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Role of parasitic interactions and microwave crosstalk in dispersive control of two
superconducting artificial atoms
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In this paper we study the role of parasitic interactions and microwave crosstalk in a system of two supercon-
ducting artificial atoms interacting via a single-mode coplanar waveguide. Through a general description of the
effective dynamics of the atoms, beyond the two-level approximation, we show that the atom selectivity (ability
to individually address an atom) is only dependent on the resultant phasor associated to the drives used to control
the system. We then exploit the benefits of such a drive-dependent selectivity to describe how the coherent
population inversion occurs in the atoms simultaneously, with no interference of residual atom-atom interaction.
In this scenario the parasitic interaction works as a resource to fast and high fidelity control, as it gives rise to
a new regime of frequencies for the atoms able to suppress effective atom-atom coupling (idling point). To end,
we show how an entangling iSWAP gate is implemented with fidelity higher than 99%, even in the presence of
parasitic interactions. More than that, we argue that the existence of this interaction can be helpful to speed up
the gate performance. Our results open prospects to an outlook on the real role of such “undesired” effects in a
system of superconducting artificial atoms.
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I. INTRODUCTION

Even with the remarkable recent advances in superconduct-
ing quantum computation [1–5], high fidelity effective control
of artificial atoms is one of the most challenging tasks in such
a platform that needs to be overcome [6,7]. A number of
different undesired phenomena make this achievement hard,
like decoherence effects [8], or systematic errors for control
and interactions in general [9–13], for example. For this rea-
son, several strategies to suppress errors in superconducting
qubits have been investigated [14–17]. In recent years, differ-
ent mechanisms to circumvent errors associated to microwave
crosstalk and parasitic interaction have been the main focus
in different architectures [18–23], since these errors directly
affect gate fidelity in regimes where no decoherence affects
the system. In short, one can say that parasitic interactions are
undesired couplings between two qubits due to their physical
proximity (distance), while crosstalk refers to the inability
to perfectly address a single qubit without affecting different
qubits in the system due to their proximity in frequency. It
means that, while decoherence drastically affects the system
when time of a given computation is large enough, crosstalk

*ac_santos@df.ufscar.br

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

and parasitic effects can occur on the timescale of single-shot
quantum gates [19,24].

One of the architectures of superconducting qubits, and
main focus of this paper, is the system of two transmon qubits
coupled to a coplanar waveguide resonator first introduced
by Blais et al. [25,26], and later experimentally realized by
Wallraff et al. [27]. As sketched in Fig. 1, two superconduct-
ing (transmon) qubits are coupled to each other mediated by
a (quasi-)one-dimensional coplanar waveguide resonator, in
which the distance d separating the qubits is chosen such
that no direct interaction between them is detected [28,29].
This kind of system is particularly interesting due to its
adaptability (control and readout [28,30,31]) and for allowing
us to engineer alternative topologies of qubit-qubit coupling
[32–34]. For example, similar systems were used to efficiently
simulate collective phenomena of the Tavis-Cummings model
in a strongly interacting three qubit superconducting system
[35], with its scaling up recently reaching the number of ten
qubits, used to create highly entangled collective super- and
subradiant states useful to design quantum memories [36],
among others applications collected in a recent review on
circuit quantum electrodynamics [37].

It is worth mentioning that, even when high controllability
is possible for a few qubits system, in cases where many qubits
share the same resonator we expect some limitation to single
qubit control due to microwave crosstalk [23], where the qubit
frequencies need to be carefully tuned to avoid bringing the
system into a chaotic regime [38]. More than that, in the
case of a finite-size circuit, the distance d between the qubits
may induce parasitic capacitive couplings and they need to
be taken into account in quantum computation [39–42]. Such
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FIG. 1. Top: Two superconducting artificial atoms coupled via a
coplanar superconducting waveguide, with a separation d between
them. The drive is applied to the transmission line to dispersively
control the atoms. We assume frequency-tunable atoms, which can
be controlled by a local magnetic flux through the loop of each
atom. Bottom: The circuit representation of the system [26], where
we introduce the capacitive coupling expected in cases where the
parasitic interaction is not negligible.

interaction is sketched in the circuit of Fig. 1. In this regard,
we will address the task to control the system described in
Fig. 1 under microwave crosstalk and parasitic interactions,
where we work in the regime of operation for the system
where none of these effects are negligible. From a general
approach of the effective dynamics for two artificial atoms,
we show how errors promoted by the microwave crosstalk
and parasitic interaction can be mitigated if we have enough
information about their nature. To end, as opposite to a neg-
ative interpretation of the role of parasitic interactions, we
exploit a positive role of such an interaction showing that it
is a resource to speed up the physical implementation of the
entangling iSWAP gate.

II. THE SYSTEM AND EFFECTIVE DYNAMICS

The Hamiltonian that describes the system considered in
this paper (atoms, resonator, and drive), in the rotating wave
approximation, can be written as [26,43]

Ĥ (t ) = Ĥ0 + Ĥcpg + Ĥd(t ), (1)

where Ĥ0 is the self-Hamiltonian of the system, where no
interaction is taken into account, written as

Ĥ0 = h̄ωr r̂
†r̂ + h̄

∑
n=1,2

(
ωnâ†

nân + αn

2
â†

nâ†
nânân

)
, (2)

with r̂ (r̂†) the annihilation (creation) operator for the res-
onator of frequency ωr, ân (â†

n) the annihilation (creation)
operator for the nth atom with frequency ωn, and anharmonic-
ity parameter αn (considered here positive). The Hamiltonian
for the interactions in the system is

Ĥcpg = h̄
2∑

k=1

gk (â†
k r̂ + âk r̂†) + h̄g(â†

1â2 + â1â†
2), (3)

in which the first term is the interaction between the resonator
and each atom, with coupling strength gk for the kth atom.
The second one is included here in order to take into account
capacitively atom-atom parasitic interactions. It is quite com-
mon to neglect such an interaction since its strength is much
smaller than the atom-resonator coupling (|g| � |gk|). For the
sake of comparison, some experimental setups are built in

such a way that parasitic interactions satisfy |g| ∼ |gk|/100
[36]. The last term in Eq. (1) is the drive applied to the res-
onator to control the atoms. We assume here the generic case
where a number N of drives can be simultaneously applied to
the resonator, with different frequencies ωd,k , time-dependent
amplitude εd,k (t ), and phases φd,k , such that

Ĥd(t ) =
N∑

k=1

h̄εd,k (t )(r̂†e−iωd,kt+iφd,k + r̂eiωd,kt−iφd,k ). (4)

It is possible to verify that our description is not complete,
as we do not care about dissipation in the system. However, as
we aim to determine how to implement fast and high control-
lable gates, this model is sufficiently useful whenever the time
to perform operations is much shorter than the decoherence
timescale. Having said that, the time-dependent Schrödinger
equation ih̄|ψ̇ (t )〉 = Ĥ (t )|ψ (t )〉 rules the system evolution.
Throughout this paper any exact (numerical) simulation of
the system is done by the complete Hamiltonian given in
Eq. (1), where atoms and resonator have a Hilbert space with
dimension Datoms = Dres = 5 to make sure we are taking into
account any effect of the atoms’ anharmonicity in the effective
description of the system.

By following the standard method to describe the system
dynamics through a more appropriated approach, considered
by Blais et al. [26] for the particular case of a single atom and
a single drive resonator, we use a transformation in the res-
onator operator as given by the time-dependent displacement
operator D̂(t ) = exp[ξ (t )r̂† − ξ ∗(t )r̂]. This transformation is
useful to effectively describe the qubit control through a co-
herent pumping in the waveguide. In this way, the dynamics of
the system is governed by the modified Schrödinger equation
ih̄|φ̇(t )〉 = ĤD(t )|φ(t )〉, where we define |φ(t )〉 = D̂|ψ (t )〉
and the new Hamiltonian reads

ĤD(t ) = D̂Ĥ (t )D̂† + ih̄ ˙̂DD̂†. (5)

The additional last term of the modified Hamiltonian is a
“fictitious potential” for noninertial frames in quantum me-
chanics introduced by Klink [44]. Then, applying this result
to the Hamiltonian Ĥ (t ) and choosing the free function ξ (t )
such that (see Appendix A for further details)

iξ̇ (t ) = ωrξ (t ) −
N∑

k=1

εd,k (t )e−iωd,kt+iφd,k , (6)

one finds

ĤD(t ) = Ĥ0 + Ĥcpg − h̄
2∑

k=1

gk[â†
kξ (t ) + âkξ

∗(t )], (7)

in which the last term is the “semiclassical drive” counter-
part Ĥ cl

dr (t ) of the drive Hamiltonian Ĥd(t ). In this way, we
can simplify the model because the influence of the drive is
directly associated to the atoms’ operators. Moreover, by solv-
ing Eq. (6) we write the final Hamiltonian for the semiclassical
drive as

Ĥ cl
dr (t ) = h̄

2∑
k=1

N∑
n=1

�k,n(t )(â†
ke−iωd,nt+iφd,n + âkeiωd,nt−iφd,n )

(8)
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where �k,n(t ) = −gkεd,n(t )/	R,n is the Rabi frequency asso-
ciated to the drive control over the qubits, with 	R,n = ωr −
ωd,n the detuning between the resonator frequency and the nth
drive field. In some sense, the above equation generalizes the
result discussed in the pioneering work on the semiclassical
drive derived in Ref. [26]. As detailed in Appendix B, to
find the general solution to Eq. (6) we do not assume a time-
independent drive amplitude εd,n(t ); as the function εd,n(t ) is
taken as an analytic function within its domain we only need
to use the Riemann-Lebesgue lemma [45]. As we shall see, the
above equation allows us to describe the microwave crosstalk
(in this system) between two superconducting qubits driven
simultaneously by the resonator.

A. Dispersive control and interaction of the atoms

In general the frequency of the resonator ωr is far from
resonance with the atoms ωn, a situation in which the disper-
sive control of superconducting qubits takes place. Whenever
the detuning |ωr − ωn| is much bigger than the atom-resonator
coupling strength |gk|, the dynamics of the system is well
dictated by an effective Hamiltonian approach. For simplicity,
at this moment, the two-level approximation is done in the
atoms by replacing the bosonic operators âk by the fermionic
ones σ̂−

k . Nonetheless, doing that before the effective Hamil-
tonian analysis can lead to incorrect predictions of the real
evolution for more than one atom in the system [42]. In this
regard, we will follow a different methodology to get the
Hamiltonian that describes the effective control for the atoms,
as well as tunable atom-atom interaction, beyond the two-level
approximation. To this end, given only the Hamiltonian with-
out drive Ĥndr

D = Ĥ0 + Ĥcpg, we can “remove” the coupling of
the atoms with the resonator by applying the transformation
R̂ = exp[Ŝ(η)], with

Ŝ(η) = η1(â†
1r̂ − â1r̂†) + η2(â†

2r̂ − â2r̂†), (9)

where η′
ks need to be chosen in order to eliminate the atom-

resonator interactions in second order of the Baker-Campbell-
Hausdorff expansion:

R̂Ĥndr
D R̂† ≈ Ĥndr

D + [
Ŝ, Ĥndr

D
] + 1

2!

[
Ŝ,

[
Ŝ, Ĥndr

D
]]

. (10)

By doing this, it is possible to show that the free parameters
ηk need to be (see Appendix C for further details)

η1 = gg2 + 	2g1

g2 − 	1	2
, η2 = gg1 + 	1g2

g2 − 	1	2
, (11)

where 	n = ωr − ωn is the nth atom-resonator detuning. It is
worth mentioning here that our choice of ηk recovers its usual
form [26,46–49] in the limit where the parasitic coupling is
completely negligible (g = 0). Through this simple transfor-
mation, the effects of the frequency shift in the resonator (due
to the atoms), and in the atoms as well (due to the resonator),
and the effective atom-atom interaction is observed. In fact,
the effective Hamiltonian Ĥeff = R̂Ĥndr

D R̂† yields

Ĥeff = h̄ω̃r r̂
†r̂ + h̄

∑
n=1,2

(
ω̃nâ†

nân + αn

2
â†

nâ†
nânân

)

+ h̄geff (â†
1â2 + â1â†

2), (12)

with the shifted frequencies written as ω̃r = ωr − g1η1 − g2η2

and ω̃n = ωn + gnηn, and the effective atom-atom interaction
strength mediated by the resonator

geff = g + g
(
g2

1 + g2
2

) + g1g2(	1 + 	2)

2(g2 − 	1	2)
. (13)

We are omitting an additional term Ĥeff,α related to the
effective contribution of the anharmonic part of the atoms (see
Appendix D for further information). In fact such a term needs
to be taken into account in general, but in some particular
cases it can be neglected. More precisely, in the regime of
low excitation in the resonator and when one of the atoms is
not doubly excited, the probability of such a term affecting
the dynamics is negligible. Consequently, violation of these
approximations leads to an effective impact of the Ĥeff,α in
the system evolution. Its main contribution is associated with
a coherent population leakage from the atoms to the resonator,
and vice versa, which undermines the fidelity of quantum
gates for superconducting qutrits and qudits, for example.

B. Suppressing parasitic and residual interaction

Now we discuss how the precise control of a single atom
is affected by microwave crosstalk and/or residual two-atoms
interactions, and this task can be worse when one uses a single
resonator to control more than one atom. When no parasitic
interaction affects the system (g = 0) the local control of the
atoms can be efficiently done by driving the system at the
idling point, that is, a regime of frequencies in which the ef-
fective atom-atom interaction is precisely zero. From Eq. (13),
one can see that such a point is achieved for 	1 = −	2, only
valid in the absence of parasitic interactions. In this context
the idling point requests the atom 1 to be quite far from
resonance to the atom 2, once the large detuning hypothesis
|	k| � |gk| needs to be satisfied in the dispersive control. For
some quantum operations it is mandatory (or at least desired)
to quickly bring the atoms into resonance with each other to
implement entangling gates avoiding frequency crossing with
the resonator, and then it is convenient to find a regime in
which 	1 	= −	2. To this end, we use values of frequencies
to satisfy 	1	2 � g1g2(	1 + 	2), where a small (residual)
effective interaction gres = −g1g2(	1 + 	2)/2	1	2 will af-
fect the system (even in the free-parasitic interaction case,
g = 0). There is experimental support to assume that for fast
gate implementations this interaction is totally negligible [28].
But, for degenerated atoms (ω1 = ω2), residual coupling is
always relevant whenever the time required to execute a given
computation (	tc) is of the order of 	tleak = π/2|gres|, with
	tleak the time interval for atom-atom population leakage.

It is intuitive to guess that population leakage becomes
faster for the case of parasitic interaction, since it is an addi-
tional coupling. However, as shown in Fig. 2(a) for a particular
choice of the frequencies for atoms and resonator, we see a
different behavior of the system with the population transfer
getting slower for g 	= 0 than the case with g = 0. Also, it is
seen in Fig. 2(b) that the population leakage can be attenu-
ated by putting the atoms slightly far from resonance, where
we assume the same strength of the parasitic coupling as in
Fig. 2(a). By encoding the detuning ω2 − ω1 = κ|g|, we start
the evolution with an excitation in the atom 1 and evaluate the
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FIG. 2. (a) Population dynamics for the atom 1 for g = 0 and gk/20 as a function of the time. The vertical dashed line denotes the expected
time in which one gets full population leakage for each model, analytically determined as 	t = π/2geff with geff given in Eq. (13). The
interval between the two vertical lines is 8.7 ns. (b) Quantities Pmin

1 , Pmax
2 , and Pmax

res as a function of κ = (ω2 − ω1)/|g|. (c) Chevron patter for
an excitation initially stored in the atom 1. The horizontal line represents the frequency of the resonator that turns off the atom-atom effective
interaction, extracted from Eq. (14). For all the graphs we choose gk/2π = 80 MHz, αk/2π = 300 MHz, g = g1/20, ω1/2π = 3 GHz, and
ωr/2π = 6 GHz. For (a) we set ω2 = ω1, and for (b) we choose ω2 as shown on the horizontal axis.

minimum population of this atom Pmin
1 achieved in the time

interval t ∈ [0, 10 × (π/2|geff |)] for different values of κ . The
maximum population in atom 2 (Pmax

2 ) and in the resonator
(Pmax

res ) for the same interval helps us to conclude that we
have a coherent population transfer to the atom 2, with no
escape to the resonator. More precisely, it is possible to realize
that |ω2 − ω1| ≈ 10|gleak| is enough to get high fidelity for
excitation trapping in the atom 1.

Furthermore, Eq. (13) suggests an alternative to the com-
position of frequencies for atoms and resonator, in which a
protocol robust to population leakage is achievable far from
the condition 	1 = −	2, valid in cases where parasitic ef-
fects are not negligible. In fact, even for resonant atoms we
can avoid the effect seen in Fig. 2(b) if the resonator frequency
is suitably chosen to be (ω1 = ω2 = ω)

ωidle
r = ω +

√(
2g2 + g2

1

)(
2g2 + g2

2

) + g1g2

2g
. (14)

Under this choice, one observes that the parasitic and residual
interaction do not provide any contribution to the system
dynamics. To check the approximation under which we found
such an equation, in Fig. 2(c) we present the Chevron pat-
tern of an excitation initially stored in atom 1. The graph
exhibits the time evolution of the population (horizontal axis)
as a function of the resonator frequency (vertical axis). We
highlight the value of the resonator frequency ωr able to make
Rabi oscillations “frozen,” found through Eq. (14). This value
of frequency ωr will be relevant to single qubit gate imple-
mentations.

III. SINGLE AND TWO QUBIT GATES

Now we will use the previous discussion to efficiently
implement single and two qubit gates in this system. So far
the system has been considered as artificial atoms, where the
anharmonicity is taken into account. But, at this stage, we
will approximate the effective Hamiltonian of the atoms to
the two-level systems approach by writing

Ĥqubit = h̄(ω̃1σ̂
+
1 σ̂−

1 + ω̃2σ̂
+
2 σ̂−

2 ) + h̄geff (σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2 )

+ h̄
2∑

k=1

�k (t )(σ̂+
k e−iωkt+iφk + σ̂−

k eiωkt−iφk ), (15)

where we omit the resonator operators, as we will work in
the highly dispersive regime. In the last term of the above

equation we used the phasor addition, which suggests that
each qubit will be effectively driven by effective pumping
found through the method of phasors as

�k (t )e−iωkt+iφk =
N∑

n=1

�k,n(t )e−iωd,nt+iφd,n , (16)

with �k (t ), ωk , and φk the amplitude, frequency, and phase of
the resultant phasor. This equation clarifies a kind of crosstalk
effect between the qubits, since the resulting frequency ωk

and phase φk depend on the same drive frequencies ωd,n and
phases φd,n for the oscillating term of the drives through the
resonator. For instance, if a single drive signal (N = 1) is used
to control the qubits, with frequency ωd and phase φd, one
immediately concludes that both atoms will see an oscillating
field with frequency ωk = ωd and phase φk = φd, even if they
are driven by fields with different Rabi frequencies �k (t ).
To better understand how this kind of crosstalk affects the
independent control of the qubits, here we will focus on the
case of a single drive, such that we can write the Hamiltonian
in an oscillating frame, at frequency ωd, as (see Appendix E
for further details)

Ĥ ′ = Ĥ (1)
LZ + Ĥ (2)

LZ + h̄geff (σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2 ), (17)

where we define the Landau-Zener–like Hamiltonian for each
Hamiltonian as (	̃1 = ω̃1 − ωd)

Ĥ (k)
LZ = h̄	̃k σ̂

+
k σ̂−

k + h̄�k (t )(σ̂+
k eiφd + σ̂−

k e−iφd ). (18)

In the trivial case where qubits have a huge difference
in frequencies, at most one Landau-Zener Hamiltonian will
dominate the dynamics and we can decide which one to
“activate” it using the drive frequency ωd. In fact, when the
detuning |ωd − ωk| is much bigger than the Rabi frequency
�k (t ), then Ĥ (k)

LZ ≈ h̄	̃k σ̂
+
k σ̂−

k and only a local phase will
affect the dynamics of the kth qubit, with no population in-
version in the computational basis |0〉 and |1〉. Of course, this
is assuming that the parasitic and effective coupling strength
do not affect the system (geff = 0). However, even if there is
parasitic interaction in the system we can choose the resonator
frequency ωr to bring the system to an idle point and the local
control can be done with good fidelity, as we shall see now.

A. Single qubit gate selectivity

One defines the selectivity as a measurement of individual
controllability, that is, it quantifies how well we can control
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FIG. 3. (a) Selectivity as a function of the parameter κ for dif-
ferent configurations of the system. First, we investigate the role of
parasitic interactions by comparing the cases g = 0 and g 	= 0, where
the resonator is far from the idle frequency (ωr/2π = 5.190 GHz).
Also, we consider the same quantity for the effectively noninter-
acting case by imposing ωr = ωidle

r . (b) Circuit used to illustrate
the simultaneous control of the qubits. Starting from all qubits in
the state |0〉, the state preparation of the qubit 1 in the state |1〉
is achieved with the frequency of the qubits detuned as (ω1 −
ω2)/2π = 100 MHz and the resonator frequency is chosen at idling
point for this configuration, namely, ωidle

r(1)/2π ≈ 8.27 GHz. It guaran-
tees high fidelity to the state preparation. After that, we switch off the
pumping field, frequency of the qubit 2 is then changed to resonance
with qubit 1, and we regulate the resonator frequency to a new value,
ωidle

r(2)/2π ≈ 8.22 GHz, keeping the system at the idle configuration.
During the time interval (waiting time) no population dynamics is
observed. To end, we apply the control field to coherently drive the
atoms in their respective and independent Rabi oscillations. (c) The
simulation (dots) and analytical (curves) result for the circuit shown
in (b). The parameters have been chosen inspired by Ref. [28],
where ω1/2π = 6.617 GHz for all cases and the amplitude, and the
other parameters as given in Fig. 2. The drive amplitude is taken as
εd,k (t )/2π = 100 MHz.

one of the atoms, by pumping a transmission line, without
affecting the other one. In general it is expected that the selec-
tivity depends on the gate to be implemented, so here we will
focus on the perfect control X Pauli gates (π pulse). In this
case, only the population of the qubit 1 (addressed qubit) starts
from zero to one while the population of the atom 2 (spectator
atom) should remain zero all the time. Mathematically we can
measure this selectivity from the equation

S = Pmax
add − Pmax

spe

Pmax
add + Pmax

spe

, (19)

with Pmax
add and Pmax

spe denoting the maximal population induced
by the drive in the addressed and spectator atoms, respectively.
This quantity ranges from −1 to 1, which corresponds to the
inversely selective (Pmax

add = 0 and Pmax
spe = 1) to the completely

selective regime (Pmax
add = 1 and Pmax

spe = 0). We also highlight
the case S = 0, which corresponds to the scenario of equal
controllability of the qubits. It means that, at this point, we can
simultaneously execute (identical) operations on the atoms.
Figure 3(a) reports the selectivity S for the qubit 1 as the
addressed qubit for three different cases as a function of the
qubit detuning. The first two cases take into account the effect

of parasitic interactions in the system (solid red curve and
dashed green line, respectively). As expected, in all situations
we see low selectivity at (or close to) resonance between the
atoms, but it becomes even worse when parasitic interactions
are present in the system. Also we exploit the counterintu-
itive benefit of having parasitic interaction in the system, by
showing the behavior of the selectivity evolving the system at
the idling point (dot-dashed blue line). When the qubits are
tuned at resonance, the idling point shows that the selectivity
is close to zero, which means the simultaneous control of both
atoms would be possible. To demonstrate such a property, we
implement the sequence of pulse and frequencies as sketched
in Fig. 3(b), as detailed below.

A single driving field is applied to the two qubit sys-
tem through the resonator, with drive strength εd,k (t ) = ε0

(consequently �k = �) and phase φk = 0. The simultaneous
coherent control of the qubits is properly investigated by
preparing the qubit 1 in state |1〉, through a π pulse, while the
qubit 2 starts in the ground state. To this end, the qubits and
resonator are far from resonance, and the drive is assumed to
be at resonance with the qubit 1 (ωd = ω̃1). During the step
of state preparation the excited-state population in the qubit
1 evolves as P(1)

exc (t ) = sin2(�t ), while the qubit 2 remains
in its ground state, as provided by the analytical solution of
Eq. (17). Here we approximate the solution to the case with ef-
fective interaction geff = 0, since such an interaction is much
smaller than the Rabi frequency |�|. After that, to highlight
the idling point performance [already shown in Fig. 2(c)], we
align the qubits’ frequencies, ω1 = ω2, and set the resonator
at the idle frequency. During this “waiting” step, where the
pumping is turned off (� ∝ ε0 = 0), we verify that no popu-
lation transfer is done, which we expect whenever the perfect
suppression of effective interaction in the system is used,
including parasitic ones. In the last step of this theoretical
simulation we apply a driving field to induce identical Rabi
oscillations in both qubits, since the qubits are in resonance
each other. For this step the instantaneous populations in the
excited state for the qubits 1 and 2 are given, respectively, by
P(1)

exc (t ) = cos4(�t ) and P(2)
exc (t ) = sin4(�t ) (due to their initial

states). In Fig. 3(c) we present the analytical predictions for
the populations and the exact numerical simulation from the
Hamiltonian in Eq. (1). The agreement between analytical
results, which presumes the perfect absence of effective in-
teraction, and the numerical simulation (using QUTIP [50,51])
illustrates the pertinence of the effective description of the
system introduced in this paper.

It is worth it now to mention the experimental imple-
mentation, by Majer et al. [28], that supports our theoretical
discussion. Using a system of two coupled qubits via a cavity
bus, the authors showed the absence of beating in the dynam-
ics for the population of qubits, indicating that the coupling
does not affect the system. To this end, the configuration of
frequencies 	1	2 � g1g2(	1 + 	2) is used and the atom-
atom detuning is |ω1 − ω2| ≈ 88 MHz. From our analytical
results for the effective dynamics, we use the same parameters
as considered in such an experimental work to estimate that a
difference |ω1 − ω2| � 80 MHz would be enough to have a
similar result. This discussion becomes relevant here because
we can use these values to theoretically evaluate the existence
of parasitic interactions in such a system. In fact, from the
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FIG. 4. The ideal process matrix χ (a) for the iSWAP† gate, (b) for g = 0 obtained for the total evolution time of tg=0 = 55.74 ns, and (c) for
g 	= 0 obtained for the time interval tg	=0 = 29.51 ns. (d) The circuit used in the randomized benchmarking of the iSWAP† gate. (e) The average
fidelity obtained in the randomized benchmarking as a function of the number of gates considered in the circuit. The frequencies used here are
ωr/2π = 5.190 GHz and ωk/2π = 6.617 GHz for the qubits, while the other parameters are the same as in Fig. 2.

behavior of the quantity |ω1 − ω2| as a function of the cou-
pling g shown in Fig. 3(c), one realizes that the selectivity
reported in Ref. [28] should be affected in case of a parasitic
coupling strength g/2π > 1 MHz.

B. Speeding up the iSWAP† gate using parasitic coupling

Two qubit gates in superconducting qubits are imple-
mented using the Hamiltonian as given in Eq. (15), as due to
the hoping term we can control the excitation flux between the
qubits. In the particular system considered here we assume the
analytical evolution operator (propagator) for the Hamiltonian
in Eq. (15) given by

Û (t ) = exp(iĤphat/h̄) exp(−iĤintt/h̄), (20)

where Ĥint = h̄geff (σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2 ) is the swapping term of
the dynamics and Ĥpha = h̄(ω̃1σ̂

+
1 σ̂−

1 + ω̃2σ̂
+
2 σ̂−

2 ) is respon-
sible for generating quantum phases in the system, but it can
be suitably corrected by local phase gates applied to the output
state. It is possible to show that if we let the system evolve for
an interval of time τSWAP = t = π/2geff , one gets

exp(−iĤintτSWAP/h̄) =

⎛
⎜⎜⎝

1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1

⎞
⎟⎟⎠, (21)

which corresponds to the Hermitian conjugate of the iSWAP

gate. Therefore, we can write (up to a global phase)

Û (τSWAP) = [S1(ϕk )S2(ϕk )] · iSWAP†, (22)

where Sn(ϕk ) are local phase shift gates for each atom, with
ϕk = πω̃k/geff , such that we need to implement these local
known corrections to the output state. For this operation, the
gate time is inversely proportional to the effective interaction
strength geff , which means that such a gate can be positively
affected by parasitic interactions in the system. To show this

result, we assume the identical coupling strength and atoms
at resonance with each other to make sure that the hopping
term will drive the system through the desired dynamics (up
to local error corrections, as already shown). We also take
parameters experimentally feasible, with couplings gk/2π =
80 MHz and frequencies ωk/2π = 6.617 MHz. To take ad-
vantage of the parasitic coupling we need a negative detuning
	k < 0, such that parasitic interaction g positively contributes
to speed up the dynamics, therefore we choose the resonator
frequency ωr/2π = 5.19 GHz. We highlight that such values
of frequency were used in Ref. [28]. By using these values we
compute the ideal propagator from Eq. (20), and numerically
solve the propagator equation for the Hamiltonian (1) (with no
pumping) for the cases where the parasitic coupling strength
is g = 0 and gk/20 (weak parasitic interaction). For each dy-
namics we also implement the corresponding local phase shift
corrections, and the final result obtained through the quantum
tomography of the process matrix χ [52] is shown in Fig. 4.
In the simulation we pick the process matrix χ evaluated at
τSWAP, as analytically predicted by Eq. (20). To obtain the
simulated matrix χ we first find the propagator Ûtot (t ) for
the Hamiltonian in Eq. (1), and then we project Ûtot (t ) in
the two qubit Hilbert subspace, such that χ is extracted using
the standard matrix tomography [52]. The result is shown in
Fig. 4(a) for the ideal iSWAP†, and in Figs. 4(b) and 4(c) for
the simulation with g = 0 and g 	= 0, respectively. For the
parameters considered in the simulation, the process matrix
shown in Fig. 4(b) is obtained by setting the total evolution
time as 	tg=0 = 55.74 ns, while the case in Fig. 4(c) demands
an amount of time 	tg	=0 = 29.51 ns.

The average fidelity of each dynamics (g = 0 and g 	=
0) with respect to the ideal one is addressed through the
randomized benchmarking, as sketched in Fig. 4(d). It is
desired here to measure the average fidelity iSWAP gate, so
the circuit is comprised for Ngates iSWAP gates interspersed
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with local single qubit gates. The random property of the
circuit is encoded in the generic local qubit gates written as
Glocal = G1(θ1, φ1, λ1) ⊗ G2(θ2, φ2, λ2) with

Gk (θk, φk, λk ) =
(

cos(θk/2) −eiλk sin(θk/2)
eiφk sin(θk/2) ei(λk+φk ) cos(θk/2)

)
,

(23)

acting on the kth qubit, and the triplet θk , φk , and λk is
randomly chosen in the interval [0, 2π ], [0, π ], and [0, π ],
respectively, for each step of the circuit in Fig. 4(d).

By measuring fidelity of a single realization from the Bures
metric for pure states [52], Fg=0(ψ,ψ ′) = |〈ψ | ψ ′〉|2, we
then average the circuit over 1000 realizations. We define the
fidelities Fg=0 = F (ψideal, ψg=0) and Fg	=0 = F (ψideal, ψg	=0)
for each dynamics, in which |ψideal〉 is the ideal expected
computation outcome and |ψg=0〉 (|ψg	=0〉) is the simulation
output with no parasitic interaction g = 0 (with parasitic in-
teraction g 	= 0). Figure 4(e) shows the result for a circuit with
up to 100 iSWAP gates (plus 100 pairs of local qubit gates
Glocal). Therefore, by fitting the set of data to determinate the
average success fidelity F̄ of a iSWAP gate after Ngates of the
circuit, in Fig. 4(d), according to the fit F (Ngates) = F̄Ngates ,
one gets the respective fidelities F̄g=0 = 99.64(4) and F̄g	=0 =
99.69(7). These values are achieved after many realizations,
which means that for a single realization such values will be
different. However, the main result after this analysis is that
the effects of parasitic interaction in such a system can be
efficiently suppressed if we know its strength.

IV. CONCLUSIONS AND PROSPECTS

In this paper we discuss strategies able to suppress the
negative effects of undesired interactions and atom-atom
crosstalk in a system of two interacting superconducting arti-
ficial atoms, via a single mode cavity bus, controlled by the
same driving channel (transmission line). The high fidelity
in the individual coherent control and gate implementations
is discussed, with further details of the effective dynamics
shown in the Appendices. As a main result of this paper, we
state that the negative role of parasitic interactions and mi-
crowave crosstalk needs to be investigated case by case, since
we showed how to take advantage of these effects for this
system in particular. For instance, the simultaneous control
of two qubits is only possible in this system because they feel
the same effective resultant phasor propagating through the
transmission line. More than that, the additional capacitive
interaction between the atoms (avoided in some systems) is
used here to enhance the time required to apply the iSWAP

gate in the system, without any negative impact in the average
fidelity of the operation.

The strategy considered in this paper to highlight the pos-
itive impacts of undesired couplings and crosstalk can be,
in principle, experimentally investigated. However, because
a number of other effects are not taken into account, for
instance the nonradiative decay of the atoms and losses in
the resonator, a generalization of the effective dynamics ex-
amined in this paper to open systems needs to be developed.
In addition, it is important to highlight that for supercon-
ducting artificial atoms with weak anharmonicity, the perfor-
mance of the iSWAP will be affected due to the population

leakage to energy levels outside the qubit subspace {|0〉 , |1〉}
(as detailed in Appendix F). Given the recent advance in the
control of superconducting platforms to demonstrate the per-
formance of qutrit gates [41,53–55], the additional coherent
atom-resonator coupling induced by the anharmonicity may
lead to an important source of gate error to be mitigated.
Such an error can also be relevant to different protocols
using superconducting qutrits, like holonomic quantum com-
putation in superconducting qubits [56–58], and the charging
process of superconducting quantum batteries [59], for
instance.
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APPENDIX A: PROOF FOR THE SEMICLASSICAL
DRIVE EQUATION

Consider the Hamiltonian for a system of two artificial
atoms and a single driving resonator given by

Ĥ (t ) = Ĥ0 + Ĥcpg + Ĥd(t ), (A1)

where

Ĥ0 = h̄ωr r̂
†r̂ + h̄

∑
n=1,2

(
ωnâ†

nân + αn

2
â†

nâ†
nânân

)
, (A2)

Ĥcpg = h̄
2∑

k=1

gk (â†
k r̂ + âk r̂†) + h̄g(â†

1â2 + â1â†
2), (A3)

Ĥd(t ) =
N∑

k=1

h̄εd,k (t )(r̂†e−iωd,kt+iφd,k + r̂eiωd,kt−iφd,k ). (A4)

Now, as a first approximation, to have a description of
a classical pulse applied to the system we change Ĥd(t )
for its classical counterpart by introducing the displacement
operator rotation. To this end we write the Schrödinger equa-
tion driven by the Hamiltonian Ĥ (t ), through the operator
D̂ = exp[ξ (t )r̂† − ξ ∗(t )r̂], as

ih̄D̂|ψ̇ (t )〉 = D̂Ĥ (t ) |ψ (t )〉 (A5)

and we define |φ(t )〉 = D̂ |�(t )〉 to write

ih̄ |∗〉 φ̇(t ) = ĤD(t ) |φ(t )〉 (A6)

where

ĤD(t ) = D̂Ĥ (t )D̂† + ih̄
dD̂
dt

D̂†. (A7)

By defining the Hamiltonian Ĥqb = Ĥint,0 + Ĥα , where the
anharmonicity part reads Ĥα = ∑

n=1,2(αn/2)â†
nâ†

nânân and

Ĥint,0 = h̄
∑

n=1,2

ωnâ†
nân + h̄g(â†

1â2 + â1â†
2), (A8)
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we write

ĤD(t ) = Ĥqb + h̄ωrD̂r̂†r̂D̂† + h̄
2∑

k=1

gk (â†
kD̂r̂D̂† + âkD̂r̂†D̂†) +

N∑
k=1

h̄εd,k (t )(D̂r̂†D̂†e−iωd,kt+iφd,k + D̂r̂D̂†eiωd,kt−iφd,k ). (A9)

We know that D̂r̂D̂† = r̂ − ξ (t ) and (D̂r̂D̂†)† = D̂r̂†D̂† = r̂† − ξ ∗(t ), which allows us to write [ξ = ξ (t ) for short]

ĤD(t ) = Ĥqb + h̄ωr[r̂
†r̂ − r̂†ξ − ξ ∗r̂ + |α∗|21]+ih̄(ξ̇ r̂† − ξ̇ ∗r̂)+

N∑
k=1

h̄εd,k (t )(r̂†e−iωd,kt+iφd,k + r̂eiωd,kt−iφd,k )

−
N∑

k=1

h̄εd,k (t )(ξ ∗e−iωd,kt+iφd,k + ξeiωd,kt−iφd,k )1 + h̄
2∑

k=1

gk[â†
k (r̂ − ξ ) + âk (r̂† − ξ ∗)]. (A10)

Rearranging the terms in red, one gets

ĤD(t ) = Ĥqb + h̄ωr r̂
†r̂ + h̄

2∑
k=1

gk[â†
k (r̂ − ξ ) + âk (r̂† − ξ ∗)] −

[
N∑

k=1

h̄εd,k (t )(α∗e−iωd,kt+iφd,k + αeiωd,kt−iφd,k ) − h̄ωr|α∗|2
]
1

+ r̂†

[
ih̄ξ̇ − h̄ωrξ +

N∑
k=1

h̄εd,k (t )e−iωd,kt+iφd,k

]
+ r̂

[
N∑

k=1

h̄εd,k (t )eiωd,kt−iφd,k − ih̄ξ̇ ∗ − h̄ωrξ
∗
]
. (A11)

Now, one realizes that by choosing ξ such that

iξ̇ = ωrξ −
N∑

k=1

εd,k (t )e−iωd,kt+iφd,k , (A12)

we find

ĤD(t ) = Ĥ0 + h̄g(â†
1â2 + â1â†

2) + Ĥint + Ĥdr, (A13)

where Ĥdr is the drive and Ĥint is the atoms-resonator interac-
tion part defined, respectively, as

Ĥdr = −h̄
2∑

k=1

gk (â†
kξ + âkξ

∗), (A14)

Ĥint = h̄
2∑

k=1

gk (â†
k r̂ + âk r̂†), (A15)

since the terms proportional to the identity can be included in
a zero-point energy shift and do not change the system dynam-
ics. In conclusion, because Ĥcpg = Ĥint + h̄g(â†

1â2 + â1â†
2) as

defined in Eq. (A3), we find

ĤD(t ) = Ĥ0 + Ĥcpg − h̄
2∑

k=1

gk[â†
kξ (t ) + âkξ

∗(t )]. (A16)

APPENDIX B: THE HAMILTONIAN FOR THE DRIVING
FIELD IN THE “STEADY-STATE” REGIME

Now, we discuss the final form for the driving field by
starting from Eq. (A12). Now, by using

e−iωr,kt d

dt
[eiωr,ktξ (t )] = e−iωr,kt [iωr,keiωr,ktξ (t ) + eiωr,kt ξ̇ (t )]

= iωr,kξ (t ) + ξ̇ (t ), (B1)

one gets

e−iωr,kt d

dt
[eiωr,ktξ (t )] = iεd,k (t )e−iωd,kt+iφd,k , (B2)

the solution of which reads

ξ (t ) = ξ (−∞)eiωr,kt + ieiωr,kt+iφd,k

∫ t

−∞
εd,k (t ′)e−i(ωd,k−ωr,k )t ′

dt ′.

(B3)

Solving the integral∫ t

−∞
εd,k (t ′)e−i(ωd,k−ωr,k )t ′

dt ′

= εd,k (t ′)e−i(ωd,k−ωr,k )t ′

−i(ωd,k − ωr,k )

∣∣∣∣∣
t

−∞

− 1

−i(ωd,k − ωr,k )

∫ t

∞

dεd,k (t ′)
dt ′ e−i(ωd,k−ωr,k )t ′

dt ′ (B4)

it is reasonable to say that εd,k (−∞) = α(−∞) = 0. More-
over, assuming the amplitude εd,k (t ) as a C∞ function (in-
finitely differentiable and analytical), we apply the Riemann-
Lebesgue lemma [45] to the integral in the above equation and
put it approximately to zero, and we get∫ t

−∞
εd,k (t ′)e−i(ωd,k−ωr,k )t ′

dt ′ ≈ εd,k (t )e−i(ωd,k−ωr,k )t

−i(ωd,k − ωr,k )
(B5)

and therefore

ξ (t ) = εd,k (t )

ωr,k − ωd,k
e−iωd,kt+iφd,k . (B6)

Using this result in Eq. (A14)

Ĥ cl
dr (t ) = h̄

2∑
k=1

N∑
n=1

�k,n(t )(â†
ke−iωd,nt+iφd,n + âkeiωd,nt−iφd,n ),

(B7)

where �k,n(t ) = −gkεd,n(t )/	R,n, with 	R,n = ωr,n − ωd,n,
concluding then the demonstration of the final Hamiltonian
for the drive given by Eq. (8) of the main text.
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APPENDIX C: THE BAKER-CAMPBELL-HAUSDORFF
EXPANSION

Now, we describe how to “remove” the coupling with
the resonator by applying a transformation of the R̂(η) =
exp[Ŝ(η)], with Ŝ(η) defined in Eq. (9). Now, let us find
the parameters ηk in order to eliminate the atoms-resonators
interactions in second order. To this end we use the Baker-
Campbell-Hausdorff expansion up to second order as

R̂ĤD(t )R̂† = ĤD(t ) + [Ŝ, ĤD(t )] + 1
2! [Ŝ, [Ŝ, ĤD(t )]]. (C1)

Here we are assuming that the drive (external field) is
turned off, since we are interested only in the interaction
between the atoms and the resonator. In this case, we have

R̂ĤD(t )R̂† = Ĥint,0 + Ĥα + Ĥr + Ĥint + [Ŝ, Ĥint,0 + Ĥα + Ĥr]

+ [Ŝ, Ĥint] + 1
2! [Ŝ, [Ŝ, Ĥint,0 + Ĥα + Ĥr + Ĥint]].

(C2)

First, notice that

[Ŝ, Ĥint,0 + Ĥr] = h̄
∑

n=1,2

ωnη1([â†
1r̂, â†

nân] − [â1r̂†, â†
nân])

+ h̄
∑

n=1,2

ωnη2([â†
2r̂, â†

nân] − [â2r̂†, â†
nân])

+ η1h̄g[(â†
1r̂ − â1r̂†), â†

1â2 + â1â†
2]

+ h̄gη2[(â†
2r̂ − â2r̂†), â†

1â2 + â1â†
2], (C3)

and we use that [âk, â†
nân] = δknân to get

[Ŝ, Ĥint,0 + Ĥr] = h̄(η1	1 − gη2)(â†
1r̂ + â1r̂†)

+ h̄(η2	2 − gη1)(â†
2r̂ + â2r̂†) (C4)

with 	n = ωr − ωn. To eliminate the interaction with the
resonator we impose [Ŝ, Ĥint,0 + Ĥr] = −Ĥint , and we need
to satisfy the system of equations η1	1 − gη2 = −g1 and
η2	2 − gη1 = −g2, where the solution reads

η1 = gg2 + 	2g1

g2 − 	1	2
, η2 = gg1 + 	1g2

g2 − 	1	2
. (C5)

Then, using these choices in Eq. (C2), we get

R̂ĤD(t )R̂† = Ĥqb + Ĥr + 1
2 [Ŝ, Ĥint] + [Ŝ, [Ŝ, Ĥint]]

+ [Ŝ, Ĥα] + 1
2! [Ŝ, [Ŝ, Ĥα]], (C6)

where we can neglect the term [Ŝ, [Ŝ, Ĥint]] because it is
proportional to terms of the order of g2

k/	
2
k . In conclusion,

we get

R̂ĤD(t )R̂† = Ĥqb + Ĥr + 1
2 [Ŝ, Ĥint] + Ĥeff,α (C7)

with Ĥeff,α the contribution to the effective Hamiltonian due
to the anharmonicity of the system given by

Ĥeff,α = [Ŝ, Ĥα] + 1
2! [Ŝ, [Ŝ, Ĥα]]. (C8)

We will discuss its influence when appropriate. By solving
the commutator [Ŝ, Ĥint], we can write

[Ŝ, Ĥint] = −2(h̄g1η1 + h̄g2η2)r̂†r̂ + h̄
∑

n=1,2

2gnηnâ†
nân

+ h̄(g2η1 + g1η2)(â†
2â1 + â2â†

1) (C9)

where we neglected the zero-energy displacement propor-
tional to identity. In this way, we use Eq. (C1) and the effective
Hamiltonian becomes

Ĥeff (t ) = h̄[ωr − (g1η1 + g2η2)]r̂†r̂ + h̄geff (â†
1â2 + â1â†

2)

+ h̄
∑

n=1,2

[
(ωn + gnηn)â†

nân + αn

2
â†

nâ†
nânân

]
,

(C10)

where the total effective coupling reads

geff = g2η1 + g1η2 = g + g
(
g2

1 + g2
2

) + g1g2(	1 + 	2)

2(g2 − 	1	2)
.

(C11)

APPENDIX D: CONTRIBUTION OF THE
ANHARMONICITY TO THE EFFECTIVE DYNAMICS

Let us consider the anharmonicity term in the Baker-
Campbell-Hausdorff formula

Ĥeff,α = [Ŝ, Ĥα] + 1

2!
[Ŝ, [Ŝ, Ĥα]]. (D1)

Again, the last term can be neglected in second order of
gk/	k , and then we focus on the first term that reads

[Ŝ, Ĥα] = h̄
α1η1

2
{r̂[â†

1, â†
1â†

1â1â1] − r̂†[â1, â†
1â†

1â1â1]}

+ h̄
αnη2

2
{r̂[â†

2, â†
2â†

2â2â2] − r̂†[â2, â†
2â†

2â2â2]}.
(D2)

Now, we use that [â†
n, â†

nâ†
nânân] = −2â†

nâ†
nân to get

[Ŝ, Ĥα] = −h̄α1η1(â†
1â†

1â1r̂ + â†
1â1â1r̂†)

− h̄α2η2(â†
2â†

2â2r̂ + â†
2â2â2r̂†). (D3)

Now, by applying the above Hamiltonian to a state of the form
|�〉 = |ψatoms〉 ⊗ (a |0〉 + b |1〉), where the resonator is in the
low excitation regime |b|2 � |a|2, we get

[Ŝ, Ĥα] |�〉 = −h̄b(α1η1â†
1â†

1â1 + α2η2â†
2â†

2â2) |ψatoms〉 |0〉
− h̄α1η1â†

1â1â1 |ψatoms〉 (a |1〉 + b
√

2 |2〉)

− h̄α2η2â†
2â2â2 |ψatoms〉 (a |1〉 + b

√
2 |2〉).

(D4)

Now, we can analyze the effects of such a term in the
system. The above equation suggests that there is a low
probability |b|2 of the resonator losing one excitation to the
atom, since the operation â†

nâ†
nân |ψatoms〉 creates an excitation

in the system. On the other hand, the terms proportional to
|a|2 state that a double excitation cascade in the atoms can
occur, followed by an excitation. While such a process can be
possible when each atom is doubly excited, the probability of
such a process in the qubit subspace is zero and such a term
can be neglected in these cases. In conclusion, it is reasonable
to assume [Ŝ, Ĥα] |�〉 ≈ 0 in our paper.
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FIG. 5. (a) Individual and collective spectrum of two identical
superconducting atoms with frequency transition ωqu and anhar-
monicity α. The representation of the collective spectrum illustrates
the proximity (in energy) between collective states of the doubly
excited subspace. Quantum states of sectors with different number
of excitation are separated by the bare energy of the qubit h̄ωqu,
while energy splitting between states of a given sector is possible due
to a nonzero anharmonicity α. For the case of a system with weak
anharmonicity transitions are allowed between the states |11〉, |20〉,
and |02〉 (magenta arrows). (b) Population leakage as a function of
the number of quantum gates for different values of anharmonicity.
To this graph we use the same parameters as in Fig. 4, for the case
where parasitic interaction is taken into account.

APPENDIX E: THE LANDAU-ZENER–LIKE
HAMILTONIAN

Consider the following Hamiltonian

Ĥqubit = h̄(ω̃1σ̂
+
1 σ̂−

1 + ω̃2σ̂
+
2 σ̂−

2 ) + h̄geff (σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2 )

+ h̄
2∑

k=1

�k (t )(σ̂+
k e−iωdt+iφd + σ̂−

k eiωdt−iφd ), (E1)

obtained from Eq. (15) for the case of a single drive with
frequency ωd and phase φd. The approach used in Appendix A
allows us to rewrite the Schrödinger equation in a new frame
given by an arbitrary unitary operator R̂(t ), with the new
Hamiltonian

ĤR(t ) = R̂(t )ĤqubitR̂
†(t ) + ih̄

dR̂(t )

dt
R̂†(t ). (E2)

The Hamiltonian in Eq. (17) is obtained from the operator

R̂(t ) = exp(iωdt σ̂+
1 σ̂−

1 + iωdt σ̂+
2 σ̂−

2 ). (E3)

In fact, by using that R̂(t )σ̂±
k R̂†(t ) = e±iωdt σ̂±

k and

ih̄
dR̂(t )

dt
R̂†(t ) = ih̄[iωdσ̂

+
1 σ̂−

1 + iωdσ̂
+
2 σ̂−

2 ]R̂(t )R̂†(t )

= −h̄ωd[σ̂+
1 σ̂−

1 + σ̂+
2 σ̂−

2 ], (E4)

where we used R̂(t )R̂†(t ) = 1, one finds

ĤR(t ) = h̄(ω̃1σ̂
+
1 σ̂−

1 + ω̃2σ̂
+
2 σ̂−

2 ) + h̄geff (σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2 )

+ h̄
2∑

k=1

�k (t )(σ̂+
k eiφd + σ̂−

k e−iφd )

− h̄ωd[σ̂+
1 σ̂−

1 + σ̂+
2 σ̂−

2 ] (E5)

or similarly

ĤR(t ) = h̄
2∑

k=1

[(ω̃1 − ωd )σ̂+
1 σ̂−

1 + �k (t )(σ̂+
k eiφd + σ̂−

k e−iφd )]

+ h̄geff (σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2 ). (E6)

Therefore, we conclude that ĤR(t ) = Ĥ ′, with Ĥ ′ given by
Eq. (17).

APPENDIX F: POPULATION LEAKAGE IN WEAKLY
ANHARMONIC ATOMS

In this section we briefly show how population leakage
can affect the circuit implementation shown in Fig. 4 of the
main text. As shown in Fig. 5(a), the qubit subspace of a two
qubit system is {|00〉 , |01〉 , |10〉 , |11〉}, where population in a
highly excited state is avoided whenever it is possible. How-
ever, in weakly anharmonic atoms, the energy-level splitting
between the states of the doubly excited state sector become
comparable to the atom-atom interaction. In this scenario,
non-negligible transitions |11〉 � |02〉 � |20〉 can lead to a
coherent “population leakage” from the qubit subspace to
highly excited states. To quantify such a population leakage,
let us define the figure of merit as

Pnexc>2(Ngates) = tr[(1 − P̂qu)ρ(Ngates)], (F1)

with P̂qu = ∑1,1
n=0,m=0 |nm〉 〈nm| the projector defined over the

qubit subspace of the system. In this way, 1 − P̂qu is a pro-
jector outside the qubit subspace and Pnexc>2(Ngates) quantifies
the population of the subspace with total number of exci-
tations nexc > 2. In the case of two ideal qubits we should
have Pnexc>2(Ngates) = 0. By assuming two qubits with iden-
tical anharmonicity α1 = α2 = α and frequencies ω1 = ω2 =
ωqu, in Fig. 5(b) we show the behavior of the population
Pnexc>2(Ngates) for different values of anharmonicity α as a
function of the number of iSWAP gates Ngates for the circuit
considered in Fig. 4. In conclusion, even for a (relatively)
small circuit (30 gates) we have a strong population leakage
when anharmonicity is not large enough.
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