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Geometric quantum gates are performed by using the geometric phase, making them particularly robust to the
pulse amplitude error. However, in many systems, such as the silicon-based spin qubits, the off-resonance error
is the dominant noise, which can cause dephasing and is always difficult to deal with for a geometric gate. Thus
how to combat with the off-resonance error is very significant for the application of the geometric gates. A recent
work [S. Li and Z.-Y. Xue, Phys. Rev. Appl. 16, 044005 (2021).] revealed that by inserting two π pulses into
the evolution paths, the holonomic quantum gate is effective to suppress the pulse amplitude error, however, it
is still useless for combating the off-resonance error. Inspired by this work, we combine using the techniques of
dynamical correction and path design. Surprisingly, we find that, by picking up a specific evolution path inserted
by only a π -pulse, the obtained optimized geometric gate is robust to the off-resonance error, assuming the
noise is static. Further, by calculating the filter function considering the realistic 1/ f -type noise in silicon, the
related results show that the performance of the optimized geometric gate can also surpass both the conventional
geometric gate and the naive dynamical gate constructed without using the geometric phase. Our results indicate
dynamical correction is a powerful tool to improve the geometric quantum computation to achieve a high-fidelity
quantum gate in silicon.
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I. INTRODUCTION

High-fidelity gate operation is crucial to realize fault-
tolerant quantum computing and quantum task. Tremendous
schemes such as composite quantum gates [1–4], time opti-
mal quantum gates [5–7], and geometric gates [8–13] were
proposed and achieved great success over the past years. The
geometric gate is standing out to realize high-fidelity quantum
operations since it uses the geometric phase rather than the
traditional dynamical phase. Normally, there are two basic
requirements [14] for the construction of the geometric gates,
namely, the cancellation of the dynamical phase and the cyclic
evolution in the parameter space. In this way, the implemented
geometric gates can mitigate the fluctuation in the control
Hamiltonian.

Geometric gates can be constructed by using either the
Berry phase [15] or the Aharonov-Anandan (AA) phase [16],
where they relate to the adiabatic and nonadiabatic evolution,
respectively. In the early proposed schemes, many proposals
used the Berry phase. However, the adiabatic condition for
the Berry phase requires overly long evolution time, mak-
ing the gates suffer more decoherence. While the geometric
gate based on the AA phase speeds up the evolution time,
which is friendly for the experimental implementation. The
AA-based universal geometric quantum gates were realized
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in superconducting circuits [17–23], Nitrogen-vacancy cen-
ter in diamond [24,25], trapped ions [26,27], and so on.
Typically, the conventional geometric gates based on orange-
slice-shaped evolution loop [13] are particularly robust against
the pulse amplitude error, i.e., the error in the Rabi frequency.
However, the off-resonance error is always hard to deal with
for the geometric gate [28], where this type of noise is the
dominant noise source in many platforms. Therefore, how to
combat the off-resonance error is important and significant for
the implementation of geometric gates.

Silicon-based spin qubits in the semiconductor quantum
dot is promising to realize universal quantum computation
due to its long coherence time and all-electric gate oper-
ation. Experimentally, the fidelity for both single- and the
two-qubit gates have surpassed 99% [29–32]. Nevertheless,
the implemented gate in silicon still suffers noises. Charge
noise [33–35] and nuclear noise [36] are assumed to be the
two main noise sources in silicon. Charge noise stems from
the charge fluctuation near the quantum dot, while the nuclear
noise is attributed to the residual 29Si nuclei. Experimentally,
the single-qubit gate can be resonantly driven by applying an
oscillating magnetic field, which can be generated by either
using the electron spin resonance (ESR) or electric dipole spin
resonance (EDSR). For the ESR-driven spin qubits, the de-
phasing is mostly owing to the residual 29Si nuclei [36]. While
for the EDSR-driven case, the charge noise can induce spin
dephasing via the longitudinal spin-electric coupling [35]. For
both cases, the noises can induce the resonance frequency
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fluctuations and further the qubit dephasing. Therefore, we
term them as the off-resonance errors in this work for sim-
plicity. On the other hand, the valley-spin coupling [37] would
lead to unwanted relaxation for the spin qubits. Fortunately,
a recent experimental work [38] found that, by using the
isotopic purification technique, the spin qubits can be operated
with relaxation time as long as 9 s. In this work, we focus on
the off-resonance error suppression by geometric gates and
assume the evolution of the gate is unitary due to the long
relaxation time. The relaxation effect on the gate fidelity is
discussed in Appendix A. The valley effect remains to be
further studied.

Recently, it was found that by using the dynamical
corrected technique, the holonomic quantum gates can be sub-
stantially robust to the pulse amplitude error to fourth order
[39]. In this protocol, to cancel out the dynamical phase accu-
mulation, two decoupling π pulses are symmetrically inserted
into the middle point of the evolution paths, which add an
extra 2π rotation, compared to the conventional holonomic
quantum gate. In combination with the decoherence-free sub-
space encoding [40–42] the collective dephasing noise can be
further canceled out since the noise performs certain symme-
tries in this subspace. Later, it was found that this protocol
can be successfully extended to the abelian geometric gates
[43]. However, in both cases it is useless to suppress the
off-resonance error, as seen in Appendix B, which is the
targeted issue in this work. Inspired by these works, in this
work, we study the key issue of whether the geometric gate
can suppress the off-resonance error by dynamical correc-
tion. By picking up a specific evolution path and inserting
only a π pulse into the middle of this path, we are able to
achieve an optimized geometric gate, which is equivalent to
the conventional geometric gate. We surprisingly find that the
designed optimized geometric gate can be effectively robust to
the off-resonance error. To verify the performance of the opti-
mized geometric gate, we perform randomized benchmarking
[3,44–46] and calculate the filter function [47–50], consider-
ing the realistic experimental noise level. The results clearly
show that the performance of the optimized geometric gate
are superior to both the conventional geometric gate [13] and
the naive dynamical gates that are constructed without using
the geometric phase. Our results indicate that the geometric
gate might benefit from dynamical correction. We emphasize
that our method cannot only be useful for the single-qubit
gates in silicon, but can also be easily extended to other
systems like superconducting qubits with a microwave-driven
Hamiltonian as shown in Eq. (1). In addition, it is also applied
for the two-qubit case when the Hamiltonian in the related
subspace has the similar form [18].

II. CONVENTIONAL GEOMETRIC GATES

Here, we present the approach to construct the conven-
tional orange-slice-shaped geometric gates [13], as shown in
Fig. 1(a). This conventional geometric gate is based on a
two-level system driven by a microwave. By setting h̄ = 1,
the control Hamiltonian reads

Hc(t ) =�(t )

2
[cos ϕ(t ) σx + sin ϕ(t ) σy]. (1)

FIG. 1. Schematic of the conventional and optimized geometric
gates. (a,b) The case without the off-resonance error, i.e., δ = 0. For
the conventional geometric gate in (a), the dressed state evolves along
the longitude A-B-C-D-A to fulfill a cyclic evolution. In (c), when
the off-resonance error exists, i.e., δ �= 0, the dressed state cannot
go back to the desired starting point A. While for the optimized
geometric gate in (b), the dressed states evolves along another path
A-B-C′-D-A, where a π pulse is inserted into point C′. In (d), the
dressed state can still enclose a closed loop even though δ �= 0.

Here, the Pauli matrix is written in the computational basis |0〉
and |1〉. �(t ) and ϕ(t ) are the time-dependent amplitude (Rabi
frequency) and phase of the microwave field, respectively. To
obtain the pure geometric gates, we divide the entire evolution
time of any geometric gate into three segments. The two
parameters during each segment should satisfy

∫ T1

0
�(t )dt = θ,

{
ϕ(t ) ≡ φ − π

2
, t ∈ [0, T1]

}
,

∫ T2

T1

�(t )dt = π,
{
ϕ(t ) ≡ φ + γ + π

2
, t ∈ [T1, T2]

}
,

∫ T

T2

�(t )dt = π − θ,
{
ϕ(t ) ≡ φ − π

2
, t ∈ [T2, T ]

}
. (2)

At the final evolution time T , which is determined by∫ T
0 �(t )dt = 2π , the total evolution operator is

Ug(T ) = U (T, T2)U (T2, T1)U (T1, 0)

= cos γ Î − i sin γ

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)

= eiγ �n·�σ , (3)

where �n = (sin θ cos φ, sin θ sin φ, cos θ ) can be regarded as
the unit vector on the Bloch sphere. In this way, Ug(T ) can
implement arbitrary single-qubit rotation on the Bloch sphere,
namely, it is universal.

Generally, a geometric gate needs to satisfy the cyclic evo-
lution and parallel-transport conditions [14]. To demonstrate
Ug(T ) is being a pure geometric gate, we introduce a pair of
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dressed states

|ψ+〉 = cos
θ

2
|0〉 + sin

θ

2
eiφ|1〉,

|ψ−〉 = sin
θ

2
e−iφ |0〉 − cos

θ

2
|1〉.

(4)

In the dressed-states representation, Ug(T ) can be rewritten as

Ug(T ) = eiγ |ψ+〉〈ψ+| + e−iγ |ψ−〉〈ψ−|. (5)

After the action of the operator, the dressed states become

|ψ+(T )〉 = Ug(T )|ψ+〉 = eiγ |ψ+〉,
|ψ−(T )〉 = Ug(T )|ψ−〉 = e−iγ |ψ−〉.

(6)

It is clear that |ψ+(t )〉 (|ψ−(t )〉) fulfills a cyclic evolution
at the final evolution time T and obtains the corresponding
global phase factor γ (−γ ). The evolution path of |ψ+(t )〉 is
visualized in Fig. 1(a). Specifically, it travels always along the
longitude of the Bloch sphere, denoted as path A-B-C-D-A,
and encloses an orange-slice-shaped loop at the final time. On
the other hand, the parallel-transport condition can be easily
verified via

〈ψ±(0)|U †
g (t )Hc(t )Ug(t )|ψ±(0)〉 = 0. (7)

Therefore, the accumulated dynamical phase throughout the
evolution is zero and the acquired global phase factor γ rep-
resents the desired pure geometric phase.

Below we discuss the robustness of the conventional
geometric gates by comparing its fidelity with the naive
dynamical gate, which is constructed without using the geo-
metric phase. We begin by introducing how to implement the
dynamical gates. For the control Hamiltonian in Eq. (1), by
holding �(t ) ≡ � and ϕ(t ) ≡ ϕ for a time χ/�, a one-piece
of dynamical gate is obtained as

R(r̂, χ ) ≡ exp
[
−i

χ

2
(cos ϕ σx + sin ϕ σy)

]
, (8)

where R(r̂, χ ) denotes arbitrary rotation by an angle χ in the
x-y plane. For other dynamical rotations that are out of this
plane, they can be decomposed into the x-y-x composite pulse
sequence [51]

R(x̂, χc)R(ŷ, χb)R(x̂, χa), (9)

where the values of χi (i = a, b, c) is determined by the spe-
cific rotation. It is clear that an x-axis or y-axis rotation is the
elementary unit. Note that one should not confuse this com-
posite pulse sequence with the geometric gate as described in
Eq. (3) since it usually cannot satisfy the cyclic evolution and
parallel-transport conditions for the geometric gate.

In the implementation of the quantum operation, both the
geometric and dynamical quantum gates can suffer mainly
two types of errors, and the control Hamiltonian becomes
H ′

c(t ) = (1+ε)�(t )
2 [cos ϕ(t )σx + sin ϕ(t )σy] + �(t )δ

2 σz. ε relates
to the fluctuation for the Rabi frequency due to the imprecise
pulse control of the microwave field. We term it as the pulse
amplitude error. While δ is the off-resonance error, which
relates to the fluctuation transverse to the microwave field
leading to dephasing. In the experimental environment for
silicon-based spin qubits, both the charge noise [35] and the
residual 29Si nuclei [36] can cause this off-resonance error.

The robustness of the conventional geometric gates against
these two types of errors can be analytically derived by per-
forming a Taylor series expansion of the fidelity. Here we take
an arbitrary x-axis rotation by an angle χ as the example since
it is the elementary gate as seen in Eq. (9)

F δ
d (x̂, χ ) 	 1 + 1

4
(cos χ − 1)δ2,

F δ
g (x̂, χ ) 	 1 − 2 cos4 χ

4
δ2,

F ε
d (x̂, χ ) 	 1 − χ2

8
ε2,

F ε
g (x̂, χ ) 	 1 − π2

2
sin4 χ

4
ε2.

(10)

Here, Fd (x̂, χ ) and Fg(x̂, χ ) denote the fidelity for the dy-
namical and conventional geometric gate, respectively. Note
that here we assume |ε|, |δ| 
 �, thus they can be treated as
perturbations. Meanwhile, we treat them as constant values
and the time-dependent property will be discussed later. It
is easy to find that in the region −π � χ � π , F δ

d (x̂, χ ) �
F δ

g (x̂, χ ) and F ε
d (x̂, χ ) � F ε

g (x̂, χ ), namely, the conventional
geometric gate is robust to the pulse amplitude error while
sensitive to the off-resonance error. The case for the y-axis
rotation is similar, thus we will not show the result again. As
stated above, the off-resonance error is the dominant noise
for silicon-based spin qubits. Therefore, the key to realizing
high-fidelity quantum operation for a spin qubit in silicon is to
seek for approaches to combat the off-resonance error. Here-
after we leave alone the pulse amplitude error and focus on
the off-resonance error. In Fig. 2, we compare the robustness
between the dynamical gates and the conventional geometric
gates.

III. OPTIMIZED GEOMETRIC QUANTUM GATES BY
DYNAMICAL CORRECTION

To combat the off-resonance error, we combine the tech-
niques of dynamical correction and path design. As shown in
Fig. 1(b), we carefully choose a new evolution path (denoted
as the red dashed line) and insert a corrected π pulse into this
path accordingly, such that the total evolution path is divided
into five pieces. Specifically, �(t ) and ϕ(t ) during each part
satisfy

∫ T1

0
�(t )dt = θ,

{
ϕ(t ) ≡ φ − π

2
, t ∈ [0, T1]

}
,

∫ T2

T1

�(t )dt = π/2, {ϕ(t ) ≡ φ + γ + π, t ∈ [T1, T2]},
∫ T3

T2

�(t )dt = π,

{
ϕ(t ) ≡ φ + γ + 3π

2
, t ∈ [T2, T3]

}
,

∫ T4

T3

�(t )dt = π/2, {ϕ(t ) ≡ φ + γ + π, t ∈ [T3, T4]},
∫ T

T4

�(t )dt = π − θ,
{
ϕ(t ) ≡ φ − π

2
, t ∈ [T4, T ]

}
.

(11)
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FIG. 2. Robustness of the optimized geometric gates (denoted as red solid lines) compared with the conventional geometric gates (denoted
as black solid lines) and the naive dynamical gates (denoted as black dashed lines). The red dashed line denotes the optimized geometric gate
considering the π pulse is perfect.

At the end of the evolution time, namely,
∫ T

0 �(t )dt = 3π , the
resulting operator is

Ug,opt (T ) = U (T, T4)U (T4, T3)U (T3, T2)U (T2, T1)U (T1, 0)

= eiγ �n·�σ ,

(12)
which is the same as the conventional geometric gate in
Eq. (3). Hereafter, we term it as the optimized geometric gate.

Comparing the conventional geometric gate and the opti-
mized one in Figs. 1(a) and 1(b), the evolution paths for the
first and the last parts are the same. While the differences are
related to the second part, and there are two main differences
between them. First, the longitude denoted as B-C-D for the
conventional geometric gate was rotated by an angle π/2,
which turns to be another longitude B-C′-D. Second, this new
path has been further divided into three segments, where a cor-
rected π pulse was inserted into the middle point of the new
longitude. As shown in Fig. 2, comparing to the dynamical
and the conventional geometric gates, the optimized geomet-
ric gates are more insensitive to the off-resonance error. By
further performing a Taylor series expansion, we find

F δ
g,opt(x̂, χ ) 	 1 − 2 sin4 χ

4
δ2. (13)

It is clear that F δ
g,opt(x̂, χ ) � F δ

d (x̂, χ ),F δ
g (x̂, χ ) in the con-

sidered region −π � χ � π . Therefore, the robustness of the
optimized geometric gate against the off-resonance error is
verified. The case for the y-axis rotation is similar. We note
that the evolution time for the optimized geometric gate is
prolonged, however, the relaxation effect on the qubit can still
be safely ignored considering the rather long coherence time
in silicon. The detail can be seen in Appendix A.

Then, we explain why the designed optimized geometric
gates can improve the robustness of the conventional geo-
metric gates. The key to realizing a robust geometric gate is
to enclose a closed loop even though the off-resonance error

exists. As shown in Fig. 1(c), when the off-resonance error
exists, the dressed state |ψ+〉 (|ψ−〉) cannot go back to the
starting point at the final evolution time, namely, |ψ+(0)〉 �=
|ψδ

+(T )〉 (|ψ−(0)〉 �= |ψδ
−(T )〉). According to Eq. (5), the evo-

lution operator turns out to be

Ug,δ (T ) = eiγ δ |ψδ
+(T )〉〈ψ+(0)| + e−iγ δ |ψδ

−(T )〉〈ψ−(0)|.
(14)

For comparison, in Fig. 1(d), the dressed state can still en-
close a closed loop even though δ �= 0 due to the inserted
π pulse and the chosen different evolution path denoted as
B-C′-D. To quantitatively study the deviation between the
initial and the final dressed state, we define the infidelity as
δF = 1 − |〈ψ+(0)|ψδ

+(T )〉|2. In Fig. 3, we show two typical
results for the x-axis rotations to verify the superiority of
the optimized geometric gates. It is shown that the infidelity
for the optimized geometric gates are always lower than the
one for the conventional geometric gates, which means the
inserted π pulse can effectively help to enclose a closed
loop. Ideally, the inserted π pulse is expected to be perfect,
namely, the off-resonance is zero. We surprisingly find that,
even though the inserted π pulse is imperfect, the performance
for the imperfect geometric gates can sometimes outperform
the perfect one, as seen in Figs. 3(a) and 2. Also, we have
observed the case, where the perfect geometric gate performs
better, as seen in Fig. 3(b). We therefore conclude that whether
the perfect π pulse can offer external improvement sensitively
depends on the specific rotations. On average, whether the π

pulse is perfect or not would not affect the averaged fidelity,
which can be seen from the benchmarking results (see Sec. IV
below) as shown in Figs. 4 and 5.

IV. SIMULATION ON SINGLE-QUBIT GATES IN SILICON

The superiority of the optimized geometric gate can be
further verified by performing randomized benchmarking
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FIG. 3. Infidelity for the x-axis rotations by an angle χ , which are
defined as δF = 1 − |〈ψ+(0)|ψδ

+(T )〉|2. The common parameters are
θ = π/2 and φ = 0. The rotation angles in (a) and (b) are χ = π/2
and 5π/6, respectively.

[3,44–46], the schematic of which is shown in Fig. 4(a).
Normally, there are two types of randomized benchmark-
ing, namely, the standard and the interleaved randomized
benchmarking. For the standard randomized benchmarking,
we can obtain the averaged fidelity over the given gate se-
quences and noise spectrum. The gate sequences are randomly
drawn from the Clifford group, which is composed of 24 spe-
cific single-qubit gates [3]. While the interleaved randomized
benchmarking [46] is the variant of the standard one, where
the gate sequence is interleaved with specific target gate,
such that we can also obtain the benchmarking result for this
gate. In the randomized benchmarking simulation, we con-
sider the static noise model (the time-dependent effect will be
considered later), and assume the noise is with Gaussian dis-
tribution, i.e., σ 2

δ : N (0, σ 2
δ ), where σδ is the variance of the

noise. According to Refs. [36,52], we assume σδ/� = 0.02.
The standard randomized benchmarking results are shown
in Fig. 4(b). By fitting the fidelity curves to the expression
(1 + e−dn)/2 [53], we are able to obtain the averaged error per
gate d . Here, n is the number of the Clifford gates. Therefore,
the averaged fidelity is F = 1 − d .

The standard benchmarking results for the naive dy-
namical, the conventional geometric, and the optimized
geometric gates are Fd = 99.957%, Fg = 99.919%, and
Fg,opt = 99.998%. It is clear that the optimized geomet-
ric gate performs the best. With the standard randomized
benchmarking results, we can further obtain the interleaved
benchmarking results via Fin = 1 − (1 − pin/pst )/2 [46,54],

FIG. 4. Randomized benchmarking results. (a) Schematic of the
standard and the interleaved randomized benchmarking. The gate
denoted as Ci, i = 1, 2, . . . , n is randomly drawn from the Clifford
group, where n is the number of the used Clifford gates. C denotes the
target gate for interleaving. (b) Standard randomized benchmarking
results. The noise is assumed to be static with Gaussian distribution,
i.e., σ 2

δ : N (0, σ 2
δ ), where σδ is the variance of the noise. In the

simulation, we take σδ/� = 0.02 [36,52].

where pin and pst denote the depolarizing parameters for the
interleaved and standard benchmarking results. The depolar-
izing parameter is determined by p = e−d . The interleaved
benchmarking results are shown in Fig. 5, while the related
gate fidelities are shown in Table I. It is clear that for all
the cases, the optimized geometric gates outperform the naive
dynamical and the conventional geometric ones.

On the other hand, for the silicon-based semiconductor
quantum dot in experiments, the noise is time dependent and
is correlated. Normally, the noise spectrum exists to be the
1/ f type whose spectral density can be described as

S( f ) = S0

f α
, (15)

TABLE I. Fidelity of the interleaved randomized benchmarking,
drawn by fitting the data in Fig. 5.

Gates X/2 X/4 Y/2 Y/4 Z/2 Z/4

Naive 99.957% 99.953% 99.954% 99.960% 99.884% 99.969%
Geometric 99.919% 99.878% 99.898% 99.868% 99.913% 99.905%
Optimized 99.978% 99.975% 99.976% 99.974% 99.975% 99.977%
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FIG. 5. Interleaved randomized benchmarking results. The noise is assumed to be static with Gaussian distribution, i.e., σ 2
δ : N (0, σ 2

δ ),
where σδ is the variance of the noise. In the simulation, we take σδ/� = 0.02 [36,52].

where f is the frequency, S0 denotes the noise amplitude, and
the exponent α denotes how much the noise is correlated. For
small α, the noise is strongly correlated and is far away from
the static noise model. while for large α the noise is gradually
closed to the static model. According to a recent experiment
[35], we have S0 = 2.67 × 106 Hz2, α = 1.01, which means
the noise is highly correlated. Therefore, the performance of
the optimized geometric gates under the realistic noise envi-
ronments still needs to be verified.

The filter function [47–50] is a powerful tool to analytically
calculate the infidelity for the time-dependent errors in the
qubits. The calculated infidelity during the control operation
can be expressed with respect to the specific noise spectrum
and the control Hamiltonian. Here, we briefly introduce how
to calculate the filter function. The key of the filter function is
the so-called control matrix R(t ) ≡ [Rx(t ), Ry(t ), Rz(t )]T, the
components of which are

R j (t ) ≡ [Rjx(t ), Rjy(t ), Rjz(t )],

Rjk (t ) = Tr[U †
c (t )σ jUc(t )σk]

2
,

(16)

where j, k ∈ {x, y, z}. Here, Uc(t ) is the time-dependent evo-
lution operator that is satisfied with the Schrödinger equation
iU̇c(t ) = H (t )Uc(t ). Then the Fourier transform of Rjk (t ) is

Ri j ( f ) = −i f
∫ T ′

0
ei f t Ri j (t )dt, (17)

where T ′ is the duration of the total gate operation. For a given
noise spectrum Si j ( f ), the fidelity is

F 	 1 − 1

2π

∑
i, j,k=x,y,z

∫ ∞

−∞

df

f 2
Si j ( f )Rjk ( f )R∗

ik ( f ). (18)

Since we only consider the off-resonance error, which appears
in the z axis in the control Hamiltonian and the specific fre-
quency domain in the experiment, Eq. (18) reduces to

F = 1 − 1

2π

∫ fuv

0
df Sz( f )

Fz( f )

f 2
. (19)

Here we define the filter function as

Fz( f ) =
∑

k=x,y,z

Rzk ( f )R∗
zk ( f ), (20)

and fuv is the cutoff related to the experiment. From Eq. (19),
it is clear that for a specific noise spectrum Sz( f ), the re-
lated filter function term Fz( f )/ f 2 can be used to evaluate
the infidelity of the operation since it is proportional to the
infidelity. The filter function results are shown in Fig. 6. For
all the cases, when the frequency is small ( f / fRabi � 10−1),
the filter function with respect to the optimized geometric
gate is the smallest. When the frequency is large enough
(10−1 � f / fRabi � 100), the filter function with respect to the
naive dynamical gate turns to be the smallest. When the fre-
quency is too large, the filter function curves for all the gates
are indistinguishable. On the other hand, the curve denoted
as the conventional geometric gate always above the naive
dynamical one. In short, the optimized geometric gate is ro-
bust against the low-frequency off-resonance noise, while the
conventional geometric gate is helpless for the off-resonance
noise.

By inserting Eq. (15) into Eq. (19), we are able to further
calculate the numerical fidelity under the 1/ f noise spectrum.
In our simulation, we consider the related parameters from the
experiment [35]: the Rabi frequency �/2π = fRabi = 4 MHz
and the cutoff fuv = 320 kHz (corresponding to f / fRabi =
8 × 10−1). The related calculated fidelities are shown in
Table II. For all the cases, the optimized geometric gates still
perform the best.
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FIG. 6. Filter function results. The noise is assumed to be with 1/ f type, where the spectral density can be described as S( f ) = S0
f α . In the

simulation, we take the parameter from the experimental results in Ref. [35]: S0 = 2.67 × 106 Hz2, α = 1.01, �/2π = fRabi = 4 MHz, the
cutoff fuv = 320 kHz.

V. CONCLUSION

In this work, we proposed a general method to obtain the
optimized geometric gate by using dynamical correction. We
find that by selecting a new evolution path and properly insert-
ing a π pulse into the evolution path, the obtained optimized
geometric gate is equivalent to the conventional one. To verify
the robustness of the optimized geometric gates against the
off-resonance error, we further perform randomized bench-
marking and calculate the filter function under the realistic
noise level from experiments. The results clearly show that
the optimized geometric gates are superior to the conventional
geometric gates and the naive dynamical gates without using
the geometric phase. Our results indicate dynamical correc-
tion might be useful to improve the geometric gate.
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TABLE II. Fidelity results from the filter function, drawn by
fitting the data in Fig. 6.

Gates X/2 X/4 Y/2 Y/4 Z/2 Z/4

Naive 99.615% 99.887% 99.615% 99.887% 97.693% 99.775%
Geometric 97.779% 97.153% 97.759% 97.153% 97.374% 97.041%
Optimized 99.934% 99.996% 99.934% 99.999% 99.550% 99.883%

APPENDIX A: DECOHERENCE EFFECT

Compared with the conventional geometric gate, the evo-
lution time for the optimized one is longer (adding π more
pulse), which might cause more decoherence when consid-
ering the relaxation. To study this decoherence effect on the
optimized geometric gate, we introduce the master equation
[55]

ρ̇ = −i[H ′
c(t ), ρ] + γ1D[σ−]ρ + γϕ

2
D[σz]ρ, (A1)

FIG. 7. Decoherence effect due to the relaxation. The off-
resonance error is δ = 0.1. When the relaxation rate is large, i.e.,
γ1/� = 10−2 (denoted as black dashed line), the fidelity curve would
slightly deviate from the one without relaxation effect (denoted as red
solid line). While the relaxation rate is small enough, i.e., γ1/� =
10−4 (denoted as red dashed line), the introduced infidelity by the
relaxation can be safely neglected.
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where D[L̂]ρ = (2LρL† − L†Lρ − ρL†L)/2. Here, ρ de-
scribes the density matrix, σ− = |0〉〈1| and σz = |0〉〈0| −
|1〉〈1|. γ1 and γϕ denote the relaxation and pure dephasing
rate, respectively. In Fig. 7, we show the fidelity of the X/2
rotation versus the evolution time, considering different relax-
ation rates. Here we take the off-resonance error to be δ = 0.1
which contributes to the dephasing. Thus we set γϕ = 0. As
we can see that the large relaxation rate would result in con-
siderable infidelity. While the relaxation rate is small enough
with γ1/� = 10−4 (as seen the red dashed line), the infidelity
can be as low as ∼10−4. For the spin qubits in silicon, the
relaxation time can be as long as 9 s [38]. Considering the nor-
mal Rabi frequency �/2π = 500 kHz [36], the corresponding
relaxation rate can be γ1/� ∼ 10−8. In this way, it is safe to
neglect the relaxation effect.

APPENDIX B: GEOMETRIC GATES WITH TWO
INSERTED π PULSES

Here, we introduce the dynamically corrected geometric
gates in Ref. [39], where two π pulses are inserted into the
middle point of the evolution compared to the conventional
orange-slice-shaped geometric gates. Specifically, �(t ) and
ϕ(t ) are divided into seven pieces where they satisfy

∫ T1

0
�(t )dt = θ,

{
ϕ(t ) ≡ φ − π

2
, t ∈ [0, T1]

}
,

∫ T2

T1

�(t )dt = π

2
,

{
ϕ(t ) ≡ φ + γ + π

2
, t ∈ [T1, T2]

}
,

∫ T3

T2

�(t )dt = π, {ϕ(t ) ≡ φ + γ + π, t ∈ [T2, T3]},
∫ T4

T3

�(t )dt = π

2
,

{
ϕ(t ) ≡ φ + γ + π

2
, t ∈ [T3, T4]

}
,

∫ T5

T4

�(t )dt = π

2
,

{
ϕ(t ) ≡ φ − π

2
, t ∈ [T4, T5]

}
,

∫ T6

T5

�(t )dt = π, {ϕ(t ) ≡ φ, t ∈ [T5, T6]},
∫ T

T6

�(t )dt = π

2
− θ,

{
ϕ(t ) ≡ φ − π

2
, t ∈ [T6, T ]

}
.

(B1)

For an arbitrary x-axis rotation by an angle χ , the correspond-
ing fidelity can be expanded as

F δ
2π (x̂, χ ) 	 1 + cos

γ 2

4

(
cos

γ

2
− 2 sin

γ

2
− 3

)
δ2.

(B2)
We can easily see that within the range −π � χ � π ,
F δ

2π (x̂, χ ) � F δ
d (x̂, χ ),F δ

g (x̂, χ ),F δ
g,opt(x̂, χ ). Therefore, this

protocol is unable to improve the off-resonance error.
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