a
CHSH inequality by assigning +1 or −1 either to vacuum
or nonvacuum events, or to even or odd photon numbers. By
choosing randomly between two local measurement settings
each, δα1, δα2 and δβ1, δβ2, they can then observe violation
of the CHSH inequality |B| � 2 where B = E (δα1, δβ1) +
E (δα1, δβ2) + E (δα2, δβ1) − E (δα2, δβ2), and E (δα, δβ ) is the
correlation between their dichotomized variables. The great-
est violation |B| = 2.63 is found for the σ = 1 states, even
with large transmission losses in excess of 40 dB, where they
comprise the vast majority (99.9999%) of the generated states.
For these states we found the optimal choice of measure-
ment settings to be δα1 = +0.17, δα2 = −0.56, δβ1 = ±0.17i,
δβ2 = ∓0.56i, with the upper and lower signs corresponding
to the k = 0 and 1 states, respectively. This test remains ef-
fective, |B| > 2, as long as Alice and Bob’s local detector
efficiencies, including signal mode transmittances, are above
85%. It does not employ any postselection to filter out any
vacuum or multiphoton events, closing the detection loophole
and opening up the possibility of performing a loophole-free
Bell test [65–67]. Bell inequality violation is also observed for
the states σ � 2; e.g., for σ = 2 one obtains |B| = 2.35 in the
ideal case, but it is not as tolerant to losses.

If a loophole-free Bell test can be established, DI-QKD
schemes become possible which are immune to all possible
side channels and eavesdropping strategies [44]. The σ = 1
states are particularly well suited for this due to their toler-
ance to losses. These states are generally multiphoton [see
Fig. 3(a)] but have a dominant single-photon contribution,

1√
2
(|0〉A |1〉B ∓ i |1〉A |0〉B). DI-QKD using these states can

then be viewed as a form of single-photon DI-QKD [42].
Once a state has been successfully distributed to Alice and
Bob, they perform the same procedure as described in the
Bell test above but now Alice has an additional choice for
her measurement setting, δα0 = −0.17. The pair {δα0, δβ1} is
chosen such that Alice and Bob’s transmitted photon num-
bers are highly correlated for these measurements, and these
results are kept secret and used to generate the raw key.
Results for the combination of settings {δα1, δα2, δβ1, δβ2} are
communicated publicly and used to violate the CHSH in-
equality as described above, which bounds the information
that is leaked to Eve [44]. The key rate is proportional to the
efficiency of our entanglement distribution protocol, which
we have seen scales as O(

√
η). Thus single-photon DI-QKD

based on our distributed entanglement can achieve the optimal
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FIG. 5. Key-rate comparison. The key rates of the two quan-
tum key distribution (QKD) protocols performed with our dis-
tributed entanglement, single-photon DI-QKD [42] and single-
photon entanglement-based phase-matching (SEPM)-QKD [43], are
compared to the state-of-the-art twin-field (TF)-QKD scheme [35].
All three of these protocols display the rate-distance scaling O(

√
η),

showing improvement at long distances compared to protocols
with scaling O(η) (I, ideal BB84; II, decoy-state QKD; and III,
decoy-state MDI-QKD [35]). When high detection efficiencies are
available, single-photon DI-QKD can be performed. In ideal condi-
tions (100% detection efficiency, 100% error correction efficiency,
no dark counts, and no background or stray photons) the key rates
[light green (gray) solid line] match almost exactly the ideal TF-
QKD rate [purple (light gray) solid line]. In realistic conditions
(here 30% detector efficiencies, error correction coefficient 1.15,
and false detection probability 10−8 per gate interval), SEPM-QKD
may be performed [light green (gray) dashed line], with similar
performance as realistic TF-QKD [purple (light gray) dashed line].
This is the second main result of this work. While TES detectors
have negligible dark count rate, the false detections could be due to
background photons, leading to a maximum distance of SEPM-QKD
when the false detection rate and protocol efficiency become com-
parable. The conversion between Alice and Bob losses in decibels,
2 rdB = −10 log10(η) = αLL, and distance in optical fiber, L, is given
by the standard attenuation rate αL = 0.2 dB/km. The key rate per
pulse, R, is the number of secure key bits generated per unit time,
divided by the repetition rate of the source.

scaling with channel transmittance. In fact, as shown in Fig. 5,
the key rates are almost identical to those obtained in TF-
QKD if both protocols are run in ideal conditions, i.e., 100%
detector efficiencies, 100% error correction efficiency, no dark
counts, and no background or stray photons. The key rate is
calculated assuming collective attacks, following the general
procedure outlined in Ref. [44], although the security may be
improved to protect against completely general or coherent
attacks [68,69]. See Appendix G for details of the calculation
and a sketch of the protocol in Fig. 18.

The higher-photon-number states σ � 2 also violate Bell
inequalities and thus can be used for DI-QKD. However,

while the entanglement distribution protocol as a whole has
an efficiency scaling as O(

√
η), from Eq. (7) the efficiency of

extracting a specific state ρ
(k,σ )
out scales as O(ησ/2). Thus these

higher states do not benefit from such scaling but could still
be useful in shorter-range networks with lower losses.

If high detection efficiencies and signal mode transmit-
tances (>85%) are not available, a different Bell test may be
carried out using postselection and the fair-sampling assump-
tion [43]. Alice and Bob now set ra = rb = 1

2 , and assign a
value +1 or −1 when photons are detected in the transmitted
or reflected channels, ignoring outcomes where neither or
both detectors click. Near maximum violation of the CHSH
inequality may be obtained if Alice chooses the phase of
her coherent state, θa, randomly from the set {0, π

2 }, while
Bob chooses his phase, θb, randomly from {π

4 − θ,−π
4 − θ},

where θ = −π
2 when k = 0 and θ = π

2 when k = 1. The
amplitudes of the coherent states are chosen to be equal:
|α| = |β|. This Bell inequality is no longer loophole free so
it cannot provide DI levels of security, but it can nevertheless
be used to perform SEPM-QKD, first described in Ref. [43]. If
the phase-matching condition θa − θb − θ = ±π is satisfied,
their results are highly correlated and can be used to extract
a shared key, while results for other phases are used to evalu-
ate the CHSH inequality, placing a limit on the information
leaked to an eavesdropper Eve. Since the fair-sampling as-
sumption is used, Alice and Bob must now trust their local
sources and measurement apparatus, but still need not trust
the measurement at the remote station performed by Charlie or
Eve, placing the security within the framework of MDI-QKD
[39]. The protocol differs slightly in our case since the en-
tanglement is now heralded by Charlie’s measurement rather
than being sent to Alice and Bob directly, but is otherwise
identical in operation. The key rate in this case is once again
proportional to the efficiency of the entanglement distribution,
and thus has the same scaling O(

√
η). To compare SEPM-

QKD based upon our entanglement distribution to TF-QKD
we have considered both in the same realistic scenario dis-
cussed in Ref. [35], i.e., 30% detector efficiencies and an error
correction coefficient of 1.15. Although TES detectors have
a negligible dark count rate [52,70], for a fairer comparison
we have also added a small probability of false detection
events, 10−8 per gate interval, which could be due to either
background (stray) photons or dark counts if the TES were re-
placed with single-photon detectors. The results are presented
in Fig. 5, and we see that the two key rates remain within
an order of magnitude, with SEPM-QKD achieving a slightly
larger maximum distance. In the case of SEPM-QKD, this
maximum distance results when the false detection probability
becomes comparable with the protocol efficiency, and can in
principle be increased by using extremely low dark count TES
detectors and sufficiently shielding from background photons
[71]. Our version of SEPM-QKD may also be viewed as
a realistic implementation of the ideal entanglement-based
protocol presented in Ref. [72]. See Appendix H for more
information.

2. Earth-space communications with O(
√

η) scaling

The robustness to extreme losses of our protocol
makes it ideal for deployment in a satellite-based quantum
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communications scheme where entanglement is distributed
between two remote locations on Earth and employed for
quantum key distribution. Our protocol has the potential to
outperform state-of-the-art demonstrations based on the dis-
tribution of two-photon Bell pairs, such as those reported in
Ref. [34] and Ref. [29]. There, an SPDC source pumped by
a continuous-wave laser generated spaceborne Bell pairs at
random times, which were next sent by a downlink channel to
two stations on Earth separated by nearly 1200 km. The entan-
glement between the stations was verified by a CHSH Bell test
under the fair-sampling hypothesis. Moreover, only approxi-
mately two Bell pairs out of 5.9 × 106 reached the stations per
second. The receiving stations had to be synchronized by the
beacon laser and classical two-way communication between
Alice and Bob was necessary to discard the cases when only
one of the stations received a photon.

In contrast, in our protocol both Alice and Bob create
locally an SV state. Their sources can be synchronized offline
similarly to entanglement swapping schemes. A third party,
Charlie, is located on a satellite and performs conditional state
preparation. He acts as a central authority who broadcasts via
a classical downlink if Alice and Bob share an entangled state.
Thus, direct communication between Alice and Bob is not re-
quired to generate the entanglement, although for QKD some
one-way communication is still necessary to perform infor-
mation reconciliation. Most importantly, in a satellite-based
approach, the improved scaling O(

√
η) is more significant.

For example, in Ref. [29], two Bell pairs reach the ground
stations per second, whereas for similar atmospheric losses
(40 dB between ground and satellite, 80 dB summed losses)
and g = 0.1 in our scenario, we estimate 160 successful en-
tangled states to be generated per second.

Our protocol operating in an Earth-space environment is
also original in that it uses an uplink rather than a downlink to
send the quantum optical signals. Although downlinks have
been shown to perform better than uplinks [61], from an
experimental point of view uplinks provide better control and
flexibility of the quantum source when it is located on the
ground rather than in space, and thus are the better choice
to study global-scale quantum communications implementa-
tions [61]. Turbulence and background radiation affect uplinks
more significantly; however, the pointing accuracy is a more
consequential factor in our scheme, due to the necessity of
time synchronization of the ground sources. In this aspect
uplinks have in fact been shown to be more precise [61].
Further analysis on the feasibility of uplink channels has been
done in Refs. [73,74].

3. Quantum metrology

The entanglement distribution protocol described above
can be used to generate states with applications to quan-
tum metrology. |� (k,σ )

out 〉 is a generalized HB state, which
becomes an exact HB state for k = σ/2 [75]. It offers
quantum-enhanced optical phase estimation even in the
presence of significant optical loss and approximates the
performance of an optimal probe. Details of this analysis
together with an experimental demonstration can be found
in Ref. [46].

III. DISCUSSION

We have proposed an entanglement distribution proto-
col based on an optimal use of the existing integrated
quantum optical components, namely, SPDC sources and
PNR detectors. An experiment in which our family of states
was successfully produced has been reported in Ref. [57]
and Ref. [46], manifesting the feasibility of our protocol.
Other distinctive features of our protocol include robustness
to arbitrarily high transmission losses, ability of choosing
the local dimension of the generated multiphoton entangled
state, the possibility of performing a loophole-free Bell test by
adopting a preselection instead of a postselection procedure,
and the flexibility in the choice of the security framework
depending on the available detector efficiencies. These allow
our protocol to be applicable to quantum metrology, as already
shown in Ref. [46], Earth-space quantum communications,
and QKD. This would require space-ready TES detection,
which is already being developed [76]. We demonstrated that
our protocol is capable of achieving a quadratic improve-
ment in transmission rates compared to the distribution of
polarization-entangled photon pairs, such as in the recently
deployed Earth-space setup [29]. This result enabled us to
employ our distributed entangled states in well-established
QKD protocols that match the key rates of state-of-the-art
protocols. At smaller distances, such as in metropolitan net-
works, the generation of robust and near-maximally entangled
multiphoton states also opens the possibility of performing
high-dimensional QKD, which has recently produced record-
breaking results in other platforms [77].
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APPENDIX A: PHOTON NUMBER STATISTICS OF THE
OUTPUT STATE |�(k,σ )

out 〉
In the lossless case, the family of output states generated

by our protocol is given by

∣∣� (k,σ )
out

〉 = σ∑
n=0

Aσ (k, n) |n, σ − n〉a1,b1
, (A1)

where σ is the total number of photons distributed between
the signal modes, and the probability amplitudes Aσ (k, n) are
expressed using symmetric Kravchuk functions φk [57,58,78]:

Aσ (k, n) = 〈k, σ − k|UBS |n, σ − n〉 = ik−nφk (n − σ/2, σ ).
(A2)

Here UBS = U (1/2)
BS is the unitary for a beam splitter

(BS) of reflectivity r = 1
2 where U (r)

BS = exp(−iHBSθ ) with
HBS = 1

2 (a†b + ab†) and θ = 2 arcsin(
√

r). The Kravchuk
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FIG. 6. Photon-number distributions |Aσ (k, n)|2 = |φk (n − σ/2, σ )|2 computed for σ = 4 and k = 0, 1, 2. Note how the odd-photon-
number components vanish for k = σ/2.

functions φk are defined in terms of the Gaussian
hypergeometric function 2F1 as

φk (n − σ/2, σ ) = (−1)k

√
1

2σ

(
σ

n

)(
σ

k

)
2F1(−k,−n; −σ ; 2),

(A3)
and form an orthonormal set

σ∑
n=0

φk (n − σ/2, σ )φk′ (n − σ/2, σ ) = δk,k′ . (A4)

The states |� (k,σ )
out 〉 then form a complete orthonormal set in

the (σ + 1)-dimensional Hilbert space of fixed photon num-
ber σ : 〈

�
(k,σ )
out

∣∣� (k′,σ )
out

〉 = δk,k′ . (A5)

These states are listed in Table I for σ = 1, 2, 3,
while Figs. 6 and 7 depict photon-number distributions
|Aσ (k, n)|2 = |φk (n − σ/2, σ )|2 for some higher states, σ =
4 and σ = 10, respectively. Notice that for k = σ/2, the
odd-photon-number components vanish due to multipho-
ton Hong-Ou-Mandel interference, effectively reducing the
Hilbert space dimension to ( σ

2 + 1). Additionally, the prob-
ability distribution |Aσ (σ/2, n)|2 possesses an envelope
f (n) = 4

πσ
√

1−(2n/σ−1)2
which is a probability density func-

tion of an arcsine distribution [79].

APPENDIX B: LOGARITHMIC NEGATIVITY OF |�(k,σ )
out 〉

The logarithmic negativity of a physical state is a measure
of its amount of entanglement. Given a state described by
a density operator ρ, it is defined by EN (ρ) = log2 ‖ρ�‖1,
where � denotes the partial transposition operation and ‖ρ�‖1
is the trace norm of ρ� . In the lossless case our output state is
ρ

(k,σ )
out = |� (k,σ )

out 〉 〈� (k,σ )
out | and the logarithmic negativity is

EN
(
ρ

(k,σ )
out

) = 2 log2

(
σ∑

n=0

|Aσ (k, n)|
)

. (B1)

TABLE I. Example states |� (k,σ )
out 〉 for σ � 3.

k σ |� (k,σ )
out 〉

0 1 1√
2
(|0, 1〉 − i |1, 0〉)

1 1 1√
2
(|0, 1〉 + i |1, 0〉)

0 2 1
2 |0, 2〉 − i√

2
|1, 1〉 − 1

2 |2, 0〉
1 2 1√

2
(|0, 2〉 + |2, 0〉)

2 2 1
2 |0, 2〉 + i√

2
|1, 1〉 − 1

2 |2, 0〉
0 3 1√

8
(|0, 3〉 − i

√
3 |1, 2〉 − √

3 |2, 1〉 + i |3, 0〉)

1 3 1√
8
(
√

3 |0, 3〉 − i |1, 2〉 + |2, 1〉 − i
√

3 |3, 0〉)

2 3 1√
8
(
√

3 |0, 3〉 + i |1, 2〉 + |2, 1〉 + i
√

3 |3, 0〉)

3 3 1√
8
(|0, 3〉 + i

√
3 |1, 2〉 − √

3 |2, 1〉 − i |3, 0〉)

FIG. 7. Photon-number distributions |Aσ (k, n)|2 = |φk (n − σ/2, σ )|2 computed for σ = 10 and k = 0, . . . , 5. Note how the odd-photon-
number components vanish for k = σ/2.
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This formula can be derived in the following way:

ρ
(k,σ )
out = ∣∣� (k,σ )

out

〉 〈
�

(k,σ )
out

∣∣
=

σ∑
n,m=0

[ρ]n,σ−n;m,σ−m︸ ︷︷ ︸
Aσ (k,n)A∗

σ (k,m)

(B2)

× |n, σ − n〉 〈m, σ − m| , (B3)

(
ρ

(k,σ )
out

)�2 =
σ∑

n,m=0

[ρ]n,σ−n;m,σ−m

× |n, σ − m〉 〈m, σ − n| ,((
ρ

(k,σ )
out

)�2
)†

=
σ∑

n,m=0

[ρ]∗n,σ−n;m,σ−m

× |m, σ − n〉 〈n, σ − m| , (B4)

((
ρ

(k,σ )
out

)�2
)†(

ρ
(k,σ )
out

)�2 =
σ∑

n,m,p,q=0

[ρ]∗n,σ−n;m,σ−m[ρ]p,σ−p;q,σ−q |m, σ − n〉 〈n, σ − m|p, σ − q〉 〈q, σ − p| (B5)

=
σ∑

n,m,p,q=0

[ρ]∗n,σ−n;m,σ−m[ρ]p,σ−p;q,σ−qδn,pδm,q |m, σ − n〉 〈q, σ − p| (B6)

=
σ∑

n,m=0

[ρ]∗n,σ−n;m,σ−m[ρ]n,σ−n;m,σ−m |m, σ − n〉 〈m, σ − n| (B7)

=
σ∑

n,m=0

|[ρ]n,σ−n;m,σ−m|2 |m〉 〈m| ⊗ |σ − n〉 〈σ − n| , (B8)

((
ρ

(k,σ )
out

)�2
)†(

ρ
(k,σ )
out

)�2 =
σ∑

n,m=0

|Aσ (k, n)|2 |Aσ (k, m)|2 |m〉 〈m| ⊗ |σ − n〉 〈σ − n| (B9)

=
(

σ∑
m=0

|Aσ (k, m)|2 |m〉 〈m|
)

⊗
(

σ∑
n=0

|Aσ (k, n)|2 |σ − n〉 〈σ − n|
)

. (B10)

The above operator is diagonal and, therefore, it is easy to compute the square root of it by taking the square root of its
eigenvalues: √((

ρ
(k,σ )
out

)�2
)†(

ρ
(k,σ )
out

)�2 =
(

σ∑
m=0

|Aσ (k, m)| |m〉 〈m|
)

(B11)

⊗
(

σ∑
n=0

|Aσ (k, n)| |σ − n〉 〈σ − n|
)

, (B12)

∥∥(ρ (k,σ )
out

)�2∥∥
1 = Tr

√((
ρ

(k,σ )
out

)�2
)†(

ρ
(k,σ )
out

)�2 =
σ∑

a,b=0

(
σ∑

m=0

|Aσ (k, m)| 〈a|m〉 〈m|a〉
)

×
(

σ∑
n=0

|Aσ (k, n)| 〈b|σ − n〉 〈σ − n|b〉
)

=
(

σ∑
n=0

|Aσ (k, n)|
)2

. (B13)

In these formulas, �2 denotes the partial transpose with respect to the second subsystem, and δn,m denotes the Kronecker delta,
equal to 1 for n = m and zero otherwise.

APPENDIX C: PROTOCOL PERFORMANCE IN CASE
OF SYMMETRIC LOSSES IN IDLER MODES a2 AND b2

1. Ideal case

A two-mode squeezed-vacuum state is given by

|�〉 =
∞∑

n=0

√
λn |n〉1 |n〉2 , (C1)

so that the density operator for the input state |�in〉 = |�〉⊗2

is as follows:

ρin =
∞∑

n,n′,m,m′=0

√
λn λn′ λm λm′ |n, m〉 〈n′, m′|a1,b1

⊗ |n, m〉 〈n′, m′|a2,b2
.

(C2)
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Modes a2 and b2 interfere on a beam splitter and the resulting
output modes are projected onto |k, σ − k〉d2,d1

. In the ideal
case, the total number of photons registered behind the BS, σ ,
is equal to the total number of photons, S, in the remaining
modes a1 and b1. The state created in modes a1 and b1 takes
the form

ρ
(k,σ )
out = N 2

∞∑
n,n′,m,m′=0

δσ,n+m δσ,n′+m′
√

λn λn′ λm λm′

× Aσ (k, n)(Aσ (k, n′))∗ |n, m〉 〈n′, m′|a1,b1
, (C3)

where N 2 = cosh4 g
tanh2σ g

. This simplifies to

ρ
(k,σ )
out =

σ∑
n,n′=0

Aσ (k, n)(Aσ (k, n′))∗ |n, σ − n〉 〈n′, σ − n′|a1,b1

= ∣∣� (k,σ )
out

〉 〈
�

(k,σ )
out

∣∣ . (C4)

2. Symmetric idler losses

Here we assume no losses in signal modes a1 and b1,
as well as ideal detection performed by photon-number-

resolving (PNR) detectors. More general cases including
losses in idler and signal modes are studied in subsequent
sections.

Losses can be modeled by a beam splitter with reflectivity
r ∈ [0, 1] which quantifies the amount of loss, and then trac-
ing over the reflected mode. For a Fock state |n〉 it reduces
to

Trr
{
U (r)

BS |n, 0〉 〈n, 0| (U (r)
BS

)†}
=

n∑
p=0

(
n

p

)
(1 − r)n−p rp |n − p〉 〈n − p|t , (C5)

where t and r denote the transmitted and reflected mode,
respectively, r + t = 1, and

U (r)
BS |n, 0〉 =

n∑
p=0

(−i)p

√(
n

p

)
(1 − r)n−p rp |n − p, p〉t,r .

(C6)
For r = 0 it reduces to

Trr
{
U (0)

BS

∣∣n, 0〉 〈n, 0
∣∣ (U (0)

BS

)†} = |n〉 〈n|t . (C7)

Applying this procedure to the idler modes of the input state |�in〉 leads to

ρin =
∞∑

n,n′,m,m′=0

√
λn λn′ λm λm′

min(n,n′ )∑
p=0

min(m,m′ )∑
q=0

√(
n

p

)(
n′

p

)
(1 − ra)n+n′−2p r2p

a

√(
m

q

)(
m′

q

)
(1 − rb)m+m′−2q r2q

b

× |n, m〉 〈n′, m′|a1,b1
⊗ |n − p, m − q〉 〈n′ − p, m′ − q|a2,b2

, (C8)

where ra and rb denote losses at Alice and Bob’s idler modes. As we assume that there are no losses in modes a1 and b1, the
total number of photons in these modes equals S = n + m = n′ + m′. The lossy modes a2 and b2 interfere on a balanced beam
splitter and are projected onto |k, σ − k〉d2,d1

, where σ � S. This results in the creation of the following state:

ρ
(k,σ )
out = Ñ 2

∞∑
n,n′,m,m′=0

√
λn λn′ λm λm′ |n, m〉 〈n′, m′|a1,b1

×
min(n,n′ )∑

p=0

min(m,m′ )∑
q=0

√(
n

p

)(
n′

p

)
(1 − ra)n+n′−2p r2p

a

√(
m

q

)(
m′

q

)
(1 − rb)m+m′−2q r2q

b

× Aσ (k, n − p) (Aσ (k, n′ − p))∗ δσ,n+m−p−q δσ,n′+m′−p−q, (C9)

where

1

Ñ 2
=

∞∑
n,m=0

λn λm

min(n,n+m−σ )∑
p=max(0,n−σ )

(
n

p

)(
m

n + m − σ − p

)
(1 − ra)n−p rp

a (1 − rb)p+σ−n rn+m−p−σ

b |Aσ (k, n − p)|2. (C10)

We now assume that the losses are equal, i.e., ra = rb = r. Then,

(1 − r)n+n′−2p r2p (1 − r)m+m′−2q r2q = (1 − r)2σ rn+m+n′+m′−2σ . (C11)

This allows us to write

ρ
(k,σ )
out = Ñ 2

∞∑
n,n′,m,m′=0

r−σ
√

rnλn rn′
λn′ rmλm rm′

λm′ |n, m〉 〈n′, m′|a1,b1

min(n,n′ )∑
p=0

min(m,m′ )∑
q=0

√(
n

p

)(
n′

p

)(
m

q

)(
m′

q

)

× Aσ (k, n − p) (Aσ (k, n′ − p))∗ δσ,n+m−p−q δσ,n′+m′−p−q, (C12)

where we have absorbed the factor (1 − r)σ into Ñ 2. Since S = n + m = n′ + m′, we notice that n, n′ � S and σ = S − p − q.
Since q = S − σ − p, we are able to remove the sum over q, which creates constraints on p: p � S − σ and p � n − σ as well
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as p � n′ − σ . The state takes the form

ρ
(k,σ )
out = Ñ 2

∞∑
S=σ

S∑
n,n′=0

r−σ
√

rnλn rn′
λn′ rS−nλS−n rS−n′

λS−n′ |n, S − n〉 〈n′, S − n′|a1,b1

×
min(n,n′ )∑

p=0

min(S−n,S−n′ )∑
q=0

√(
n

p

)(
n′

p

)(
S − n

q

)(
S − n′

q

)
Aσ (k, n − p) (Aσ (k, n′ − p))∗ δσ,S−p−q (C13)

= Ñ 2
∞∑

S=σ

rS−σ λS

S∑
n,n′=0

|n, S − n〉 〈n′, S − n′|a1,b1

min(S−σ,n,n′ )∑
p=max(0,n−σ,n′−σ )

√(
n

p

)(
n′

p

)(
S − n

S − σ − p

)(
S − n′

S − σ − p

)

×Aσ (k, n − p) (Aσ (k, n′ − p))∗ (C14)

= Ñ 2
∞∑

S=σ

rS−σ λS

Ñ 2
int

ρ
(σ,k,S)
int = Ñ 2

∞∑
S=σ

χσ,S ρ
(σ,k,S)
int , (C15)

where χσ,S = rS−σ λS

Ñ 2
int

. Here we have used λnλS−n = λS

cosh2 g
and absorbed the factor 1

cosh2 g
into Ñ 2. Equation (C10) then simplifies

to

1

Ñ 2
=

∞∑
S=σ

rS−σ λS

S∑
n=0

min(S−σ,n)∑
p=max(0,n−σ )

(
n

p

)(
S − n

S − σ − p

)
|Aσ (k, n − p)|2. (C16)

The internal matrix is as follows:

ρ
(σ,k,S)
int = Ñ 2

int

S∑
n,n′=0

|n, S − n〉 〈n′, S − n′|a1,b1

min(S−σ,n,n′ )∑
p=max(0,n−σ,n′−σ )

√(
n

p

)(
n′

p

)(
S − n

S − σ − p

)(
S − n′

S − σ − p

)

× Aσ (k, n − p) (Aσ (k, n′ − p))∗, (C17)

where

1

Ñ 2
int

=
S∑

n=0

min(S−σ,n)∑
p=max(0,n−σ )

(
n

p

)(
S − n

S − σ − p

)
|Aσ (k, n − p)|2. (C18)

By shifting the summation index p → n − p and then using the Chu-Vandermonde identity
∑S

n=0

(n
p

)(S−n
σ−p

) = (S+1
σ+1

)
, this may be

evaluated as 1
Ñ 2

int
= (S+1

σ+1

)
. This allows one to simplify the form of χσ,S to

χσ,S = rS−σ λS

(
S + 1

σ + 1

)
. (C19)

Furthermore, Eq. (C16) now simplifies to

1

Ñ 2
=

∞∑
S=σ

rS−σ λS

(
S + 1

σ + 1

)
(C20)

= λσ

(1 − r tanh2 g)σ+2
, (C21)

where we have used the identity
∑∞

S=σ xS
(S+1
σ+1

) = (1 − x)−σ−2xσ . The probability to obtain S photons, given a measurement
|k, σ − k〉 at the remote station, is then equal to

pS|σ = Ñ 2χσ,S = (r tanh2 g)S−σ (1 − r tanh2 g)σ+2

(
S + 1

σ + 1

)
, (C22)
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and Eq. (C15) may be rewritten as

ρ
(k,σ )
out =

∞∑
S=σ

pS|σ ρ
(σ,k,S)
int . (C23)

For S = σ , as expected, ρ
(σ,k,S)
int reproduces the density operator for the lossless case:

ρ
(σ,k,σ )
int =

σ∑
n,n′=0

|n, σ − n〉 〈n′, σ − n′|a1,b1

min(σ−σ,n,n′ )∑
p=max(0,n−σ,n′−σ )

√(
n

p

)(
n′

p

)(
σ − n

σ − σ − p

)(
σ − n′

σ − σ − p

)

×Aσ (k, n − p) (Aσ (k, n′ − p))∗ (C24)

=
σ∑

n,n′=0

Aσ (k, n) (Aσ (k, n′))∗ |n, σ − n〉 〈n′, σ − n′|a1,b1
= ∣∣� (k,σ )

out

〉 〈
�

(k,σ )
out

∣∣ . (C25)

The probability pS|σ quantifies the contribution of ρ
(σ,k,S)
int

to the final density operator. Provided we are in the limit
r tanh2 g � 1, the term (r tanh2 g)S−σ decreases with S more
rapidly than

(S+1
σ+1

)
increases, so that pS|σ is largest for S = σ

and rapidly decreases. In the realistic limit g2 � 1, this is
satisfied for arbitrarily high idler losses r → 1, leading to the
output state being largely unchanged by the losses ρ

(k,σ )
out ≈

|� (k,σ )
out 〉 〈� (k,σ )

out |.

3. Numerical computations

We have computed the logarithmic negativity for the den-
sity operator in Eq. (C14) assuming losses r in idler modes
a2 and b2 to be symmetric. The signal mode and detector
losses, rs and rd , have been set to zero. As is customary,

(a)

(b)

FIG. 8. Logarithmic negativity of the output state ρ
(k,σ )
out assuming

symmetric losses r in the idler modes a2 and b2. The results were
computed using Eq. (C14) for g = 0.1 and σ = 4 with losses at all
the other modes and at the detectors set to zero.

the reflectivities in the results below and in the following
sections are displayed in percentages (%).

We have changed r between 0% and 90%. The case of r =
99.99% (40 dB), which is typical of Earth-to-space scenarios,
has been also examined. The results are shown in Fig. 8. The
logarithmic negativity is not deteriorated by increasing values
of r, and even for r = 99.99% it is close to the ideal case
r = 0.

4. Numerical computations including lossy detection

We have repeated the above computations for the density
operator in Eq. (C14) with nonzero losses rd at the PNR

(a)

(b)

FIG. 9. Logarithmic negativity of the output state ρ
(k,σ )
out assuming

symmetric losses r in the idler modes a2 and b2 and losses at the
detectors. The results were computed using Eq. (C14) for g = 0.1
and σ = 4. Losses at detectors located behind the beam splitter are
set to (a) rd = 5%, (b) rd = 21%. Losses at signal modes are set
to zero. There is a negligible difference compared to the ideal case
r = rs = rd = 0.
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detectors located behind the beam splitter included in the
numerical program. Figure 9 depicts the values of EN for rd

equal to 5% and 21%, which correspond to detector efficiency
of 95% and 79% in the case of the on-chip detection scheme
[80]. We have also set the range of r ∈ [0, 99.99%]. Similarly
to the previous case, the results are not deteriorated by the
losses.

5. Comparison with the case of symmetric losses in signal modes
a1 and b1

In order to check the influence of losses rs in signal modes
a1 and b1 we have set them to symmetric values in the range
between 0% and 50%. The losses at the detectors have been
set to 5% and 21% while we assumed no losses at idler modes.
The results are depicted in Fig. 10. Nonzero values of rs

significantly lower the obtained logarithmic negativity, which
drops below 1.0 for rs = 30%, in the case of g = 0.1, σ = 4.
This is not a major problem since the signal beams only
travel a short distance to Alice and/or Bob’s local detectors,

compared to the large distance traveled by the idler beams.
The signal beams may be measured before the idler beams
(the delayed-choice scheme) without affecting the measure-
ment statistics, by the no-signaling principle.

APPENDIX D: PROTOCOL PERFORMANCE FOR
ASYMMETRIC LOSSES IN IDLER MODES a2 AND b2

1. Analytic derivations

In this section we assume no losses in signal modes as well
as ideal detection performed by all PNR detectors. Moreover,
since analytical derivations become quite complex for a gen-
eral case of losses occurring in our setup, we will first analyze
the case when Bob’s idler mode, b2, is lossless (tb = 1 or
rb = 0) and Alice’s idler mode’s transmittance, ta, is a fraction
ε of Bob’s mode’s transmittance (ta = ε). This approach will
allow us to understand the impact of asymmetric losses on the
protocol’s performance.

We repeat the steps as in Appendix C, but with ra = 1 − ε

to arrive at the form equivalent to Eq. (C9),

ρ
(k,σ )
out = Ñ 2

∞∑
n,n′,m,m′=0

√
λn λn′ λm λm′ |n, m〉 〈n′, m′|a1,b1

×
min(n,n′ )∑

p=0

min(m,m′ )∑
q=0

√(
n

p

)(
n′

p

)
t n+n′−2p
a (1 − ta)2p

√(
m

q

)(
m′

q

)
tm+m′−2q
b (1 − tb)2q

×Aσ (k, n − p) (Aσ (k, n′ − p))∗ δσ,n+m−p−q δσ,n′+m′−p−q, (D1)

ρ
(k,σ )
out = Ñ 2

∞∑
n,n′,m,m′=0

√
λn λn′ λm λm′ |n, m〉 〈n′, m′|a1,b1

min(n,n′ )∑
p=0

√(
n

p

)(
n′

p

)
εn+n′−2p (1 − ε)2p

×Aσ (k, n − p) (Aσ (k, n′ − p))∗ δσ,n+m−p δσ,n′+m′−p, (D2)

where we could remove the sum over q, as only the q = 0 term would contribute to the sum for tb = 1.
The Kronecker delta functions tell us that n + m = n′ + m′ = S; we can then set m = S − n, m′ = S − n′ and replace the sum

over m, m′ with a single sum over S. They also tell us that p = S − σ , so that the sum over p can also be removed. Thus, the
density matrix takes the following form:

ρ
(k,σ )
out = Ñ 2

∞∑
S=σ

S∑
n,n′=S−σ

√
λn λn′ λS−n λS−n′ |n, S − n〉 〈n′, S − n′|a1,b1

√(
n

S − σ

)(
n′

S − σ

)
εn+n′+2(σ−S) (1 − ε)2(S−σ )

× Aσ (k, n − S + σ ) (Aσ (k, n′ − S + σ ))∗. (D3)

Finally, we notice that λnλS−n = λS

cosh2 g
, and again absorb 1

cosh2 g
into Ñ 2,

ρ
(k,σ )
out = Ñ 2

∞∑
S=σ

λS
(

1−ε
ε

)S−σ
S∑

n,n′=S−σ

ε
n+n′

2 |n, S − n〉 〈n′, S − n′|a1,b1

×
√(

n

S − σ

)(
n′

S − σ

)
Aσ (k, n − S + σ ) (Aσ (k, n′ − S + σ ))∗, (D4)

where the normalization factor equals

1

Ñ 2
=

∞∑
S=σ

λS
(

1−ε
ε

)S−σ
S∑

n=S−σ

εn

(
n

S − σ

)
|Aσ (k, n − S + σ )|2. (D5)
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We notice that, unlike in Eq. (C15), it is impossible to decompose the matrix into ε-independent components. Instead we obtain

ρ
(k,σ )
out = Ñ 2

∞∑
S=σ

χσ,S (ε)ρ (σ,k,S)
int (ε), (D6)

where χσ,S (ε) = λS

Ñ (ε)2 ( 1−ε
ε

)
S−σ

and the density matrix components are

ρ
(σ,k,S)
int (ε) =Ñ (ε)2

S∑
n,n′=S−σ

ε
n+n′

2 |n, S − n〉 〈n′, S − n′|a1,b1

√(
n

S − σ

)(
n′

S − σ

)
Aσ (k, n − S + σ ) (Aσ (k, n′ − S + σ ))∗,

(D7)

with

1

Ñ (ε)2
=

S∑
n=S−σ

εn

(
n

S − σ

)
|Aσ (k, n − S + σ )|2. (D8)

We find that, similar to the case of symmetric losses, the
probability Ñ 2χσ,S (ε) is strongly peaked at S = σ when g2 �
1, so that ρ (k,σ )

out ≈ ρ
(σ,k,σ )
int . However, ρ (σ,k,σ )

int is no longer equal
to the lossless state |� (k,σ )

out 〉 〈� (k,σ )
out | but is instead given by

ρ
(σ,k,σ )
int = |� (k,σ )

ε 〉 〈� (k,σ )
ε | where

∣∣� (k,σ )
ε

〉 = Ñ (ε)2
σ∑

n=0

εn/2Aσ (k, n) |n, σ − n〉 . (D9)

The asymmetry lowers the number of photons, n, measured
by Alice, breaking the n → σ − n symmetry of the state. This
is shown for the state k = 0, σ = 4 and g = 0.1 in Fig. 11,
where the probability for Alice and Bob to measure n, σ − n

(a)

(b)

FIG. 10. Logarithmic negativity of the output state ρ
(k,σ )
out assum-

ing symmetric losses in signal modes a1 and b1 and losses at the
detectors. The results were computed for g = 0.1 and σ = 4. Losses
at detectors located behind the beam splitter are set to (a) 5%, (b)
21%. Losses at the idler modes are set to zero.

photons is plotted for ε ∈ {0, 0.33, 0.66, 1}. The suppression
of high-n states leads to an effective reduction of the Hilbert
space dimension, lowering the entanglement. Following the
same steps as in Appendix B the logarithmic negativity of
|� (k,σ )

ε 〉 is

EN
( ∣∣� (k,σ )

ε

〉 〈
� (k,σ )

ε

∣∣ ) = 2 log2

( ∑σ
n=0 εn/2|Aσ (k, n)|√∑σ

n=0 εn|Aσ (k, n)|2

)
.

(D10)
This correctly reduces to Eq. (B1) in the symmetric limit ε →
1, while in the limit of extreme asymmetry ε → 0 it becomes
EN = 0, since the state reduces to the unentangled |0, σ 〉.

2. Numerical computations

To back up our analytic derivations we have computed the
logarithmic negativity for the full state given in Eq. (D4) for
various values of transmittances ta = ε × 100%, while keep-
ing Bob’s mode ideal (tb = 100%). As before, we take g = 0.1
and display transmittances in percentages (%) in the following
results. A representative figure showing the behavior of loga-
rithmic negativity as the transmittance of idler modes is made
progressively more unequal is shown in Fig. 12. We find that a

FIG. 11. Effect of asymmetry on the probability for Alice and
Bob to measure n, σ − n photons. Given a state ρ

(0,4)
out generated with

asymmetric losses and g = 0.1, the probability for Alice and Bob
to measure n, σ − n photons is given by 〈n, σ − n|ρ (k,σ )

out |n, σ − n〉
and plotted for ε ∈ {0, 0.33, 0.66, 1}. Asymmetry in losses leads to
asymmetry of the shared state, lowering entanglement. The probabil-
ities sum to ∼0.99 rather than 1 due to a small probability to detect
S � σ photons.
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σ = 4, tb2 = 100%

100%
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measurement outcome
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  40%
  25%
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FIG. 12. Logarithmic negativity computed for the asymmetric
state in Eq. (D4). The results are computed for g = 0.1 and σ = 4.
The transmissivity of Bob’s idler modes is assumed ideal and Alice’s
drops from ideal to 10%.

small asymmetry ε � 70% has almost no effect but thereafter
there is a significant reduction in the amount of entanglement.

Further analysis reveals that the entanglement is best pre-
served for the case where all photons emerge from the same
output of the beam splitter, i.e., for k = 0 and k = σ . The
entanglement deteriorates quickest when the outputs of the
beam splitter are equally populated, k = σ/2. These results
are shown in Fig. 13, where the dependence of the logarithmic
negativity on ε = ta

tb
is plotted for σ = 4. The numerically

calculated values (points) match almost exactly the approxi-
mate analytical result (lines) calculated from Eq. (D10). From
these calculations it can be inferred that the protocol maintains
its quality of output (up to 90% of the maximal value of
entanglement) down to ε = 0.7 for k = 2 and ε = 0.4 for
k = 0.

3. Numerical computations with both idler modes lossy

We include computations for the more general cases, when
Bob’s mode is no longer assumed lossless. The results for

FIG. 13. Dependence of logarithmic negativity shown in Fig. 12
on imbalance of losses in the two idler modes. The imbalance is
quantified by ε = ta

tb
, and the results are computed for g = 0.1 and

σ = 4. The points are the exactly calculated numerical results, while
the solid lines are calculated from the analytical approximation in
Eq. (D10).

σ = 4 are shown in Fig. 14. tb2 takes values from 90% to
10% and for each tb2 , ta2 goes from 5% to tb2 in steps of 5%.
When the transmittances of the two idler modes are equal,
the amount of entanglement is close to maximal, given by
log2(5) ≈ 2.32. As the symmetry is broken, entanglement
decreases. In fact, Eq. (D10) gives a very good analytical
approximation even in this more general case, showing that
the entanglement depends only on ε = ta

tb
.

4. General case which assumes losses in all modes and
in detection

Finally, we include computations for losses present in all
modes and detectors, and asymmetry in idler losses. We have
set the losses in the idler modes a2 and b2 to 37 and 40 dB, the
detector losses to 50%, while changing losses in signal modes
a1 and b1 between 0% and 50%. The results are depicted
in Fig. 15, and we see that there is still a high amount of
entanglement, even in these unfavorable conditions.

APPENDIX E: LOSSES VARYING WITH TIME

As has been discussed in Ref. [61], in Earth-space scenar-
ios, losses in each mode will vary over time on the timescale
of 10–100 ms for losses coming from atmospheric turbulence
and 0.1–1s for losses deriving from jitter in the telescopes. A
single pulse traveling towards a satellite on a low-Earth orbit
will take approximately 3ms to reach the satellite. Therefore,
any fluctuations will only affect the time-averaged logarithmic
negativity Alice and Bob compute for all successful events.

Let us assume that Bob’s mode’s transmittance is fixed and
that Alice’s has a normal distribution with variance 1 dB. We
then generate 500 random values from that distribution and
calculate the resulting logarithmic negativity. We repeat the
process for different values of transmittance tb2 . An example
is shown in Fig. 16 for σ = 4 and typical attenuation of 40 dB.

APPENDIX F: EFFICIENCIES AND SUCCESS RATES

1. Ideal case

Interference of modes a2 and b2 on the BS alters the input
state |�in〉 = |�〉⊗2 in the following way:

|�BS〉 =
∞∑

n,m=0

√
λn λm |n, m〉a1,b1

UBS |n, m〉a2,b2
, (F1)

ρBS = |�BS〉 〈�BS|

=
∞∑

n,m,p,q=0

√
λn λm λp λq |n, m〉 〈p, q|a1,b1

⊗UBS |n, m〉 〈p, q|a2,b2
U †

BS. (F2)

After tracing out modes a1 and b1 we obtain

ρa2,b2 = Tra1,b1{ρout}

=
∞∑

n,m=0

λn λmUBS |n, m〉 〈n, m|a2,b2
U †

BS. (F3)
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(a) (b)

(c) (d)

(e) (f)

FIG. 14. Logarithmic negativity computed for imbalanced idler modes with nonideal transmissivity in Bob’s mode. The results were
computed for g = 0.1 and σ = 4. The transmissivity of Bob’s mode drops from 95% to 20%. The transmissivity of Alice’s mode is specified
by the legend below the figure.

Thus, the probability of detecting |k, σ − k〉 behind the BS,
generating the state ρ

(k,σ )
out , equals

p(k,σ ) = Tr{|k, σ − k〉 〈k, σ − k| ρa2,b2} (F4)

=
∞∑

n,m=0

λn λm 〈k, σ − k|UBS |n, m〉

× 〈n, m|a2,b2
U †

BS |k, σ − k〉 . (F5)

Since the beam splitter interaction is particle number con-
serving, σ = n + m must hold true. In addition, we note that

λaλb = λa+b

cosh2 g
and, therefore,

p(k,σ ) =
∞∑

n=0

λn λσ−n|Aσ (k, n)|2 (F6)

= λσ

cosh2 g

∞∑
n=0

|Aσ (k, n)|2 (F7)

= λσ

cosh2 g
. (F8)
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0 1 2 3 4

k

0.0

0.5

1.0

1.5
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2.5

EN

Losses in the signal modes:

lossless case

10% (0.45 dB)

20% (0.97 dB)

30% (1.55 dB)

40% (2.22 dB)

50% (3.01 dB)

FIG. 15. Logarithmic negativity for the most general case which
assumes losses in all modes and in detection. The results were com-
puted for g = 0.1 and σ = 4 assuming unbalanced losses in modes
a2 and b2 (37 and 40 dB, respectively). Losses in signal modes a1

and b1 vary between 0% and 50%. Losses at the detectors are set
to 50%.

This probability depends solely on the parametric gain g and
σ . Since there are σ + 1 values of k, the probability to gener-
ate any σ photon state is (σ + 1)p(k,σ ). Figure 17 shows p(k,σ )

for g = 0.1.
The success rate of obtaining a particular total photon num-

ber σ is then calculated from multiplying (σ + 1)p(k,σ ) and
the repetition rate of the pump, frep. For example, assuming
g = 0.1 and frep = 80 MHz, we would observe events having
σ = 4 photons in total with frequency 3.82 Hz and events
having σ = 2 with frequency 23.2 kHz.

2. Symmetric idler losses

Including idler losses, the probability p(k,σ ) may be calcu-
lated similarly by

p(k,σ ) = Tra1,b1{〈k, σ − k|a2,b2
UBSρinU

†
BS |k, σ − k〉a2,b2

},
(F9)

where ρin is given by Eq. (C8) and UBS is understood to
act on the modes a2, b2. The state we are tracing over
has already been calculated in Appendix C, for the case
of symmetric losses ra = rb = r. The trace should then be
given by the normalization constant 1

Ñ 2 , but we subse-

quently absorbed a factor (1−r)σ

cosh2(g)
into Ñ 2. The probability

is then

p(k,σ ) = (1 − r)σ

cosh2 g

1

Ñ 2
= λσ

cosh2 g

(1 − r)σ

(1 − r tanh2 g)σ+2
, (F10)

which correctly reduces to Eq. (F8) in the lossless case r = 0.
The protocol efficiency is proportional to the probability of

receiving at least one photon at the remote station, as then
we are certain that Alice and Bob share entangled states.
The complement of that event is that no photons reach the
satellite, equivalent to σ = 0. Setting σ = 0 in Eq. (F10)

(a)

(b)

(c)

FIG. 16. Effect of fluctuations on the logarithmic negativity. The
results were obtained by randomly generating 500 values of logarith-
mic negativity for the state ρ

(k,4)
out . We assumed 40 dB attenuation and

variance 1 dB. (a) k = 0, (b) k = 1, and (c) k = 2.

we find

p(0,0) = 1

cosh4 g

1

(1 − r tanh2 g)2

=
(

1 − tanh2 g

1 − r tanh2 g

)2

. (F11)
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FIG. 17. Probability to generate a specific state, p(k,σ ), as a func-
tion of σ . The probability was computed for g = 0.1 and no losses.

The equivalent expression in the case of asymmetric losses is
calculated as follows:

p(0,0) = Tra1,b1{〈0, 0|a2,b2
ρin |0, 0〉a2,b2

}

=
∞∑

n,m=0

λnλmrn
arm

b

=
∞∑

n=0

λnrn
a

∞∑
m=0

λmrm
b

= 1

cosh4 g

1

1 − ra tanh2 g

1

1 − rb tanh2 g
. (F12)

The overall success rate is then frep(1 − p(0,0)). For a typical
parametric gain (g = 0.1) and Earth-space losses (ra = rb =
40 dB) we obtain 1 − p(0,0) = 2 × 10−6. Assuming a pulse
repetition rate of 80 MHz, our success rate will be 160 Hz,
i.e., 160 entangled states generated per second.

APPENDIX G: LOOPHOLE-FREE BELL TEST AND
DI-QKD

1. Loophole-free Bell test

The entanglement of Alice and Bob’s state ρ
(k,σ )
out can

be verified by a Bell test which was first introduced for
generic two-mode states of light in Ref. [64]. Alice and
Bob interfere their individual modes with coherent states |α〉
and |β〉, on beam splitters of reflectivities ra and rb (Alice
and Bob’s idler losses are now assumed equal and given
by r). These operations can be approximated by displace-
ment operations D(−δα ) and D(−δβ ), where δα = iα

√
ra,

δβ = iβ
√

rb, which become exact in the limit ra, rb → 0 and
|α|2, |β|2 → ∞ such that δα and δβ are finite. They then
measure their transmitted photon numbers i and j, separat-
ing their results into two categories (dichotomized variables).
This can be done by assigning +1 or −1 either to vacuum
or nonvacuum events, or to even or odd photon numbers.
By choosing randomly between two local measurement set-
tings each, δα1, δα2 and δβ1, δβ2, they can observe violation
of the CHSH inequality |B| � 2 where B = E (δα1, δβ1) +
E (δα1, δβ2) + E (δα2, δβ1) − E (δα2, δβ2), and E (δα, δβ ) is the
correlation between their dichotomized variables.

First let us consider the zero or nonzero case. It is conve-
nient to write B in the Clauser-Horne form

B = 2 + 4[+p(i = 0, j = 0|δα1, δβ1) (G1)

+ p(i = 0, j = 0|δα1, δβ2)

+ p(i = 0, j = 0|δα2, δβ1)

− p(i = 0, j = 0|δα2, δβ2)

− p(i = 0|δα1) − p( j = 0|δβ1)].

Here p(i = 0, j = 0|δα, δβ ) are the probabilities that they both
detect zero photons, given measurement settings δα , δβ . The
use of TES detectors as PNR detectors makes the detection
of vacuum events much easier by significantly reducing the
dark count rate. Alternatively, swapping the labeling of the
outputs has no effect on B, so an equivalent form may be
obtained by replacing i = 0, j = 0 with i �= 0, j �= 0 through-
out this equation, which may be a more practical form for
experiments. In the case of perfect detectors, the probability
p(i = 0, j = 0|δα, δβ ) is equal to the Husimi Q function of
the state

p(i = 0, j = 0|δα, δβ )

= 〈0|a 〈0|b D(−δα )D(−δβ )ρ (k,σ )
out

⊗ D†(−δα )D†(−δβ ) |0〉a |0〉b

= 〈δα|a 〈δβ |b ρ
(k,σ )
out |δα〉a |δβ〉b

= Q(δα, δβ ), (G2)

where following Ref. [64] we have dropped unnecessary fac-
tors of π from the usual definition. Similarly, the marginal
probabilities p(i = 0|δα ) and p( j = 0|δβ ) are given by the
marginal Q functions

p(i = 0|δα ) =
∑

j

p(i = 0, j|δα, δβ )

=
∑

j

〈0|a 〈 j|b D(−δα )ρ (k,σ )
out D†(−δα ) |0〉a | j〉b

= 〈δα|a Trb
(
ρ

(k,σ )
out

) |δα〉a

= Qa(δα ), (G3)

and similarly for Bob, where Trb indicates a partial trace over
Bob’s modes. With zero idler losses, the Q functions of the
state |� (k,σ )

out 〉 are

Q(δα, δβ ) = e−(|δα |2+|δβ |2 )

σ !

×
∣∣∣∣∣∣

σ∑
n=0

(δ∗
α )n(δ∗

β )σ−n

√(
σ

n

)
Aσ (k, n)

∣∣∣∣∣∣
2

, (G4)

Qa(δα ) = e−|δα |2
σ∑

n=0

|δα|2n

n!
|Aσ (k, n)|2. (G5)

These forms are extremely useful for finding the optimal mea-
surement settings that maximize the Bell inequality violation.

Similarly, in the even or odd test we can express
the Bell expression in terms of the Wigner function.
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TABLE II. Optimal settings for the Bell test for each state |� (k,σ )
out 〉. |B| is the value of the Bell expression for zero idler losses. |B| (40 dB)

is the value for 40 dB idler losses (80 dB losses in the Alice-Bob channel). A value of |B| > 2 shows nonlocality, with a blank entry signifying
that there is no observed nonlocality (|B| � 2). The detector efficiency shown is that required when there are 40 dB idler losses.

k σ Variables [δα1, δα2], [δβ1, δβ2] |B| |B| (40 dB) Alice or Bob detector efficiency (40 dB)

0 1 zero or nonzero [0.17, −0.56], [0.17i, −0.56i] 2.69 2.63 � 85%
1 1 zero or nonzero [0.17, −0.56], [−0.17i, 0.56i] 2.69 2.63 � 85%
0 2 even or odd [0.06, −0.28], [0.06i, −0.28i] 2.35 2.17 � 98%
1 2 zero ornonzero [0.00, 0.63], [0.00, 0.63] 2.07 2.03 � 96%
2 2 even or odd [0.06, −0.28], [−0.06i, 0.28i] 2.35 2.17 � 98%
0 3 even or odd [0.06, −0.24], [0.06i, −0.24i] 2.40 2.16 � 99%
1 3 even or odd [0.02, −0.22], [0.02i, −0.22i] 2.10
2 3 even or odd [0.02, −0.22], [−0.02i, 0.22i] 2.10
3 3 even or odd [0.06, −0.24], [−0.06i, 0.24i] 2.40 2.16 � 99%

The correlation may be written as an expectation value

E (δα, δβ ) = Tr(ρ (k,σ )
out Ŵ (δα, δβ )) of the operator

Ŵ (δα, δβ ) = [�̂(+)
a (δα ) − �̂(−)

a (δα )] ⊗ [�̂(+)
b (δβ ) − �̂

(−)
b (δβ )],

(G6)

where �̂(+)
a and �̂(−)

a are measurement operators for Alice to
measure even and odd photon numbers, respectively,

�̂(+)
a (δα ) =

∑
m

D(δα ) |2m〉a 〈2m|a D(δα )†, (G7)

�̂(−)
a (δα ) =

∑
m

D(δα ) |2m + 1〉a 〈2m + 1|a D(δα )†, (G8)

and similarly for Bob. Using the parity operator

(−1)a†a =
∑

m

(|2m〉 〈2m| − |2m + 1〉 〈2m + 1|), (G9)

Ŵ (δα, δβ ) may be simplified to

Ŵ (δα, δβ ) = D(δα )D(δβ )(−1)a†a(−1)b†bD(δα )†D(δβ )†.

(G10)
Thus, E (δα, δβ ) is the expectation value of this displaced
parity operator, which is one of the equivalent definitions
of the Wigner function [64]. To make this clear we write
E (δα, δβ ) = W (δα, δβ ), which again is true only for perfect
photon detection. With zero idler losses, the Wigner function
of the state |� (k,σ )

out 〉 is

W (δα, δβ ) = (−1)σ exp[−2(|δα|2 + |δβ |2)]

× Lk[2(|δα|2 + |δβ |2) − 4Im{δ∗
αδβ}]

× Lσ−k[2(|δα|2 + |δβ |2) + 4Im{δ∗
αδβ}], (G11)

where Lk are Laguerre polynomials. This may be calculated
by noting that |� (k,σ )

out 〉 = UBS |k〉 |σ − k〉 [this follows from
the symmetry Aσ (n, k) = Aσ (k, n)], and evolving the Wigner
function for the two-mode Fock state.

For each state we have numerically maximized the Bell
inequality with respect to the four measurement settings
[δα1, δα2], [δβ1, δβ2]. Table II lists the optimal choice of di-
chotomized variables and settings for each state, and the
resulting value of |B|. We have also seen how this value is
affected by idler losses. Since the entanglement decreases and
plateaus after some finite amount of losses (see Fig. 4), the

amount of Bell violation displays the same behavior. For defi-
niteness we have investigated typical Earth-space idler losses
of 40 dB (80 dB summed losses in the Alice-Bob channel),
with g = 0.1, although due to the plateau effect these losses
can be considered the limiting behavior as r → ∞. We have
also determined the minimum efficiency of Alice and Bob’s
local photon detectors required to still observe some violation.

The σ = 1 states have the most robust violation in the pres-
ence of losses, |B| = 2.63, and require detector efficiencies
>85%. States equivalent to our σ = 1 states in the lossless
limit have been explored in Ref. [64], although they used
a less optimal choice of settings, obtaining |B| ≈ 2.4. The
higher states σ � 2 also violate these Bell inequalities, but
the violation is fragile with respect to signal mode losses
and detector efficiencies. In ideal conditions, the states k = σ

2
have the lowest amount of Bell violation due to the lower
amount of entanglement in these states. Some states, e.g.,
(k = 1, σ = 3) and (k = 2, σ = 3), violate inequalities for
zero idler losses but fail to do so with arbitrarily high losses.
For these specific examples, the maximum amount of losses
is around 50%, or 3 dB. It is expected that the states σ � 2
violate some higher-dimensional Bell inequalities beyond the
simple CHSH scenario, which will be more loss tolerant, but
this is still an active area of research.

2. Device-independent (DI)-QKD

If Alice and Bob share entangled states and can violate
some Bell inequalities, it is possible for them to extract a
shared cryptographic key. If the Bell test is loophole free, they
can place a limit on the amount of information obtained by an
eavesdropper Eve and ensure that their key is secure, immune
to all possible side channels and eavesdropping strategies.
This is called device-independent quantum key distribution
(DI-QKD). We follow closely the formulation presented in
Ref. [44], where we can think of Charlie sending Alice
and Bob the state ρ

(k,σ )
out depending on their measurement,

|k, σ − k〉, at the remote station. The protocol is secure even
if Charlie is replaced by the adversarial Eve.

As discussed in the main text, we focus on long-distance
QKD and thus σ = 1 states, since they display success rates
scaling with transmittance as O(

√
η), and are more tolerant

to signal mode losses and detector inefficiencies. In the long-
distance limit, these states form the vast majority of generated
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(a)

(b)

FIG. 18. Device-independent quantum key distribution (DI-QKD) protocol based on the distributed multiphoton bipartite entanglement.
(a) The setup. Alice, Bob, and Charlie utilize the setup presented in Fig. 1(a) but with a few additions: Alice and Bob interfere their signal
modes a1 and b1 with local oscillators |α〉 and |β〉, respectively. To this end, they use variable beam splitters of ratio ra : ta and rb : tb. This
setup allows them to perform a displacement operator D(−δα,β ) on their modes, where δα = iα

√
ra and δβ = iβ

√
rb. The readout obtained

with either single-photon detection, such as superconducting nanowires (SNs), or photon-number-resolved (PNR) detectors allows them to
perform a Bell test and realize the QKD protocol. (b) A sequence diagram of the protocol. Alice repeatedly chooses δα from a set {δα0, δα1, δα2}
while Bob uses δβ from {δβ1, δβ2}. They take binary measurements and exchange the values for {δα1, δα2} and {δβ1, δβ2}. Next, they check the
CHSH inequality |B| � 2 computed with the readouts. If this inequality is fulfilled, then the protocol is insecure—they should abort and repeat.
Otherwise, Bob reveals a limited information about his raw key to Alice, she performs an information reconciliation (error correction), and,
after a privacy amplification, they share an unconditionally secure secret key.

states, e.g., for our typical Earth-space parameters with 40
dB losses and g = 0.1, p(k,1)/(1 − p(0,0)) = 99.9999%. In the
absence of losses these states are exactly the maximally entan-
gled single-photon states 1√

2
(|0, 1〉a1,b1

∓ i |1, 0〉a1,b1
). These

have been considered in a single-photon entanglement DI-
QKD scheme described in Ref. [42]; the protocol developed
here can be considered equivalent, but using the realistic state

ρ
(k,σ )
out rather than the idealized states, and with improved pa-

rameters and key rates.
The setup of the QKD protocol and a sequence diagram

are displayed in Fig. 18. Upon receipt of the entangled state
ρ

(0,1)
out or ρ

(1,1)
out , Alice and Bob each perform a measurement

as described in the previous section, by performing displace-
ment operations with parameters δα and δβ , respectively, and
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measuring the output photon numbers i and j. Alice ran-
domly chooses her setting δα from three possible choices
[δα0, δα1, δα2] while Bob chooses randomly from two choices
[δβ1, δβ2]. They repeat this process a number of times and then
communicate publicly which settings they chose for each trial.

The pair {δα0, δβ1} are chosen such that i and j are
highly correlated for these measurements, and these results
are kept secret and used to generate the raw key. The combi-
nation of settings {δα1, δα2, δβ1, δβ2} is chosen such that the
measurements violate the CHSH inequality. Alice and Bob
communicate through an authenticated channel and reveal the
results i and j for all combinations of these settings and ensure
that the inequality in Eq. (G1) is violated. This ensures that
these measurement results are random, i.e., that a potential
eavesdropper Eve cannot predict the results with certainty.
The amount of randomness increases with increasing Bell vi-
olation, with Eve’s probability of guessing the result bounded
by pguess � 1

2 (1 +
√

2 − B2/4) [81]. Since p( j|δβ1) does not
depend on Alice’s setting by the nonsignaling principle, Eve
also cannot have complete information about the results for
{δα0, δβ1} or the raw key generated by them.

Alice and Bob now both have raw keys of n bits, but they
may not be perfectly correlated, and Eve may have a small
amount of information about them. They thus carry out a
process of classical information reconciliation (error correc-
tion) and privacy amplification, discarding a number of bits
to obtain the final shared key of � bits. The raw key rate is
defined as the limiting ratio

K = lim
n→∞

�

n
, (G12)

and depends on the type of attacks we consider from Eve. Eve
is assumed to control the source (for us, she is in control of
the remote station measurement), and also to have fabricated
Alice and Bob’s measurement devices. Following Ref. [44],
we consider collective attacks whereby Eve interacts a fresh
system with Alice and Bob’s idler modes each time they reach
the remote station. She applies the same unitary operation
each time, and can perform a coherent measurement on all her
systems at any time. The security may be improved to protect
against completely general and/or coherent attacks by using
the results from Refs. [68,69]. However, this modification will
not significantly reduce the key rate, which is dominated by
the efficiency of the entanglement distribution, which remains
unchanged.

The security proof presented in Ref. [44] applies provided
that the measurements are described by Hermitian operators
with eigenvalues ±1. This is true in our case as we now prove.
The event where Alice measures zero transmitted photons
after interfering with the coherent state |α〉 is assigned the
value +1 and has probability

p(+1) = 〈δα| ρa |δα〉
= Tra(|δα〉 〈δα| ρa), (G13)

where ρa = Trb(ρ (k,σ )
out ) is Alice’s reduced density matrix.

Thus |δα〉 〈δα| is a projection operator (and positive operator-

valued measure element) for the outcome +1, and the
corresponding operator for outcome −1 is 1 − |δα〉 〈δα|. The
measurement can then be described by the Hermitian operator

A(δα ) = + |δα〉 〈δα| − (1 − |δα〉 〈δα|)
= 2 |δα〉 〈δα| − 1, (G14)

and the security proof in Ref. [44] then directly follows.
The raw key rate for collective attacks may be calculated

by the Devetak-Winter formula [82]

K = I (A0 : B1) − χ (B1 : E ), (G15)

where I (A0 : B1) is the mutual information between Alice and
Bob when they use settings {δα0, δβ1}, and χ (B1 : E ) is the
Holevo quantity which upper-bounds the mutual information
between Bob and Eve. This equation assumes the classical
communication is performed one way from Bob to Alice. This
is because χ (A0 : E ) > χ (B1 : E ) holds for this protocol; i.e.,
Eve has more information about Alice’s results than Bob’s, the
asymmetry arising from the fact that Alice uses three settings
while Bob uses only two. The mutual information χ (B1 : E )
is upper bounded [44] by

χ (B1 : E ) � h

(
1 +

√
(B/2)2 − 1

2

)
, (G16)

where h(p) is the binary entropy function. Thus we have a
lower bound for the raw key rate

K � I (A0 : B1) − h

(
1 +

√
(B/2)2 − 1

2

)
, (G17)

and all that is left to do is calculate this quantity for our
protocol and maximize over the five measurement settings.

The mutual information is

I (A0 : B1) = H (A0) + H (B1) − H (A0, B1), (G18)

where H (A0) and H (B1) are the entropies of Alice and Bob’s
marginal probabilities,

H (A0) = h[p(i = 0|δα0)], (G19)

H (B1) = h[p( j = 0|δβ1)], (G20)

and H (A0, B1) is the entropy of the joint probabilities

H (A0, B1)

= −p(i = 0, j = 0|δα0, δβ1) log2[p(i = 0, j = 0|δα0, δβ1)]

− p(i = 0, j �= 0|δα0, δβ1) log2[p(i = 0, j �= 0|δα0, δβ1)]

− p(i �= 0, j = 0|δα0, δβ1) log2[p(i �= 0, j = 0|δα0, δβ1)]

− p(i �= 0, j �= 0|δα0, δβ1) log2[p(i �= 0, j �= 0|δα0, δβ1)].
(G21)

In the case of perfect photon detectors, these can be conve-
niently described in terms of the Q functions using Eqs. (G2)

012607-22



PROPOSAL FOR THE DISTRIBUTION OF MULTIPHOTON … PHYSICAL REVIEW A 107, 012607 (2023)

and (G3), and writing

p(i = 0, j = 0) = Q(δα0, δβ1), (G22)

p(i = 0, j �= 0) = p(i = 0) − p(i = 0, j = 0)

= Qa(δα0) − Q(δα0, δβ1), (G23)

p(i �= 0, j = 0) = p( j = 0) − p(i = 0, j = 0)

= Qb(δβ1) − Q(δα0, δβ1), (G24)

p(i �= 0, j �= 0) = 1 + Q(δα0, δβ1) − Qa(δα0) − Qb(δβ1).

(G25)

The Bell expression B is given by Eq. (G1) as before, which
can similarly be expressed in terms of the Q functions.

One can now simply perform a numerical maximization of
K as a function of our five measurement settings, but we will
take a more instructive approach. As before, we will calculate
the optimal parameters for the lossless case and then consider
the effect of losses after. The parameters {δα1, δα2, δβ1, δβ2}
must be chosen to maximize the Bell parameter |B| so as to de-
crease Eve’s knowledge about the key χ (B1 : E ). At the same
time {δα0, δβ1} must be chosen to maximize the correlations
between Alice and Bob’s key bits I (A0 : B1). These cannot
be done independently since δβ1 appears in both, but we can
get a very good approximation by first maximizing B to find
δβ1 and then choosing δα0. The parameters {δα1, δα2, δβ1, δβ2}
have thus already been calculated and given in Table II.

There are two ways for the results for {δα0, δβ1} to be per-
fectly correlated. Either p(i = 0, j = 0) + p(i �= 0, j �= 0) =
1, so that Alice and Bob always have equal results, or p(i =
0, j = 0) + p(i �= 0, j �= 0) = 0, so that they always have op-
posite results. Let us first look at the state (k = 0, σ = 1); the
probabilities are given by our Q-function expressions

p( = 0, j = 0|δα0, δβ1) = e−(|δα0|2+|δβ1|2 )

2

× [|δα0|2 + |δβ1|2 + 2Im{δ∗
α0δβ1}], (G26)

p(i �= 0, j �= 0|δα0, δβ1) = 1 + e−(|δα0|2+|δβ1|2 )

2

× [|δα0|2 + |δβ1|2 + 2Im{δ∗
α0δβ1}]

− e−|δα0|2

2
(1 + |δα0|2) − e−|δβ1|2

2
(1 + |δβ1|2).

(G27)

Thanks to the interference term, the first of these can be set
to zero by setting δα0 = iδβ1, which also reduces the second
probability, simplifying to

p(i = 0, j = 0|δα0, δβ1) = 0, (G28)

p(i �= 0, j �= 0|δα0, δβ1) = 1 − e−|δβ1|2 (1 + |δβ1|2) ≈ |δβ1|4,
(G29)

where we have expanded around small |δβ1|. Reading from
Table II we have δβ1 = 0.17i, so we should choose δα0 =
−0.17 and thus we find p(i = 0, j = 0) + p(i �= 0, j �= 0) =
4 × 10−4. Thus Alice and Bob’s results are almost perfectly
correlated: if Alice measures i �= 0, Bob always measures
j = 0 and vice versa; one party just needs to swap their results

to obtain the same key bit. We thus define the quantum bit
error rate q as

q = p(i = 0, j = 0|δα0, δβ1) + p(i �= 0, j �= 0|δα0, δβ1),

(G30)

which will become nonzero once we include losses. Interest-
ingly, Alice and Bob’s marginal probabilities are also nearly
perfectly balanced between the two outcomes,

p(i = 0|δα0) = p( j = 0|δβ1)

= e−|δβ1|2

2
(1 + |δβ1|2) ≈ 1

2
(1 − |δβ1|4), (G31)

so that they have near maximum entropy H (A0) = H (B1) =
1 − 10−7. The joint entropy and mutual information are
H (A0, B1) = 1.005 and I (A0 : B1) = 0.995. Inserting our
value for the Bell expression B = 2.688 into Eq. (G16) we
find the Holevo bound χ (B1 : E ) � 0.290 and thus the raw
key rate for the lossless case,

K � 0.705. (G32)

The key rate per pulse R (number of secure key bits per second
divided by the repetition rate of the pump, frep) is found by
multiplying the dimensionless key rate K by the number of
raw key bits generated per pulse. The probabilities of using
the settings {δα1, δα2, δβ2} can be made very small such that
the majority of Alice and Bob’s measurements create raw key
bits using the settings {δα0, δβ1}. This leaves a small fraction of
other measurements, but still enough to reliably calculate the
Bell inequality. Thus, the number of raw key bits generated
per pulse is approximately equal to the protocol efficiency
(1 − p(0,0)). Thus, R is given by

R = K

⎛
⎝1 −

[
1 − tanh2(g)

1 − r tanh2(g)

]2
⎞
⎠, (G33)

with K given by Eq. (G17), and we have inserted p(0,0) from
Eq. (F11). In the lossless case we obtain

R � 1.39 × 10−2. (G34)

The calculation for the state (k = 1, σ = 1) proceeds in the
same way except that we take δα0 = −iδβ1. The results are
summarized in Table III.

We will see that the raw key rate K is not significantly
affected by idler losses, but the true rate R decreases with
the same scaling as the protocol efficiency, O(

√
η) = O(1 −

r). Although we have calculated the optimal parameters
[δα0, δα1, δα2], [δβ1, δβ2] assuming the lossless scenario, we
find that they remain very close to optimal when losses are
included.

Inserting idler losses of 40 dB, Alice and Bob’s marginals
are still nearly perfectly balanced, H (A0) = H (B1) = 1 −
10−4, while the joint entropy and mutual information are only
slightly modified, H (A0, B1) = 1.073, I (A0 : B1) = 0.927.
This corresponds to a quantum bit error rate of q = 0.01. We
already calculated |B| for 40 dB losses and found |B| = 2.635,
which yields a Holevo bound χ (B1 : E ) � 0.371. Thus for
40 dB idler losses and perfect photon detectors we have a raw
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TABLE III. Optimal settings for the QKD protocol in the lossless case.

k σ [δα0, δα1, δα2], [δβ1, δβ2] |B| Bit error rate, q Raw key rate, K Key rate per pulse, R

0 1 [−0.17, 0.17, −0.56], [0.17i, −0.56i] 2.688 4 × 10−4 � 0.556 � 1.39 × 10−2

1 1 [−0.17, 0.17, −0.56], [−0.17i, 0.56i] 2.688 4 × 10−4 � 0.556 � 1.39 × 10−2

key rate

K � 0.556, (G35)

and multiplying by the protocol efficiency, 1 − p(0,0) = 2 ×
10−6, the key rate per pulse is

R � 1.12 × 10−6. (G36)

The results are summarized in Table IV.
So far we have assumed perfect efficiency of Alice and

Bob’s local detectors. Nonzero detector losses reduce K by the
reduction of the Bell violation [increasing χ (B1 : E )], and by
an increase of the quantum bit error rate q [decreasing I (A0 :
B1)]. Assuming 95% efficiency, we obtain marginal entropies
H (A0) = H (B1) = 0.999, joint entropy H (A0, B1) = 1.290,
and mutual information I (A0 : B1) = 0.708, corresponding to
a quantum bit error rate q = 0.055. The Bell violation remains
large, |B| = 2.430, yielding χ (B1 : E ) � 0.622. Thus we find,
in the presence of 40 dB idler losses (80 dB Alice-Bob losses)
and 95% detector efficiency,

K � 0.086, (G37)

R � 1.72 × 10−7. (G38)

Figure 19 shows how the key rate decreases as a function of
transmission losses and detector efficiencies.

APPENDIX H: BELL TEST WITH POSTSELECTION
AND SEPM-QKD

1. Bell test with postselection

If high detection efficiencies are not available for Alice
and Bob’s local detectors, a different Bell test may be carried
out using postselection [43]. The setup is the same as before
[(Fig. 19(a)], with Alice and Bob interfering with coherent
states but they now measure both the transmitted and reflected
photon numbers with detectors A1, A2 and B1, B2. We again
focus on the σ = 1 states due to the increased efficiency of
their generation.

After measuring σ = 1 at the remote station, Charlie has
effectively distributed the following state to Alice and Bob:∣∣� (k,1)

out

〉 = 1√
2

(|0, 1〉a,b + eiθ |1, 0〉a,b), (H1)

where θ = ∓π/2 for k = 0/1. In our analytical results we
will use this state generated with zero idler losses, but in our
numerical results we will use the full state ρ

(k,1)
out , with the

understanding that in the limit g2 � 1 they become identical.
Alice interferes her mode with a coherent state |α〉, where
α = |α|eiθa , on a 50:50 beam splitter UA. Bob similarly in-
terferes his mode with a coherent state |β〉, where β = |β|eiθb

on a 50:50 beam splitter UB. After the interactions they then
share the state

|χ〉 = UAUB

∣∣� (k,1)
out

〉 |α〉 |β〉 . (H2)

They each assign a result +1 to events where photons are
detected exclusively in the transmitted channel (detector A1

or B1 clicks for Alice or Bob, respectively), and a result −1 to
events where photons are detected exclusively in the reflected
channel (detector A2 or B2 clicks). They ignore outcomes
where neither or both detectors click; i.e., they apply the
fair-sampling assumption in the usual way.

Let us consider the event where A1 and B1 click. The
primary contribution to the probability p(A1, B1) is from
single-photon events, and assuming |α| = |β| this probability

FIG. 19. Key rate of our DI-QKD protocol as a function of trans-
mission losses and detector efficiencies. Lines I–III are three QKD
protocols with key rates scaling as O(η): I, ideal BB84, R = η; II,
decoy-state QKD, R = η

e ; and III, decoy-state measurement-device-
independent (MDI)-QKD, R = η

2e2 Ref. [35].

TABLE IV. Optimal settings for the QKD protocol in the case of 40 dB idler losses (80 dB losses in the Alice-Bob channel).

k σ [δα0, δα1, δα2], [δβ1, δβ2] |B| Bit error rate, q Raw key rate, K Key rate per pulse, R

0 1 [−0.17, 0.17, −0.56], [0.17i, −0.56i] 2.635 0.01 � 0.705 � 1.12 × 10−6

1 1 [−0.17, 0.17, −0.56], [−0.17i, 0.56i] 2.635 0.01 � 0.705 � 1.12 × 10−6
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takes the simple form

| 〈1, 0|a 〈1, 0|b |χ〉 |2 = e−2|α|2 |α|2
4

[1 + cos(θa − θb − θ )].

(H3)
If Alice and Bob used PNR detectors they could posts-
elect on these single-photon outcomes and this would be
the total probability p(A1, B1). If, however, they use non-
photon-number-resolving detectors, such as superconducting
nanowires, there will be extra contributions from multiphoton
events. Retaining terms up to |α|4 the extra contributions come
from

|〈2, 0|a〈1, 0|b|χ〉|2 = |〈1, 0|a〈2, 0|b|χ〉|2

= e−2|α|2 |α|4
8

[
5

4
+ cos(θa − θb − θ )

]
,

(H4)

so that the total probability is

p(A1, B1) = e−2|α|2

4
(|α|2 + |α|4)[1 + cos(θa − θb − θ )]

+ e−2|α|2 |α|4
16

. (H5)

Similar calculations follow for the other three events
(A1, B2), (A2, B1), and (A2, B2). In general, the probability
that detectors Ai and Bj click is

p(Ai, Bj ) = e−2|α|2

4
(|α|2 + |α|4)

× [1 + (−1)i+ j cos(θa − θb − θ )]

+ e−2|α|2 |α|4
16

. (H6)

The term proportional to [1 + (−1)i+ j cos(θa − θb − θ )] al-
lows for perfect correlations while the remaining term
introduces a small error due to multiphoton events.

We now consider the effect of losses. In contrast to
Ref. [43], our states ρ

(k,σ )
out are heralded at Alice and Bob via

a preselection measurement rather than being sent directly
through free space. As we have seen, this means the idler
losses have a negligible effect on the state so that ρ

(k,σ )
out ≈

|� (k,σ )
out 〉 〈� (k,σ )

out |, which comes at the cost of reduced efficiency
of the protocol. In contrast, signal mode losses rs, including
detector inefficiencies of Alice and Bob’s detectors, lower
the amount of entanglement. With nonperfect signal mode
transmittance ηs = 1 − rs, the state reaching the local beam
splitters is then

ρ = ηs

∣∣� (k,1)
out

〉 〈
�

(k,1)
out

∣∣+ (1 − ηs) |0, 0〉a,b 〈0, 0|a,b . (H7)

Adding the extra contribution from the vacuum interfering
with the coherent states

| 〈1, 0|a 〈1, 0|b UAUB |0, 0〉a,b |α〉 |β〉 |2 = e−2|α|2 |α|2
4

, (H8)

Eq. (H6) is modified to

p(Ai, Bj ) = ηse−2|α|2

4
(|α|2 + |α|4)

× [1 + (−1)i+ j cos(θa − θb − θ )]

+ e−2|α|2 |α|4
4

(
1 − 3

4
ηs

)
. (H9)

A slightly different result is obtained in Ref. [43] due to them
truncating the coherent states at the single-photon level, but
this does not affect their conclusions.

The expectation value of the product of their outcomes can
then be calculated,

E (θa, θb) = p(A1, B1) − p(A1, B2) − p(A2, B1) + p(A2, B2)

p(A1, B1) + p(A1, B2) + p(A2, B1) + p(A2, B2)

=
[

ηs(1 + |α|2)

|α|2 + ηs + |α|2ηs

4

]
cos(θa − θb − θ ), (H10)

and using the measurement settings θa = {0, π
2 } and θb =

{π
4 − θ,−π

4 − θ}, one can evaluate the CHSH expression

B = E (θa1, θb1) + E (θa1, θb2) + E (θa2, θb1) − E (θa2, θb2)

=
[

ηs(1 + |α|2)

|α|2 + ηs + |α|2ηs

4

]
2
√

2. (H11)

In the limit |α|2 → 0 this becomes a maximal violation of
B = 2

√
2; however, the combination of multiphoton events

and nonperfect transmittance lowers the violation. The trans-
mittance required to observe |B| > 2 is

ηs >
|α|2√

2 − 1 + |α|2(
√

2 − 1
4 )

, (H12)

which for, e.g., |α| = 0.35 is ηs > 22%, much better than the
85% efficiency required in the loophole-free case. This of
course comes at the cost of having to postselect on a small
amount of events. The fraction of events that are kept is given
by

2∑
i j=1

p(Ai, Bj ) = e−2|α|2 |α|2
(

|α|2 + ηs + |α|2ηs

4

)
, (H13)

equal to 4% for |α| = 0.35 and ηs = 30%. Note that this prob-
ability does not take into account the probability of generating
the starting state |� (k,1)

out 〉, which is approximately equal to the
entanglement distribution protocol efficiency 1 − p(0,0). This
is considered a preselection rather than a postselection, since
if Charlie measures σ = 0 and communicates this, Alice and
Bob do not share an entangled state and do not perform any
measurements.

2. Single-photon entanglement-based phase-matching
(SEPM)-QKD

The above Bell inequality is no longer loophole free so we
do not have DI levels of security, but it can nevertheless be
used to limit the information leaked to Eve in a MDI-QKD
protocol described in Ref. [43]. This protocol is called single-
photon entanglement-based phase-matching (SEPM)-QKD.
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Applying this protocol to our case requires slight modifica-
tions due to the states ρ

(k,σ )
out being heralded at Alice and Bob

via a preselection measurement rather than being sent directly
through free space.

The coherent state phases are expressed as θa = φa + kaπ

and θb = −θ + φb + kbπ . The phases φa(b) are both randomly
chosen from the set {−π

4 , 0, π
4 , π

2 } while ka(b) are random bits
{0, 1}. The settings used above for the Bell test are contained
within this set of measurements, but there are also additional
events where the phases φa and φb match. The shared key
bits are extracted from these events. Setting φa = φb one
has cos(θa − θb − θ ) = (−1)ka+kb , so that if Alice and Bob’s
key bits are equal, ka = kb, their measurement probabilities
p(Ai, Bj ) are

p(A1, B1) = p(A2, B2)

= ηse−2|α|2

2
(|α|2 + |α|4) + e−2|α|2 |α|4

4

(
1 − 3

4
ηs

)
≈
∑

i j

p(Ai, Bj ), (H14)

p(A1, B2) = p(A2, B1)

= e−2|α|2 |α|4
4

(
1 − 3

4
ηs

)
≈ 0. (H15)

Similarly, if their key bits are different, ka �= kb, we have the
opposite scenario:

p(A1, B1) = p(A2, B2)

= e−2|α|2 |α|4
4

(
1 − 3

4
ηs

)
≈ 0, (H16)

p(A1, B2) = p(A2, B1)

= ηse−2|α|2

2
(|α|2 + |α|4) + e−2|α|2 |α|4

4

(
1 − 3

4
ηs

)
≈
∑

i j

p(Ai, Bj ). (H17)

After the measurements are complete they both publish the
phases φa(b) and measurement results i, j in each trial but keep
the key bits ka(b) secret. From the above equations we see that
for events where they obtain the same outcome i = j, their
key bits are the same with high probability, and for events
where they obtain different outcomes i �= j, their key bits are
different with high probability, so Bob simply flips his key.
The error rate is small and given by (e.g., for ka = kb)

q = p(A1, B2) + p(A2, B1)∑
i, j p(Ai, Bj )

= |α|2(1 − 3
4ηs
)

2
(|α|2 + ηs + |α|2ηs

4

) . (H18)

From the published information, Eve can determine |ka −
kb| for each trial but cannot determine the exact values ka, kb.
The raw key rate considering attacks by Eve is

K = I (A : B) − χ (AB : E ). (H19)

The mutual information between Alice and Bob is I (A : B) =
1 − h(q) while the Holevo quantity χ (AB : E ) is the maxi-
mum amount of information obtainable by Eve. In Ref. [43]
they determine the optimal collective attack by Eve and find
that Eve’s information gain is limited to twice the quantum bit
error rate, χ (AB : E ) � 2q. They also consider a beam split-
ting attack which must be treated separately from collective
attacks; however, we find that the information gain is negli-
gible, being proportional to |α|4, whereas q is proportional
to |α|2.

The measurement results for the other combinations of
settings may be used to evaluate the CHSH inequality and,
since B ≈ (1 − 2q)2

√
2, the amount of violation can be used

to estimate Eve’s information gain and the quantum bit er-
ror rate. After performing error correction, they then have
a shared secure key. Since the fair sampling approximation
was used to evaluate the Bell inequality, the security is no
longer device independent. Alice and Bob must now trust
their local sources and measurement apparatus, but still need
not trust the measurement at the remote station performed by
Charlie or Eve, placing the security within the framework of
measurement-device-independent (MDI)-QKD.

The key rate per pulse is found by multiplying K by the
number of raw key bits generated per pulse. There is the
probability of postselection

∑
i j p(Ai, Bj ) but in our case there

is also the probability of distributing the entangled state, i.e.,
preselection, 1 − p(0,0). We then obtain

R = (1 − f h(q) − 2q)(1 − p(0,0))
∑

i j

p(Ai, Bj ), (H20)

where we have allowed for an inefficiency f , for the error
correction. Due to the preselection, the term

∑
i j p(Ai, Bj )

depends only on the signal mode transmittance, with the idler
mode transmittance affecting only the term 1 − p(0,0). This is
a key benefit, since in Ref. [43] they were restricted to the
regime |α|2 < 1 − r where the key rates were much lower
than in state-of-the-art protocols. Our preselection means we
instead have the less strict limit |α|2 < ηs, allowing higher
values of |α| and higher key rates.

We have numerically simulated this SEPM-QKD protocol
and compared it to the case of realistic TF-QKD, with the
results being presented in Fig. 5. The simulation parame-
ters were chosen to match those in Ref. [35]: 30% detector
efficiencies at Alice and Bob’s local detectors and an error
correction coefficient f = 1.15. The coherent state amplitude
was chosen as |α| = 0.35, which we found to be close to
optimal. For a more fair comparison we have also included
a small probability of false detection events pdark = 10−8,
which could be due to dark counts or background (stray)
photons. The false detection rate per unit time is then pdark frep,
where frep is the repetition rate of the pump. The main effect
of these false detections is that sometimes Charlie incorrectly
declares that the state ρ

(k,1)
out has been distributed due to a

false detection of σ = 1. If the protocol efficiency becomes
comparable or lower than the false detection efficiency, (1 −
p(0,0)) < pdark, the state can then no longer be distributed and
the key rate drops to zero. This is responsible for the maxi-
mum distance shown in Fig. 5. The other key rates plotted on
this figure are obtained with equations presented in Ref. [35].
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Lines I–III are three QKD protocols with key rates scaling
as O(η): I, ideal BB84, R = η; II, decoy-state QKD, R = η

e ;
and III, decoy-state measurement-device-independent (MDI)-
QKD, R = η

2e2 .
Finally we note the similarity between this protocol and

the ideal entanglement-based one presented in Ref. [72] (pro-
tocol one). There Alice and Bob each prepare a state |�〉 =√

q |0, 0〉a1,a2 + √
1 − q |1, 1〉a1,a2 where 0 � q � 1 and send

the idler beams to Charlie who interferes them on a beam
splitter and measures the output photon numbers. Alice and
Bob then share an entangled state, and perform measurements
either in the z basis, |0〉 , |1〉, or the x basis, |±〉 = (|0〉 ±
|1〉)/

√
2. The QKD protocol presented here can be considered

equivalent, with realistic interference measurements replac-
ing the ideal x-basis qubit measurement, and the two-mode
squeezed-vacuum state approximating |�〉.

APPENDIX I: SOFTWARE

The software that we have developed and used was written
in PYTHON 3 using the NumPy package, which was em-
ployed for matrix algebra. The program performs operations
described by the following algorithm:

(1) For both SPDC sources belonging to Alice and Bob,
compute ρ� = |�〉 〈�| where |�〉 =∑nmax

n=0

√
λn |n, n〉, and

nmax is a sum cutoff found by solving λnmax/λ0 < 10−15 for
a given g and 10−15 results from the precision of the numeric
data type, usually nmax � 6.

(2) For all modes leaving the sources, add losses and then
trace out unwanted modes; i.e., perform the following opera-
tion:

ρ� ′ = Tr3,4
{
U (rs )

BS U (ri )
BS |�〉 〈�| (U (ri )

BS

)†(
U (rs )

BS

)†}
,

where rs and ri are losses in signal and idler modes, respec-
tively.

(3) Construct the density operator matrix for ρin = ρ� ′ ⊗
ρ� ′ .

(4) Apply the 50:50 BS operation, ρBS = UBS ρin (UBS)†.
(5) Add losses rd1 and rd2 to the modes leaving the BS:

ρout = Tr5,6
{
U

(rd1 )
BS U

(rd2 )
BS ρBS

(
U

(rd2 )
BS

)†(
U

(rd1 )
BS

)†}
.

(6) For all k = 0, . . . , σ perform the following operations:
(a) Project ρout onto |k, σ − k〉, ρ

(k,σ )
out =

〈k, σ − k| ρout |k, σ − k〉, and renormalize the result.
(b) Compute partial transposition of ρ

(k,σ )
out , (ρ (k,σ )

out )� .
(c) Compute eigenvalues {αk} of (ρ (k,σ )

out )� using rou-
tines built into the NumPy package.

(d) Compute the logarithmic negativity,

EN = log2

(
1 + 2

∑
k

|αk| − αk

2

)
.

The advantage of the above algorithm is relatively fast
operation at a cost of huge memory requirements because of
the large size of the matrices. In the worst case, ρout contains
n8

max double-precision values (ca. 13 MB for nmax = 6800 MB
for nmax = 10) and, therefore, computations for nmax as large
as 20 or 50 would be impossible. This has been solved by
noticing that the matrix contains mostly zeros and that the
sum of the number of photons in all modes cannot be simulta-
neously higher than 4nmax, which allowed us to apply denser
packing. Once the final density operator matrix is computed,
subsequent computations (step I) of the algorithm can be
performed for all interesting values of S and k.
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