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Implementation of a Frenkel exciton-based controlled phase shifter
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Frenkel excitons are of interest for ultrafast switching applications due to the femtosecond timescale at which
coherent exciton transfer between chromophores takes place. The Frenkel Hamiltonian, which governs the
dynamics of Frenkel excitons, belongs to a class of Hamiltonians that enable universal quantum computation.
It is thus of interest to determine how a complete set of exciton-based gates for quantum computing could be
constructed as aggregates of chromophores. We demonstrate that a controlled phase shifter can be constructed
as a pair of exciton transmission lines that employ two types of chromophores and that are cross coupled by
a two-exciton interaction. This element facilitates the construction of controlled basis-change gates, thereby
enabling the implementation of a complete set of exciton-based gates for universal quantum computation.

DOI: 10.1103/PhysRevA.107.012603

I. INTRODUCTION

The control that DNA-based self-assembly [1,2] affords
in assembling chromophores, generally consisting of the
optically active component of organic dyes, into complex
well-defined structures [3–5] has led to interest in the use of
this technology to form chromophore aggregates that function
as coherent exciton-based devices [6–11] and potentially for
quantum computing [12,13]. These excitons consist of the
quantum of energy that is required to induce a transition
from the ground electronic state of a chromophore to its low-
est optically allowed excited state. These are referred to as
Frenkel excitons and have dynamics governed by the Frenkel
Hamiltonian. In an aggregate of chromophores, this energy
acts as a quasiparticle such that it will propagate coherently
throughout the aggregate, mediated by Coulomb interactions
that induce one chromophore to deexcite while a neighboring
chromophore is excited. This coupling is often approximated
as the dipole-dipole coupling between the transition dipoles
of a pair of chromophores and is modeled as an excitonic
hopping interaction [14].

Frenkel excitons also exhibit exciton-exciton interactions.
These can arise via two mechanisms. The first is the re-
sult of the energy deficit or excess when the molecule
is doubly excited compared to that of two singly excited
molecules. This represents the energy cost of having two
excitons occupy the same chromophore [15]. This interaction
is modeled by anharmonicity terms in the Frenkel Hamil-
tonian. The second mechanism gives rise to an interaction
between excitons residing on neighboring chromophores. This
Coulombic interaction arises from the difference between
the static (permanent) charge distribution of a molecule in
its ground electronic state and its lowest excited state. This
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interaction is often approximated as dipole-dipole coupling
between dipoles [14] whose moments consist of the difference
between the ground-state and lowest excited-state static dipole
moments, hereafter referred to as a difference static dipole
moment.

The Frenkel Hamiltonian, consisting of a sum of hopping
Hamiltonians that transfer quasiparticles between sites and
one-site and two-site two-particle-interaction Hamiltonians,
belongs to a class of Hamiltonians with which universal
quantum computation can be implemented as a many-particle
quantum walk [16] provided the two-particle interactions are
of suitable form. It is thus of interest whether the exciton-
exciton interactions realizable in chromophore aggregates
enable the implementation a complete set of gates required
for universal quantum computation. Here we show this is the
case.

Following Childs et al. [16], a many-particle quantum-
walk architecture is adopted in which arrays of closely placed
chromophores function as exciton wires (transmission lines)
connecting gates. We adopt a dual-rail representation in which
a qubit is carried by a pair of transmission lines as an exciton
wave packet that consists of a superposition state in which
the exciton resides on either of the transmission lines. The
qubit codes the quantum-mechanical amplitudes with which
the exciton resides on either of the transmission-line pairs. In
this implementation, basis-change gates are easily formed by
bringing the two wires in close proximity at the gate location
such that the exciton can hop from one transmission line to
the other. This gate can be viewed as the exciton equivalent of
an optical beam splitter. The design of such gates has been
discussed by Yurke and Kuang [17]. In principle, any de-
sired coupling (basis-change transformation) can be realized
through proper choice of the hopping interaction strengths
between pairs of chromophores in the gate and achieved by
proper adjustment of the spacing between chromophores.

Phase gates are also easily implemented as propagation
delays which can be realized by either adjusting the lengths

2469-9926/2023/107(1)/012603(11) 012603-1 ©2023 American Physical Society

https://orcid.org/0000-0003-3913-2855
https://orcid.org/0000-0001-6862-7211
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.012603&domain=pdf&date_stamp=2023-01-04
https://doi.org/10.1103/PhysRevA.107.012603


YURKE, ELLIOTT, AND SUP PHYSICAL REVIEW A 107, 012603 (2023)

of the wire assemblies or inserting a section of transmission
line with chromophores whose optical transition frequency is
shifted. The optical transition frequencies of chromophores
can be modified by changing substituents, thereby enabling
the synthesis of chromophores with suitable optical transition
frequency. It is also noted that a basis-change gate can func-
tion as a phase shifter if two of the ports are terminated with
properly chosen chromophores [17].

To complete the list of gates needed for universal quantum
computation, a gate is required in which the propagation of
one exciton is altered by the presence of a second exciton.
In the dual-rail implementation this is achieved by bringing
a pair of transmission lines carrying one qubit in the vicinity
of a pair of transmission lines carrying a second qubit such
that the excitons can interact via a two-body interaction. This
must be done in such a way that excitons are prevented from
hopping between transmission-line pairs. We show that this
can be achieved by employing two types of chromophores,
one for which the transition dipole and difference static dipole
are parallel and the other for which the transition dipole
and difference static dipole are perpendicular. Because in the
dual-rail architecture each exciton always resides on its ded-
icated pair of transmission lines as it ballistically propagates
through the gate network, each exciton can be regarded as a
distinguishable particle. Childs et al. [16] have shown that
a controlled phase shifter can be implemented with distin-
guishable particles provided the Hubbard interaction is of a
two-δ-function type. We show that such a two-exciton interac-
tion can be implemented by judiciously placing and orienting
the two types of chromophores along two neighboring

transmission lines. A controlled basis change gate, of which
a controlled-NOT (CNOT) gate is an example, can be imple-
mented by sandwiching the controlled phase shifter between
a pair of basis-change gates along the path of the target qubit
(as opposed to the control qubit). This completes the set of
gates needed for universal quantum computation.

The implementation of a full set of gates for universal
quantum computation as suitably constructed chromophore
aggregates shows the potential utility of such aggregates for
information processing, especially when ultrafast switching is
desired, as exciton hopping between chromophores occurs on
femtosecond timescales. That scalable quantum computation
can be realized with such aggregates is however in doubt
due to loss of coherence by dephasing that results from the
coupling between the vibrations and the electronic degrees of
freedom of a chromophore [18]. The degree to which this can
be mitigated by chromophore design or by low-temperature
operation remains to be seen.

Because photons are converted into excitons and vice versa
by absorption and emission, exciton-based switches may have
applications in nonlinear and quantum optics as well. In this
regard, the controlled phase shifter can be regarded as a non-
linear Kerr medium capable of producing large phase shifts at
the single-photon level.

II. FRENKEL EXCITON THEORY

The Frenkel exciton Hamiltonian has the general
form [14,15]

H =
∑

r

εrB†
r Br +

∑
(r,s)

Jr,s(B
†
r Bs + B†

s Br ) +
∑

r

�r

2
B†

r B†
r BrBr +

∑
(r,s)

Kr,sB
†
r B†

s BsBr, (1)

where Br is the annihilation operator for an exciton on site
(chromophore) r. The exciton creation and annihilation op-
erators satisfy the usual Boson commutation relations. The
prefactor εr is the optical transition energy of a chromophore
indexed by r and �r is the anharmonicity parameter. The
(r, s) indices indicate summation over all distinct site (chro-
mophore) pairs. Further, Jr,s denotes the exciton hopping
energy or exchange energy. This energy is often approxi-
mated as the dipole-dipole interaction [14] between transition
dipoles,

Jr,s = μrμs

4πεR3
r,s

[nr · ns − 3(nr,s · nr )(nr,s · ns)], (2)

where μr and nr are the magnitude and the orientation vector,
respectively, of the transition dipole r, Rr,s is the distance
between the dipoles, and nr,s is the unit vector that lies par-
allel to the line joining the centers of the two chromophores.
In addition, Kr,s is the interaction energy between a pair of
excitons with one residing on chromophore r and the other on
chromophore s. This energy is also often approximated as an
interaction [14] between point dipoles,

Kr,s = �dr�ds

4πεR3
r,s

[mr · ms − 3(nr,s · mr )(nr,s · ms)], (3)

where �dr and mr are the magnitude and orientation vector,
respectively, for the difference static dipole at site r. Note that
the orientation vector nr for the transition dipole need not be
parallel to the orientation vector mr for the difference static
dipole [19], a fact we exploit in constructing the controlled
phase shifter.

III. CONTROLLED PHASE SHIFTER

We now consider two parallel transmission lines, of the
same periodicity, and restrict our attention to the case in
which at most one exciton resides on each transmission line.
The transmission lines are taken to be engineered to pre-
vent exciton hopping from one transmission line to the other,
in which case the only coupling between the transmission
lines is that of the two-body interaction Kr,s. In this case,
the one-site exciton-exciton interaction term of the Hamil-
tonian, characterized by the energy �r of Eq. (1), is zero
and is now dropped. For simplicity, only nearest-neighbor
intra-transmission-line exciton exchange interactions are kept.
In restricting the Hamiltonian (1) to the present case, it is
convenient to express the Hamiltonian as a sum of three
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Hamiltonians

H = HA + HB + HI , (4)

where the Hamiltonian of transmission line A is given by

HA = h̄ωA

∞∑
r=−∞

A†
r Ar + h̄ωJA

∞∑
r=−∞

(A†
r+1Ar + A†

r Ar+1), (5)

the Hamiltonian for transmission line B is given by

HB = h̄ωB

∞∑
r=−∞

B†
r Br + h̄ωJB

∞∑
r=−∞

(B†
r+1Br + B†

r Br+1), (6)

and the Hamiltonian for the coupling between the transmis-
sion lines is given by

HI =
∑
(r,s)

Kr,sA
†
r B†

s BsAr . (7)

Here Ar and Br denote the exciton operators at site r for
transmission lines A and B, respectively. Note that Hamilto-
nians HA and HB are invariant under translation by an integer
multiple of lattice units.

This pair of transmission lines is operated as a controlled
phase shifter by arranging two-exciton wave packets, one on
each transmission line, to pass each other. When the wave
packets are far apart, the interaction (7) is negligible. During
the period when the wave packets overlap, HI becomes non-
negligible and results in a winding of the overall phase of
the system. The controlled phase shifter can be operated in
one of two modes: the head-on collision mode in which the
wave packets approach each other from opposite directions
and the rear-end collision mode in which a wave packet having
a greater group velocity overtakes a wave packet having a
slower group velocity. For proper operation, exciton backscat-
tering is to be avoided. Because the two excitons reside on
separate transmission lines, they can be regarded as distin-
guishable particles. Childs et al. [16] showed that for the case
of distinguishable particles backscattering can be avoided if
the exciton-exciton interaction Kr,s is of the two-δ-function
form

Kr,s = h̄ωI (δr,s−1 + δr,s+1). (8)

As such, an exciton on one transmission line interacts with the
exciton of the other transmission line at two different sites.
This enables destructive interference of the backscattered
amplitude resulting from the two sites, thereby suppressing
backscattering and enabling forward propagation with the
accumulation of a nontrivial phase shift. Note that if only
one exciton is present, the interaction described by Eq. (7)
is zero and no phase is accumulated from this term of the
Hamiltonian. The device thus functions as a controlled phase
shifter in that both excitons must be present for the system to
accumulate the phase. Also noteworthy is that, with Eq. (8),
the total Hamiltonian (4) is translationally invariant under a
translation by an integer number of lattice units.

IV. IMPLEMENTATION OF A TWO-δ-FUNCTION
EXCITON-EXCITON INTERACTION

A two-transmission-line system, which implements the
two-δ-function interaction (8), is shown in Fig. 1. We choose

A

B

r r +1r -1r -2 r +2

x

z

y

FIG. 1. Two transmission-line system implementing the two-δ-
function interaction of Eq. (8). See the text for details.

a coordinate system in which the x axis is perpendicular to the
plane of the figure, the y axis runs horizontally, and the z axis
runs vertically. The unit vectors parallel to these three axes
are denoted by i, j, and k, respectively. Each chromophore is
represented as a circle, in which the direction of the transition
dipole and the difference static dipole is indicated. A dot
represents a dipole pointed in the i direction and an upward-
pointing arrow indicates a dipole pointed in the k direction.
The color of the dot or upward-pointing arrow indicates if
the dipole is a transition dipole (black) or a difference static
dipole (red). The arrangement of chromophores constituting
the upper transmission line A alternates between two chro-
mophore types, one in which the transition and difference
static dipoles are parallel and the other in which these two
dipoles are orthogonal. The arrangement of chromophores
constituting the lower transmission line B also alternates be-
tween a chromophore for which the two dipoles are parallel
and a dye for which the two dipoles are orthogonal. In its
most general implementation, four different chromophores
would be employed, two for transmission line A and two for
transmission line B.

To avoid band gaps in the dispersion relation for each trans-
mission line, the two chromophores of the upper transmission
line should have the same optical transition frequency ωA.
Similarly, the two chromophores of the lower transmission
line should have the same optical transition frequency ωB. Let
μAr and dAr denote the transition dipole and difference static
dipole, respectively, for the chromophore at site r of transmis-
sion line A. Similarly, let μBr and dBr denote the transition
dipole and difference static dipole, respectively, for the chro-
mophore at site r of transmission line B. To avoid band gaps in
the transmission-line dispersion relation the magnitude of the
transition dipoles should be the same for the two chromophore
types of transmission A and similarly for transmission line B.
The transition dipoles are thus given by

μAr = μAi, (9)
μBr = μBk. (10)

The difference static dipoles alternate between even and odd
sites and, to avoid spoiling translation invariance of the Hamil-
tonian under a unit lattice translation, are taken to be

dA2r = dAi, (11)
dB2r = dBk, (12)

dA2r+1 = dAk, (13)
dB2r+1 = dBi. (14)
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The exciton exchange energies obtained using Eq. (2) and
Eqs. (9) and (10) are

JAr,As = μ2
A

4πεa3|r − s|3 , (15)

JAr,Bs = 0, (16)

JBr,Bs = μ2
B

4πεa3|r − s|3 , (17)

where a is the lattice spacing. Equation (16) shows that no
exciton exchange occurs between transmission lines A and B.
This is a consequence of choosing the transition dipoles of
transmission line A to be orthogonal to those of transmission
line B. Equations (15) and (17) show that intratransmission-
line exciton-exchange energy is nonzero, enabling excitons to
propagate along the transmission lines. The exchange energy
falls off as the cube of the distance between sites. By neglect-
ing all but nearest-neighbor coupling, |r − s| = 1, one obtains
the Hamiltonians of Eqs. (5) and (6).

The exciton-exciton interaction energies obtained using
Eqs. (3) and (11)–(14) are

Kr,s = dAdB

4πε|(r − s)2a2 + b2|3/2
Fr−s, (18)

where

Fr−s =
{

0 if r − s is even
1 if r − s is odd.

(19)

Note that Kr,r = 0 and the largest nonzero Kr,s values are the
Kr,r+1 = Kr,r−1. The values for Kr,s fall off with the cube of the
distance between the dipoles. Taking a to be equal to b, one
finds that the second largest interaction energies are Kr,r+3 =
Kr,r−3 and these are an order of magnitude smaller than the
largest Kr,s. Consequently, an approximation in which only the
exciton-exciton interaction energies involving Kr,r+1 = Kr,r−1

is warranted. This yields the two-δ-function form for the
exciton-exciton interaction given in Eq. (8). Hence, it has been
shown that the system of Fig. 1 implements the Hamiltonian
defined by Eqs. (4)–(8) for a controlled phase shifter.

V. DYNAMICS

Considering first a noninteracting case, with HI → 0, the
system is analytically tractable. In this limit, the use of a
complete orthonormal set of symmetric and antisymmetric
Bloch waves

|k, K〉 = 1

Nr

Nr−1∑
r,s=0

ei2πK (r+s)/Nr ei2πk(r−s)/Nr B†
s A†

r |0〉 (20)

reveals the periodic energy spectrum

(HA + HB)|k, K〉 =
[

h̄(ωA + ωB) + 2h̄ωJA cos

(
2π

Nr
(k + K )

)
+ 2h̄ωJB cos

(
2π

Nr
(K − k)

)]
|k, K〉 ≡ h̄ωk,K |k, K〉. (21)

The transmission lines in Eqs. (20) and (21) are now tacitly
assumed to be finite, each consisting of Nr chromophores.
The correspondence to the Fourier modes of the two lines
K = (kA + kB)/2 indicates that h̄K denotes the total, average
forward momentum, whereas h̄k = h̄(kA − kB)/2 is the (half)
momentum discrepancy of the excitons.

Of interest here are the dynamics of two-exciton states
in which one exciton resides on each transmission line. The
general form of such a state is

|�〉 =
∑
r,s

�r,sA
†
r B†

s |0〉, (22)

with the (noninteracting) dynamics given by

|�(t )〉 = e−i(HA+HB )t/h̄|�〉. (23)

More generally, the dynamics for the interacting Frenkel
exciton system is governed by the Schrödinger equation

ih̄
∂

∂t
|�〉 = H |�〉 = (HA + HB + HI )|�〉. (24)

Substituting Eq. (22) into Eq. (24) for the Hamiltonian of
Eqs. (4)–(24) yields

i
∂�r,s

∂t
= ωA�r,s + ωJA(�r−1,s + �r+1,s)

+ωB�r,s + ωJB(�r,s−1 + �r,s+1)

+ωI (δr,s−1 + δr,s+1)�r,s for all r and s. (25)

This set of equations is amenable to numerical calculation,
especially if periodic boundaries are imposed.

VI. INTERACTING DYNAMICS OF EXCITON
COLLISIONS

We consider two-exciton wave packets in collision. Again,
each resides in one of two coupled, parallel linear arrays
A (top) or B (bottom) labeled in Fig. 1. For simplicity, we
consider the case when ωA = ωB = ω0 and ωJA = ωJB = ωJ .
As with Fig. 1, the top A line of Nr total chromophores is
indexed by chromophore site r. The wave function is prepared
initially as a Gaussian-shaped pulse in the coordinate r, with a
speed discussed below. This A-line wave packet is regarded as
the faster exciton. The lower B line, indexed by s, has the same
initial profile, but is prescribed to either move more slowly in
the same direction or move in the opposite direction. If these
excitons are initially launched with the slower B-line exciton
positioned in advance of the faster one, the faster exciton will
overtake the slower one in what we refer to as a rear-end
collision. During this collision, the pulses overlap and the
interaction of Eq. (7) is nonzero, generally prompting trans-
mitted and reflected waveforms to result. These fractionated
waves emanate from the scattering event and they acquire a
phase shift in the process. Head-on collisions may also be
orchestrated, largely considered below with K = 0, a case
consisting of wave packets with equal and opposite velocities.

012603-4



IMPLEMENTATION OF A FRENKEL EXCITON-BASED … PHYSICAL REVIEW A 107, 012603 (2023)

If wave packets on transmission line A are relatively
strongly peaked about a particular wave number kA = K + k,
they travel with the group velocity [16]

vgA = −2ωJAa sin kA = −2ωJAa sin(K + k). (26)

A similar relation for vgB(kB = K − k) exists. In this expres-
sion, an abbreviation for the wave number has been used,
2π
Nr

k → k, in correspondence with previous convention. The
wave packets in either line thus have speeds programmable
by wave number.

The dynamics of these collisions are investigated by time
stepping a solution to Eq. (25) with an efficient split-step
Fourier method. Similar to Eq. (23), writing

�r,s(t + �t ) = e−iH�t/h̄�r,s(t ) (27)

by Taylor’s expansion in �t , it is straightforward to show that

� (n+1)
r,s = e−iHI �t/2h̄e−i(HA+HB )�t/h̄e−iHI �t/2h̄� (n)

r,s + O(�t3)
(28)

for propagation from the nth to the (n + 1)th time step (t =
n�t). This method first applies the operator exp(−iHI�t/2h̄),
affecting all (r, s − 1) and (r, s + 1) pairs. Next a fast Fourier
transform is applied [20] and the operator exp[−i(HA +
HB)�t/h̄] = exp(−iωk,K�t ) from Eq. (21) is simply updated,
as it is trivially diagonal in (k, K ). Finally, an inverse trans-
form is performed and the operator exp(−iHI�t/2h̄) is again
applied in real space. This method has historical roots in
solving the Schrödinger equation in other settings [21–23].
For these numeric inquiries, periodic boundary conditions are
imposed on the system, which effectively considers a closed-
loop system of two A-B coupled lines arranged in a closed
ring.

This approach is used to investigate exciton collisions,
in both head-on and rear-end configurations, for the case
when ωJA = ωJB = ωJ . Two head-on collisions are depicted
in Fig. 2, where the single-line probabilities are plotted. These
are, for example, Pr (t ) = ∑

s |�r,s(t )|2, with a similar expres-
sion for Ps(t ). Figures 2(a) and 2(b) show the excitons of the
two lines, A on the left and B on the right, moving with equal
speeds in opposite directions, with K = 0, k ≈ π/8 (kA =
90π/721), and Nr = 721 prescribed. Initially displaced, a col-
lision takes place whose most probable location [through the
use of Eq. (26)] is indicated with a black dot. Times beyond
this point clearly depict partitioned wave packets progress-
ing in accordance with conservation of momentum, i.e., the
waveforms continue on with the rates of either of the initial
excitons of the lines. Dispersion is mildly evident. It is again
worth mentioning that the excitons are sequestered on their
individual lines, in which cross hopping in the process of the
collision is disallowed.

The trajectories of Fig. 2 are labeled with a convention we
utilize below: If the pulses in collision fractionate as they do in
Figs. 2(a) and 2(b), they are regarded as consisting of reflected
(r) and transmitted (t) portions. The transmitted wave has the
same momentum as the initial waveform (i) of the line and the
reflected that of the opposite line. Note that the “slow” B-line
wave packet (which is traveling left) has a portion of it that is
captured and dragged rightward with the momentum of the A

FIG. 2. Two cases of an exciton-exciton head-on collision.
Shown is the probability distribution, as a function of time, of (a) a
right-propagating exciton (line A) and (b) an initially displaced, left
propagating one (line B) in the case of a collision that fractionates
the waveforms: ωJ/ωI = 1/2 and k = π/8. Initial A and B wave
functions (both denoted by i) are Gaussians of width σ = 12a, which
collide at the ballistic time and location denoted by a black dot, be-
yond which the waveforms partition into reflected (r) and transmitted
(t) portions. (c) and (d) Same collision with a different cross-line
exciton-exciton coupling ωJ/ωI = 0.653 28. [See Eq. (49) for a case
with no reflections.]

line. This portion is yet regarded as a reflected portion of the
B waveform.

Figures 2(a) and 2(b) depict a case of strong coupling
between the lines, with the interaction constant twice the
strength of the hopping rate of the lines. This results in about
24% reflection of the excitons. If this interaction is weakened,
the portion reflected diminishes and, for a special value, it
vanishes altogether. This case is shown in 2(c) and 2(d) and
discussed in more detail in Sec. VII.

The second collision considered is that of the rear-end col-
lision, with a fast exciton catching up to and then overtaking
a slower one. This case is illustrated in Fig. 3, with the A-line
signal encountering a slower exciton placed initially ahead
of it on the B line. Figures 3(a) and 3(b) again illustrate a
strongly coupled case with emanating reflections (ωJ/ωI =
2/3) from the overtaking collision, whose most probable time
and position are again marked with a black dot. Similar to
Fig. 2, upon weakening the exciton-exciton interaction, a no-
reflection case is found once again and shown in Figs. 3(c)
and 3(d).

We note in passing that the transmission lines in both
Figs. 2 and 3 are larger than the range shown (both have
Nr = 721), so at late times the signals do not wrap through
the periodic edge of the abscissa. This has been chosen for
clarity of presentation.
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FIG. 3. Exciton probability distributions as a function of time for
the case of an exciton-exciton collision in which a fast exciton on
line A overtakes a slow one on line B. Reflections are present in
(a) and (b) (ωJ/ωI = 2/3, K = π/4, k = π/8, and |R|2 ≈ 0.364),
whereas only transmitted (t) signals result in the collision in (c) and
(d) (ωJ/ωI = 0.923 88, K = π/4, and k = π/8). See the text for
details.

VII. ANALYTICAL RESULTS

Again restricting our analysis to equal transition energies
ωA = ωB = ω0 and equal hopping rates ωJA = ωJB = ωJ , the
dispersion relation of Eq. (21) reduces to

ωE = 2ω0 + 4ωJ cos(K ) cos(k). (29)

With the periodicity of the system, the Bloch-form energy
eigenstates (20) have the general form

�r,s = e−iωE t eiK (r+s)ψr−s. (30)

Excitons in pairs are noninteracting except when they are
within a lattice unit of each other, and apart from this they
act as free distinguishable particles. Hence, when |r − s| > 1,
one expects ψr−s to have the form of the energy eigenstate of a
free particle, e±ik(r−s). Introducing v = r − s, we thus impose
the ansatz

ψv = A+eikv + A−e−ikv for v < −1, (31)

ψ−1 = B, (32)

ψ0 = C, (33)

ψ1 = D, (34)

ψv = E+eikv + E−e−ikv for v > 1. (35)

For Eqs. (31) and (35) to satisfy Eq. (25) generally, the
dispersion relation of Eq. (29) must hold, which can be

demonstrated by direct substitution. Substitution of Eqs. (31)–
(35) into Eq. (25) using Eq. (30) yields five equations linear in
(A±, B,C, D, E±). These equations can be solved to express
A−, B, C, D, and A− in terms of A+ and E−. In particular, one
finds [

E+
A−

]
=

[
T R
R T

][
A+
E−

]
, (36)

where T and R are the transmission and reflection coefficients
of the scattering produced by the exciton-exciton interaction.
These coefficients are given by

T = −4iω2
J cos2(K ) sin(k)

ω2
I e2ik cos(k) − 2ωIωJ cos(K ) − 4iω2

J cos2(K ) sin(k)
(37)

and

R = ωI [2ωJ cos(K ) cos(2k) − ωI cos(k)]

ω2
I e2ik cos(k) − 2ωIωJ cos(K ) − 4iω2

J cos2(K ) sin(k)
.

(38)
The conservation of energy and the conservation of probabil-
ity both require that the transformation (36) must be unitary.
Hence, T and R satisfy the useful relations

|T |2 + |R|2 = 1 (39)

and

T R∗ + RT ∗ = 0. (40)

VIII. OPERATING POINTS

For the controlled phase shifter to function properly no
reflection (backscattering) must occur when the two excitons
interact, that is, R = 0. From Eq. (38) one finds that this
condition is met when the exciton-exciton interaction energy
h̄ωI is zero. In this case, Eq. (36) becomes[

E+
A−

]
=

[
1 0
0 1

][
A+
E−

]
. (41)

From Eq. (38) one also finds that the condition R = 0 can still
be met when the exciton-exciton interaction energy is not zero
provided,

cos(K ) = ωI

2ωJ

(
cos(k)

cos(2k)

)
. (42)

In this case Eq. (36) becomes[
E+
A−

]
=

[
ei4k 0
0 ei4k

][
A+
E−

]
. (43)

Comparing Eqs. (41) and (43), one sees that a phase shift of
φ = 4k is produced by the exciton-exciton coupling as one
exciton overtakes the other.

A. Example operating points

Here example operating points are exhibited for the case
when the controlled phase shifter induces a phase shift of π/2.
To achieve this, it is evident from Eq. (43) that one must have

k = π

8
. (44)
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FIG. 4. Reflection probability |R|2 for the interaction coupling
ratio (47) with prescribed K = π/4 and varying k. The inset depicts
|R|2 for the same interaction coupling ratio but with fixed k = π/8
and varying total average momentum K (in green). A second case is
also shown (see the text for details).

Substituting this into Eq. (42) yields

cos(K ) = 1

2

√√
2 + 1√

2

ωI

ωJ
. (45)

Choosing

K = π

4
(46)

yields

ωJ

ωI
=

√√
2 + 1

2
√

2
= 0.923 88. (47)

Operated in this mode, the two excitons have different wave
vectors. The slower one has a wave vector of kB = K − k =
π/8, whereas the faster one has a wave vector of kA = K +
k = 3π/8. The wave packet of the slower exciton is thus able
to overtake that of the faster one in a rear-end collision, and
this is the case depicted in Fig. 3. Complete passthrough of
the faster wave packet through the slower one and proper
operation of the controlled phase shifter is achieved when
the ratio of the exciton hopping energy to the exciton-exciton
interaction energy is given by Eq. (47). This requires chro-
mophores for which the dipole-dipole interactions (2) and (3)
can be engineered to be comparable. Transition dipoles of
strongly absorbing fluorescent organic dyes are in the 16 D
range [24]. Engineering dyes with large-difference static
dipoles has received less attention, but theoretical work [25]
indicates that these can be as large as 20 D. The ability to
control the strength of the Jr,s and the Kr,s by chromophore
separation or orientation should enable the condition (47) to
be met.

The reflection probability |R|2 in the vicinity of the pass-
through optimum is shown in Fig. 4. The reflection probability
for systems with average total momentum K = π/4 is shown
as a function of the momentum discrepancy of the respective
excitons k, including the spurious limit k → 0 that has never-
or always-overlapping or interacting pulses. Reflections wane

from this point with growing k to disappear at the operating
point for the overtaking collision described by Eqs. (44), (46),
and (47).

Equation (42) may be written as X ∗/cos(K ) =
2 cos(2k)/cos(k), with X ∗ = ωI/ωJ . When this condition
is satisfied (a necessary condition for no backscattering)
reflections |R|2(k) for any k are invariant under the
transformation K1 → K2, so long as X ∗

1 /cos K1 → X ∗
2 /cos K2.

Consequently, the condition for vanishing reflections in these
collisions is also invariant under this transformation, provided
the momentum difference is maintained at k = π/8. This is
also to say, for any average net momentum 0 � K < π/2
among colliding excitons that have a maintained k = π/8
momentum difference, a zero-reflection point exists that is
given by the conditions of Eq. (45).

Shown in the Fig. 4 inset is the reflection probability when
k = π/8 is prescribed, but with varying K , for two values
of ωJ/ωI (=1/X ∗). The green profile depicts the overtaking
collision operating point above, which has R = 0 at K = π/4.
Pulling away from K = π/4, the condition for zero reflections
is met in accordance with the invariance mentioned above. A
second case with |R|2 = 0 at K = 0 is shown in red. This case
has

K = 0 (48)

and Eq. (45) yields

ωJ

ωI
= 1

2

√√
2 + 1√

2
= 0.653 28. (49)

Operated in this mode, one exciton travels with the momen-
tum K − k = −k while the other travels with the momentum
K + k = k. The two excitons thus travel in opposite directions
and engage in a head-on collision, exactly the circumstance
illustrated in Fig. 2. The exciton wave packets pass through
each other without backscattering and with proper operation
as a controlled phase shifter when the ratio of ωJ to ωI is given
by Eq. (49). Although this mode of operation requires a larger
ωI relative to ωJ , it offers several advantages: The energy of
both excitons is the same and the transmission-line length can
be shorter, as it need only be twice the length of the exciton
wave packet.

The phase shifts acquired in the collisions are shown in
Fig. 5. The panels and color of this figure correspond to those
of Fig. 4. The phase as a function of k for all K and ωJ/ωI

satisfying Eq. (42) is shown in the main panel and that for
variable K , with k = π/8, in the inset. The no backscattering
invariance with X and K again reduces all phases to a single
trajectory in k shown in the main panel. Variations from the
desired phase φ = π/2 are evident with changes from k =
π/8 or K = π/4.

B. Bandwidth tolerance

The performance of the controlled phase shifter will de-
grade when operated away from its operating point. This
limits the bandwidth of the device and sets the accuracy
with which the chromophore positions and orientations must
be maintained to achieve a desired level of performance. A
demanding application of a controlled phase shifter would
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FIG. 5. Phase shift acquired in exciton-exciton collisions for set
K and varying k for the interaction coupling ratio (47). The inset
shows the phase shift for set k = π/8 but varying K at the interaction
coupling ratios of Eqs. (47) and (49) (green and red, respectively).

be its use as a component of a quantum gate for quantum
computation that is scalable and universal. In this application,
scalability can be achieved through quantum error correction
if the error rate per gate is reduced below a certain threshold
value [26,27]. Error correction schemes have been devised for
which the threshold error rate is about 1% per gate.

Here the tolerance in X = ωI/ωJ is considered. Reflections
from Eq. (38) may be simply written

|R|2 = 1

1 + ( 4 cos2 (K ) sin(k)
X [X cos(k)−2 cos(K ) cos(2k)]

)2 . (50)

Expansions in |R|2 about the zero-reflection point of Eq. (42),
X ∗ = 2 cos(K ) cos (2k)/cos(k), yield |R|2 ≈ c�X 2 for small
�X = X − X ∗, with c = cos2 (k) cot2 (2k) sec2 (K ). Requir-
ing just 1% tolerance in reflections, this threshold for the
tunable interaction ratio �X ≈ √

0.01/c is displayed in
Fig. 6. For pulses propagating in opposite directions, with
total average momentum K = 0, this tolerance is the most
lenient of the profiles. A smaller window of precision in �X
is necessary to achieve the same minimal reflection result for
cases with K > 0, in which fast excitons overtake slower ones.
In these rear-end collisions, as the momentum discrepancy h̄k
in the two lines grows, an ever speedier fast pulse overtakes a
slower slow exciton (i.e., cases with greater k values but equal
K’s), and the required window of precision in �X increases,
becoming less stringent. It is the longer duration of pulse
overlap during collisions that degrades performance.

The analysis presented has employed the nearest-neighbor
approximation for the intra-transmission-line exciton ex-
change interactions. Including more distant neighbor interac-
tions will yield a more complicated dispersion relation than
that of Eq. (29). The analysis has also neglected the more dis-
tant inter-transmission-line exciton-exciton interactions. The
inclusion of the neglected interactions will alter the functional
dependence of the transmission and reflection coefficients on
k and K , but the existence of operating points where total
destructive interference of the backscattered waves occurs
resulting in no backreflection is still expected. The value of

FIG. 6. Tolerance estimates for the interaction energy ratio X =
ωI/ωJ requiring no greater than 1% reflection. The case K = 0 has
excitons traveling from opposite directions into a head-on collision,
whereas K > 0 has a fast pulse of momentum h̄(K + k) overtaking
a slow one with h̄(K − k). A greater momentum discrepancy h̄k
among the pulses enables a less stringent requirement for the cou-
plings �X .

ωJ/ωI at which the phase shifts is π/2, for the controlled
phase shifter will differ from those given in Eqs. (47) and (49).

IX. QUANTUM GATES

The controlled phase shifter enables the implementation of
an exciton-based controlled-phase (CPHASE) gate as shown in
Fig. 7(a). The symbol for a controlled-phase gate inducing a
phase shift of φ is shown in Fig. 7(b). The CPHASE gate in
conjunction with single-qubit basis-change gates and phase
gates enable universal quantum computation. In the scheme
shown in Fig. 7(a), a dual-rail implementation of a qubit is
employed. In this representation, the exciton is carried by a
pair of transmission lines. The qubit consists of the probability
amplitudes with which the exciton resides on either of the
two transmission lines. In Fig. 7(a) the qubit q0 occupies the
upper two transmission lines. The upper of these two lines is
assigned as the line on which the exciton resides when the

CPS

1 line

0 line

q1

1 line

0 line

q1

q0

q0

ф

(a)

(b)

FIG. 7. (a) Schematic of an exciton-based controlled-phase gate
employing a controlled phase shifter (CPS). See the text for details.
(b) Symbol for a CPHASE gate inducing a phase shift of φ. This gate
is denoted by GCPHASE(φ).
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value of q0 is logical zero (0 line). The lower of these two
lines is assigned as the line on which the exciton resides when
the value of q0 is a logical one (1 line). The qubit q1 is carried
by the lower transmission-line pair and, to maintain standard
notation, the upper of these transmission lines is the logical 1
line whereas the lower is the logical zero line. A phase shift
due to excision-exciton interaction in the controlled phase
shifter element occurs only when an exciton is present on
the 1 line of q0 and the 1 line of q1. Denoting the state for
which q0 has the logical value x and the state for which q1 has
the logical value y by |xy〉, the GCPHASE(φ) gate performs the
transformations

|00〉 → |00〉, |01〉 → |01〉,
|10〉 → |10〉, |11〉 → eiφ |11〉,

that is, the CPHASE gate performs the unitary transformation

GCPHASE(φ) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

⎤
⎥⎥⎦. (51)

Equations (42) and (43) enable the engineering of a CPHASE

gate with a phase shift in the range −π < φ < π and the
design of controlled phase shifters providing a phase shift
of π/2 has been shown with two examples in Sec. VIII.
A CPHASE gate with a phase shift of π is a useful ele-
ment in the implementation of quantum logic circuits, but
the realization of a phase shift of π is problematic for the
controlled phase shifter we have presented. By routing the
transmission lines carrying the output of one controlled π/2
phase shifter to the input of a second such phase shifter, a
controlled phase shift of π is achieved. This requires that
the lengths of the transmission lines carrying the excitons
from the first to the second controlled phase shifter be chosen
so that the exciton wave packets collide within the sec-
ond phase shifter. The combined system can then function
as the controlled π phase shifting element of a GCPHASE(π )
gate.

An advantage of the dual-rail representation is that single-
qubit gates such as phase gates and basis-change gates can
be simply implemented. These together with the CPHASE gate
form a complete set of gates for universal quantum compu-
tation. Phase gates can be implemented as propagation delays
through change of length, optical transition frequency, or exci-
ton hopping frequency in a portion of the transmission line. As
shown in Fig. 8(a), a basis-change gate can be implemented
by bringing a portion of two transmission lines carrying a
qubit sufficiently close together that exciton exchange oc-
curs between the transmission lines as indicated by the black
edges between the nodes. The design of such gates has been
discussed by Yurke and Kuang [17]. By a judicious choice
of the exciton exchange couplings between chromophores,
which can be engineered by adjusting chromophore spacing
or orientation, any basis transformation can be realized. Of
particular interest here is the Hadamard gate represented by
a box with the letter H in Figs. 8(b) and 8(d). This is a

q1

q0
π

H H
CNOT

q1

q0

q1

q0 H

CNOT

(a)

(b) (c)

(d)

Hadamard-CNOT

FIG. 8. (a) Schematic of a basis-change gate. (b) A CNOT gate
implemented using two Hadamard gates and a GCPHASE(π ) gate.
(c) Symbol for a CNOT gate. (d) Hadamard CNOT gate.

basis-change gate performing the transformation

1√
2

[
1 1
1 −1

]
(52)

on the logical 0 and logical 1 basis of the qubit. Figure 8(b)
shows how a CNOT gate can be implemented using two
Hadamard gates and a GCPHASE(π ) gate. The symbol for a CNOT

gate is shown in Fig. 8(c). As an example of a potentially
useful exciton circuit, Fig. 8(d) shows a Hadamard CNOT gate
implemented by inserting a Hadamard gate in the control
line q0 of a CNOT gate. This gate can serve as a source of
maximally entangled excitons. In particular, this gate converts
the state |00〉, in which the excitons of qubits q0 and q1 both
reside on their respective logical zero lines, into the Bell state

|Bell〉 = |00〉 + |11〉√
2

, (53)

which is a superposition state in which, upon exiting the gate,
either each exciton resides on its logical 0 line or each exciton
resides on its logical 1 line. Because product states, such as
|00〉, are easier to prepare by laser excitation of the ends of
transmission lines than Bell states, the Hadamard CNOT gate
can serve as a means of converting these states into maximally
entangled exciton states.

Since a computation architecture has been envisioned
where each qubit is carried by a transmission-line pair that
passes through various gates in which transmission-line seg-
ments are brought close together to enable one-qubit or
two-qubit operations, an estimate of the circuit complex-
ity that is possible with currently available chromophores is
obtained by considering the distance an exciton can travel
along its transmission-line pair before decoherence sets in.
Due to coupling of excitons with molecular vibrations, the
decoherence time for typical chromophore consisting of an
organic dye is generally in the tens of femtoseconds. Here,
for the coherence lifetime, we use the 60 fs measured by
Duan et al. [28] for the chromophores of the Fenna-Matthews-
Olson protein. The travel distance of the exciton is obtained
by multiplying the coherence time by the group velocity of
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the transmission line. Considering Eq. (26), an estimate of
the group velocity is provided by vg = 2ωJa. Exciton hop-
ping energies in excess of 100 meV are commonly exhibited
in chromophore aggregates yielding a hopping frequency of
1.5 × 1014 s−1 and the speed with which an exciton moves of
3 × 1014 s−1 per lattice spacing unit. The exciton thus travels
nine lattice units during the coherence time, indicating that
practical Frenkel exciton-based quantum gates and networks
would be rather limited in size. The coherence time is ex-
pected to lengthen at low temperatures and chromophores
with reduced exciton-vibration coupling may yet be iden-
tified, thus offering hope that larger gate networks will be
possible.

Having indicated that chromophores can be arranged in
networks that function as quantum gates and that can be
cascaded to implement quantum computation circuits, an is-
sue still to be addressed is initialization and qubit readout.
The excitons can be launched by providing the input end of
one transmission line, of each transmission-line pair, with an
antenna that is able to absorb a photon and convert it into an
exciton with near unit quantum efficiency. This antenna could
consist of a single chromophore or a cluster of chromophores.
The excitation of chromophores other than those associated
with the antenna can be avoided by proper orientation of the
chromophores with respect to the direction of polarization of
the excitation light. For example, light polarized along the
y axis in Fig. 1 will not excite the chromophores of this
transmission-line system because the polarization is orthog-
onal to the orientation of the transition dipoles. At least one
chromophore of the antenna complex would have a transition
dipole that is not orthogonal to the direction of light polariza-
tion. By simultaneously applying a single-photon light pulse
to each antenna the input end of each transmission line could
be prepared with a qubit having the truth value of logical 1.
This multiqubit input state would then be processed by the
chromophore network to carry out the unitary transformation
that performs the desired quantum computation. Readout can
be carried out in an analogous manner in which the output
end of each transmission line is provided with an antenna that
converts an exciton into a photon. If each transmission line
is terminated at a different length at the output end, the time
at which each photon is emitted will differ, thereby enabling
a time multiplexed readout coded in the arrival time of each
photon at a photodetector.

X. CONCLUSION

Controlled gates such as a controlled-NOT gate are essen-
tial for universal quantum computation. Such gates can be
constructed by employing a controlled phase shifter element.
In one of their embodiments of a controlled phase shifter
element, for the case when the particles are distinguishable,
Childs et al. [16] employed a two-δ-function particle-particle

interaction to implement a controlled phase shifter element.
This raises the issue whether such an interaction can be en-
gineered in a physical system. Here we have shown that a
two-δ-function interaction can be implemented in a pair of
transmission lines constructed by employing at least two types
of chromophores: one for which the transition dipole and the
difference static dipole are parallel and the other for which the
transition dipole and difference static dipole are not parallel
but preferably orthogonal. Organic chromophore-containing
dye molecules with these properties do exist [19]. The chro-
mophores are arranged such that the transition dipoles of
one transmission line are orthogonal to those of the other.
In this configuration, exciton transfer from one transmission
line to the other is prevented because the inter-transmission-
line hopping interactions are zero. The difference static
dipoles are arranged, however, in an alternating manner for
which the nearest-neighbor difference static dipole-dipole
coupling is zero. This leaves the next-nearest-neighbor inter-
transmission-line dipole-dipole couplings as the dominant
exciton-exciton interaction, thereby implementing a two-
δ-function Hubbard interaction. This two-transmission-line
implementation of a controlled phase shifter is well suited
for quantum gate implementation employing a dual-rail ar-
chitecture in which a qubit is encoded by the probability
amplitudes existing on one or the other of two transmission
lines.

DNA-based self-assembly currently offers the best possi-
bility for implementing Frenkel exciton-based transmission
lines and gates through chromophore organization. Organic
dyes, however, are strongly coupled to the environment
through the interaction of vibrational degrees of freedom with
the electronic degrees of freedom of their chromophores,
which leads to short exciton coherence times. The extent to
which chromophores can be engineered to lengthen these
times is an interesting question [13], as long exciton co-
herence times would enable the implementation of various
coherent exciton-based devices, including entangled exciton
sources, with potential applications in optical information
processing and, as shown here, potentially universal quantum
computation.
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