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Calculating the trace of the product of m n-qubit density matrices (multivariate trace) is a crucial subroutine
in quantum error mitigation and information measure estimation. We propose a unified multivariate trace
estimation (UMT) which conceptually unifies the previous qubit-optimal and depth-optimal approaches with
tunable quantum circuit depth and number of qubits. The constructed circuits have �(m − 1)/s� or n�(m − 1)/s�
depth corresponding to (s + m)n or s + mn qubits for s ∈ {1, . . . , �m/2�}, respectively. Such flexible circuit
structures enable people to choose suitable circuits for different hardware devices. We apply UMT to virtual
distillation to achieve exponential error suppression and design a family of concrete circuits to calculate the trace
of the product of eight and nine n-qubit density matrices. A numerical example shows that the additional circuits
still mitigate the noise expectation value under the global depolarizing channel.
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I. INTRODUCTION

Fault-tolerant quantum (FTQ) computers may provide
novel computational advantages over classical computers for
many tasks [1–4]. As perfect FTQ computers are not available
yet, a preferable substitute is noisy intermediate-scale quan-
tum (NISQ) devices with limited quantum resources [5,6].
Nevertheless, the implementation of both FTQ and NISQ
devices hinges on the effective control of noise. Thus, error
correction and mitigation are of fundamental importance in
quantum computation. Aiming at efficiently approximating
the desired output states, the quantum error correction (QEC)
provides a theoretical blueprint enabling quantum computa-
tion in an arbitrarily small error level [7,8]. However, due
to the larger qubit count, extra circuit complexity, and other
additional operations [9], the overhead of QEC is too large
to be available for practical applications. Therefore, a vari-
ety of quantum error mitigation (QEM) approaches [10–17]
for NISQ algorithms have been presented instead for QEC.
Different from QEC, QEM focuses on recovering the ideal
measurement statistics (usually the expectation values) [18]
and can be directly employed in the ground-state preparation
[19,20]. For instance, the error-extrapolation technique uti-
lizes different error rates than the zero-noise limit [21–23]. In
particular, probabilistically implementing the inverse process
can mitigate the noise effect on computation for some noise
channels [21]. However, such error-mitigation techniques rely
on prior knowledge of the noise model, whose characteriza-
tion is expensive.

The generalized quantum subspace expansion (GSE) [24]
and the virtual distillation (VD) [25,26] methods do not re-
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quire any information about the noise. The GSE method
optimizes states from a subspace expanded by a small subset
of Pauli operators. It is effective against coherent errors [10].
The VD method prepares m copies of n-qubit noisy state
ρ = E0|u0〉〈u0| + ∑2n−1

k=1 Ek|uk〉〈uk| in spectral decomposi-
tion, E0 > E1 � · · · � E2n−1, and calculates the expectation
value of an observable O with respect to state ρm/Tr(ρm),

〈O〉(m)
vd = Tr(Oρm)

Tr(ρm)
= 〈O〉exact

[
1 + O

(
Em

1 /Em
0

)]
, (1)

which exponentially gets closer to the ideal value 〈O〉exact =
〈u0|O|u0〉. The core idea behind this claim is that state
ρm/Tr(ρm) approaches the desired pure state |u0〉 exponen-
tially in m. In order to obtain exponential error suppression, an
efficient quantum algorithm for measuring Eq. (1) is required.

Generally, instead of the m copies of the n-qubit noisy state
ρ, one may consider m different n-qubit states ρ1, . . . , ρm.
Tr(ρm) in Eq. (1) is then replaced by a more general quantity,
Tr(ρ1 · · · ρm), which is called the multivariate trace (MT) and
was first introduced in Ref. [27]. Measuring the MT is of
fundamental and practical interest in quantum information
processing such as the calculation of the Rényi entropy, en-
tanglement entropy [28], and entanglement spectroscopy [29].
Broadly speaking, the estimation of the MT on a quantum
computer is currently tackled by using either the qubit-optimal
approach [30] or depth-optimal method [27]. Here, “qubit op-
timal” means that the number of ancilla qubits is optimal, and
“depth optimal” means that the circuit depth is minimal. The
qubit-optimal approach requires only a single ancilla qubit
and a �(m)-depth circuit, whereas the depth-optimal method
requires �m/2� ancilla qubits and a constant depth circuit,
where �·� denotes the floor function. The former method is
prohibited due to the linear depth in m. Meanwhile, the latter
method has an attractive depth for NISQ devices, but the linear
number of required qubits in m would restrict its application
to small m. Although a recent work [31] drastically reduced
the qubit resource by utilizing the qubit reset technique, the
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circuit depth is still �(m). Thus, a limited qubit number and
circuit depth may hinder the advantage of the VD method in
the current NISQ era.

Accounting for the fact that the error accumulates with an
increasing number of qubits and the depth of the quantum cir-
cuit, in this work we provide a quantum algorithm to calculate
the corrected expectation value (1) by constructing a family
of circuits which have different circuit depths and numbers
of qubits. The authors of [27] pointed out that their circuit is
flexible and can be adjusted for different depths and numbers
of qubits. Thus, in this work we first mathematically establish
a specific trade-off relation between the number of qubits and
the circuit depth. The circuit depth and the number of qubits
can be denoted as a function of a free parameter s. With the
variation of s, there are �m/2� different circuit structures with
the same number of quantum gates. Based on the constructed
circuits, we propose a unified multivariate trace estimation
(UMT), which is capable of calculating Tr(ρ1 · · · ρm) with
a tunable circuit depth and number of qubits. The existing
qubit-optimal and depth-optimal algorithms are two extremal
cases of our algorithm for s = 1 and �m/2�. Furthermore, we
apply UMT to achieve the exponential error suppression and
give a family of concrete circuits for eight and nine n-qubit
density matrices. Finally, we simulate the effects of the global
depolarizing channel in the process of estimating 〈O〉(5)

vd for a
two-qubit state ρ.

II. UNIFIED MULTIVARIATE TRACE ESTIMATION

The MT is defined as

Tr(ρ1 · · · ρm) := Tr[S(m)(ρ1 ⊗ · · · ⊗ ρm)], (2)

where S(m) is a unitary representation of the cyclic shift per-
mutation π = (1, 2, . . . , m): S(m)|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψm〉 =
|ψm〉 ⊗ |ψ1〉 ⊗ · · · ⊗ |ψm−1〉 for pure states |ψ1〉, . . . , |ψm〉.
Note that for m = 2, Tr[ρ1ρ2] = Tr[S(2)(ρ1 ⊗ ρ2)], with
S(2) being the SWAP operator. With Eq. (2) the MT can be
estimated by calculating the real and imaginary parts of
Tr[S(m)(ρ1 ⊗ · · · ⊗ ρm)]. Following the framework of
Ref. [30], a crucial step is to perform the controlled unitary
C(S(m) ) with respect to S(m), C(S(m) ) = |0〉〈0| ⊗ I + |1〉〈1| ⊗
S(m), where I denotes the identity. In this section, we construct
a sequence of alternative circuits to achieve the operation
C(S(m) ).

A. The qubit-depth trade-off

Proposition 1. Qubit-depth trade-off. For a given set of
n-qubit states {ρ1, . . . , ρm}, there exists a family of quantum
circuits with depth nh(m, s) and (s + mn) qubits that can
achieve the operation C(S(m) ), s = 1, . . . , �m/2�. The depth
function h(m, s) = �(m − 1)/s� ∈ [2, m − 1] is a monotoni-
cally decreasing function of the variable s.

Proposition 1 is based on the decomposition of the permu-
tation cycle π [27],

π =
⎧⎨
⎩

∏m/2
j=2( j, m+2− j)

∏m/2
i=1 (i, m+1−i), m even,∏�m/2�

j=2 ( j, m+2 − j)
∏�m/2�

i=1 (i, m+1−i), m odd,

| ⟩

| ⟩

| ⟩

| ⟩
=

| ⟩

=

(a) (b) (c)

FIG. 1. Quantum circuits for estimating the real part of
Tr(ρ1ρ2ρ3), where states ρ1, ρ2, and ρ3 are two-qubit states.
(a) The circuit in Ref. [30]. The number of ancilla qubits is one,
and the circuit depth is 4. (b) and (c) are the parallelized versions
of the circuit in (a). The corresponding circuit depth is 2, and the
number of ancilla qubits is two. The eight-qubit quantum circuit in
(b) can be seen as two parallelized circuits, each with one ancilla
qubit, as shown in (c).

where all arithmetic is modulo m. π can be decomposed into a
product of (m − 1) transpositions. The circuit of Proposition
1 contains an ancillary register (AR) and a work register
(WR). The WR stores m density matrices ρ1, . . . , ρm. The AR
stores an s-qubit Greenberger-Horne-Zeilinger (GHZ) state,
|GHZs〉 = 1√

2
(|0〉⊗s + |1〉⊗s) which controls the SWAP oper-

ation between two different density matrices ρl and ρk for
l, k = 1, . . . , m. Each qubit of |GHZs〉 controls one transpo-
sition. Thus, the s-qubit GHZ state controls s transpositions
at one time. m − 1 transpositions can be controlled at most
�(m − 1)/s� times. Each SWAP operation can be decomposed
into n controlled SWAP gates. Thus, the total depth is n�(m −
1)/s�. Here, we remark that by using the qubit reset technique
and the middle measurement, the s-qubit GHZ state |GHZs〉
can be prepared by a constant-depth quantum circuit (indepen-
dent of s). The number of qubits needed is s and 2(s − 1) when
s is even and odd, respectively [27]. In general, to prepare
|GHZs〉, a coherent quantum circuit has depth O(s). In this
work, we do not consider the circuit depth of preparing state
|GHZs〉 and density matrices ρ1, . . . , ρm.

Notice that s = 1 and s = �m/2� cover the results of the
qubit-optimal method [30] and the depth-optimal approach
[27]. With these two extremal cases, altogether there are
�m/2� optional circuits. In Ref. [30] the authors introduced
a single ancilla qubit and implemented a controlled unitary
S(m) with depth (m − 1)n. The circuit presented in [27] has
depth 2n and �m/2� ancilla qubits. The quantum circuits in
[27,30] can be seen as n parallelized subcircuits with only
�m/2� and single ancilla qubits, respectively [32,33]. Figure 1
illustrates three mathematically equivalent quantum circuits
for estimating Tr(ρ1ρ2ρ3) with a single ancillary qubit.

Generalizing Proposition 1 in the parallelized scenario, we
have the following.

Proposition 2. Qubit-depth trade-off in parallelized sce-
nario. Given a set of n-qubit states {ρ1, . . . , ρm}, there is a
family of quantum circuits to achieve the operation C(S(m) ).
These circuits have depth h(m, s) = �(m − 1)/s� and (s +
m)n qubits, s = 1, . . . , �m/2�.

The circuits in Proposition 2 are the parallelized versions
of Proposition 1, in which the AR consists of n s-qubit
GHZ states. Each s-qubit GHZ state achieves the controlled
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SWAP operation on the single-qubit subspace of state ρi, i =
1, . . . , m. Moreover, in the case that m = 2 and ρ1 = ρ2 =
ρ, we recover the circuit for estimating the purity Tr(ρ2)
presented in [32] as a special case of our approach in which
s = �m/2� = 1 and h(2, 1) = 1. In particular, when s = 2, the
circuit depth is h(m, 2) = m/2 and h(m, 2) ∈ [�m/2�, �m/2�]
for even and odd values, respectively. This property guaran-
tees that only 2n or two additional ancilla qubits can reduce
the depth by half. Propositions 1 and 2 show that the number
of ancilla qubits and the circuit depth are tunable according to
different hardware devices.

B. UMT estimation

Given the equivalent circuit construction of the controlled
S(m) operation among density matrices, we perform a mea-
surement in the Pauli σx basis on each ancilla qubit. The
expectation value gives an estimation of Tr(ρ1 · · · ρm). We
have the following theorem; see the proof in Appendix A.

Theorem 1. UMT estimation. Given a set of n-qubit states
{ρ1, . . . , ρm} and fixed error ε > 0 and δ ∈ (0, 1), UMT es-
timation calculates the quantity in Eq. (2) by the sample
mean 〈V̂ 〉 of a random variable V̂ that can be produced using
O(ε−2 log(δ−1)) repetitions of a quantum circuit constructed
using Propositions 1 and 2 and consisting of O(mn) controlled
SWAP gates such that

Pr(|〈V̂ 〉 − Tr(ρ1 · · · ρm)| � ε) � 1 − δ (3)

for s = 1, . . . , �m/2�.
Theorem 1 gives an analysis of the sample complexity

guaranteed by Hoeffding’s inequality [34]. The number of
quantum gates is O(mn) for different circuit structures.

III. UMT FOR VIRTUAL DISTILLATION

A direct application of UMT is for quantum error mitiga-
tion [25,26]. Suppose that near-term quantum devices aim to
prepare an n-qubit pure state |φ〉. However, owing to the effect
of environmental noise, one prepares instead a mixed state
ρ = C(|φ〉〈φ|), where the operation C is a map containing a
unitary evolution and a noise channel such as a depolarizing
channel. The error-free expected value of a Hermitian oper-
ator O is 〈O〉 = Tr(O|φ〉〈φ|). However, the noisy expected
value is 〈O〉noise = Tr(Oρ) �= 〈O〉. Virtual distillation provides
a method to approximate 〈O〉 as a corrected expectation value,

〈O〉(m)
vd = Tr(Oρm)

Tr(ρm)
, (4)

with m copies of the mixed state ρ.

A. Estimating the corrected expectation value with UMT

It is clear that the denominator in Eq. (4) can be evaluated
by employing Theorem 1 with ρ1 = · · · = ρm = ρ. The nu-
merator of Eq. (4) is

Tr(Oρm) = Tr(Õ(i)S(m)ρ ⊗ · · · ⊗ ρ), (5)

where the observable Õ(i) = I ⊗ · · · O(i) ⊗ · · · ⊗ I and O(i)

denotes the operator O acting on the ith register which stores

the ith copies of ρ. Suppose an efficient decomposition

O =
No∑

k=1

akPk, ak ∈ R, (6)

where Pk = σk1 ⊗ · · · ⊗ σkn are tensor products of Pauli
operators σk1 , . . . , σkn ∈ {σx, σy, σz, I} and the quantity∑No

k=1 |ak| = O(c) is bounded by a constant c. It is
straightforward to show that

Tr(Oρm) =
No∑

k=1

akTr
[
P̃(i)

k S(m)(ρ ⊗ · · · ⊗ ρ)
]
, (7)

where P̃k = I ⊗ · · · P(i)
k ⊗ · · · ⊗ I . By preparing m copies of

state ρ, Theorem 2 (see proof in Appendix B) provides an
estimator for the denominator.

Theorem 2. Estimation of Tr(Oρm). Let ρ be an n-qubit
noisy state. Given a Pauli decomposition of observable O
[Eq. (6)], for fixed precision ε > 0, δ ∈ (0, 1), and a constant
c there exists a quantum algorithm that estimates Tr(Oρm)
within ε additive error with success probability 1 − δ and

requires O( mNoc2

ε2 log 1
δ
) copies of ρ and O( Noc2

ε2 log 1
δ
) repe-

titions of a quantum circuit (constructed via Propositions 1
and 2) consisting of O(mn) controlled SWAP gates for s =
1, . . . , �m/2�.

After implementing the sequences of controlled SWAP

gates, we perform a controlled Pk on an arbitrary register
storing state ρ. Then we measure the ancilla qubits in the
basis of Pauli operators σx and σy. The measurement sam-
ple means are the real and imaginary parts of Tr(Oρm). We
remark that the quantity

∑No
k=1 |ak| = c plays a large role

in efficiently estimating the numerator Tr(Oρm). Due to the
fact that the sample complexity is linear in (

∑No
k=1 |ak|)2, we

thus expect that
∑No

k=1 |ak| is bounded by a constant c. This
observation is intuitive. In the variational quantum eigen-
solver [35] and variational quantum simulations [5,6], one
typical question is the estimation of the expectation values
of the Hamiltonian H . The number of repetitions needed to
obtain precision ε with operator averaging is similar to our
result [36].

B. Approximations for the mean and variance of a ratio

The numerator and denominator are calculated by pro-
ducing two independent variables X̂ and Ŷ . Let X̂ =
(X1, . . . , XNO ) and Ŷ = (Y1, . . . ,YNI ) be two independent
variables denoting the sampling results after running the UMT
and measuring the ancilla qubits. The sample means are given
by

〈X̂ 〉 =
∑NO

j=1 Xj

NO
≈ E[X̂ ] = Tr(Oρm), (8)

〈Ŷ 〉 =
∑NI

j=1 Yj

NI
≈ E[Ŷ ] = Tr(ρm), (9)

with error EO = EI = O(N−1/2) such that

|〈X̂ 〉 − E[X̂ ]| � EO, |〈Ŷ 〉 − E[Ŷ ]| � EI , (10)

where we have used NO = NI = N to represent the number
of samples. Then, the expectation value of the ratio 〈X̂ 〉 /〈 Ŷ 〉
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has the approximation [37]

E

[
〈X̂ 〉
〈Ŷ 〉

]
≈ E[X̂ ]

E[Ŷ ]
+ E[X̂ ]Var[Ŷ ]2

NE[Ŷ ]3

= Tr(Oρm)

Tr(ρm)
+ Tr(Oρm)Var[Ŷ ]2

NTr(ρm)3

= Tr(Oρm)

Tr(ρm)
+ Tr(Oρm)[1 − Tr(ρm)2]2

NTr(ρm)3
, (11)

with error O(N−1). The approximation variance of the ratio
〈X̂ 〉/〈Ŷ 〉 [37] is

Var

[
〈X̂ 〉
〈Ŷ 〉

]
≈ E[X̂ ]2Var[Ŷ ]2

NE[Ŷ ]4
+ Var[X̂ ]2

NE[Ŷ ]2

= Tr(Oρm)2Var[Ŷ ]2

NTr(ρm)4
+ Var[X̂ ]2

NTr(ρm)2

= Tr(Oρm)2[1 − Tr(ρm)2]2

NTr(ρm)4

+
∑No

k=1 |ak|2[1 − Tr(Pkρ
m)2]

NTr(ρm)2
, (12)

with error O(N−1), where we have used the following results:

Var[X̂ ] =
No∑

k=1

|ak|2[1 − Tr(Pkρ
m)2], (13)

Var[Ŷ ] = 1 − Tr(ρm)2. (14)

In particular, when ρ is a pure state, the variance reduces to

Var

[
〈X̂ 〉
〈Ŷ 〉

]
≈

∑No
k=1 |ak|2[1 − Tr(Pkρ

m)2]

N . (15)

The variance estimation provides an approach to evaluate
the required number of samples. Assuming a desired variance
is �2, Eq. (12) implies that the number of samples

N ≈ Tr(Oρm)2[1 − Tr(ρm)2]2

�2Tr(ρm)4

+
∑No

k=1 |ak|2[1 − Tr(Pkρ
m)2]

�2Tr(ρm)2
. (16)

In Ref. [26] the authors analyzed the variance of the estimator
for m = 2. Here, we present an approximation for the mean
and variance of the estimator for arbitrary m.

C. Concrete construction of a family
of circuits and noisy implementation

In this section, we first show the circuit construction of
eight and nine n-qubit density matrices. The permutations
π8 = (1, 2, . . . , 8) and π9 = (1, 2, . . . , 9) have decomposi-
tions

π8 = (4, 6)(3, 7)(2, 8)(4, 5)(3, 6)(2, 7)(1, 8), (17)

π9 = (5, 6)(4, 7)(3, 8)(2, 9)(4, 6)(3, 7)(2, 8)(1, 9), (18)

where each of the transpositions denotes the n SWAP gates.
Based on Proposition 1, Figs. 2(a)–2(d) show four circuits for

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. (a)–(d) The quantum circuits for estimating the real part
of Tr(Oρ8) for n-qubit state ρ. (e)–(h) The quantum circuits for esti-
mating the real part of Tr(Oρ9) for n-qubit state ρ. Both circuits are
from Proposition 1. When setting σk = I , the circuits cover the real
parts of Tr(ρ8) and Tr(ρ9). The imaginary parts of these quantities
can be estimated by measuring the ancilla qubits in the basis of Pauli
operator σy, and here, ρ1 = · · · = ρ8 = ρ9 = ρ.

computing Tr(Oρ8) and Tr(ρ8) for s = 1, 2, 3, 4. The total
number of qubits is s + 8n, including s ancilla qubits. The
depths are 2n, 3n, 4n, and 7n. Figures 2(e)–2(h) show four
circuits for computing Tr(Oρ9) and Tr(ρ9) for s = 1, 2, 3, 4.
The total number of qubits is s + 9n, including s ancilla
qubits. The depths are 2n, 3n, 4n, and 8n. Figure 3 is a
parallelized version of Fig. 2 as shown in Proposition 2. The
total number of qubits is (s + 8)n, including sn ancilla qubits
for s = 1, 2, 3, 4. The depths are 2, 3, 4, and 7, respectively.

Here, we consider the effect of noise in the quantum cir-
cuits for different widths and depths. Suppose we prepare an
exact state ρ = U (α)(|0〉〈0| ⊗ |0〉〈0|)U †(α) using a parame-
terized quantum circuit

U (α) =
2∏

i=1

CNOT × [Ry(αi ) ⊗ Ry(αi+1)], (19)

where Ry(αi ) = e−ιαi/2σy is the rotation operator, CNOT denotes
the controlled-NOT gate, and the parameters (α1, α2, α3, α4) =
(0.8147, 0.1270, 0.2785, 0.5469). State ρ after the depolariz-
ing noise channel is given by

ρnoise = Cdepo(γ0, ρ) = (1 − γ0)ρ + γ0
I

4
, γ0 ∈ (0, 1).

(20)

We measure the expectation value of observable O = (σ (1)
z +

σ (2)
z )/2 with respect to states ρ and ρnoise. Figure 4 shows

two circuits for estimating Tr(Oρ5
noise) and Tr(ρ5

noise). After
each layer, we insert a depolarizing channel with parameter
γ to simulate the noise effects. Two and four depolarizing
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. (a)–(d) The quantum circuits for estimating the real part
of Tr(Oρ8) for n-qubit state ρ. (a) s = 4, h(8, 4) = 2; (b) s =
3, h(8, 3) = 3; (c) s = 2, h(8, 2) = 4; and (d) s = 1, h(8, 1) = 7.
(e)–(h): The quantum circuits for estimating the real part of Tr(Oρ9)
for n-qubit state ρ. (e) s = 4, h(9, 4) = 2; (f) s = 3, h(9, 3) = 4; (g)
s = 2, h(9, 2) = 4; and (h) s = 1, h(9, 1) = 8. Both circuits are given
by Proposition 2. When taking σk = I , the circuits cover the real parts
of Tr(ρ8) and Tr(ρ9). The imaginary parts of these quantities can be
estimated via the measurement on the ancilla qubits in the basis of
Pauli operator σy.

channels are required for Figs. 4(a) and 4(b), respectively.
The ideal expectation value is 〈O〉 = Tr(Oρ) = 0.7547, and
the noise result 〈O〉noise = Tr(Oρnoise) = 0.4528 for γ0 = 0.4.
The corrected expectation value after VD and our circuits is
given by

〈O〉(5)
vd = Tr

(
Oρ5

noise

)
Tr

(
ρ5

noise

) . (21)

As shown in Table I, by numerical calculation it is shown that
our circuits can still mitigate the error even in the presence of
the depolarizing noise channel.

TABLE I. The corrected expectation value 〈O〉(5)
vd for different

values of γ .

γ

0.2 0.4 0.6 0.8

Fig. 4(a), 〈O〉(5)
vd 0.7546 0.7546 0.7546 0.7546

Fig. 4(b), 〈O〉(5)
vd 0.7546 0.7546 0.7546 0.7546

| ⟩

| ⟩

(a)

(b)

FIG. 4. The quantum circuits for estimating the real part
of Tr(Oρ5

noise ) for two-qubit state ρnoise with σk = σ (1)
z or σ (2)

z ,
where ρ1 = · · · = ρ5 = ρnoise. (a) s = 2, h(5, 2) = 2 and (b) s =
1, h(5, 1) = 4. When σk = I , the circuits cover the real part of
Tr(ρ5

noise ).

IV. CONCLUSION AND DISCUSSION

We have proposed a unified quantum algorithm for estimat-
ing the multivariate trace. Our results depend on a qubit-depth
trade-off relation which helps us to construct a family of cir-
cuits. The designed circuits have a flexible depth and number
of qubits, but the total number of quantum gates is always
O(mn). These proposals can be used as an important subrou-
tine for estimating entanglement spectroscopy [38], quantum
metrology [39], and calculating the nonlinear function of the
density matrix [30]. Moreover, we have applied the UMT
to achieve exponential error suppression for quantum error
mitigation and numerically found that our circuits still work in
the noise situation of the global depolarizing channel. Notice
that a recent work [40] estimated the MT with randomized
measurement and further reduced the overhead of qubits [41].
However, the number of depths remains the same as in the
qubit-optimal method [30]. Our algorithm also gives an alter-
native for the quantum parts in [40].

There are two proposals involving dual-state purification
[16,33], in which only the single ancillary qubit and the im-
plementation of the dual channel are required. The related
framework utilizes the qubit reset technique to reduce the
number of qubits [33] compared with our circuit for s = 1.
However, the circuit depth is still O(m). Our family of circuits
provides alternatives for reducing the circuit depth under a
decrease in the number of qubits. In general, depth is a more
important index than qubit overhead for a quantum circuit. It
is also worth remarking that our approaches utilize the ancil-
lary system to estimate Tr(Oρm). For m = 2, a well-known
destructive SWAP test [42,43] achieves the same goal without
ancillary qubits and, at the same time, also reduces the circuit
depth to a constant. However, it requires measuring multiple
qubits, which may increase the measurement overhead.
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Notably, we have dealt with the problem for an arbi-
trary positive integer m. Estimating a nonlinear function of
quantum states is also of fundamental and practical interest.
For instance, the fidelity involves a square root of a quan-
tum state [44], while the Tsallis entropies are defined by
ST

α (ρ) = 1
1−α

[Tr(ρα ) − 1] for α ∈ (0, 1) ∪ (1,∞) [45]. Al-
though direct estimation is hard on a quantum computer, a
hybrid quantum-classical framework [46] makes the compu-
tation plausible by combining quantum state learning [47] and
the approximation of fractional powers. The core idea is to
minimize the quantum purity, which involves an estimation
of MT. Thus, our proposals can be generalized to calculate a
nonlinear function of quantum states in a roundabout way.

Several interesting issues should further be investigated in
the near future. The first one is to simulate the effects of differ-
ent types of noise in the circuit implementation of estimating
Tr(Oρm) such as the amplitude-damping and phase-damping
channels. It would also be interesting to explore circuit
structures that reduce the width and depth simultaneously.
However, for the calculation of MT estimation, the qubit-
depth trade-off shows that the circuit depth and width are
complementary computational resources. In particular, a re-
duction in circuit depth is often accompanied by an increase
in width and vice versa. Currently available quantum com-
putation devices often have a small number of qubits and
small circuit depth. Thus, from the view of computational
resources the circuit depth and width should be reduced as
much as possible in quantum algorithm design. Due to the
friendly decomposition of the cyclic permutation, the circuit
depth in our algorithms is reduced coincidentally, although the
number of ancilla qubits is increased in a control range. Our
results may highlight further areas for investigating the depth
reduction for general quantum circuits.
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APPENDIX A: THE PROOF OF THEOREM 1

Theorem 1 can be proved in a way similar to the one
given in [27] by starting with the s-qubit GHZ states. Suppose
we have efficiently prepared an s-qubit GHZ state |GHZs〉 =

1√
2
(|0〉⊗s + |1〉⊗s) using a constant-depth quantum circuit

[27]. Equation (2) provides a direct way to estimate MT by
calculating the real part Re[Tr(S(m)ρ (n,m) )] and the imaginary
part Im[Tr(S(m)ρ (n,m) )], where ρ (n,m) = ρa1 ⊗ ρa2 ⊗ · · · ⊗ ρam

is an arrangement of m states {ρ1, ρ2, . . . , ρm}. Due to the
equivalence of Propositions 1 and 2, here, we complete the
proof according to the circuits from only Proposition 1.

UMT estimation implements (m − 1)n = O(mn) con-
trolled SWAP gates on an initial state �0 = |GHZs〉〈GHZs| ⊗
ρ (n,m), giving rise to the state

�1 = 1
2

(
�

(1)
1 + �

(2)
1 + �

(3)
1 + �

(4)
1

)
, (A1)

where

�
(1)
1 = |0〉〈0|⊗s ⊗ ρ (n,m), (A2)

�
(2)
1 = |0〉〈1|⊗s ⊗ ρ (n,m)(S(m) )†, (A3)

�
(3)
1 = |1〉〈0|⊗s ⊗ S(m)ρ (n,m), (A4)

�
(4)
1 = |1〉〈1|⊗s ⊗ S(m)ρ (n,m)(S(m) )†. (A5)

Next, we measure the s ancillary qubits in the basis of the
Pauli operator σx and record Qi = 0 or Qi = 1, i = 1, . . . , s
with respect to the measurement outcomes |+〉 = 1√

2
(|0〉 +

|1〉) and |−〉 = 1√
2
(|0〉 − |1〉), respectively. After one time

measurement, obtaining a bit string (Q1 · · ·Qi · · ·Qs), Qi ∈
{0, 1}, means that the state of the ancillary registers has
collapsed to |Q1〉 ⊗ · · · ⊗ |Qi〉 ⊗ · · · ⊗ |Qs〉, where |Qi〉 =

1√
2
(|0〉 + (−1)Qi |1〉).
The probability of obtaining a bit string (Q1 · · ·Qi · · ·Qs)

is given by

Pr(Q1 · · ·Qs) = Tr[MQ1···Qs�1]

= 1
2

(
Tr

[
MQ1···Qs�

(1)
1

] + Tr
[
MQ1···Qs�

(2)
1

]
+ Tr

[
MQ1···Qs�

(3)
1

] + Tr
[
MQ1···Qs�

(4)
1

])
,

where the measurement operator

MQ1···Qs =
[

s⊗
i=1

|Qi〉〈Qi|
]

⊗ I. (A6)

Hence, we have

Tr
[
MQ1···Qs�

(1)
1

] = Tr[MQ1···Qs |0〉〈0|⊗s ⊗ ρ (n,m)] = 1

2s
,

Tr
[
MQ1···Qs�

(4)
1

] = Tr[MQ1···Qs |1〉〈1|⊗s ⊗ ρ (n,m)] = 1

2s
,

Tr
[
MQ1···Qs�

(2)
1

] = (−1)
∑s

i=1 Qi

2s
Tr[ρ (n,m)(S(m) )†],

Tr
[
MQ1···Qs�

(3)
1

] = (−1)
∑s

i=1 Qi

2s
Tr(S(m)ρ (n,m) ).

Now the probability takes the form

Pr(Q1 · · ·Qs) = Tr[MQ1···Qs�1]

= 1 + (−1)
∑s

i=1 Qi Re[Tr(S(m)ρ (n,m) )]

2s
. (A7)

Thus, the mean of random variable Q̂ = (Q1, . . . ,Qs) is

E[Q̂] =
∑

Qi∈{0,1}
Pr(Q1 · · ·Qs)(−1)

∑s
i=1 Qi

=
∑

Qi∈{0,1}

(−1)
∑s

i=1 Qi + Re[Tr(S(m)ρ (n,m) )]

2s

= Re[Tr(S(m)ρ (n,m) )], (A8)
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where in the last equality we have utilized the property∑
Qi∈{0,1}(−1)

∑s
i=1 Qi = 0. The variance of Q̂ is given by

Var[Q̂] = E[Q̂2] − (E[Q̂])2

= 1 − {Re[Tr(S(m)ρ (n,m) )]}2. (A9)

Given a sample of size N , we consider N independent ran-
dom variables Q̂(1), . . . , Q̂( j), . . . , Q̂(N ), where each Q̂( j) =
(Q̂( j)

1 , . . . , Q̂( j)
i , . . . , Q̂( j)

s ), Q̂( j)
i ∈ {0, 1} for j = 1, . . . ,N and

i = 1, . . . , s, corresponding to one measurement resulting
from running the above circuit one time. The mean of Q̂ is
then estimated by the sample mean,

〈Q̂〉 =
N∑
j=1

Q̂( j)

N . (A10)

Let ε ∈ (0, 1) be the precision and δ be a constant such that
δ ∈ (0, 1). From Hoeffding’s inequality [34] we have

Pr(|〈Q̂〉 − E[Q̂]| � ε/2) � 1 − δ, (A11)

and the sample complexity N = O(ε−2 ln(δ−1)).
Similarly, we implement a phase gate (mapping |0〉 → |0〉

and |1〉 → ι|1〉, ι = √−1) on each ancillary qubit before tak-
ing the measurement to obtain the estimation of the imaginary
part. For the random variable R̂ we find a similar result,

Pr(|〈R̂〉 − E[R̂]| � ε/2) � 1 − δ, (A12)

where the expectation value E[R̂] = Im[Tr(S(m)ρ (n,m) )] and
the variance Var[R̂] = 1 − {Im[Tr(S(m)ρ (n,m) )]}2. We define
V̂ = {Q̂, R̂}. The mean of V̂ is an estimation of the MT
and satisfies |〈V̂ 〉 − E[V̂ ]| � ε, where the mean E[V̂ ] =
Tr(ρ1 · · · ρm). The variance of V̂ is given by Var[V̂ ] = 1 −
[Tr(ρ1 · · · ρm)]2.

APPENDIX B: THE PROOF OF THEOREM 2

We observe that the numerator of Eq. (4) is

Tr(Oρm) = Tr(Õ(i)S(m)ρ ⊗ · · · ⊗ ρ), (B1)

where the observable Õ(i) = I ⊗ · · · O(i) ⊗ · · · ⊗ I and O(i)

denotes the operator O acting on the ith register. Let O =∑No
k=1 akPk , ak ∈ R, be an efficient decomposition of O, where

Pk are tensor products of Pauli operators. It is straightforward
to show that the trace Tr(Oρm) is a linear combination of No

MT estimations,

Tr(Oρm) =
No∑

k=1

akTr(Pkρ
m) (B2)

=
No∑

k=1

akTr
[
P(i)

k S(m)(ρ ⊗ · · · ⊗ ρ)
]
. (B3)

The real and imaginary parts of Tr(Oρm) can be estimated
separately by using a similar circuit procedure. Thus, we here
consider the estimation of only the real part,

Re[Tr(Oρm)] =
No∑

k=1

akRe
{
Tr

[
P(i)

k S(m)(ρ ⊗ · · · ⊗ ρ)
]}

.

(B4)

After implementing the sequences of controlled SWAP

gates, we perform a controlled Pk on an arbitrary register stor-
ing state ρ. Theorem 1 calculates Re{Tr[P(i)

k S(m)(ρ ⊗ · · · ⊗
ρ)]} by producing a random variable Ŵk that can be calculated
by using O(ε−2

k log(δ−1)) repetitions of a quantum circuit
(designed using Propositions 1 and 2) consisting of O(mn)
controlled SWAP gates such that

Pr{|〈Ŵk〉 − Re[Tr(Pkρ
m)]| � εk} � 1 − δ, (B5)

where εk ∈ (0, 1), δ ∈ (0, 1), and 〈Ŵk〉 is the sample mean of
variable Ŵk . The variance is Var[Ŵk] = 1 − |Re[Tr(Pkρ

m)]|2.
Let Ŵ = ∑No

k=1 akŴk be a new random variable. The mean of
variable Ŵ has the form

E[Ŵ] =
No∑

k=1

akE[Ŵk] =
No∑

k=1

akRe[Tr(Pkρ
m)]. (B6)

Its variance is given by

Var[Ŵ] =
No∑

k=1

|ak|2Var[Ŵk]

=
No∑

k=1

|ak|2[1 − |Re[Tr(Pkρ
m)]|2]

�
No∑

k=1

|ak|2, (B7)

where the last inequality is due to the fact that Ŵ1, . . . ,ŴNo are
independent and each quantity Var[Ŵk] � 1. We remark that
the quantity (

∑No
k=1 |ak|)2 indicates the spread of data from

mean E[Ŵ]. Again, the mean E[Ŵ] can be calculated by
repeating the procedure N f times, such that E[Ŵ] ≈ 〈Ŵ〉 =

1
N f

∑N f

l=1 Ŵ (l ), where Ŵ (l ) is the measurement result on the
lth iteration. Moreover, the error of the estimator is

|〈Ŵ〉 − Re[Tr(Oρm)]| = |〈Ŵ〉 − E[Ŵ]|

=
∣∣∣∣∣

No∑
k=1

ak{〈Ŵk〉 − Re[Tr(Pkρ
m)]}

∣∣∣∣∣
�

No∑
k=1

|ak|εk < ε, (B8)

where in the last inequality we set ε1 = · · · = εk =
ε/

∑No
k=1 |ak| and the last equation utilizes Eq. (B5). Using the

same trick, we can estimate the imaginary part.
For k runs from 1 to No, the sample complexity is

N f =
No∑

k=1

1

ε2
k

ln
1

δ
= No

( ∑No
k=1 |ak|

)2

ε2
ln

1

δ

= O
(

Noc2

ε2
ln

1

δ

)
. (B9)
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Therefore, the total number of copies of ρ is O( mNoc2

ε2 ln 1
δ
).

We set the quantity
∑No

k=1 |ak| = O(c) bounded by a constant

c. Returning to Eq. (B7), the variance is also bounded since∑No
k=1 |ak|2 � (

∑No
k=1 |ak|)2.
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