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Noise-resistant quantum memory enabled by Hamiltonian engineering
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Nuclear spins in quantum dots are promising candidates for fast and scalable quantum memory. By utilizing
the hyperfine interaction between the central electron and its surrounding nuclei, quantum information can be
transferred to the collective state of the nuclei and stored for a long time. However, nuclear spin fluctuations
in a partially polarized nuclear bath degrade the quantum memory fidelity. Here, we introduce a noise-resistant
protocol to realize fast and high-fidelity quantum memory through Hamiltonian engineering. With analytics and
numerics, we show that a high-fidelity quantum state transfer between the electron and the nuclear spins is
achievable at relatively low nuclear polarizations, due to the strong suppression of nuclear spin noises. For a
realistic quantum dot with 104 nuclear spins, a fidelity surpassing 80% is possible at a polarization as low as
30%. Our approach reduces the demand for high nuclear polarization, making experimentally realizing quantum
memory in quantum dots more feasible.
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I. INTRODUCTION

Quantum memory (QM) is a fundamental building block in
quantum computation and quantum communication [1–5]. Al-
though efficient and an-hour-long-storage-time QM has been
realized in trapped ions and atomic ensembles [6–9], fast and
scalable solid-state candidates for a practical QM are still in
demand. Those solid-state physical systems include nitrogen-
vacancy centers in diamonds, doped ions in crystals, and
semiconductor quantum dots (QDs) [10–24]. Among them,
QD-based QM, which takes the nuclear spin ensemble as its
memory medium, is known for its long storage time, excellent
optical and electronic properties, and large-area manufactur-
ing potentials, making it an appealing option for quantum
information processing [18–24].

The original QD-based QM protocol was proposed by Tay-
lor, Marcus, and Lukin (hereafter referred to as the resonant
QM) [18]. It utilizes the hyperfine interaction to write in and
read out the quantum information from the electron spin to
nuclear spins. Due to the intrinsic long coherence time of
nuclear spins, the quantum information can be stored for up to
milliseconds [22,24–26]. In addition, the writing and reading
process could be as fast as nanoseconds because of the strong
hyperfine coupling between the electron and nuclei. However,
the performance of QD-based QM depends sensitively on
nuclear spin polarization. To write an arbitrary qubit into
the nuclei with 100% fidelity, full polarization is required,
which is impossible to achieve in practice. Recent advances
in the optical pumping of nuclear spins in GaAs/AlGaAs
QDs have illustrated about 80% nuclear polarization [27].
Even with such a record-high degree of polarization, the
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fidelity of the resonant QM protocol is still below 80%
[18,19]. Alternative approaches to ensure high QM fidelity but
at low nuclear polarizations are constantly in great demand,
such as nuclear state preparation [21,28–30], inhomogeneous
polarization [20,31], and the use of noncollinear hyperfine
interactions [23,32].

The major obstacle in QD-based QM protocols stems from
nuclear spin fluctuations, which become prominent at low
polarizations and degrade significantly the QM fidelity. To
suppress nuclear spin noises, we propose in this paper a
noise-resistant QM (NRQM) protocol through the Hamilto-
nian engineering of the electron-nuclear hyperfine interaction.
By applying periodically fast π pulses along the x and y axis,
the hyperfine interaction is effectively transformed into a flip-
flop Hamiltonian, which simultaneously flips the electron spin
and flops a nuclear spin, thus realizing an efficient quantum
state transfer. More importantly, the effects of nuclear spin
fluctuations are strongly suppressed by these pulses. With
this idea, we realize high-fidelity QM but at relatively low
polarizations. Our scheme is compatible with inhomogeneous
polarization and nuclear state preparation. A better QM per-
formance is achieved by combining them together.

II. ELECTRON-NUCLEAR SPIN DYNAMICS
IN A QD-BASED QM

For QDs, the coupling of an s-state conduction electron to a
mesoscopic bath of nuclear spins is governed by the hyperfine
contact interaction [33–35]. In a magnetic field B0 along the z
axis, the Hamiltonian is

H = g∗
eμBB0Sz +

∑
j

A jI j · S, (1)
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where the first term corresponds the electron Zeeman en-
ergy. Spin operators S and I j are for the electron and the
jth nucleus, respectively. We assume all spins are spin- 1

2
for convenience. The coupling strength Aj is given by Aj =
A0v0|ψ (r j )|2 with A0 being the hyperfine contact interaction
constant, v0 the volume of a unit cell, and |ψ (r j )|2 the prob-
ability density of the electron at site r j of the jth nucleus
[36]. The Aj is a function of position varying in a Gaussian
form in a typical QD [16,17,37]. The hyperfine interaction
term can be rewritten as HD + H�, where HD = Sz

∑
j A jI

z
j

and H� = 1
2

∑
j A j (S+I−

j + S−I+
j ) with S± = Sx ± iSy and

I±
j = Ix

j ± iIy
j . The diagonal term HD produces an effective

magnetic field on the electron called the Overhauser field. By
tuning the magnetic field B0 to be equal in magnitude and
opposite to the Overhauser field, HD may be canceled and only
the flip-flop term H� is left, which introduces a spin exchange
between the electron and the nuclei.

Utilizing the flip-flop term H� and zeroing the sum
of the Zeeman term and HD, Taylor, Marcus, and Lukin
proposed a resonant QM protocol in a QD [18]. Start-
ing with a fully polarized nuclear bath |0〉n = |I0, . . . , I0〉n
and a spin-down electron |↓〉e, this flip-flop Hamilto-
nian H� induces a flipped electron spin with a col-
lective nuclear spin excitation |↑〉e

⊗ |1〉n, where |1〉n =
(
∑

j |Aj |2)−1/2 ∑
j A j |I0, . . . , (I0 − 1)( j), . . . , I0〉n. Since a

spin-up electron and a fully polarized bath are maintained due
to the conservation of angular momentum, an arbitrary initial
electron spin evolves as

(α |↑〉e + β |↓〉e) ⊗ |0〉n → |↑〉e ⊗ (α |0〉n + iβ |1〉n). (2)

In this way the quantum state of the electron spin is coher-
ently mapped into the collective mode of the nuclei. The
quantum state transition can be turned off by removing the
electron from the QD, tuning the magnetic field away from
the resonant condition, or dynamical decoupling. Due to the
nuclear spins’ long coherence time, information encoded in
the nuclear spins can be preserved for a long time [22,26].
Retrieval of the stored information is accomplished by simply
reversing the process: Let the system oscillate for another
half cycle under the flip-flop Hamiltonian and the quantum
information returns to the electron.

In practice, full nuclear polarization is difficult to achieve.
Incomplete polarization may degrade significantly the QM
performance. For instance, a partly polarized thermal nuclear
bath is composed of many different pure nuclear spin states
|I, M〉, ρ = ∑

w(I, M ) |I, M〉 〈I, M|, where I is the total an-
gular momentum for N nuclear spins and M = −I,−I +
1, . . . , I is its projection into the z axis [36]. To transfer the
qubit back and forth fully between the electron and the nuclear
state, all pure states have to be simultaneously in resonance.
This is roughly the case at high polarization. However, at low
polarization P, the probability of I follows approximately a
Gaussian distribution with a width σ = √

(1 − P)(1 + P)N/4
increasing as P decreases, indicating that a large number of
bath states are off resonant [38]. These off-resonant oscil-
lations dampen the Rabi oscillation and deteriorate the QM
performance [18,38].

FIG. 1. (a) Procedure of NRQM, where the electron spin state
is coherently transferred into the collective modes of nuclei through
the flip-flop Hamiltonian H� enabled by pulses. (b) A pulse cycle
[XXYY ] for Hamiltonian engineering to effectively generate H�. The
spin frames (spin operators instead of states) shown as spheres are
periodically rotated by the pulses in the interaction picture. (c) Time-
domain transformations of spin operators S̃x,y,z(t ) in the interaction
frame driven by the periodic pulse sequence, depicted by the matrix-
based representation [Fμ,k], where the row is μ = (x, y, z) and the
column is k = (1, 2, 3, 4).

III. NOISE-RESISTANT QUANTUM STATE TRANSFER VIA
HAMILTONIAN ENGINEERING

To implement the QM in a QD even at low nuclear polar-
izations, we need to design a pulse sequence that preserves
the desired flip-flop Hamiltonian but significantly suppresses
the fluctuation of the Overhauser field, which causes the
off-resonant oscillations. The developed pulse sequence is
[XXYY ]n, n cycles of [XXYY ] as shown in Fig. 1, where X
and Y represent a π pulse that rotates the electron spin 180◦
around the x and y axis, respectively. The pulse interval is τ .

It is straightforward to illustrate the effect of the pulse
sequence according to the average Hamiltonian theory and the
matrix representation [39]. In the toggling frame the electron
spin operators are periodically rotated by the pulses, leading
to the time-dependent Hamiltonian

H̃ (t ) =
∑

j

[
AjI

x
j S̃x(t ) + AjI

y
j S̃y(t )

] + g∗
eμBBeffS̃

z(t ), (3)

where Beff = B0 + ∑
j A jI

z
j /g∗

eμB is the effective magnetic
field. Taking the spin operator Sz as an example, the pulse se-
quence transforms it into ±Sz operators periodically. For each
spin operator Si, we can identify its transformation trajectory
as

S̃i(t ) =
∑

μ

Fμ,kSμ, for tk−1 < t < tk, (4)

where F = [Fμ,k] = [Fx,k; Fy,k ; Fz,k] is a 3 × n matrix contain-
ing only 0 and ±1, and tk is the time point at which the pulses
are applied. As depicted in Fig. 1(c), the transformation matrix
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representation for S̃i (i = x, y, z) reveals how the pulses alter
the system’s spin dynamics in an intuitive way. By averaging
S̃i(t ), we find that the Sz operator is effectively canceled but a
fraction of Sx and Sy remains. Thus the pulse sequence zeros
the effective magnetic field while maintaining the flip-flop
interaction. In this way, one easily obtains the zeroth-order
average Hamiltonian

H
(0) = 1

4

∑
j

A j (S
+I−

j + S−I+
j ). (5)

Higher-order terms are neglected since they diminish as τ

approaches zero.
The above analysis indicates that the pulse sequence

[XXYY ]n indeed generates the desired flip-flop Hamiltonian.
In addition, this protocol is expected to be robust against
magnetic noise in the z direction (e.g., fluctuations of the
Overhauser field) because terms containing Sz in the Hamil-
tonian average to 0. In this sense, we refer to the protocol as
the NRQM. Compared to the resonant QM protocol, NRQM
is independent of the external magnetic field B0 and may
outperform the resonant one, particularly at lower nuclear
polarizations.

IV. ANALYTICAL RESULTS FOR Aj = A

The nuclear bath is composed of 104−106 nuclear spins,
each having different coupling strengths Aj with the elec-
tron. Analytics for the dynamics of the system is challenging
[40–44]. In the following we consider the case where inho-
mogeneity is negligible (Aj = A), such that the dynamics of

the system under the average Hamiltonian H
(0)

is analytically
solvable, and we analyze the performance of the NRQM pro-
tocol following the derivation in Ref. [19].

For the initial electron state |↑〉 and the collective
nuclear state |I, M〉, the system’s wave function after
time t is |ψ1(t )〉 = cos(ω1t ) |↑〉 ⊗ |I, M〉 − i sin(ω1t ) |↓〉 ⊗
|I, M + 1〉, where ω1 = A

√
(I − M )(I + M + 1)/4. For the

initial electron state |↓〉 the system evolves as |ψ2(t )〉 =
cos(ω2t ) |↓〉 ⊗ |I, M〉 − i sin(ω2t ) |↑〉 ⊗ |I, M − 1〉, where
ω2 = A

√
(I + M )(I − M + 1)/4. Obviously, the oscillation

frequencies of the dynamics depend on I and M.
For a partially polarized nuclear bath in thermal equilib-

rium, the statistical weight w(M ) = CN
k θ k (1 − θ )k , where CN

k
is the binomial coefficient, k = N/2 − M, and θ = eγ /(1 +
eγ ) [38]. The corresponding nuclear polarization is P =
tanh(γ /2). This distribution is roughly Gaussian centered at
M = −NP/2 with variance σ 2 = (N/4)(1 − P)(1 + P). The
statistical weight of the state |I, M〉 is

w(I, M ) = w(M )
(
CN

m − CN
m−1

)
/CN

k ,

≈ w(M )ζ I−|M|,
(6)

where m = N/2 − I , ζ = �P/(2 − �P), and �P = 1 − P.
The approximation in Eq. (6) holds for small I − |M|. One im-
mediately finds that for a large value of P (small �P and ζ ), all
the states |I, M〉 with M = −I account for the majority with a
proportion of 1 − ζ . Other states with higher I (> −M ) have
an exponentially smaller statistical weight and have much
less impact on the dynamics. To calculate the fidelity of the

FIG. 2. Typical dynamics of the electron spin in a partially po-
larized nuclear spin bath (P = 0.5) (a) in the resonant QM protocol
and (b) in the NRQM protocol. Because the bath is a mixture of
numerous potential states, the system’s evolution can take many
different paths. When we depict every path, we get blurred lines in
the image that diffuse over time. The ensemble-averaged dynamics
of the electron spin shown as the yellow and green solid lines are
damped Rabi oscillations. (c) Fidelity as a function of nuclear bath
polarization P with 104 nuclear spins for the resonant QM protocol
(solid line with circles) and NRQM protocol (solid line with tri-
angles). Dashed-dotted and dotted lines: Analytical estimates from
Eqs. (7) and (8), respectively, for the NRQM protocol. Dashed line:
Analytical estimate for the resonant QM protocol [19]. The NRQM
protocol significantly outperforms the resonant QM.

NRQM up to linear order in ζ , we only include the states with
M = −I and M = −I + 1 and neglect the others.

The fidelity of the memory protocol is defined as the over-
lap between the initial electron state and the retrieved one,
taking the minimum over all possible initial states. According
to Ref. [19], the minimal fidelity can be found by consid-
ering only two types of initial conditions: (1) the electron
spin pointing to the z axis, and (2) the electron spin lying in
the xy plane. For the first case, we calculate sz = Tr(Szρ f ),
where ρ f is the density matrix for the final retrieved elec-
tron state. For the second case, we calculate sT =

√
s2

x + s2
y

and s0 = Tr(Szρ f ), where sx,y = Tr(Sx,yρ f ). The fidelity F
is the minimum of the following three quantities: f1 = (1 +
sz )/2, f2 = (1 + sz − 2s0)/2, and f3 = (1 + sT − s2

0/[4(sz −
s0 − sT )])/2, When s0/[2(sz − s0 − sT )] /∈ [−1, 1], F takes
the minimum of f1 and f2.

By taking into account the two types of initial
bath states, M = −I and M = −I + 1, and averaging
with probability w(I, M ), we calculate sz, s0, sT up
to linear order in ζ : sz ≈ 1 − ζ (1 − cos4 γ0 − sin4 γ0),
s0 ≈ −(ζ/2)(1 − cos4 γ0 − sin4 γ0), sT ≈ 1 − ζ (1 + cos γ0),
where γ0 = π/

√
2. We then obtain the fidelity

F = 1 + sz

2
≈ 1 − 0.232 ζ . (7)

Substituting ζ = �P/(2 − �P), the fidelity is further simpli-
fied as

F ≈ 1 − 0.116�P. (8)

The results from Eqs. (7) and (8) are depicted in Fig. 2(c) as
dashed-dotted and dotted lines. For comparison, the analytical
estimate of fidelity for the original resonant QM protocol is
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F ≈ 1 − 1.38�P [19], which is also depicted in Fig. 2(c) as
the dashed line. Starting with full polarization, the fidelity of
the NRQM protocol drops to more than ten times slower than
that of the resonant one as the nuclear polarization decreases,
demonstrating the advantages of the NRQM protocol.

V. NUMERICAL RESULTS

While we have derived the fidelity Eq. (7) at high bath
polarizations and proved the advantage of NRQM, the perfor-
mance of the protocol at low polarizations or inhomogeneous
hyperfine coupling is still needed. This task is completed by
numerical simulations.

First, we consider the case where inhomogeneity is neg-
ligible (Aj = A). We numerically simulate the dynamics of
the electron spin and N = 104 nuclear spins. The system is
prepared as a tensor product of the electron state |φ〉 and
the nuclear state |I, M〉 with a statistical weight w(I, M ).
The system evolves under the Hamiltonian Eq. (1) and the
pulse sequence [XXYY ]n for a time t1 and the electron state
is mapped onto the collective nuclear state. After that, the
electron is ejected and a nuclear mixed state is reduced by
tracing out the electron’s degree of freedom. For retrieval,
another fully polarized electron is injected in the QD. The
system’s state becomes a tensor product of the electron state
and the reduced nuclear bath state. Then the system evolves
under the same pulse sequence for another time t2. After
tracing out the nuclear bath’s degree of freedom, we obtain
the final density matrix ρ f of the electron. We plot how the
electron observable 〈Sz〉 changes over time during this process
in Figs. 2(a) and 2(b). For a given |I, M〉, the trajectory of
〈Sz〉 is a translucent curve with opacity based on the statistical
weight of the bath state w(I, M ). In total, we get blurred
lines in the image that diffuse over time. The thickest blurred
line, which in fact includes many lines, shows the electron
spin’s evolution with bath states |I, M〉, where M = −I , I ∈
[0, N/2]. The remaining blurred lines come from bath states
|I, M〉, where M = −I + 1, M = −I + 2, etc. By averaging
over different bath states with statistical weight w(I, M ) we
calculate the weighted observables for the electron (sz,0,T ) in
a realistic thermal bath ensemble. These ensemble-averaged
dynamics of the electron are drawn as the yellow and green
solid lines in Figs. 2(a) and 2(b). The minimal fidelity is cal-
culated accordingly using (sz,0,T ) [19]. The times t1 and t2 are
tuned to maximize the minimal fidelity. The NRQM results
at different nuclear polarizations P are shown in Fig. 2(c) as
a solid line with triangles. The simulated fidelities for the
resonant QM protocol are also plotted as a solid line with
circles for comparison.

As shown in the figure, NRQM illustrates a significant im-
provement in fidelity over resonant QM. The NRQM protocol
has a fidelity over 90% at P = 0.5 and the fidelity is still over
80% at P = 0.3. In stark contrast, the resonant QM protocol
requires a polarization greater than 0.8 in order to achieve
80% fidelity [18,19]. Clearly, the need for strong nuclear po-
larization is dramatically mitigated for the NRQM protocol. In
addition, the numerics agrees well with our analytical estimate
of the fidelity at high polarizations, implying the validity of
previous analytics.

FIG. 3. Performance of quantum memory protocols in a bath of
N = 20 nuclear spins. (a) QM fidelity for homogeneous bath polar-
izations with different widths of Aj for the resonant QM protocol
(RQM) and the NRQM protocol. (b) QM fidelity for inhomogeneous
bath polarizations.

Second, we consider the case of inhomogeneous hyperfine
coupling (Aj = A). We numerically simulate the dynamics of
the electron spin interacting with N = 4 × 5 nuclear spins
arrayed in a rectangular lattice, using the efficient Chebyshev-
expansion-based algorithm [45]. More computer resources
would be required to include more nuclear spins, but N = 20
is adequate to make our simulations represent bigger systems
with a precision of 1/N [19]. In order to compare with pre-
vious works, we adopt the same coupling strengths Aj as in
Refs. [19,20]. The values of Aj spread from 0.96 to 0.31,
referred to as normal distribution. We also consider the case
with decreased QD widths by a factor of 1/

√
2 to represent a

narrow distribution of Aj , spreading from 0.92 to 0.09.
Numerical results are presented in Fig. 3(a). As shown in

the figure, the NRQM outperforms significantly the resonant
QM. The fidelity jumps from around 60% up to 80% at P =
0.5 if one switches from resonant QM to NRQM. In addition,
normal and narrow distributions of Aj have little impact on the
fidelity. Thus the results for Aj = A are expected to be similar
to those for Aj = A. Such an independence of the distribution
of Aj indicates that the results shown in Fig. 2(c) may also be
applicable to the case Aj = A even for N = 104. Therefore,
we expect that NRQM performs better than resonant QM in a
realistic QD.

Finally, we look at the case of inhomogeneous nuclear
polarization, which can be produced by dynamic nuclear
polarization (DNP) [27,29]. In DNP, the speed of an indi-
vidual nuclear spin’s polarization is roughly proportional to
the square of its hyperfine coupling strength, resulting in a
spatially nonuniform distribution of nuclear polarization in the
QD. A high degree of polarization occurs at these strongly
coupled nuclei. Polarization of the jth nuclear spin after DNP
is approximately p j = tanh(βA2

j ), where β is a parameter
related to the number and duration of DNP cycles [31,46].
It was reported that inhomogeneous nuclear polarization sig-
nificantly improves the performance of a QD-based quantum
memory [20]. The performance improves even more when
NRQM is used to suppress nuclear spin noise. Numerical sim-
ulations are carried out in the same model with the coupling
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strength Aj unchanged. As shown in Fig. 3(b), the NRQM
protocol again outperforms the resonant one for inhomoge-
neous nuclear polarization, similar to the homogeneous case.
However, the performance of NRQM for inhomogeneous po-
larization depends on the distribution of Aj , which is quite
different from that for the homogeneous case. In circum-
stances of a “narrow” distribution of Aj , the combined scheme
shows the best performance: a fidelity over 95% at a bath
polarization P = 0.5, and a fidelity over 80% at P = 0.2.

VI. CONCLUSION

We proposed a noise-resistant pulsed quantum memory
protocol that performs a coherent state transfer between the
electronic and nuclear spins using Hamiltonian engineering
of the hyperfine interaction. Because of its strong suppression
of nuclear spin noise, the NRQM protocol reduces the re-

quirement for high nuclear polarization, making experimental
realizations of QD-based quantum memory more feasible. In
addition, this Hamiltonian engineering approach may be help-
ful for further investigations in quantum memory and DNP in
other systems such as NV color centers, doped-ion crystals,
and atomic ensembles.

ACKNOWLEDGMENTS

This work is supported by the NSAF under Grant No.
U1930201, National Natural Science Foundation of China
(NSFC) under Grants No. 12274331 and No. 91836101, and
Innovation Program for Quantum Science and Technology
under Grant No. 2021ZD0302100. The numerical calculations
in this paper have been partially done on the supercomputing
system in the Supercomputing Center of Wuhan University.

[1] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.
81, 5932 (1998).

[2] S. Wehner, D. Elkouss, and R. Hanson, Science 362, eaam9288
(2018).

[3] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev.
Mod. Phys. 83, 33 (2011).

[4] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M.
Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe,
Nature (London) 484, 195 (2012).

[5] K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard,
V. M. Acosta, J. Nunn, and B. J. Sussman, J. Mod. Opt. 63,
2005 (2016).

[6] P. Wang, C.-Y. Luan, M. Qiao, M. Um, J. Zhang, Y. Wang, X.
Yuan, M. Gu, J. Zhang, and K. Kim, Nat. Commun. 12, 233
(2021).

[7] A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photonics 3,
706 (2009).

[8] K. Choi, A. Goban, S. Papp, S. J. van Enk, and H. Kimble,
Nature (London) 468, 412 (2010).

[9] B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik,
Nature (London) 432, 482 (2004).

[10] C. E. Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets,
M. J. Degen, M. A. Bakker, M. Markham, D. J. Twitchen, and
T. H. Taminiau, Phys. Rev. X 9, 031045 (2019).

[11] P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp,
M. Steiner, V. Jacques, G. Balasubramanian, M. Markham, D.
Twitchen et al., Nat. Phys. 6, 249 (2010).

[12] G. Fuchs, G. Burkard, P. Klimov, and D. Awschalom, Nat. Phys.
7, 789 (2011).

[13] A. Ruskuc, C.-J. Wu, J. Rochman, J. Choi, and A. Faraon,
Nature (London) 602, 408 (2022).

[14] M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, Nature
(London) 465, 1052 (2010).

[15] J. J. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W.
Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, and
S. Lyon, Nature (London) 455, 1085 (2008).

[16] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,
M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Science 309, 2180 (2005).

[17] F. H. Koppens, J. A. Folk, J. M. Elzerman, R. Hanson, L. W.
Van Beveren, I. T. Vink, H.-P. Tranitz, W. Wegscheider, L. P.
Kouwenhoven, and L. M. Vandersypen, Science 309, 1346
(2005).

[18] J. M. Taylor, C. M. Marcus, and M. D. Lukin, Phys. Rev. Lett.
90, 206803 (2003).

[19] V. V. Dobrovitski, J. M. Taylor, and M. D. Lukin, Phys. Rev. B
73, 245318 (2006).

[20] W. Ding, A. Shi, J. Q. You, and W. Zhang, Phys. Rev. B 90,
235421 (2014).

[21] D. Gangloff, G. Éthier-Majcher, C. Lang, E. Denning, J. Bodey,
D. Jackson, E. Clarke, M. Hugues, C. Le Gall, and M. Atatüre,
Science 364, 62 (2019).

[22] E. A. Chekhovich, S. F. C. da Silva, and A. Rastelli, Nat.
Nanotechnol. 15, 999 (2020).

[23] D. M. Jackson, D. A. Gangloff, J. H. Bodey, L. Zaporski, C.
Bachorz, E. Clarke, M. Hugues, C. Le Gall, and M. Atatüre,
Nat. Phys. 17, 585 (2021).

[24] G. Gillard, E. Clarke, and E. A. Chekhovich, Nat. Commun. 13,
4048 (2022).

[25] G. Wüst, M. Munsch, F. Maier, A. V. Kuhlmann, A. Ludwig,
A. D. Wieck, D. Loss, M. Poggio, and R. J. Warburton, Nat.
Nanotechnol. 11, 885 (2016).

[26] E. Chekhovich, M. Hopkinson, M. Skolnick, and A.
Tartakovskii, Nat. Commun. 6, 6348 (2015).

[27] E. Chekhovich, A. Ulhaq, E. Zallo, F. Ding, O. Schmidt, and M.
Skolnick, Nat. Mater. 16, 982 (2017).

[28] G. Éthier-Majcher, D. Gangloff, R. Stockill, E. Clarke, M.
Hugues, C. Le Gall, and M. Atatüre, Phys. Rev. Lett. 119,
130503 (2017).

[29] D. Reilly, J. Taylor, J. Petta, C. Marcus, M. Hanson, and A.
Gossard, Science 321, 817 (2008).

[30] E. Evers, N. Kopteva, I. Yugova, D. Yakovlev, D. Reuter, A.
Wieck, M. Bayer, and A. Greilich, npj Quantum Inf. 7, 60
(2021).

[31] N. Wu, W. Ding, A. Shi, and W. Zhang, Phys. Lett. A 380, 2706
(2016).

[32] E. V. Denning, D. A. Gangloff, M. Atatüre, J. Mørk, and C. Le
Gall, Phys. Rev. Lett. 123, 140502 (2019).

012601-5

https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1038/nature11023
https://doi.org/10.1080/09500340.2016.1148212
https://doi.org/10.1038/s41467-020-20330-w
https://doi.org/10.1038/nphoton.2009.231
https://doi.org/10.1038/nature09568
https://doi.org/10.1038/nature03064
https://doi.org/10.1103/PhysRevX.9.031045
https://doi.org/10.1038/nphys1536
https://doi.org/10.1038/nphys2026
https://doi.org/10.1038/s41586-021-04293-6
https://doi.org/10.1038/nature09081
https://doi.org/10.1038/nature07295
https://doi.org/10.1126/science.1116955
https://doi.org/10.1126/science.1113719
https://doi.org/10.1103/PhysRevLett.90.206803
https://doi.org/10.1103/PhysRevB.73.245318
https://doi.org/10.1103/PhysRevB.90.235421
https://doi.org/10.1126/science.aaw2906
https://doi.org/10.1038/s41565-020-0769-3
https://doi.org/10.1038/s41567-020-01161-4
https://doi.org/10.1038/s41467-022-31618-4
https://doi.org/10.1038/nnano.2016.114
https://doi.org/10.1038/ncomms7348
https://doi.org/10.1038/nmat4959
https://doi.org/10.1103/PhysRevLett.119.130503
https://doi.org/10.1126/science.1159221
https://doi.org/10.1038/s41534-021-00395-1
https://doi.org/10.1016/j.physleta.2016.06.037
https://doi.org/10.1103/PhysRevLett.123.140502


JING, DU, TANG, AND ZHANG PHYSICAL REVIEW A 107, 012601 (2023)

[33] A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88,
186802 (2002).

[34] I. A. Merkulov, A. L. Efros, and M. Rosen, Phys. Rev. B 65,
205309 (2002).

[35] P. Philippopoulos, S. Chesi, and W. A. Coish, Phys. Rev. B 101,
115302 (2020).

[36] C. P. Slichter, Principles of Magnetic Resonance, 3rd ed.
(Springer, Berlin, 1990).

[37] A. Johnson, J. Petta, J. Taylor, A. Yacoby, M. Lukin, C.
Marcus, M. Hanson, and A. Gossard, Nature (London) 435, 925
(2005).

[38] J. M. Taylor, A. Imamoglu, and M. D. Lukin, Phys. Rev. Lett.
91, 246802 (2003).

[39] J. Choi, H. Zhou, H. S. Knowles, R. Landig, S. Choi, and M. D.
Lukin, Phys. Rev. X 10, 031002 (2020).

[40] W. A. Coish and D. Loss, Phys. Rev. B 70, 195340 (2004).
[41] M. Bortz and J. Stolze, Phys. Rev. B 76, 014304 (2007).
[42] M. Gaudin, J. Phys. (France) 37, 1087 (1976).
[43] A. Faribault and D. Schuricht, Phys. Rev. Lett. 110, 040405

(2013).
[44] J. Schliemann, A. Khaetskii, and D. Loss, J. Phys.: Condens.

Matter 15, R1809 (2003).
[45] V. V. Dobrovitski and H. A. De Raedt, Phys. Rev. E 67, 056702

(2003).
[46] W. Zhang, J.-L. Hu, J. Zhuang, J. Q. You, and R.-B. Liu, Phys.

Rev. B 82, 045314 (2010).

012601-6

https://doi.org/10.1103/PhysRevLett.88.186802
https://doi.org/10.1103/PhysRevB.65.205309
https://doi.org/10.1103/PhysRevB.101.115302
https://doi.org/10.1038/nature03815
https://doi.org/10.1103/PhysRevLett.91.246802
https://doi.org/10.1103/PhysRevX.10.031002
https://doi.org/10.1103/PhysRevB.70.195340
https://doi.org/10.1103/PhysRevB.76.014304
https://doi.org/10.1051/jphys:0197600370100108700
https://doi.org/10.1103/PhysRevLett.110.040405
https://doi.org/10.1088/0953-8984/15/50/R01
https://doi.org/10.1103/PhysRevE.67.056702
https://doi.org/10.1103/PhysRevB.82.045314

