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Two-qubit gate in neutral atoms using transitionless quantum driving
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A neutral-atom system serves as a promising platform for realizing gate-based quantum computing because of
its capability to trap and control several atomic qubits in different geometries and the ability to perform strong,
long-range interactions between qubits; however, the two-qubit entangling gate fidelity lags behind competing
platforms such as superconducting systems and trapped ions. The aim of our work is to design a fast, robust,
high-fidelity controlled-Z (CZ) gate, based on the Rydberg-blockade mechanism, for neutral atoms. We propose a
gate procedure that relies on simultaneous and transitionless quantum driving of a pair of atoms using broadband
lasers. By simulating a system of two interacting cesium atoms, including spontaneous emission from excited
levels and parameter fluctuations, we yield a Rydberg-blockade CZ gate with fidelity 0.9985 over an operation
time of 0.12 µs. Our gate procedure delivers CZ gates that are superior than the state-of-the-art experimental CZ

gate and the simulated CZ gates based on adiabatic driving of atoms. Our results show that our gate procedure
carries significant potential for achieving scalable quantum computing using neutral atoms.
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I. INTRODUCTION

The aim of this work is to develop a procedure for im-
plementing a high-performance entangling gate on a pair
of neutral alkali atoms trapped in an optical lattice. Our
work is important because neutral-atom quantum computing
is one of the most promising architecture of quantum comput-
ing [1–5]. Popular two-qubit gates for atomic qubits utilize
the strong dipole-dipole interaction between Rydberg-excited
atoms [6], and such “Rydberg-blockade” gates have been
explored in both theory [1,5,7,8] and experiments [9–11].
Gate performance is typically quantified in terms of the
Bell-state preparation fidelity (Fg), which is indicative of the
quantum-algorithmic performance, and gate-implementation
time (Tg), which is required to be short for avoiding deco-
herence and yielding high clock rates [12]. We propose a
procedure for designing time-dependent functions for laser
pulses driving the pair of atoms simultaneously and thereby
effecting the controlled-Z (CZ) gate. In the presence of spon-
taneous emission from excited levels of these atoms and major
technical imperfections, our procedure results in a simulated
Rydberg-blockade CZ gate with higher Fg and lower Tg than
state-of-the-art CZ implementations [9,11].

The promise of neutral atoms for quantum computing
materialized with the advent of Rydberg-blockade gate pro-
cedures [7] and the capability to trap multiple atoms almost
deterministically using optical tweezers [13,14]. The potential
of this platform stems from its inherent ability to control
several qubits coherently in different geometries [15,16] and
to facilitate long-range interactions between qubits. Quan-
tum information is encoded either in the long-lived hyperfine
levels of the ground state (“ground-ground” [4]) or in a
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superposition of ground and highly excited Rydberg states
(“ground-Rydberg” [4]), where all qubits are identical and can
be well isolated from their environment. Experiments have al-
ready achieved Fg > 0.99 (“two nines”) for single-qubit gates
[15,16], accompanied by high efficiencies for state initializa-
tion and detection [10]. In addition to performing universal
computation, this platform has the ability to simulate quantum
dynamics [17,18]. Industrial efforts towards achieving com-
mercial quantum computing is rapidly intensifying [19–22].

Although neutral atoms deliver a versatile platform for
quantum technologies, scalable quantum computing using
ground-ground encoding suffers from low Fg (below two
nines) for two-qubit gates [9,11]. In contrast, ground-Rydberg
encoding delivers two-nine fidelity but suffers from low co-
herence [10]. Neutral-atom two-qubit gate fidelities are far
behind competing platforms such as superconducting sys-
tems [23,24] and ion traps [25], and they do not even reach
the required thresholds for error-correcting codes [1]. One
promising method for delivering “three-nine” two-qubit gate
fidelity (Fg > 0.999) is to employ adiabatic pulses with opti-
mal parameters [26], but such gates are fundamentally slow.
Here we propose a best-of-both-worlds approach using short-
cut to adiabaticity [27] for designing pulses that yield fast,
robust, and high-fidelity CZ gates for atomic qubits.

We adapt the transitionless quantum driving (TQD)
technique [28], commonly used for achieving shortcut to adi-
abaticity, to design time-dependent laser pulse sequences that
yield a high-performing Rydberg-blockade gate. We consider
both one-photon and two-photon driving of atoms between
their ground and Rydberg levels. Single-photon driving is
challenging because it requires an ultraviolet laser, which is
extremely sensitive to Doppler broadening [29]. Two-photon
driving circumvents these problems but requires stronger driv-
ing and yields lower Fg for adiabatic CZ gates [26]. Our
method for pulse design applies both one- and two-photon
cases, and combines our modified TQD technique with a
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pulse-concatenation technique [9] to yield fast, high-fidelity
two-qubit gates.

We numerically integrate the quantum master equation to
simulate the Rydberg-blockade CZ gate on cesium (Cs) atoms
including spontaneous emission and major technical imper-
fections. Our analysis predicts Fg ≈ 0.998 over Tg = 0.12 µs
for one-photon driving, whereas, for two-photon driving, we
predict Fg ≈ 0.975 over Tg = 0.24 µs. Our proposed gates
outperform the recent experimental CZ gate on Cs atoms,
for which Fg ≈ 0.955 over Tg = 0.8 µs [11]. Our procedure
delivers gates that are at least twice as fast as the adiabatic CZ

gates [26], while keeping Fg and maximum laser intensities al-
most equal. Moreover, to achieve a noiseless (closed-system)
fidelity of 0.99, laser intensity required by the adiabatic CZ

gate increases five times faster than our CZ gate for decreasing
Tg. Thus, our gate procedure is potentially superior to exist-
ing alternatives and paves the way for scalable neutral-atom
quantum computing.

Our paper is organized as follows. Our background in
Sec. II describes CZ-gate implementation on atomic qubits,
followed by proposals for adiabatic CZ gates and techniques
to characterise these gates in simulations. Additionally, in
Sec. II we elaborate on pertinent background for TQD. We
then explain our approach in Sec. III for computing time-
dependent Rabi frequency and detuning functions for laser
pulses, which, when applied to a pair of Cs atoms, yield
fast, high-fidelity CZ gates. In Sec. IV we derive expressions
for these pulse functions and present numerical results for
performances of our gates compared with those obtained by
the adiabatic procedure [26]. Then we analyze our results and
their implications in Sec. V and conclude in Sec. VI.

II. BACKGROUND

In this section we explain key concepts and methods nec-
essary for designing and characterizing a two-qubit gate in
neutral atoms. We begin by elaborating the pertinent back-
ground on implementing, both in experiment (Sec. II A) and
in simulation (Sec. II B), CZ gates on atomic qubits using the
Rydberg-blockade phenomena. Then we discuss numerical
techniques for simulating such gates in the presence of sponta-
neous emission and parameter fluctuations (Sec. II C). Finally,
we explain transitionless quantum driving and its application
to quantum control (Sec. II D).

A. Implementation of CZ gates

Here we describe state-of-the-art CZ implementations on
ground-ground qubits of alkali atoms. Our focus are CZ gates
that are effected by the Rydberg-blockade interaction and are
thus native to Rydberg atoms, which means this gate is im-
plemented in the system in a natural way and is universal. We
begin by elaborating on the Rydberg-blockade CZ gate and the
“standard procedure” for realizing this gate. Then we explain
the gate procedure used for achieving state-of-the-art CZ gates
on alkali atoms. Finally, we summarize the experimental im-
plementation on Cs atoms and state the typical magnitudes of
experimental parameters, which will be used in our numerical
simulation.

Among different techniques for constructing two-qubit
gates [5,30], Rydberg-blockade gates are the most popular
because their fidelities are insensitive to the exact magnitude
of the dipole coupling strength and are less susceptible to
external motional degrees of freedom [7]. The dipole-dipole
interaction between two Rydberg atoms, which is quantified
by the blockade shift B [31], comes into effect only for an
initial two-qubit state |11〉 and shifts its phase when this
interaction is stronger than the driving lasers. This “Rydberg-
blockade condition” leads to a negligible excitation of the
two-atom state |rr〉 throughout the gate implementation. The
strong Rydberg-Rydberg interaction yields a CZ gate, up to
some single-qubit phase [9,32], which is robust against the
variation in B and consequently in the interatomic separation.

The standard procedure for implementing a fast Rydberg-
blockade gate employs a sequential driving of the two atoms
[7]. The procedure commences with preparing two atoms in
a superposition of the two-qubit computational basis states
{|00〉, |01〉, |10〉, |11〉}, where one atom is treated as control
and the other as target. The transition between |1〉 and |r〉
of each atom is effected by individual addressing with on-
resonant narrow-band optical pulses. The procedure involves
the following sequence: π pulse on control atom, followed
by a 2π pulse on target atom and finally another π pulse on
control atom. This sequence, in the ideal case, yields

CZ := diag(1, 1, 1,−1), (1)

up to a global phase π . The most recent implementation of
the CZ gate on Cs atoms using this procedure yields Fg = 0.89
over Tg = 1.12 µs [32].

As opposed to this standard procedure, the state-of-the-art
procedure for implementing the CZ gate is based on simultane-
ous excitation of both atoms [9]. This procedure is developed
by identifying sectors, generated by block-diagonalizing the
Hamiltonian matrix, in the unitary dynamics of the system
corresponding to the four computational basis states. The
|1〉 ↔ |r〉 transition of both atoms is driven through a two-
photon process of global off-resonant narrow-band optical
pulses. By choosing appropriate pulse parameters, a 2π pulse
effects a full Rabi cycle for |11〉, but partial cycles for |01〉
and |10〉. A sequence of two such identical 2π pulses, with
an appropriate relative phase shift of φR, yields a controlled-
phase gate

CZφ := diag(1, eiφ, eiφ, ei(2φ+π ) ), (2)

which is equal to the standard CZ gate (1) up to a single-qubit
phase φ. Based on this procedure, recent experiments yield
Fg � 0.974 for rubidium atoms [9] and Fg ∼ 0.955 for Cs
atoms [11].

In the state-of-the-art experiment [11], which we elaborate
here in detail, cold 133Cs atoms at temperature Ta = 5 µK are
trapped in a 7×7 site optical lattice with period d = 3 µm.
At this temperature, the localization parameters of the atoms
in the transverse (on the lattice) and axial (perpendicular to
the lattice) directions of the trap are σx = σy = 0.14 µm and
σz = 0.75 µm, respectively. A qubit is encoded in the hyper-
fine clock states of the atom,

|0〉 := |6s1/2, f = 3, m f = 0〉,
|1〉 := |6s1/2, f = 4, m f = 0〉, (3)
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with a frequency separation of 9.2 GHz, and T1 = 4 s and
T ∗

2 = 3.5 ms. The transition between |1〉 and the Rydberg
state |r〉 = |75s1/2, mj = −1/2〉 is carried out using a two-
photon excitation via an intermediate state

|p〉 := |7p1/2〉, (4)

with a radiative lifetime of τ7p1/2
= 0.155 µs.

A CZφ gate (2) based on the simultaneous-driving proce-
dure is implemented on a pair of atoms separated by 3d .
Each atom is irradiated by two lasers, which are focused
on the atom using acousto-optic deflectors. The off-resonant
two-photon transition between |1〉 and |r〉 is realized using a
blue-detuned (B) σ+ laser of wavelength λB = 459 nm for
|1〉 ↔ |p〉 and a red-detuned (R) σ− laser of wavelength λR =
1040 nm for |p〉 ↔ |r〉. We denote laser pulses for two- and
one-photon excitation by � = B,R, and � = 0. The detuning
from |p〉 is high (≈760 MHz) to reduce scattering. These two
beams counterpropagate along the trap’s axial direction with
an effective wave vector

kq
eff := 2π/λB − 2π/λR = 7.64 µm−1, (5)

where the superscript “q” denotes the two-photon transi-
tion. The beam waist (1/e2 intensity radius) of each laser is
wB(R) = 3 µm, which results in negligible Rabi frequencies at
the neighboring sites. The effective Rabi frequency for each
atom is 1.7 MHz and B/2π = 3 MHz for the atom pair, which
violates the Rydberg-blockade condition.

The performance of the gate is measured in terms of Fg

and Tg. All atoms in the trap are initially prepared in state
|1〉 by optical pumping and then undergo π/2 rotations by
a global microwave pulse of frequency 9.2 GHz. The CZφ

gate is then implemented by using Rydberg-excitation lasers
acting on both atoms with individual addressing. The extra
phase of φ is compensated by introducing a Stark shift to |1〉
using the blue-detuned σ+ laser. A final π/2 rotation of the
target qubit is effected by a combination of the global mi-
crowave pulse and the focused σ+ laser. This sequence of one-
and two-qubit operations prepares a Bell state with fidelity
Fg ∼ 0.955, which is estimated by measuring populations of
|00〉 and |11〉 and the coherence between them. This value
of fidelity is reported after removing state-preparation-and-
measurement (SPAM) errors and errors in single-qubit op-
erations. Additionally, this gate implementation reports Tg =
0.8 µs. This completes our explanation of this state-of-the-art
experiment [11].

B. Adiabatic Rydberg-blockade gate in simulation

In this subsection we provide salient background on how
a two-qubit neutral-atom gate is achieved by employing
adiabatic Rydberg blockade. First, we briefly discuss two
proposals for adiabatic population transfer using off-resonant
laser pulses acting on a single atom. Next, we explain how
such a population transfer, along with Rydberg-blockade in-
teraction, realizes a CZφ gate in a pair of atoms. We then
present the Hamiltonian whose evolution generates this gate.
Finally, we state the estimated performance of this gate based
on numerical simulation.

Two common techniques for adiabatic population transfer
in a two-level atom are adiabatic rapid passage (ARP) and

stimulated Raman adiabatic passage (STIRAP) [33]. The ARP
technique, as first studied in the field of nuclear magnetic
resonance, involves slowly sweeping the frequency of the
electromagnetic field (ω) or the atomic energy separation (ω0)
across resonance [34]. The condition for this phenomena is
[35]

	1/T2 � d

dt
|ω − ω0| � 	2

1, (6)

where T2 is the transverse relaxation time and 	1 is the Rabi
frequency for the field. On the other hand, STIRAP is a two-
photon excitation process relying on a pair of off-resonant
coherent pulses, which are partially overlapping and applied
counterintuitively on the atom [36].

Population transfer, via ARP, between |1〉 and |r〉 is typ-
ically executed by a slowly varying chirped laser pulse
applied for a duration T [37]. This Rydberg-excitation pulse,
labeled by � = 0, is associated with time-dependent Rabi
frequency 	eiϕ and detuning � satisfying the adiabatic
condition

�̇ �
√

	2 + �2/2π, � := tan−1 	/�, ∀t ∈ [0, T ], (7)

for � the mixing angle. The interaction-picture Hamiltonian
(h̄ ≡ 1) for this process is

Hd(t )

h̄
= 	

2
[eiϕ|1〉〈r| + e−iϕ|r〉〈1|] + �

2
[|r〉〈r| − |1〉〈1|], (8)

where 	 incorporates the slowly varying envelope of the pulse
and � describes its chirping.

In STIRAP, a pair of overlapping laser pulses is used to
drive the |1〉 ↔ |r〉 transition by virtually employing an inter-
mediate state |p〉 [36]. One blue-detuned laser pulse driving
|1〉 ↔ |p〉 and one red-detuned laser pulse driving |p〉 ↔ |r〉,
denoted by � = B and � = R, respectively, are applied to the
atom for a total duration T . Associating the laser � with a time-
dependent Rabi frequency 	� and time-dependent detuning
��, this system is described by a Hamiltonian

Hq(t ) = 1

2
(	B|p〉〈1| + 	R|r〉〈p|) + H.c.

+ �B|p〉〈p| + �BR|r〉〈r|, (9)

where the two-photon detuning �BR := �B − �R. Using a
pair of counterintuitive and partially overlapping pulses with
two-photon resonance, this system adiabatically follows the
dark eigenstate of Hq(t ). This process yields a highly efficient
population inversion between |1〉 and |r〉, with negligible ex-
citation of |p〉. Additionally, an adiabatic elimination of |p〉,
under the condition

|�B| � |	B|, |	R|, ∀t ∈ [0, T ], (10)

yields an effective two-level description for Hq(t ) [38].
The adiabatic-gate procedure involves simultaneously driv-

ing a pair of atoms using a double pulse sequence that returns
the atoms to their initial state with conditional phase accu-
mulation [39]. This pulse sequence is symmetric about t =
Tg/2 and constructed by concatenating two adiabatic pulses,
with each applied for half the gate time, i.e., T = Tg/2. In
the two-qubit computational basis, this procedure yields a
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controlled-phase gate with the unitary operation

U (Tg) = |00〉〈00| + eiφ01 |01〉〈01| + eiφ10 |10〉〈10| + eiφ11 |11〉〈11|,
(11)

where φıj is the phase accumulated by |ıj〉 over Tg. The phases
satisfy φ01 = φ10 = π if the shapes of the two pulses in a
double-ARP sequence are identical, whereas φ01 = φ10 = 0
for a double-STIRAP sequence as |10〉 and |01〉 are dark states
with zero eigenenergies [33]. Intensities and detunings of the
lasers are carefully designed to ensure that φ11 = π , and to
consequently execute CZπ and CZ0 (= CZ) operations (2) with
double-ARP and double-STIRAP sequences, respectively. We
denote these two gates as ARP CZπ gate and STIRAP CZ gate.

In simulation, an adiabatic Rydberg-blockade gate is exe-
cuted by solving the two-atom dynamics over Tg. Typically,
the effective contribution of all ground hyperfine levels, be-
sides |0〉 and |1〉, to the dynamics is modeled as a decay
channel to a single ground state [26], which we denote as
|g〉. The two-atom system is mathematically described by the
Hamiltonian [26]

H e
B(t ) = H e(t ) ⊗ 1 + 1 ⊗ H e(t ) + B|rr〉〈rr|, (12)

where the label e = d for the one-photon case (8) and
e = q for the two-photon case (9), with ϕ = 0 and a constant
B satisfying the Rydberg-blockade condition

B � 	,	B,	R, ∀t ∈ [0, Tg]. (13)

This condition ensures that for an initial state |11〉, the two-
atom system undergoes one cycle of efficient population
transfer between |11〉 and the symmetric state

|+〉 := |1r〉 + |r1〉√
2

, (14)

with a negligible population in |rr〉, and the antisymmetric
state |−〉 := |1r〉−|r1〉√

2
being uncoupled to the rests.

The above gate procedure is predicted to yield robust and
high-fidelity adiabatic gates on a pair of neutral alkali atoms
[26,40]. Greedy optimization over pulse parameters predicts
Fg ∼ 0.98 with ARP pulses [40]. A numerical analysis of this
gate procedure, with Cs atomic parameters and decay from
excited levels, yields Fg = 0.998 over Tg = 1 µs using glob-
ally optimized STIRAP-inspired pulses [26]. Furthermore,
this analysis predicts Fg = 0.9994 over Tg = 0.54 µs for ARP
pulses. Although these gates have high fidelities, they are
fundamentally slow due to the use of adiabatic pulses.

C. Estimating fidelity in simulation

Here we discuss the typical procedures for simulating the
generation of an approximate Bell state and estimating the
state fidelity for two cases, namely, with and without tech-
nical imperfections and spontaneous emission. We use the
term “imperfections” to refer to fluctuations of laser intensity,
atomic position and detunings, which are in turn affected by
magnetic-field and temperature variations. We start by intro-
ducing the sequence of operations that prepares an ideal Bell
state and then define fidelity of a nonideal state generated by
this sequence. Next, we elaborate on the process of generating
the requisite evolution for a two-qubit operation using the two-

atom Hamiltonian. At the end, we discuss how to incorporate
parameter fluctuations into the Hamiltonian dynamics.

A Bell state is generated from the ground state |11〉 using
a sequence of single- and two-qubit gate operations. The two-
atom system is initially prepared in an equal superposition of
the computational basis states as

|ψ0〉 = (|0〉 − |1〉) ⊗ (|0〉 − |1〉)

2
(15)

by applying Hadamard (H) gates to each of the qubits in |11〉,
which are denoted as control and target, respectively. The final
state |ψf〉, which ideally is a Bell state [12]

|βıj 〉 := (|0, j 〉 + (−1)ı |1, 1 − j〉)/
√

2, ∀ı, j ∈ {0, 1},
(16)

is then prepared from |ψ0〉 by first applying a controlled-phase
gate and then another H gate to the target qubit. Particularly,
ideal CZ and CZπ gates yield the Bell states |β11〉 and |β00〉,
respectively [26].

The Bell-state preparation fidelity is defined as the overlap
between the final two-atom state |ψf〉 and the corresponding
ideal Bell-state |βıj 〉. Under assumptions of ideal and instan-
taneous H gates and nonideal controlled-phase gate, which
incorporates only the fundamental imperfection due to finite
B, the intrinsic fidelity of the given controlled-phase gate is

F 0
g := F 0

ıj = |〈βıj |ψf〉|2, (17)

where F 0
ıj is the intrinsic Bell-state preparation fidelity. Fur-

thermore, the realistic fidelity Fg is measured in terms of the
realistic Bell-state preparation fidelity Fıj as

Fg := Fıj = 〈βıj |ρf|βıj 〉, (18)

where ρf denotes the final density matrix of the two-atom
system obtained via nonunitary dynamics in the presence of
decay and imperfections. In the following, we explain how
realistic gate operations are derived from open-system evolu-
tions.

The evolution of a time-dependent Hamiltonian, which
represents the dynamics of a coupled two-atom system,
over time Tg yields a two-qubit entangling gate. For an
interaction picture Hamiltonian H , two-atom density ma-
trix ρ(t ) and a “superoperator” L [ρ(t )], the dynamics of
a Rydberg-blockade gate is simulated by integrating the
two-atom Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
equation [26,41–43]

dρ(t )

dt
= i[ρ(t ), H] + L [ρ(t )] ⊗ 1 + 1 ⊗ L [ρ(t )]. (19)

The superoperator for all decay channels is

L [ρ(t )] :=
∑
j,k< j

c jkρ(t )c†
jk − 1

2
{c†

jkc jk, ρ(t )}, (20)

where {,} denotes an anticommutator and the collapse opera-
tor

c jk := √
b jkγ j |k〉〈 j| (21)

denotes the radiative decay channel from a higher energy state
| j〉 to a lower energy state |k〉 with a decay rate b jkγ j . The
total decay rate from | j〉 is γ j and the coefficient b jk , called
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branching ratio, denotes the fraction of decay to one of the
lower energy states. Particularly, for each atom, the relevant
high-energy states are |r〉 and |p〉 with decay rates γr and γp,
respectively, where the latter has a dominant contribution to a
two-photon Rydberg excitation process [9,32].

To account for imperfections in quantum gate operations,
Monte Carlo (MC) simulation of the GKSL equation (19)
is performed with realistic parameter fluctuations [41–43].
These imperfections include thermal motion of atoms in traps,
laser (intensity and phase) fluctuation, Doppler dephasing of
Rydberg state, magnetic field fluctuations and dynamic Stark
shifts of atomic energy levels. A detailed analysis of these
technical imperfections shows that the dominant gate errors
are atomic motion and dephasing, which arise predominantly
due to nonzero atomic temperature [32]. Below we describe
modeling of fluctuations in the Rabi frequency and detuning
of each Rydberg-excitation laser, and finally explain how to
estimate fidelity from MC simulation.

The two major sources of Rabi-frequency fluctuations
are atomic temperature and laser-intensity fluctuations. The
atomic position r := (x, y, z) at each trap site varies according
to normal distributions as [42]

x ∼ N
(
0, σ 2

x

)
, y ∼ N

(
0, σ 2

y

)
, z ∼ N

(
0, σ 2

z

)
, (22)

where σx, σy, and σz depend on trap parameters and atomic
temperature. These variations, along with the minimum beam
waist w� of the Rydberg-excitation laser �, lead to fluctuations
in the spatial form factor [32,42]

p�(r) = e
− x2+y2

w2
� (1+z2

/L2
� )√

1 + z2
/L2

�

(23)

of the Rabi frequency, where the corresponding Rayleigh
length L� := πw2

�/λ�. Additionally, a laser-intensity fluctuations
is modeled as the factor [41–43]

f� ∼
√

1 + N
(
0,

(
σ i

�

)2)
, (24)

with σ i
� being the standard deviation of intensity for the laser

�.
The dephasing of the Rydberg state relative to the ground

state arises mainly due to the Doppler effect and magnetic-
field variation [44]; this dephasing process is modeled as
fluctuations in laser detuning [42]. For atomic mass Ma and
Boltzmann constant kB, the dephasing rate due to the Doppler
effect is [42–44]

σ D,e =
√

2
(
T D,e

2

)−1
:=

√
2

(√
2Ma/kBTa

ke
eff

)−1

, (25)

where kd
eff := 2π/λ0. In the presence of a magnetic field fluctu-

ating with a standard deviation σB and a Rydberg state with
magnetic quantum number mj , the dephasing rate [42,44]

σ m,e =
√

2
(
T m,e

2

)−1
:=

√
2

(
23/2π h̄

|grmj − g1m f |µBσB

)−1

, (26)

for g1m f = 0 (3). These two decoherence processes are then
modeled as random shifts [42,43]

�D ∼ N (0, (σ D,e)2), �m ∼ N (0, (σ m,e)2) (27)

of the Rydberg-level detuning for Doppler sensitivity and
magnetic sensitivity, respectively. Other sources for this de-
coherence include laser phase noise [43] and a finite value for
γr [32], where the latter is already included in crk (21).

MC simulation of a quantum gate involves solving the
GKSL equation (19) multiple times using different values for
Hamiltonian coefficients, and reporting the average solution
[41–43]. To account for atomic-position and laser-intensity
fluctuations in each MC run, the time-dependent Rabi fre-
quency function for each laser � is multiplied by two values
sampled from p�(r) and f�. Furthermore, random samples
from �D and �B are added to the time-dependent detuning
in order to include dephasing effects in every MC run. The
estimated fidelity in the presence of spontaneous emission and
these imperfections is the average of fidelities calculated in all
MC runs by solving the corresponding GKSL equation and
evaluating Fg (18).

D. Transitionless quantum driving

TQD is an alternative to using adiabatic pulses and narrow-
band on-resonant pulses for efficient population transfer
between atomic energy levels [28,45]. In this subsection, we
summarize relevant background on TQD and its applications
to quantum control. We begin by introducing the control
Hamiltonian and the TQD Hamiltonian for a general quantum
system. Next, we provide expressions of the control and TQD
Hamiltonians for a two-level system and discuss possible ex-
perimental realizations for this TQD Hamiltonian. Finally, we
state examples of quantum-control problems that employ this
technique.

In TQD the quantum system follows the instantaneous
eigenstates of an adiabatic Hamiltonian for all integration
times. Given an adiabatic H (t ) with instantaneous eigen-
states {|E (t )〉} and corresponding eigenenergies {ε(t )}, the
transitionless dynamics is achieved by adding a TQD control
Hamiltonian [28]

Hc(t ) = i
∑

E

(|Ė (t )〉〈E (t )| − 〈E (t )|Ė (t )〉|E (t )〉〈E (t )|) (28)

to H (t ). The resultant TQD Hamiltonian

Ȟ (t ) = H (t ) + Hc(t ) (29)

nonadiabatically drives the system along an adiabatic path of
H (t ) by effectively canceling the transitions between {|E (t )〉}.
This technique, which we refer to as the “TQD technique,” is
often used as a quantum control tool for speeding up adiabatic
processes.

The TQD technique has been applied to an ARP Hamil-
tonian to speed up population inversion between ground and
excited levels of a two-level system [46]. To this end, the
control Hamiltonian is calculated using two eigenstates. For
the two-level atomic system described by Hd(t ) (8), the eigen-
states are

|E+(t )〉 = cos �/2|1〉 + eiϕ sin �/2|r〉,
|E−(t )〉 = − sin �/2|1〉 + eiϕ cos �/2|r〉, (30)

and their corresponding eigenenergies are

ε±(t ) = ±√
�2+	2/2. (31)

012605-5



ARCHISMITA DALAL AND BARRY C. SANDERS PHYSICAL REVIEW A 107, 012605 (2023)

Assuming a time-independent ϕ and assigning 	c = �̇, the
control Hamiltonian (28) is then derived as

Hd
c (t ) = −ieiϕ 	c

2
|1〉〈r| + H.c. (32)

In a basis spanned by {|E±(t )〉}, only the off-diagonal terms of
this Hamiltonian are nonzero, which signifies that the impact
of Hd

c (t ) is to counteract the nonadiabatic couplings of the
eigenstates of Hd(t ).

The TQD Hamiltonian for the two-level system is then
calculated by adding Hd

c (t ) to Hd(t ) and is experimentally
realized by either using an additional laser [46] or modifying
the existing laser [47]. Mathematically, the TQD of a two-
level system is represented by

Ȟd(t ) = eiϕ

2
(	 − i	c)|1〉〈r| + H.c. + �

2
[−|1〉〈1| + |r〉〈r|],

(33a)

Uθ (t )−−→ 	′

2
[eiϕ|1〉〈r| + e−iϕ|r〉〈1|] + �′

2
[|r〉〈r| − |1〉〈1|],

(33b)

where

	′ :=
√

	2 + 	2
c, �′ := � + θ̇ , (34)

for θ := tan−1 	c/	, and Eq. (33b) is derived from
Eq. (33a) by appropriate unitary transformation using
Uθ (t ) := diag(1, eiθ ). The implementation of Eq. (33a)
employs two lasers with the same frequency, orthogonal
polarization and different time-dependent functions for
intensities, whereas Eq. (33b) is realized by modifying the
time-dependent intensity and detuning of the original laser.
A geometric interpretation for TQD of a similar two-level
system, i.e., a spin 12 particle in a rotating magnetic field,
using trajectories on a Bloch sphere is also provided [48].

Quantum control based on TQD has been used to trans-
fer population between atomic states, create entangled states
and design quantum gates in short times [49–54]. A par-
ticular experiment demonstrates a robust population transfer
in cold neutral atoms using TQD STIRAP, which is faster
than conventional STIRAP [55]. This work also highlights
the speed-up limit of TQD over adiabatic driving and com-
pares the resource requirement for both processes. Another
work proposed a procedure for generating a three-qubit en-
tangled state in Rydberg atoms using TQD and ground-state
blockade mechanism [56]. Motivated by these theoretical and
experimental works, we use the TQD technique to speed up
adiabatic Rydberg-blockade gates.

III. APPROACH

In this section, we discuss our approach for designing a
CZ_φ (2) gate using our modified TQD technique and as-
sessing the gate performance. We begin by explaining our
detailed model for the two-atom system, including effects
of spontaneous emission and technical imperfections. Then
we mathematically describe our gate procedure. Finally, we
elaborate on our numerical simulation for the two-qubit gate.

FIG. 1. A pair of Cs atoms driven by detuned, broadband laser
pulses. (a) Each atom is excited to its Rydberg level |r〉 by a one-
photon excitation process with time-dependent Rabi frequency 	̃ and
detuning �̃. The decay rate γr of state |r〉 is 1/593 µs−1 with branching
ratios br0 = br1 = 1/16 and brg = 7/8. The blockade shift between the
atoms is 3 GHz. (b) Each atom is excited by a two-photon excita-
tion process, with time-dependent 	̃B and 	̃R, via the intermediate
state |p〉 and single-photon detuning �̃B. The two-photon detuning
�̃BR := �̃B − �̃R. The decay rate γr is 1/367 µs−1, and the decay rate
γp of state |p〉 is 1/0.155 µs−1 with branching ratios br0 = br1 = 1/32,
brg = 7/16 and brp = 1/2. The blockade shift between the atoms is
2 GHz. Other relevant parameters and their values are provided in
Table I.

A. Model

We adapt the model for a pair of laser-driven neutral
atoms [26] and make our model comprehensive by incorporat-
ing spontaneous emission and major technical imperfections
[11,32]. Here we first present our model for two trapped atoms
whose positions fluctuate due to nonideal trapping conditions.
For each of these atoms, we then consider two different
physical processes, namely, two types of Rydberg-excitation
processes, one for one-photon and the other for two-photon
driving. We use numerical values for the atomic and ex-
perimental parameters that are feasible with state-of-the-art
instruments; see Table I.

We consider two cold (Ta = 5 µK [11]) Cs atoms trapped
in an optical lattice at a separation � 3.4 µm and experiencing
a strong dipole-dipole interaction of strength B/2π � 2 GHz
between them. Each atom is described as a five-level system
corresponding to the qubit basis states |0〉 and |1〉 (3), effective
ground state |g〉, intermediate exited state |p〉 (4), which is
relevant only for two-photon driving, and a Rydberg state |r〉
(Fig. 1). We choose the atomic level with principal quantum
number 112 as |r〉 in our simulations, where the exact choice
for the orbital quantum number depends on the excitation
process [42]. We neglect decoherence of the ground hyperfine
levels, whose T1 and T ∗

2 are orders of magnitude greater than
other relaxation times of the system (Sec. II A), but consider
radiative decay of the excited levels |p〉 and |r〉. The posi-
tional uncertainty of each atom at each trap site follows a
three-dimensional Gaussian distribution, about the trap center,
with standard deviations σx = σy = 0.24 µm and σz = 0.92 µm
[11]. Additionally, we assume ideal optical pumping, hyper-
fine transitions, and state detection because errors from SPAM
and fast single-qubit gates are typically accounted for when
estimating fidelities in experiments [9,11,32].
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TABLE I. Atomic and experimental parameters used in our simulations.

Laser Rydberg state Rydberg blockade

Excitation Wavelength Wave vector Waist Rayleigh length Atomic level gj Lifetime B/2π Distance

One-photon λ0 = 319 nm 19.7 µm−1 w0 = 2.5 µm L0 = 61.5 µm |112p3/2, mj = 3/2〉 4/3 593 µs 3 GHz 3.05 µm
Two-photon λB = 459 nm 7.63 µm−1 wB = 3 µm LB = 61.6 µm |112d5/2, mj = 5/2〉 6/5 367 µs 2 GHz 3.4 µm

λR = 1038 nm wR = 3 µm LR = 27.2 µm

In the one-photon-excitation model for a trapped Cs atom,
the |1〉 ↔ |r〉 transition of both atoms is driven simultaneously
using an off-resonant, broadband laser, which is associated
with a time-dependent Rabi frequency 	̃(t ) and detuning
�̃(t ); see Fig. 1(a). Our model can be implemented us-
ing an ultraviolet laser of wavelength λ0 = 319 nm [29,57]
simultaneously focused on both atoms by an advanced beam-
scanning mechanism [11]. In order to safely neglect crosstalk
errors, we use a beam waist of w0 = 2.5 µm and interatomic
distance of 3.05 µm in our simulations. We consider a 5%
fluctuation of the laser intensity, σ i

0 = 0.05 (24), but neglect
phase noise because of the current experimental improve-
ments in resonant filtering [58]. A strong Rydberg blockade
with B/2π = 3 GHz is achieved between the atom pair by our
choice of

|r〉 = |112p3/2, mj = 3/2〉 (35)

with a decay rate [42] (branching ratios)

γr = 1/593 MHz (br0 = br1 = 1/16, brg = 7/8). (36)

Additionally, we simulate dephasing of |r〉 with respect to
|1〉 using T D,d

2 = 4 µs (25) and T m,d
2 = 50 µs (26), for σB =

10−6 T [32].
In the two-photon transition model, both Cs atoms are

simultaneously driven between their ground and Rydberg
states using a pair of partially overlapping laser pulses [26].
This model has been realized using narrowband pulses ap-
plied to a 2D lattice [11,32]. We describe the effect of the
blue(red)-detuned laser, having λB(R) = 459(1040) nm, on the
|1〉(|p〉) ↔ |p〉(|r〉) transition by time-dependent Rabi fre-
quency 	̃B(R)(t ) and detuning �̃B(R)(t ); see Fig. 1(b). Each of
these two Rydberg-excitation lasers is broadband with a finite
beam waist of wB(R) = 3 µm. By choosing an interatomic
distance of 3.4 µm and

|r〉 = |112d5/2, mj = 5/2〉, (37)

we simulate a strong blockade with B/2π = 2 GHz. We con-
sider spontaneous emission from the two excited levels |p〉
and |r〉, with decay rates (branching ratios) [42]

γp = 1/τ7p1/2
(bp0 = bp1 = 1/16, bpg = 7/8),

γr = 1/367 MHz (br0 = br1 = 1/32, brg = 7/16, brp = 1/2), (38)

respectively. Additional imperfections arising from laser-
intensity fluctuations, Doppler effect, and magnetic field
fluctuations are modeled using parameters σ i

B,R = 0.01 [59],

T D,q
2 = 10.5 µs, and T m,q

2 = 34 µs, respectively.

B. Mathematics

In this subsection, we explain the mathematics behind
designing and characterizing a CZφ gate (2). We begin by pro-
viding a valid Hamiltonian representation for our laser-driven
two-atom model (Sec. III A) and then discuss how we decom-
pose the Hamiltonian into a direct sum. Next, we elaborate
our procedure to derive time-dependent coefficients for this
Hamiltonian, such that the resultant unitary dynamics yields
a ground-Rydberg entangled state for an integration time that
is faster than the adiabatic timescale. As this dynamics is only
necessary but not sufficient to achieve a high-fidelity, fast CZφ

operation, we propose a recipe to design each time-dependent
laser beam as a sequence of phase-shifted pulses. Finally, we
introduce our metric to evaluate a CZφ gate.

For each of the two Rydberg-excitation models, i.e., one-
and two-photon, we generalize the respective single-atom
Hamiltonians H e(t ) (8), (9) to account for imperfections in
the |1〉 ↔ |r〉 transition. To this end, we assume nonadia-
batic parametrization for the time-dependent coefficients and
include additional coefficients describing parameter fluctu-
ations. The one-photon form of this space-time-dependent
Hamiltonian H̃ e(t, r) is

H̃d(t, r) = 1

2
p0(r) f0	̃(t )|1〉〈r| + H.c.

+ �̃(t ) + �m + �D

2
[|r〉〈r| − |1〉〈1|], (39)

where fluctuations in Rabi frequency and detuning are de-
scribed by p0(r) f0 [(23) and (24)] and random shifts �m +
�D (27), respectively. Similarly, for the two-photon transition,

H̃q(t, r) = 1

2
pB(r) fB	̃B(t )|p〉〈1| + 1

2
pR(r) fR	̃R(t )|r〉〈p|

+ H.c. + �̃B(t )|p〉〈p|
+ (

�̃BR(t ) + �m + �D
)|r〉〈r|, (40)

where we assume �̃BR ≈ 0 and a high �̃B satisfying the
adiabatic elimination condition (10).

Our model for a pair of interacting atoms is thus mathemat-
ically represented by a space-time-dependent Hamiltonian,
which is valid for our gate procedure under the following three
conditions. This two-atom Hamiltonian

H̃ e
B(t, r) = H̃ e(t, r) ⊗ 1 + 1 ⊗ H̃ e(t, r) + B|rr〉〈rr|, (41)

whose time-dependent coefficients follow the Rydberg-
blockade condition (13), acts on a 25-dimensional Hilbert
space H . To describe a valid CZφ operation over time Tg,
our gate procedure requires H̃ e

B(t, r) to satisfy the following
conditions:
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C1. Unitary evolution generated by H̃ e
B(t, r), in the ab-

sence of parameter fluctuations, yields an efficient population
transfer back to the same initial state |11〉 over any Tg.

C2. Unitary dynamics for an initial state |10〉 also yields
an efficient population transfer back to the same initial state
over any Tg.

C3. Final accumulated phases of initial states belonging
to the two-qubit computational basis (11) must satisfy the
relation

φ11 − 2φ10 = (2n + 1)π, ∀n ∈ Z. (42)

These conditions together ensure the implementation of a
high-fidelity CZφ gate.

We can decompose this 25-dimensional H̃ e
B(t, r) into a

direct sum of one- and two-dimensional Hamiltonians; see
the Appendix for details. This is achieved by first identifying
the nine-dimensional subspace HCZ, spanned by {|0〉, |1〉, |r〉}
of both atoms and decoupled from their other states, which
captures the physics of a CZφ gate. This nine-dimensional
subspace further decomposes as

9 = 1 ⊕ 2 ⊕ 2 ⊕ 4 ≈ 1 ⊕ 2 ⊕ 2 ⊕ 2 ⊕ 1 ⊕ 1

= span{|00〉}︸ ︷︷ ︸
H0

⊕ span{|01〉, |0r〉}︸ ︷︷ ︸
H0r

⊕ span{|10〉, |r0〉}︸ ︷︷ ︸
Hr0

⊕ span{|11〉, |+〉}︸ ︷︷ ︸
Hrr

⊕ span{|−〉} ⊕ span{|rr〉}. (43)

Each of the two-dimensional Hamiltonians acting on H0r and
Hr0 resembles the single-atom Hamiltonian for one-photon
driving (8), whereas the two-dimensional Hamiltonian acting
on Hrr, denoted by H̃ e

B,eff(t, r), generates atom-atom entangle-
ment. We formalize the mapping from H̃ e

B(t, r) to H̃ e
B,eff(t, r)

by a “conjugating-channel” transformation as

H̃ e
B,eff(t, r) ⊕ 023 = CR

(
H̃ e

B(t, r)
)
, (44)

where the conjugating channel

CR(•) := R • R�, (45)

and the real-valued matrix R is a composition of projection
and permutation operators.

To make TQD feasible for 25-dimensional H , we modify
the standard TQD technique (Sec. II D). Our modification
involves the following: first derive a TQD Hamiltonian for a
low-dimensional subspace of H and then map this Hamil-
tonian back to a full 25-dimensional matrix. This procedure
yields time-dependent coefficients for H̃ e

B(t, r) as functions of
the coefficients for the adiabatic Hamiltonian H e

B(t ) (12).
We apply the TQD technique to an adiabatic Hamiltonian

acting on a low-dimensional, nontrivial subspace of H . Here
we pick Hrr because Hamiltonian dynamics on this subspace
is entangling. The effective Hamiltonian H e

B,eff(t ) acting on
Hrr is calculated as

H e
B,eff(t ) ⊕ 023 = CR

(
H e

B(t )
)
, (46)

where CR (45) is justified because the graph representations
of H e

B(t ) and H̃ e
B(t, r) are isomorphic to each other. The

time-dependent coefficients of H̃ e
B,eff(t, r), in the absence of

parameter fluctuations, are then assigned functions by

H̃ e
B,eff(t, 0) ← Ȟ e

B,eff(t ), (47)

where Ȟ e
B,eff(t ) is the TQD Hamiltonian obtained from the

adiabatic H e
B,eff(t ).

We now utilize this two-dimensional H̃ e
B,eff(t, r) to de-

rive expressions for the time-dependent coefficients of the
25-dimensional H̃ e

B(t, r). This derivation is achieved by the
inverse operation of CR (44) as

H̃ e
B(t, r) =C−1

R

(
H̃ e

B,eff(t, r) ⊕ 023
)
. (48)

We refer to this constructed Hamiltonian as a “constrained-
TQD Hamiltonian,” where “constrained-TQD” (cTQD) signi-
fies that the TQD technique is applied to a Hamiltonian acting
on only one subspace of the full Hilbert space. Due to this
unique construction, the unitary dynamics of H̃ e

B(t, r), with-
out parameter fluctuations, yields efficient population transfer
only between |11〉 and |+〉 over any arbitrarily low integration
time, thus satisfying C1.

In order to derive explicit time-dependent functions for
H̃ e

B(t, r), we use popular functions for expressing H e
B(t ). Par-

ticularly, for describing ARP (8), we use electric field of the
form of a linearly chirped Gaussian (LCG) function [33,39],
with

	(t ) = 	0e− (t−T/2)2

τ2 , �(t ) = 2�0/T (t − T/2), (49)

where the Rabi frequency is Gaussian with peak value 	0,
mean T/2, and width τ , and the detuning is linear with peak
value �0. Furthermore, we describe STIRAP pulses (9) by
Rabi frequencies with hyper-Gaussian shapes [26] as

	B(t ) = 	B0e−(t−2T/3)4/τ 4
B , 	R(t ) = 	R0e−(t−T/3)4/τ 4

R , (50)

and a constant detuning �B(≡ −�R), henceforth referred as
zero-chirped hyper-Gaussian (ZCHG). This pair of ZCHG
pulses conforms to the conditions for optimized STIRAP [60]
and is also simple enough for our analytical calculations. The
parameters of these functions are judiciously chosen to deliver
feasible CZφ gates, as detailed in Sec. III C.

A CZφ gate implemented by evolving the cTQD Hamilto-
nian (48) does not guarantee high fidelity over low gate time;
this deficiency motivates us to redesign pulse shapes such that
C2 and C3 are satisfied as well. To do this, we start with a
H e

B(t ) whose coefficients are single-adiabatic pulse functions
(49) and (50), as opposed to double-adiabatic pulses used
for executing CZ and CZπ operations (Sec. II B). Thus the
time-dependent functions 	̃ and �̃ (	̃B, �̃B, 	̃R, and �̃R)
are expressed in terms of LCG (ZCHG) pulse functions. We
refer to these particular pulses as “TQD pulses” and represent
their functions by 	̃+(t ) and �̃+(t ) for the one-photon case,
and by 	̃+

B (t ), �̃+
B (t ), 	̃+

R (t ), and �̃+
R (t ) for the two-photon

case.
For implementing a high-fidelity cTQD CZφ gate over any

gate time Tg, we design the time-dependent coefficients of
H̃ e

B(t, r) (41) as sequences of four TQD pulse functions. To
construct this sequence, we modify a gate procedure [9] by us-
ing TQD pulses, which are broadband, instead of narrowband
2π pulses. Specifically, we propose dividing a sequence of
TQD pulses into two identical subsequences having a relative
phase shift of φR between them. For each subsequence, we
employ a pair of TQD pulses, with a time-symmetric envelope
and a relative phase shift φr, instead of restricting to a 2π

pulse [9]. The pulse pair is designed such that the initial state
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|1〉 H

CZφ

Rφ

|β11〉
|1〉 H Rφ H

|ψ0〉

FIG. 2. A two-qubit quantum circuit for preparing the Bell state
|β11〉 (16). Both qubits are initialized to state |1〉, with upper and
lower qubits acting as control and target, respectively. Each of
these qubits undergo H transformation, which ideally yields |ψ0〉.
This state is then subjected to a CZφ gate (2), followed by two
Rφ[:= diag(1, e−iφ)] gates on control and target. A final H on target
ideally yields |β11〉. This circuit is a slight modification of the one
explained in Sec. II C.

|11〉 returns efficiently back to itself over an integration time
of Tg/2, having accumulated a phase of φ11/2. Contrariwise, for
the other two nontrivial initial states |01〉 and |10〉, this sub-
sequence alone does not ensure efficient population transfer
back to the corresponding states after Tg/2. By judicious choice
of the parameter φR, the full sequence efficiently returns the
atoms to their corresponding initial states |01〉 and |10〉 over
time Tg with an accumulated phase φ = φ10(= φ01), thus sat-
isfying C2. Additionally, our choices for φr and φR ensure that
φ10 and φ11 satisfy the phase relation (42) for C3.

We assess a cTQD CZφ gate by estimating the Bell-state
preparation fidelity of a quantum state obtained by applying
single-qubit gates and this two-qubit gate on |11〉; see Fig. 2.
In each MC run (Sec. II C), we first construct a random
H̃ e

B(t, r) by sampling its coefficients from their respective dis-
tributions [(23), (24), and (27)] and then integrate the GKSL
equation (19), with initial state |ψ0〉 (15) and Cs decay param-
eters [(36) and (38)], over Tg to obtain ρ(Tg).

After executing ideal and instantaneous single-qubit rota-
tions on ρ(Tg), the final state

ρf = (1 ⊗ H)(Rφ ⊗ Rφ ).ρ(Tg)(R†
φ ⊗ R†

φ )(1 ⊗ H†) (51)

is used to calculate an estimate of the realistic fidelity [61]

Fg := 〈β11|ρf|β11〉 = ρ0101 + ρ1010

2
+ |ρ1001|, (52)

where the matrix elements are

ρi1i2i3i4 = 〈i1i2|ρf|i3i4〉, i1, i2, i3, i4 ∈ {0, 1}. (53)

We perform 100 MC runs to generate a distribution of fidelity
estimates and use the mean to estimate the gate infidelity 1 −
Fg. Additionally, we calculate the standard error σ−

F from this
distribution, and use σ−

F to represent robustness of the two-
qubit gate implementation against spontaneous emission and
technical imperfections.

C. Methods

In this subsection we elaborate on the numerical techniques
developed and used for our simulation of the interacting
two-atom system. First, we present methods to numerically
estimate fidelity and time of a CZφ gate (2). Then we de-
scribe our strategy for designing a feasible CZφ gate based
on the adiabatic-gate procedure (Sec. II B), and incorporating

imperfections in this gate simulation (Sec. II C). Next, we
provide a numerical recipe that redefines “efficiency” in the
TQD technique (Sec. II D). Finally, we provide a method
to compare adiabatic and cTQD CZφ gates in terms of their
resource requirements.

We numerically evaluate the gate fidelity Fg and gate time
Tg, and use these two quantities to assess the performance of
a CZφ gate. Fg is estimated using Eq. (52), where ρ(Tg) (51) is
obtained by numerically integrating the GKSL equation (19)
using the Python library QuTiP. Tg is the integration time and
is related to the duration of a single pulse as Tg = 4T for a
cTQD CZφ gate, as compared to Tg = 2T for an adiabatic CZφ

gate. In addition to Fg and Tg, we analyze the trend in fidelity
by estimating Fg for changing Tg values.

We prescribe simple numerical techniques to check feasi-
bility and determine adiabaticity of a Rydberg-blockade CZφ

gate. Our criterion for feasibility dictates that the intrinsic
value of gate fidelity (52) should satisfy the condition

F 0
g > ηe, (54)

where threshold ηd (q) = 0.9989 (0.989). In the two-photon
driving model, we lower the threshold by 1% because fidelity
exceeding 0.99 requires numerically optimized pulses [26]
rather than analytical pulses, which we use here for simplicity.
For a two-level system initiating as an eigenstate |E (t )〉 (30)
and evolving unitarily, we call the dynamics adiabatic if an
instantaneous state |I (t )〉 follows

|〈E (t )|I (t )〉|2 � 0.99, ∀t ∈ [0, Tg]. (55)

Based on this condition, the CZφ gate is adiabatic if the dynam-
ics within each two-dimensional subspace (43) is adiabatic.

In order to calculate values for pulse parameters that yields
a feasible, adiabatic CZφ gate, we search over specified do-
mains of these parameters. For LCG pulses (49), we choose

0.1 µs � T � 0.25 µs, 10 MHz � 	0/2π � 25 MHz,

20 MHz � �0/2π � 50 MHz, 0.2T � τ � 0.3T, (56)

and for ZCHG pulses (50), we consider

50 MHz � 	B0/2π, 	R0/2π � 300 MHz,

100 MHz � �B/2π � 3000 MHz,

0.1 µs � T � 5 µs, 0.25T � τB, τR � 0.35T . (57)

The values of these parameters are consistent with our pre-
vious work [26], and we have chosen parameter domains that
are small enough to be numerically tractable but large enough
to include feasible solutions. For each parameter tuple of
LCG (ZCHG) pulse, we simulate the ARP CZπ (STIRAP CZ)
gate by unitary evolution of Hd

B(t ) [Hq
B(t )] (12), with double-

LCG (double-ZCHG) pulse functions as its coefficients, and
calculate F 0

g . Using an in-house implementation of a global
optimization algorithm called differential evolution (DE) [62],
we then search over the parameter domains, which are not
reused later, to find a tuple satisfying the feasibility condition
(54).

We now provide a method for incorporating technical im-
perfections in our simulation of the adiabatic gates, and then
define a nonadiabatic version of this adiabatic-gate procedure.
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To account for technical imperfections, we modify the Hamil-
tonian coefficients by multiplying p�(r) (23) and f� (24) to the
Rabi frequencies, and adding �D and �m (27) to the detuning
terms. By introducing space dependence in the Hamiltonian
H e

B(t ), we now denote it by H e
B(t, r). In the nonadiabatic

regime, the dynamics of Hd
B(t, r) [Hq

B(t, r)] yields a nonadi-
abatic CZπ (CZ) gate, which we denote as a LCG CZπ (ZCHG
CZ) gate.

For a transitionlessly driven two-level quantum system, the
dynamics of Ȟd(t ) (33) yields an efficient population transfer
from an initial state |1〉 to the final state |r〉 in any short time,
given that there is no limit on the maximum laser intensity. To
make Ȟd(t ) practical, we redefine an “efficient” population
transfer by imposing that the population of |r〉 at the end of
the dynamics exceeds 0.99 and the maximum value for 	′(t )
[(33b)] is within 10% of the maximum value for 	(t ) (8).
This upper bound on 	′(t ) yields a lower limit on the pulse
duration, which we denote as Tmin.

We investigate the interplay between two resources,
namely maximum (real-valued) Rabi frequency 	max and
gate time Tg, required for achieving high gate fidelity. To
do this, we hypothesize functions relating these resources
and empirically estimate the parameters of these functions.
These parameters are then used for comparing different gate
procedures. As a highly detuned two-photon driving is math-
ematically equivalent to a two-level system, we only compare
between gates implemented using one-photon driving.

By numerically estimating the parameters of a power func-
tion (exponent, coefficient, and additive constant) that relates
	max and Tg for a target fidelity, we determine the scaling of
	max with decreasing Tg. The value of 	max is equal to 	0

(49) for the ARP CZπ gate, whereas 	max is a function of 	0,
�0 and Tg for the cTQD CZφ gate and is numerically esti-
mated in our simulation. For each Tg, we fix values for other
pulse parameters and search for the minimum 	max required
for achieving an ARP CZπ (cTQD CZφ) with F 0

g > 0.989
(F 0

g > 0.9989). In terms of a unitless gate time T̄g := Tg µs−1,
power parameter p, and constant frequencies ν1 and ν2, we
hypothesize the relation between 	max and Tg as a power
function

	max = ν1T̄ −p
g + ν2, (58)

in concordance with previous results [55]. The measure of
goodness of fit for our simulation data to this power function
is calculated using the R2 score. We quantify and compare the
performance of the two gates, namely, ARP CZπ and cTQD
CZφ , based on the estimate of p for each case.

We evaluate the speedup of a cTQD CZφ gate over an ARP
CZπ gate, both yielding F 0

g > 0.99, for increasing values of
	max. Keeping 	max almost same (within 10%) for both of
these gates, we calculate speedup as the ratio of Tg for ARP
and cTQD gates. Based on previous results [55], we expect
the speedup value to saturate for both high and low magni-
tudes of 	max. Thus we can hypothesize the relation between
a unitless maximum Rabi frequency 	̄max := 	max/2π MHz−1

and speedup as a sigmoid function. To this end, we fit our
simulation data to a generalized logistic function as

Tg(ARP)

Tg(cTQD)
= a

1 + e−b	̄max+c
+ d, (59)

for constants a, b, c, and d , and characterize the fit by calcu-
lating the R2 score.

IV. RESULTS

In this section we present the results of our numerical
analyses. In Sec. IV A (Sec. IV B), we begin by deriving
generic expressions for the time-dependent coefficients of the
cTQD Hamiltonian representing the one-photon (two-photon)
excitation model. Using explicit analytical functions for these
coefficients, we then simulate the operation of a cTQD CZφ

gate and evaluate its fidelity. Moreover, we compare these
gates against CZφ gates realized by employing typical pulse
functions, i.e., LCG and ZCHG for one- and two-photon
excitations, respectively. Finally, in Sec. IV C we compare
resources required by a cTQD CZφ gate as compared to an
adiabatic CZπ gate to achieve a target fidelity.

A. cTQD CZφ gate with one-photon excitation

The model for a pair of interacting atoms, where each atom
is dipole-excited between states |1〉 and |r〉, is mathematically
described by the cTQD Hamiltonian H̃d

B(t ) (41). We derive
generic expressions for the time-dependent coefficients of this
Hamiltonian from the adiabatic Hamiltonian Hd

B(t ) (12).
We first derive the TQD Hamiltonian Ȟd

B,eff(t ) acting on
the two-dimensional subspace Hrr (43). For an effective Rabi
frequency 	d

eff := √
2	 and an effective detuning �d

eff := �,
the adiabatic Hamiltonian acting on Hrr is

Hd
B,eff(t ) = 	d

eff

2
[|11〉〈+| + |+〉〈11|]

+ �d
eff

2
[−|11〉〈11| + |+〉〈+|]. (60)

Using the TQD technique (Sec. II D), we calculate the coeffi-
cients for the two-level control Hamiltonian (32) as

	d
c := 	d

eff�̇
d
eff − �d

eff	̇
d
eff(

�d
eff

)2 + (
	d

eff

)2 , θd := tan−1 	d
c

	d
eff

. (61)

The TQD Hamiltonian for Hrr is then calculated as

Ȟd
B,eff(t ) =

√(
	d

eff

)2 + (
	d

c

)2

2
[|11〉〈+| + |+〉〈11|]

+ �d
eff + θ̇d

2
[−|11〉〈11| + |+〉〈+|], (62)

whose dynamics effects an efficient population transfer be-
tween |11〉 and |+〉 over any integration time.

From Ȟd
B,eff(t ), we now derive generic expressions for the

time-dependent coefficients of H̃d
B(t ). This is done by first

obtaining H̃d
B,eff(t ) from Ȟd

B,eff(t ) (47) and then performing an
inversion operation on H̃d

B,eff(t ) (48). These operations yield
the time-dependent Rabi frequency

	̃(t ) =
√(

	d
eff

)2 + (
	d

c

)2

2

=
√

	2(t ) +
(

	(t )�̇(t ) − �(t )	̇(t )

�2(t ) + 2	2(t )

)2

, (63)
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and detuning

�̃(t ) = �d
eff + θ̇d = � + θ̇d (64)

for the laser pulse in Fig. 1(a). Using the above expressions
for Rabi frequency and detuning in Eq. (39), we finally derive
H̃d

B(t ) for the two-atom system.
Having derived generic expressions for Hamiltonian coef-

ficients, we now present numerical results on the Hamiltonian
dynamics and on our fast, high-fidelity cTQD CZφ gate. In the
following, we state the feasible parameters for LCG pulses,
compare population dynamics achieved by these pulses and
their corresponding TQD pulses, and compute the pulse se-
quence for yielding a high-fidelity gate.

We calculate explicit expressions for the TQD pulse func-
tions 	̃+(t ) and �̃+(t ) by choosing 	(t ) and �(t ) of the LCG
form (49) with feasible parameters. Using DE, we estimate
feasible parameters for an adiabatic LCG pulse, of duration
T = 0.24 µs, as

	0/2π = 24.92 MHz, τ = 0.266T, �0/2π = 49.55 MHz.
(65)

Numerical simulation of the CZπ gate with a double-adiabatic
sequence of LCG pulses yields F 0

g = 0.999 and Tg = 0.48 µs.
We empirically establish that Tg = 0.48 µs is the minimum
time for which the pulse sequence is adiabatic for the above
choice of parameters and also delivers a feasible fidelity (54).

We now compare a LCG pulse against the correspond-
ing TQD pulse, when both of these pulses are applied for
one-quarter of the adiabatic LCG pulse duration, 0.24 µs. In
Fig. 3(a) we plot 	(t ) and �(t ) corresponding to the LCG
pulse of duration T = 0.06 µs and predetermined parameters
(65). Whereas for the TQD pulse, 	̃+(t ) has a fatter tail as
compared to a Gaussian function and �̃+(t ) is nonlinear in
time. Furthermore, we numerically evaluate the ratio of the
two pulse energies to be near unity. In Fig. 3(b) we investigate
the unitary dynamics of Hd

B(t ) [H̃d
B(t )], without any parameter

fluctuations, for a LCG (TQD) pulse and an initial atomic state
|11〉. With the LCG pulse, the population P+ of the entangled
state reaches 0.75 in time T/2 and changes very little, up to
small oscillations, until the end of the pulse duration. On the
other hand, using the TQD pulse, P+ increasing smoothly
from 0 to 1 over time T and reaches ≈1 at t ≈ .05 µs.

To implement a high-fidelity cTQD CZφ gate in half the
gate time as compared to the adiabatic CZπ gate, we design
	̃(t ) as a sequence of phase-shifted 	̃+(t ) and �̃(t ) as a
sequence of �̃+(t ); see Fig. 4(a). Based on the unitary dy-
namics of H̃d

B(t ), we observe in Fig. 4(b) that the populations
of the initial states |10〉 and |11〉 return efficiently back to
the respective states at the end of the pulse sequence. More-
over, the phase difference φ11 − 2φ10, after a few oscillations
between −π and π , eventually saturates at −π . Thus upon ex-
ecuting efficient population transfers and satisfying the phase
relation (42), our gate procedure delivers F 0

g = 0.999 over
Tg = 0.24 µs, making our cTQD CZφ gate twice as fast as the
adiabatic CZπ gate.

Now we investigate the variation of gate infidelity 1 − Fg

(both intrinsic and realistic) with changing gate time for
two types of Rydberg-blockade gates, namely cTQD CZφ

gate and LCG CZπ gate [Fig. 5(a)]. In these simulations, we
use the predetermined values (65) for LCG parameters and

FIG. 3. Pulse functions and population dynamics over duration
T = 0.06 µs for LCG and its corresponding TQD pulses. Other
parameters are fixed as in Eq. (65). (a) Solid blue (dashed green)
line for TQD pulse function 	̃+(t ) [�̃+(t )] and dotted blue (dash-
dotted green) line for LCG pulse function 	(t ) [�(t )]. (b) Solid
(dotted) azure and dashed (dash-dotted) orange lines denote the
time-dependent populations of the states |+〉 and |11〉, respectively,
corresponding to the TQD (LCG) pulse.

consider spontaneous emission, nonzero atomic temperature,
finite beam waist and fluctuations in magnetic field and laser
intensity. The upper bound for Tg in Fig. 5(a) is equal to
the time for the adiabatic gate with LCG pulses, which is
0.48 µs. The lower bound is 4Tmin, where Tmin = 0.03 µs for
the TQD pulse obtained using the above LCG parameters.
Our cTQD CZφ gate delivers F 0

g > 0.99 and Fg > 0.988 for
all Tg between these two bounds, whereas both F 0

g and Fg for
the LCG CZπ gate start to fall significantly when reducing Tg

below 0.3 µs. Moreover, the cTQD gate fidelities have much
smaller standard errors than the LCG gate fidelities for lower
Tg, whereas these errors are almost comparable for higher Tg,
as seen in Fig. 5(b).

B. cTQD CZφ gate with two-photon excitation

Here we provide results for our cTQD CZφ gate implemen-
tation using two-photon driving of two atoms. First, we derive
expressions for the time-dependent coefficients of the cTQD
Hamiltonian H̃q

B(t ) (41). Next, we design a pulse sequence
that yields a high-fidelity cTQD CZφ gate, which is twice as
fast as the adiabatic CZ gate. Finally, we show how fidelity
changes with decreasing gate time in the presence and absence
of imperfections and decay.

We derive an effective two-level adiabatic Hamiltonian,
followed by an effective TQD Hamiltonian, with both acting
on the subspace Hrr (43). Adiabatic elimination of state |p〉
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FIG. 4. Pulse functions, population dynamics and phase-
difference dynamics over Tg = 0.24 µs for implementing a cTQD
CZφ gate based on the one-photon transition model. (a) 	̃(t ) is a
sequence of four (two pairs) time-translated 	̃+(t ) [Fig. 3(a)], with
a relative phase shift of φr/π = 0.4 between the pulses in each pair
and a phase shift of φR/π = 1.9 between the two pairs, and �̃(t ) is
a sequence of four time-translated �̃+(t ) [Fig. 3(a)]. (b) P10 (P11)
is the time-dependent population of the state |10〉 (|11〉) as shown
by solid azure (dashed orange) line, and the dotted line shows the
time-dependent phase difference φ11 − 2φ10.

from both atoms yields a block-diagonal Hamiltonian. After
eliminating |rr〉 according to the Rydberg-blockade condition
(13), one of these blocks has support on only Hrr. This
two-dimensional Hamiltonian Hq

B,eff(t ) is of the same form
as the effective Hamiltonian (60), with the corresponding
time-dependent coefficients being

	
q
eff := −

√
2
	B	R

2�B
, �

q
eff := 	2

B − 	2
R

4�B
. (66)

Using the TQD technique on Hq
B,eff(t ), we then construct the

control terms 	
q
c and θq, which are similar to Eq. (61). Finally,

we derive the effective TQD Hamiltonian

Ȟq
B,eff(t ) = 	̃

q
eff

2
[|11〉〈+| + |+〉〈11|]

+ �̃
q
eff

2
[−|11〉〈11| + |+〉〈+|], (67)

where the time-dependent coefficients are

	̃
q
eff :=

√(
	

q
eff

)2 + (
	

q
c
)2

, �̃
q
eff := �

q
eff + θ̇q. (68)

Hq
B,eff(t ) drives an efficient |11〉 ↔ |+〉 transition in the adia-

batic regime, whereas Ȟq
B,eff(t ) renders this transition faster.

From Ȟq
B,eff(t ), we now derive expressions for the

time-dependent coefficients of H̃q
B(t ). Operating under the

/

FIG. 5. Gate infidelity (1 − Fg) and standard error of fidelity
(σ−

F ) over Tg ∈ [0.12 µs, 0.48 µs] for LCG CZπ gate and cTQD CZφ

gate, implemented using the one-photon transition model. We show
the simulation results by markers (cross or circle) and connect them
with lines (solid, dashed, or dotted). (a) Dashed (solid) orange line,
with cross markers, denotes intrinsic (realistic) infidelity for LCG
CZπ gate. Dashed (solid) azure line, with circle markers, denotes
intrinsic (realistic) infidelity for cTQD CZφ gate. Each point on
solid lines represents the mean infidelity calculated for 100 random
instances of master-equation evolution. (b) Each point, marked by
a cross (circle) for LCG CZπ (cTQD CZφ) gate, on the dotted lines
represent σ−

F calculated for these 100 fidelity estimates.

adiabatic-elimination condition (10), we require a constant
detuning

�̃B(t ) ≡ �B. (69)

Proceeding similarly to the one-photon case, we first assign
functions to the effective Hamiltonian H̃q

B,eff(t ) according to
Eq. (47). Then we invert this equation, according to Eq. (48),
to obtain time-dependent expressions for Rabi frequencies,
namely,

	̃B(t ) =
√√√√2�B

[√(
�̃

q
eff

)2 +
(
	̃

q
eff/

√
2
)2

+ �̃
q
eff

]
,

	̃R(t ) =
√√√√2�B

[√(
�̃

q
eff

)2 +
(
	̃

q
eff/

√
2
)2

− �̃
q
eff

]
, (70)

corresponding to the blue- and red-detuned lasers, respec-
tively, in Fig. 1(b). These expressions (69) and (70) then
establish H̃q

B(t ).
We estimate parameters for the adiabatic ZCHG pulses

(50) delivering a feasible (54) CZ gate. For a pair of ZCHG
pulses effecting STIRAP over T = 0.81 µs, DE yields the
following feasible values for pulse parameters:

	B0/2π = 300 MHz, 	R0/2π = 300 MHz

�B/2π = 1762.90 MHz, τB = τR = 0.35T . (71)
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FIG. 6. Pulse functions and population dynamics over duration
T = 0.2 µs for ZCHG and the corresponding TQD pulses. Other
parameters are fixed as in Eq. (71). (a) Effective Rabi frequency
and detuning for the pair of TQD (ZCHG) pulses shown by solid
(dotted) magenta and dashed (dash-dotted) green lines, respectively.
For simplicity, we omit subscript “eff” and superscript “q” in the
legend. (b) Solid (dotted) blue and dashed (dash-dotted) red lines
represent the pair of Rabi frequencies for TQD (ZCHG) pulses.
(c) Solid (dotted) azure and dashed (dash-dotted) orange lines de-
note the time-dependent populations of |+〉 and |11〉, respectively,
corresponding to the TQD (ZCHG) pulses.

Using a sequence of two STIRAP pulses, with the above
parameters, we achieve a CZ gate with Fg = 0.996 and Tg =
1.62 µs in our simulation. We numerically demonstrate that
these pulses adiabatically drive the |1〉 ↔ |r〉 transition for
each atom, without significantly populating the state |p〉. By
eliminating |p〉, this transition is now an effective two-level
transition. Furthermore, we numerically establish that Tg =
1.62 µs is the minimum time for which the pulses are adiabatic
for the above choice of parameters.

Now we compare nonadiabatic driving by ZCHG pulses
against transitionless quantum driving of the |11〉 ↔ |+〉 tran-
sition over an integration time of 0.2 µs, which is one-quarter
of the total duration for the above pair of feasible adia-
batic pulses. In Fig. 6(a) we observe that the effective Rabi
frequency and detuning (66) for the pair of ZCHG pulses
resembles Gaussian and sinusoidal functions, respectively.
The TQD technique flattens the tail of the effective Rabi
frequency and add nonlinear modulation to the effective de-
tuning. The Rabi frequencies for the TQD pulses are nearly
hyper-Gaussians with a sharper and little asymmetric tip as
compared to the flat top ZCHG pulses, as seen in Fig. 6(b).
Although the peak Rabi frequencies for the two TQD pulses

FIG. 7. Pulse functions, population dynamics and phase-
difference dynamics over Tg = 0.8 µs for implementing a cTQD CZφ

gate based on the two-photon transition model. (a) 	̃B,R is a sequence
of four (two pairs) time-translated 	̃+

B,R(t ) [Fig. 6(b)], with a relative
phase shift of φr/π = 0.6 between the pulses in each pair and a phase
shift of φR/π = 0 between the two pairs, and �̃B/2π = 1762.90 MHz.
(b) P10 (P11) is the time-dependent population of the state |10〉 (|11〉)
as shown by solid azure (dashed orange) line, and the dotted line
shows the time-dependent phase difference φ11 − 2φ10.

are significantly higher than those for their corresponding
ZCHG pulses, the effective functions are almost equal. From
Fig. 6(c), we notice that the TQD pulses result in near-unity
population transfer, i.e., P+ ≈ 1, at t ≈ 0.16, as compared to
the 80% saturation level using ZCHG pulses.

Using the pair of TQD pulses, we now construct a pulse
sequence yielding a high-fidelity cTQD CZφ gate, which is
twice as fast as the adiabatic CZ gate. To this end, the coef-
ficients in H̃q

B(t ) are designed as piecewise-smooth functions,
particularly 	̃B(t ) and 	̃R(t ) are sequences of phase-shifted
TQD pulses [Fig. 7(a)], and �̃B(t ) is constant over the gate
time. The one (two) cusp(s) in the red-detuned (blue-detuned)
pulse of Fig. 7(a) are artifacts of this pulse construction being
piecewise continuous. Our estimates for relative phases ensure
that the population, governed by unitary dynamics of H̃q

B(t ),
of each basis state efficiently return back to itself after time
Tg = 0.8 µs; see Fig. 7(b). We note that the cusps in Fig. 7(a)
do not manifest as discontinuities in the functions or deriva-
tives thereof in Fig. 7(b). Moreover, the relation (42) between
phases of basis states holds, as evident from the convergence
of phase difference to 0.909π at Tg, with high oscillations
centered around t = 0.6 µs. Consequent to the pulses satis-
fying the population dynamics and phase relation (C1–C3),
our predicted gate fidelity is 0.987 over a gate time of 0.8 µs,
making our gate procedure twice faster with a slight decrease
in the fidelity.
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FIG. 8. Gate infidelity (1 − Fg) and standard error of fidelity
(σ−

F ) over Tg ∈ [0.16 µs, 1.62 µs] for ZCHG CZ gate and cTQD CZφ

gate, implemented using the two-photon transition model. We show
the simulation results by markers (cross or circle) and connect them
with lines (solid, dashed, or dotted). (a) Dashed (solid) orange line,
with cross markers, denotes intrinsic (realistic) infidelity for ZCHG
CZ gate. Dashed (solid) azure line, with circle markers, denotes
intrinsic (realistic) infidelity for cTQD CZφ gate. Each point on the
solid lines represents the mean infidelity calculated for 100 random
instances of master-equation evolution. (b) Each point, marked by
cross (circle) for ZCHG CZ (cTQD CZφ) gate, on the dotted lines
represent σ−

F calculated for these 100 fidelity estimates.

We now compute fidelities for our cTQD CZφ gate in the
presence of spontaneous emission and technical imperfec-
tions, and compare with ZCHG gate for changing gate times,
see Fig. 8. The fidelities for both intrinsic and realistic ZCHG
gates oscillate rapidly with Tg, where the trough values for
intrinsic fidelity gradually decrease with increasing Tg. In the
presence of noise, fidelities drop for both higher and lower Tg,
with σ−

F being 10× higher in higher end of Tg as compared
to the lower values. On the other hand, cTQD gate yields
F 0

g > 0.96 over the whole range of Tg, with very small os-
cillations. Adding noise to this gate yields lower fidelities for
high Tg, but the effect of noise is low for small Tg. The best
estimate of fidelity is 0.975 at Tg = 0.24 µs.

C. Resource requirement for cTQD CZφ gate

We empirically calculate resources required for imple-
menting high-fidelity CZφ gates by unitary evolution of
adiabatic and cTQD Hamiltonians with one-photon driving,
and present these results here. First, we evaluate the scaling of
	max with decreasing Tg for our cTQD CZφ gate and compare
this scaling against the scaling obtained for the ARP CZπ

gate. Next, we show how much faster the cTQD gate is over
ARP gate for changing values of 	max. Finally, we provide a
mathematical model describing the relation between speedup
values and 	max for our simulation data.

FIG. 9. Isofidelity plots to show scaling of the maximum (real-
valued) Rabi frequency 	max with respect to the unitless gate time
T̄g. Isofidelity plot for the ARP CZπ gate corresponds to F 0

g >

0.989, whereas for the cTQD CZφ gate, implemented using the one-
photon transition model, F 0

g > 0.9989. Other parameters are �0/2π =
49.55 MHz, τ/T = 0.266 and B/2π = 3 GHz. Simulation results, de-
noted by orange cross (azure circle) markers, for the ARP CZπ (cTQD
CZφ) gate are fitted to the power function (58), with ν1/2π = 1.34 ±
0.33 (7.18 ± 0.38) MHz, ν2/2π = 11.31 ± 0.66 (0.82 ± 0.41) MHz
and p = 2.76 ± 0.22 (0.55 ± 0.02), shown as the dashed orange
(solid azure) line.

In Fig. 9 we show isofidelity plots for determining the scal-
ing of 	max with decreasing Tg. We vary Tg between 0.12 µs
and 1.0 µs, i.e., T̄g ∈ [0.12, 1.0], to allow for an order-of-
magnitude change in gate time. For Tg < 0.32 µs, ARP fails
to deliver a CZπ gate with the target fidelity of 0.989. The
adiabatic-gate procedure exhibits a sharp fall in the required
	max between gate times of 0.40 µs and 0.42 µs, whereas
	max for our cTQD CZφ gate smoothly reduces over the whole
range of Tg. By fitting each of these two isofidelity plots to
our assumed power function (58), we evaluate R2 scores of
0.97 and 0.99 corresponding to the ARP and cTQD gates,
respectively.

We now plot the variation of speedup with 	̄max in Fig. 10.
Based on our results in Fig. 9, we vary 	max/2π between
10 MHz and 40 MHz, which translates to 	̄max ∈ [10, 40].
We observe that the magnitudes for speedup saturate around
2.3 and 4.7 for lower and higher 	maxs, respectively. These
values match the parameters of the fitted logistic model (59).
Between 	̄max values of 20 and 30, we notice a rapid increase
in speedup. Additionally, fitting out simulation data to the
logistic model yields a R2 score of 0.96.

V. DISCUSSION

We aim to design laser-pulse functions that deliver high-
fidelity, fast CZ gates for neutral atom quantum computing.
Our model includes major technical imperfections for a sys-
tem of two Cs atoms simultaneously driven, either by an
one-photon process or a two-photon process, between their
ground and highly excited Rydberg levels using off-resonant
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FIG. 10. Trend in speedup Tg(ARP)
Tg(cTQD) with increasing values of

the unitless maximum Rabi frequency 	̄max, for fixed �0/2π =
49.55 MHz, τ/T = 0.266 and B/2π = 3 GHz. Isofidelity plot cor-
responds to F 0

g > 0.99 for both ARP CZπ and cTQD CZφ gates.
Simulation results (circles) are fitted to the logistic function (59)
(solid line) with parameters a = 2.41 ± 0.15, b = 0.45 ± 0.08,
c = 11.09 ± 2.05, and d = 2.29 ± 0.1.

and broadband lasers. The pair of Rydberg atoms experi-
ences a strong dipole-dipole interaction, which results in a
controlled-phase gate on the atomic qubits over a time Tg.
We design these Rydberg-excitation pulses as sequences of
time-dependent functions, whose expressions are derived by
applying our modified TQD technique. Using our pulse se-
quences and including spontaneous emission and technical
imperfections, we show that numerical integration of the mas-
ter equation predicts high-fidelity CZ gates for Cs atoms.

We adapt the standard TQD technique for the interacting
two-atom system, which is mathematically represented by a
Hamiltonian acting on a 25-dimensional Hilbert space. As
this high-dimensional space can be decomposed into a direct
sum of one- and two-dimensional subspaces under suitable
approximations, we can apply the standard TQD technique
independently to the Hamiltonians acting on these subspaces.
This direct application of the TQD technique results in an in-
feasible Hamiltonian. Our modified TQD technique involves
projecting the high-dimensional adiabatic Hamiltonian to one
relevant two-dimensional subspace, applying TQD to the ef-
fective Hamiltonian of this subspace and finally lifting this
TQD Hamiltonian back to a 25×25 nonadiabatic Hamiltonian
called the cTQD Hamiltonian, which is a valid representation
of our model. Using this technique, we derive amplitude [(63)
and (70)] and frequency [(64) and (69)] modulations for the
adiabatic pulses that leads to high-fidelity gates over shorter
gate times.

We revisit the double-pulse adiabatic-gate procedure [26]
as we need an adiabatic Hamiltonian as a starting point for
constructing our cTQD Hamiltonian. To obtain expression
for this initial Hamiltonian, we describe the adiabatic tran-
sitions between ground and Rydberg levels using a LCG
pulse (49) for the one-photon model and a pair of ZCHG
pulses (50) for the two-photon model. A global search over

LCG (ZCHG) pulse parameters yields a CZπ (CZ) gate with
intrinsic fidelity F 0

g = 0.999 (0.996). Although the individual
Rabi frequencies are high for the two-photon transition, the
effective Rabi frequency is similar to the one-photon case, as
evident from Fig. 6(a). Moreover, the gate implemented by
the single-photon transition is three times as fast as the one
implemented by the two-photon transition because STIRAP
is inherently slower than ARP.

Using the above LCG and ZCHG pulses, we derive time-
dependent TQD pulses for one- and two-photon driving,
respectively. In Fig. 3 we observe that redistributing energy
over pulse duration enables the system to reach the final state
more rapidly than the linear sweep. Intuitively, the modulation
in detuning effectively cancels outs some frequency compo-
nents, making the pulse narrowband and the transition more
efficient. This analysis agree with that of Malossi et al. [63],
where they investigate population-transfer efficiencies for var-
ious pulse shapes, as opposed to reverse-engineering pulses
using TQD. For the two-photon transition, pulse modulation
by the TQD technique has the same effect on the population
dynamics (Fig. 6). On the other hand, the LCG (ZCHG) pulse
is nonadiabatic over 0.06 µs (0.2 µs), thus yielding an inef-
ficient population transfer to the final state. The oscillations
in these time-dependent populations are due to transitions
between the instantaneous eigenstates.

By concatenating phase-shifted, time-translated TQD
pulses, we design piecewise-smooth pulse functions that re-
sult in high-fidelity CZφ gates at nonadiabatic Tg. In Figs. 4(a)
and 7(a), discontinuities occurring at multiples of Tg/4 are arti-
facts of this pulse-shaping method and can be smoothed out by
using analytical functions [26]. Unitary evolution generated
by our cTQD Hamiltonian results in the desired population
and phase dynamics, as evident from Figs. 4(b) and 7(b),
consequently achieving high-fidelity gates. As the cusps in
the pulse functions do not deleteriously affect the population
and phase dynamics, we do not expect smoothing the pulse
shapes to drastically impact gate fidelity. The second pair
of phase-shifted pulses aid in compensating for the loss in
population of |10〉 over Tg/2, thus further validating our pulse
design procedure. As the phase difference is approximately
π/2 at Tg/2, a gate equivalent to

√
CZ is created. The sudden

jumps in the plot for phase difference are artifacts of numer-
ical instabilities, which can be removed by plotting with a
larger time step.

We numerically investigate how F 0
g changes with changing

Tg, but keeping the maximum Rabi frequency almost con-
stant (within 10%). Intuitively, we expect a steady increase
in F 0

g with increasing Tg [Fig. 5(a)], but our simulation results
for the ZCHG CZ gate show an oscillating F 0

g in Fig. 8(a).
This qualitatively different behavior of fidelity is not due to
spontaneous emission from the extra level |p〉 involved in
the two-photon case because F 0

g is the noiseless fidelity. The
origin of this oscillation in fidelity is the oscillation in φ11,
with both having nearly similar frequencies of 6.25 MHZ
and 8 MHz, respectively. For our choice of STIRAP pulse
shapes, the relevant time-dependent eigenenergy of Hq

B(t ) is
symmetric about Tg/2, as is also seen in Ref. [33]. This results
in an overall time-dependent φ11, which oscillates between
±π . The energy of the effective pulse (66) contributes to the
value and, consequently, to the time dependence of φ11; thus
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TABLE II. Comparing different gate procedures. F (s)
g is the fidelity in the presence of spontaneous emission from excited levels.

Procedure Excitation Implementation Time (µs) F 0
g F (s)

g Fg Area/2π

Standard Two-photon Experiment [32] 1.12 — — 0.89 —
Simultaneous Two-photon Experiment [11] 0.8 — — 0.955 —
Adiabatic One-photon Simulation [26] 0.54 — 0.999 — —
Adiabatic Two-photon Simulation [26] 1 — 0.997 — —
cTQD One-photon Simulation 0.12 0.9989 0.9988 0.9985 4.6
cTQD Two-photon Simulation 0.24 0.981 0.978 0.975 4.92
Adiabatic One-photon Simulation 0.48 0.9993 0.9990 0.9980 14.86
Adiabatic Two-photon Simulation 1.62 0.996 0.986 0.743 21.75

fixing this energy for decreasing Tg is one way to remove the
oscillations in F 0

g . On the other hand, our cTQD CZφ gate
yields smaller fluctuations in F 0

g due to our feasible choices
for parameters φr and φR.

Similar to F 0
g , the realistic fidelity Fg also oscillates with

Tg. Moreover, Fg for the ZCHG gate drops for higher Tg

[Fig. 8(a)], as compared to Fg for the LCG gate that keeps
increasing [Fig. 5(a)]. The adiabatic ZCHG gate is about four
times slower than the adiabatic LCG gate, thus suffers from
more noise as also evident from Figs. 5(b) and 8(b). Our
cTQD CZφ gate beats the LCG (ZCHG) gate at lower values
for Tg, yielding the best performance of Fg = 0.9985 (0.975)
at Tg = 0.12 (0.24) µs. Whereas in the adiabatic limit, both
gates perform equivalently in terms of fidelity and sensitivity
to noise.

We summarize performances of our cTQD CZφ gates,
relevant experimental gates [11,32] and simulated adiabatic
gates [26] in Table II. For a reasonable comparison, we
only discuss experiments that use Cs atomic qubits. Gates
based on one-photon excitation of Rydberg atoms, although
experimentally challenging, yield highest fidelities over short-
est times. Spontaneous emission from excited levels reduce
fidelity significantly for gates implemented based on two-
photon transition. Our procedure, with the two-photon-driving
model, generates a Bell state with 50% less infidelity than
that for the state-of-the-art implementation over one-quarter
gate time. For a detailed comparison with the adiabatic-gate
procedure [26], we report results from our simulations of
adiabatic gates. Comparing these values against cTQD gate
fidelities, we infer that our procedure succeeds in making the
adiabatic gates faster, but keeping F 0

g same.
We compare the adiabatic and cTQD CZφ gates based on

their resource requirements for preparing high-fidelity Bell
states. For simplicity, and making the reasonable approxi-
mation of a high-detuned two-photon transition, we restrict
our attention to the one-photon-transition model for Rydberg
excitation. Our simulation data closely align our assumed
functions relating 	max and Tg, as evident from their high
(>0.95) R2 values; see Figs. 9 and 10. Fixing a target fidelity,
both adiabatic and cTQD gates can be sped up by increasing
	max, but the rate of increase is different. From Fig. 9 we
infer that the required 	max for the ARP gate increases five
times faster than that for the cTQD gate, when we decrease
Tg from 1 µs to 0.12 µs. Moreover, the power factor p (58)
satisfies the inequality (6) for the adiabatic passage, whereas
the cTQD gate saturates the lower bound for this inequality by
employing TQD. In Fig. 10 we notice that for a fixed value of

	max, the cTQD gate is at least twice as fast compared to its
adiabatic counterpart, but this speedup rapidly increases and
eventually saturates at higher values of 	max. Moreover, these
two plots are interrelated, i.e., one can be explained from the
other.

VI. CONCLUSIONS

Quantum computing with neutral atoms is a promising
direction towards quantum advantage, with recent demonstra-
tions of quantum algorithms [11,64], error-correcting codes
[65], and analog simulations [17,18]. This platform bears an
inherent advantage due to its unique ability to coherently
control several stable qubits with the possibility of strong,
long-range interactions between qubits, but state-of-the-art
implementations of entangling gates yield lower fidelities than
competing platforms of trapped ions and superconducting
systems. Their exists a large gap in fidelities between the-
oretical proposals and experimental implementations, which
can be bridged by technical improvements and pulse shaping.
In this work, we propose a procedure for executing a two-
qubit controlled phase operation that predicts high fidelity in
the presence of decay from excited atomic levels and major
technical imperfections. Our results indicate that our gate
procedure can pave the way for scalable quantum computing
with neutral atoms.

Our procedure for constructing a Rydberg-blockade CZ

gate combines our modified TQD technique with the state-of-
the-art procedure for implementing CZ gates on atomic qubits
[9]. Our symmetric CZ gate is executed between two trapped
atoms by simultaneously driving both atoms between their
ground and Rydberg levels using focused pulses on individual
atoms. We consider both one- and two-photon processes for
the ground to Rydberg excitation, which are feasible with cur-
rent experimental setups [11,57]. Furthermore, we incorporate
major sources of technical imperfections in our model, namely
Doppler dephasing, atomic-position fluctuation and laser-
intensity fluctuation, and make our simulations realistic by
using actual values of these imperfections [11]. Our procedure
reduces gate errors originating from atom loss and is feasible
for implementing CZ gates on large arrays of trapped atoms.

By following our gate procedure, we design time-
dependent functions for the Rydberg-excitation lasers that
result in high-fidelity CZ gates. These pulse functions are
derived from adiabatic pulses by using our modified TQD
technique. We analyzed the impact of this technique by com-
paring pulse shapes and Hamiltonian dynamics. Our results
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show that redistributing energy by modifying pulse shapes ac-
cording to the TQD technique speeds up quantum processes.
Additionally, we design a sequence of such modified pulses,
with relative phase shifts, to achieve a fast, high-fidelity CZ

gate.
We estimate CZ gate fidelities for Cs atom qubits by nu-

merically integrating the quantum master equation. In the
presence of spontaneous emission from excited Cs levels and
major technical imperfections, our gate procedure deliver CZ

gates with fidelities 0.9985 and 0.975 for the one- and two-
photon excitation models, respectively. Although one-photon
excitation model leads to higher fidelity, its experimental real-
ization is challenging and needs improvements. As compared
to adiabatic CZ gates, our gates yield 0.1× the infidelity in
0.15× the gate time requiring 0.3× the pulse energy. The
infidelity of the state-of-the-art experimental CZ gate is 2×
and the gate time is 3.3× than that of our simulated CZ gate
with the same excitation model. Our gates are robust against
Doppler dephasing of the Rydberg level and changes in the
duration of the Rydberg-excitation pulses Moreover, our gates
are less sensitive to thermal fluctuations of atoms and intensity
fluctuations of pulses as compared to adiabatic gates.

Our modified TQD technique, which is our key result, can
be used to speed up adiabatic dynamics in high-dimensional
Hilbert spaces. Although our gate procedure is tailored for
Rydberg-blockade gates, our approach of combining TQD
with existing gate procedures can be explored for different
gates in other quantum computing platforms. Thus our work
introduces a powerful pulse-shaping technique in the quan-
tum control toolbox. Similar to the standard TQD technique,
our pulse functions are not optimal and their performance
efficiencies are limited by the choice of the adiabatic pulses
used to derive them. One method to resolve this limitation is
by optimal control methods seek superior parameters, perhaps
lying outside our chosen parameter domains (56) and (57), for
the TQD pulses.

Our results lead to various interesting future directions, and
we now present some of them. First, one can apply our modi-
fied TQD technique on a two-atom Hamiltonian parametrized
by optimized STIRAP pulses [60] to seek higher gate fideli-
ties. Second, adopting a two-photon excitation model for ARP
[40,66,67] might be advantageous over STIRAP in terms of
gate time and also overcomes the implementation challenges
associated with the one-photon ARP model. Third, our mod-
ified TQD technique can be used for pulses involved in the
above-mentioned two-photon ARP model. Fourth, one can
explore techniques, including two-photon ARP, for removing
unwanted oscillations in gate fidelity. Finally, one can de-
rive closed-form expressions, similar to Ref. [9], for the two
phase-shift parameters in our pulse sequences and exploit the
interplay between pulse parameters to improve gate perfor-
mance.
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APPENDIX: MATHEMATICAL PRECEPTS

Here we discuss the decomposition of the 25-dimensional
Hamiltonian H̃ e

B(t, r) (41) into a direct sum of one- and
two-dimensional Hamiltonians, and the relevant matrix trans-
formations for this decomposition. In this regard, we define
an operator that maps the 25-dimensional Hamiltonian to
an effective two-dimensional Hamiltonian. The mapping
involves matrix transformations which we express as orthog-
onal matrices for permutation and basis transformation, and
idempotent-symmetric matrix for projection. The decompo-
sition and mapping of the time-dependent Hamiltonians are
defined at each time t during the dynamics.

1. Transformations

We first define of the transformations and operators that we
use in this section. For a Hilbert space H , B(H ) denotes the
space of bounded linear operators acting on H . In our case,
the transformations, which are basis change and projection, of
these operators are represented as conjugating channels. The
transformations of the Hamiltonian operators are effected by
operators representing the corresponding transformation.

Definition 1. A conjugating-channel transformation is

C : B(H ) × B(H ) → B(H ) : (A, B) �→ ABA† (A1)

for any A ∈ B(H ), and we use the notation CA(B) = ABA†.
Here A is the transformation operator and B is the Hamiltonian
operator.

The decomposition of the Hilbert space H into two sub-
spaces H1 and H2 is represented as a direct sum

d = d1 ⊕ d2, (A2)

where d, d1, and d2 are the dimensions of H , H1 and H2,
respectively. A projection on H is a conjugating-channel
transformation (A1), which is executed by a real-valued idem-
potent operator π with range H1 and kernel H2. For the
special case of B being a block-diagonal matrix with two
blocks H1 ∈ B(H1) and H2 ∈ B(H2),

Cπ (B) = πBπ = H1 ⊕ 0d2 =: B′, (A3)

for 0d2 the d2×d2 null matrix. Thus, the operation π maps
a d×d matrix B to a d1×d1 matrix H1, padded with a null
matrix.

The inverse of a conjugating-channel transformation satis-
fies

C−1
A (B) = A−1BA†−1 = A−1BA−1†

(A4)

for any invertible A. Particularly, for orthogonal and real-
valued A, representing a basis-change operator,

C−1
A (B) = A�BA. (A5)

For a projection operator π satisfying (A3), we define a
unique lift operator πthat executes an inverse projection
transformation such that

C−1
π (B′) = πB′ π≡ B, (A6)

where B and B′ are block-diagonal matrices.
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2. Decomposition

For our purpose, we first permute the matrix representation
of H̃ e

B(t ) into a block-diagonal structure by the conjugating-
channel transformation CP1 (H̃ e

B(t )), for a orthogonal and real-
valued P1. This transformation makes H̃ e

B(t ) a direct sum of
9×9 and 16×16 Hamiltonian matrices, and thus decomposing
H as

25 = 5 ⊗ 5 ≈ 9 ⊕ 16. (A7)

This block diagonalization is justified by not creating any cou-
pling between levels {|0〉, |1〉, |r〉}, whose tensor products with
themselves span the nine-dimensional Hilbert space HCZ, and
the other levels {|g〉, |p〉}. In the two-photon case, this decou-
pling is not strictly true because |p〉 is employed virtually for
|1〉 ↔ |r〉 coupling, but we eliminate |p〉 by adiabatic methods
and thus justify (A7) for the two-photon case.

After a projection transformation Cπ1 of the block-diagonal
Hamiltonian, we obtain a 9×9 Hamiltonian matrix H̃ e

B,CZ(t )
by

Cπ1 ◦ CP1

(
H̃ e

B(t )
) = π1P1H̃ e

B(t )P�
1 π1 = H̃ e

B,CZ(t ) ⊕ 016. (A8)

This 9×9 matrix represents the unitary dynamics of H̃ e
B(t )

exactly for the one-photon case and approximately for the
two-photon case.

We now perform a permutation transformation CP2 of
H̃ e

B,CZ(t ) to derive a block-diagonal structure according to the
decomposition

9 = 3 ⊗ 3 = 1 ⊕ 2 ⊕ 2 ⊕ 4 (A9)

of HCZ. The singleton arises because there is no coupling
between |00〉 and other levels. The existence of the two-
dimensional sectors is justified if only one of the two atoms
is in |1〉 and hence driven by the Rydberg excitation laser
to |r〉.

The four-dimensional sector, which represents the case
when both atoms are driven, is spanned by a basis set

{|11〉, |+〉, |rr〉, |−〉}, (A10)

obtained from the standard basis {|11〉, |1r〉, |r1〉, |rr〉} by
transformation CQ. In this basis the block-diagonal structure
(A9) further decomposes as

9 =1 ⊕ 2 ⊕ 2 ⊕ 4 ≈ 1 ⊕ 2 ⊕ 2 ⊕ 2 ⊕ 1 ⊕ 1

= span{|00〉}︸ ︷︷ ︸
H0

⊕ span{|01〉, |0r〉}︸ ︷︷ ︸
H0r

⊕ span{|10〉, |r0〉}︸ ︷︷ ︸
Hr0

⊕ span{|11〉, |+〉}︸ ︷︷ ︸
Hrr

⊕ span{|−〉} ⊕ span{|rr〉}. (A11)

where |−〉 is a dark state and |rr〉 is decoupled from the rest
of the states by adiabatic elimination under Rydberg-blockade
condition (13).

Finally, we define an effective two-level Hamiltonian
H̃ e

B,eff(t ) as a final projection Cπ2 of H̃ e
B(t ) onto Hrr. Thus, the

whole operation of mapping the 25×25 matrix H̃ e
B(t ) to a 2×2

matrix H̃ e
B,eff(t ) is represented by the conjugating-channel

transformation

H̃ e
B,eff(t, r) ⊕ 023 = CR

(
H̃ e

B(t, r)
) ≡ RH̃ e

B(t, r)R�, (A12)
for a real-valued operator

R := π2QP2π1P1. (A13)

H̃ e
B,eff(t ) drives the transition between |11〉 and |+〉 and is

primarily responsible for entanglement.
Although the dynamics of the two-atom system can be

broken up into independent singleton and qubit evolutions,
the initial state |ψ0〉 (15) has support over all four Hilbert-
space sectors H0, H0r, Hr0 and Hrr. The |00〉 component
of the initial state, i.e., the projection of the initial state
onto H0, undergoes trivial (i.e., identity 1) evolution, so
the |00〉 coefficient of the instantaneous state has a con-
stant magnitude during the evolution. As for the other three
components of the initial state, their coefficients in the
instantaneous state evolve according to the two-level Hamil-
tonians obtained by projecting H̃ e

B(t ) onto H0r, Hr0, and Hrr,
respectively.
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