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Maximal coin-position entanglement generation in a quantum walk for the third
step and beyond regardless of the initial state
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We study maximal coin-position entanglement generation via a discrete-time quantum walk, in which the
coin operation is randomly selected from one of two coin operators set at each step. We solve maximal
entanglement generation as an optimization problem with quantum process fidelity as the cost function. Then we
determine the maximal entanglement that can be rigorously generated for any step beyond the second regardless
of initial conditions with appropriate coin sequences. The simplest coin sequence comprising Hadamard and
identity operations is equivalent to the generalized elephant quantum walk, which exhibits an increasingly faster
spreading in terms of probability distribution. Experimentally, we demonstrate a ten-step quantum walk driven
by such coin sequences with linear optics and thereby show the desired high-dimensional bipartite entanglement
as well as the transport behavior of faster spreading.
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A quantum walk (QW) is the quantum version of a
classical random walk [1,2]. Due to the principle of su-
perposition in quantum mechanics, a QW gives rise to
impressive applications in quantum information science, from
quantum computing [3–6] to quantum simulation [7], and
from implementing quantum measurement [8–10] to explor-
ing topological phases [11–18]. For the discrete-time QW
(DTQW), entanglement can be generated between coin and
position degree of freedom of the walker, so called the coin-
position entanglement [19–22], which is a key resource for
quantum information processing [23]. The entangled states
generated in DTQW are generally high-dimensional quantum
states (2 ⊗ d) that exhibit contents richer than those of qubit
states (2 ⊗ 2) [24]. Thus, DTQW provides an experimental
platform to investigate quantum correlations of 2 ⊗ d quan-
tum states in terms of separability and entanglement detection
[25–29], entanglement of formation [30,31], survival of entan-
glement [32,33], concurrence [34–36], and discord [37–39].

In a one-dimensional (1D) DTQW with static coin
operations (unchanging coin operation during evolution), en-
tanglement generation depends on the initial coin state and
cannot reach the maximal value [19,20]. Counterintuitively,
by introducing disorder into the DTQW [40], e.g., randomly
choosing SU(2) coin operation

Ĉ(ξ, γ , ζ )=
(

eiξ cos γ eiζ sin γ

e−iζ sin γ −e−iξ cos γ

)
, 4γ , ξ, ζ ∈ [0, 2π ],

(1)

at each step, generated entanglement is significantly enhanced
and achieves maximal entanglement generation (MEG)
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asymptotically independent of initial conditions [41,42]. Mo-
tivated by robust entanglement generation under experimental
conditions with imperfections and disorder, random-coin
DTQWs have been theoretically studied for various disor-
der configurations [43–52] and have been experimentally
observed with linear optics [53–55]. The enhancement of en-
tanglement is not limited to the disorder in coin operation.
Introducing the disorder in the shift operator can enhance
the coin-position entanglement generation as well [56–59].
Besides, phenomena of entanglement boosting also exist in
the quantum Parrondo walk [60–63].

The MEG with a fixed initial coin state can be obtained
either in the asymptotic approach [56,57] or with specifi-
cally designed coin-operation sequences (henceforth called
a coin sequence) [54,55,64]. MEG, regardless of initial coin
states, is generally achieved in an asymptotic approach via
QW with disorder either in coin operations [41] or in shift
operations [59], which is problematic for current experimental
technologies. Strategies to optimize coin sequences during the
evolution have been proposed aiming at MEG for few steps.
Universal coin sequences are proposed to generated highly
entangled states for fewer than ten steps [65]. However, the
universal sequence works for an odd number of steps and for
the states with vanishing relative phase. Parrondo sequences
have been proposed to generate maximal entanglement at
steps T = 3 and T = 5 [66]. Ideal MEG via a DTQW should
work for any step number and independent of initial condi-
tions, but previous experiments have achieved either one or
the other, not both; we achieve both simultaneously here for
all steps beyond the second by solving an optimization prob-
lem. Interestingly, the determined optimal coin sequences are
equivalent to the generalized elephant quantum walk (gEQW)
[56,59], in which the spreading of the probability distribution
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FIG. 1. (a) The geometric representation of the optimal coin sequence CT that can generate maximal entanglement irrelevant of initial state
|θ, φ〉in

c . (b) Results of optimization of 1 − FCT with Ĉt ∈ {Ĉ(γ0), Ĉ(γ1)} at T = 5, T = 10, and T = 20. The values of γ(0,1) are taken from 0◦

to 90◦ with an interval of 1◦. (c) The maximal FCT in a QW from T = 1 to T = 20 with coin set {Ĥ, 1̂} (blue up-pointing triangle), {Ĥ , σ̂z}
(green down-pointing triangle), {Ĥ, σ̂x} (purple circle), {Ĥ , F̂ } (red square), and {Ĥ} (yellow diamond). (d) Fifty b’s that can achieve FCT = 1
at T = 20 with coin set {Ĥ , 1̂}, where 0 represents Ĥ and 1 represents 1̂}.

is much faster. Experimentally, we demonstrate the DTQW
with requisite coin sequences up to ten steps with linear
optics and observe significant enhancement of entanglement
generation as well as spreading behavior compared to other
schemes.

In the 1D DTQW, the Hilbert space of coin (c) and position
(p) of the walker is H = Hc ⊗ Hp, with

Hc = span{|0〉c, |1〉c}, Hp = span{|x〉p; x ∈ Z}. (2)

The walker is initially localized in position state |0〉p, with
arbitrary initial coin |θ, φ〉in

c = cos(θ/2)|0〉c + eiφ sin(θ/2)|1〉c,
where 2θ, φ ∈ [0, 2π ]. At step t , the coin operator Ĉt is ap-
plied. Then the walker moves left or right conditioned on the
coin state by

Ŝ =
∑

x

|x + 1〉p〈x| ⊗ |0〉c〈0| + |x − 1〉p〈x| ⊗ |1〉c〈1|, (3)

which is independent of t .
For t ∈ [N] = {1, . . . , N}, the evolution is

|θ, φ〉f =
∏

t∈[T ]

Ût |θ, φ〉in
c ⊗ |0〉p, Ût = Ŝ(Ĉt ⊗ 1̂p), (4)

where 1̂p = ∑
x |x〉〈x| is the identity operator on Hp, and “f”

is short for “final.” The sequence CT = (Ĉt )t∈[T ] describes
coin operations applied to the walker.

Achieving coin-position MEG at step T regardless of
|θ, φ〉in

c corresponds to designing CT that maps any |θ, φ〉in
c ⊗

|0〉p to the maximally entangled coin-position state |θ, φ〉f.
Entanglement of |θ, φ〉f is quantified by the Von Neumann
entropy,

SE(|θ, φ〉f ) = −tr
(
ρf

c log2 ρf
c

) = −
∑
ε∈±

λε log2 λε, (5)

of the reduced coin state [20,67], where ρf
c =

trp(|θ, φ〉f〈θ, φ|) and λ± are the eigenvalues of ρf
c. Note

that 0 � SE � 1, and SE ≡ 0 for separable states and 1 for
maximally entangled states.

Thus, MEG evolution (4) yields maximally entangled
|θ, φ〉f, which is equivalent to ECT (ρ in

c = |θ, φ〉in
c 〈θ, φ|) = 1/2

in Hc, where ECT is a completely positive linear map deter-
mined by CT . A geometric illustration of ECT for MEG is
in Fig. 1(a), which is the depolarizing channel EDP(ρ in

c ) =
(1 − η)ρ in

c + η 1
2 with η = 1 [68]. Process fidelity FCT =

tr(
√√

χCT χDP
√

χCT )2 [69,70] is our figure of merit to design
CT , where χCT is the Pauli-matrix representation of the quan-
tum channel ECT . Note that FCT = 1 indicates MEG at step
T regardless of |θ, φ〉in

c , and we refer to the corresponding
coin sequence CT as the optimal coin sequence. In this sense,
the design of optimal CT can be addressed by solving the
optimization problem

maximize FCT = tr(
√√

χCT χDP
√

χCT )2

subject to Ĉt ∈ SU(2). (6)

A general SU(2) coin operation in Eq. (1) has three pa-
rameters, which makes the optimization rather resource
demanding. To simplify the optimization, we replace Ĉ(γ ) ←
Ĉ(0, γ , 0). Furthermore, we restrict construction of CT by
allowing only two coin operations, i.e., γ0,1 labeled by one bit
with values 0 and 1. Then the optimization Eq. (6) converts to

maximize FCT = tr(
√√

χCT χDP
√

χCT )2

subject to Ĉt ∈ {Ĉ(γ0), Ĉ(γ1)}, γ0,1 ∈ [0, π/2]. (7)

We solve optimization (7) using an annealing algorithm.
The results of optimization of γ0,1 at T ∈ {5, 10, 20} are
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FIG. 2. (a) Detailed sketch of the setup to realize the ten-step DTQW. (b) Coin operations realized in experiment. A half-wave plate (HWP)
set at 22.5◦ corresponds to operation Ĥ and a quarter-wave plate (QWP) set at 45◦ corresponds to operation F̂ . No wave plate needs to be
arranged if the operation is 1̂. (c) Symbols used in panels (a) and (b): periodically poled potassium titanyl phosphate, PPKTP; polarization
beam splitter, PBS; half-wave plate, HWP; quarter-wave plate, QWP; beam displacer, BD; and single photon detector, SPD.

shown in Fig. 1(b). Evidently, the minimal 1 − FCT is ob-
tained for two coin sets: {Ĉ(0), Ĉ(π/4)} and {Ĉ(π/2), Ĉ(π/4)}.
Note that Ĉ(0) = σ̂z, Ĉ(π/4) = Ĥ , and Ĉ(π/2) = σ̂x. The
evolution unitary operator with the coin operator σ̂z, i.e.,
Û = Ŝσ̂z, makes the components |0〉c and |1〉c propagate in
the opposite direction without interference, which has the
similar effect of Û = Ŝ1̂. The difference is that σ̂z delivers
a phase π (eiπ = −1) on component |1〉c while 1 delivers
zero phase (ei0 = 1), which does not affect the amount of
entanglement of the final state. Along this spirit, we conjecture
that the coin set {Ĥ, 1̂} is as effective as {Ĥ , σ̂z} in terms
of MEG. To confirm this conjecture, we solve Eq. (7) by
restricting Ĉt ∈ {Ĥ, 1̂} and Ĉt ∈ {Ĥ , σ̂z}, respectively, and the
results of optimized FCT with T up to 20 are shown with
blue up-pointing triangles and green down-pointing triangles
in Fig. 1(c).

We observe that optimized FCT values with these two coin
sets are exactly same, in which FCT = 1 since step T = 3.
To give a comparison, we also show the optimized FCT with
coin sets {Ĥ , σ̂x} and {Ĥ}. We also consider the coin set of
{Ĥ, F̂ } with F̂ = [1, i; i, 1]/

√
2 being the Kempe coin op-

erator [2], which is widely adopted in the investigation of
entanglement generation in discorded QW [41,48,53,65]. As
shown in Fig. 1(c), FCT = 1 is achieved at step T = 5 and
T � 7 for the coin set {Ĥ, σ̂x} (purple circles). Asymptomatic
behavior is observed with the coin set {Ĥ , F̂ } (red squares)
and oscillating behavior is observed in the Hadamard walk
(yellow diamonds). The optimized FCT is associated with a
bit string b ∈ {0, 1}T of length T with 0 labeling C(γ0) and
1 labeling C(γ1). We note that optimal b at step T is not
unique. For instance, we obtain 1104 optimal b with the coin
set {Ĥ , 1̂} at T = 20, and we list 50 among them in Fig. 1(d).
There are no obvious features of regularities and generalities
of these optimal b’s. An optimal b containing 0 (Ĥ ) as little as
possible is preferred in experiment. Considering the spreading
behavior with the optimal coin sequences, we experimentally
choose the optimal b containing two or three 0s in our real-
ization. (The explicit form of b and its corresponding proof
are given in Appendix A) Note that the optimal b generally
guarantees the MEG at step T . However, there indeed exists
optimal b, such as the sequences in Appendix A, which leads
to MEG at intermediate steps as well.

In fact, the disordered QW with the coin set {Ĥ, 1̂} is
equivalent to the gEQW [56,59], which is a QW with disorder
in the shift operator. In gEQW, the coin operator is step inde-
pendent (static coin), and the shift operator is step dependent

according to

ŜgEQW(�t )

=
∑

x

|x + �t 〉p〈x| ⊗ |0〉c〈0| + |x − �t 〉p〈x| ⊗ |1〉c〈1|,
(8)

with �t ∈ [1, 2, . . . , T ]. The probability distribution of �t is
a discretized version of the q-exponential distribution [71]. As
a consequence, the case of q = 0.5 corresponds to a standard
Hadamard QW, while for q → ∞ the shift operation Eq. (8)
becomes completely disordered.

In our model, the evolution of the l-step QW with a coin
sequence comprised of a single Hadamard operation followed
by l − 1 identity operations corresponds to a one-step gEQW
with �t = l:∏

b=01···1
Ŝ(Ĉt ⊗ 1p) = ŜgEQW(�1 = l )Ĥ ⊗ 1p. (9)

For instances, the optimal b in the first column of Fig. 1(d)
is b = 01111111111010111011, which corresponds to a four-
step gEQW with �1 = 11, �2 = 2, �3 = 4, and �4 = 3
(See Appendix B for more details). Compared to the QW
with disorder in the coin operation, the gEQW exhibits a
faster spreading while maintaining the capability of asymp-
totic MEG [56,59].

We implement the 1D DTQW with the well-established
dynamical evolution of a single photon in a linear optical net-
work [72–74]. The experimental setup is shown in Fig. 2(a).
The coin state is encoded in the photon’s polarization de-
gree of freedom by |H (V )〉 = |0(1)〉, where |H (V )〉 denotes
the horizontal (vertical) polarization. The position state is
encoded in the photon’s spatial degree of freedom, i.e., the
transverse spatial modes. Two photons in state |H〉|V 〉 with
a central wavelength at 810 nm are generated from a peri-
odically poled potassium titanyl phosphate (PPKTP) crystal
pumped by an ultraviolet continuous-wave laser diode with
the central wavelength at 405 nm [75–77].

During our experiment, the count rate of two-photon
coincidences is about 2.8 × 104/s with a pump power of
10 mW. The two photons are then separated by a polarizing
beam splitter (PBS), which transmits the horizontal polariza-
tion and reflects vertical polarization. The reflected photon
is detected by a single-photon detector (SPD) to serve as a
trigger. The transmitted photon is sent into the photonic net-
work consisting of wave plates and birefringent calcite beam
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FIG. 3. (a) Experimental results of FCT with coin sets {Ĥ , 1̂} (blue up-pointing triangles), {Ĥ , F̂ } (red squares), and {Ĥ} (yellow diamonds)
at T = 2 to T = 10. (b) Average entanglement 〈SE〉 over 296 initial coin states with the reconstructed χ

exp
CT

. (c) Geometric representation of
reconstructed χ

exp
CT

with the coin set {Ĥ , 1̂} at T = 4, 6, 8, and 10. (d) Geometric representation of reconstructed χ
exp
CT

with the coin set {Ĥ , F̂ }
at T = 4, 6, 8, and 10.

displacers (BDs), in which the longitudinal spatial mode of the
injected photon is denoted as the start position of the walker
|0〉p. The coin operations Ĉt are realized by wave plates which
rotate the polarization of the photon, and the BD transmits
the vertical polarization while deviating from the horizontal
polarization so that the BD acts as the shift operation Ŝ.

By carefully adjusting the position between any pair of two
BDs, we observe an average interference visibility beyond
0.99. Note that if no wave plate is set between two BDs, the
concatenation of two BDs corresponds to the shift operator
(8) with �t = 2. The outgoing state is detected by a state
analyzer as shown in Fig. 2(a). The projective measurement
on the position state |x〉 is achieved by placing a SPD at the
corresponding output mode of the optical network, and the
projective measurement on an arbitrary coin state is imple-
mented by a HWP, a QWP, and a PBS.

To reconstruct the process matrix χ
exp
CT

, we prepare four
states as initial coin states |θ, φ〉in

c , i.e., |H〉, |V 〉, |+〉 =
1/

√
2(|0〉 + |1〉) and |L〉 = 1/

√
2(|0〉 + i|1〉). For each step

T , we set the optimal coin sequence CT accordingly (see
Appendix A for the settings of coin sequences), and we recon-
struct ρf

c using quantum-state tomographic technology [68].
To this end, we first set the measurement apparatus at one
mode of the output of the optical network, and we perform
the projective measurement on coin states |H〉, |V 〉, |+〉, and
|L〉, respectively. Then we move the measurement apparatus
to the next optical mode and repeat the process of projective
measurements aforementioned.

After collecting the data over all optical modes, we put the
data together to perform quantum-state tomography without
distinguishing which mode they come from, which corre-
sponds to trace out of position DOF. Roughly 2.2 × 105

two-photon coincidences are collected to perform process
tomography at each step. The experimental results of FCT

with the coin set {Ĥ, 1̂} are shown with blue triangles in
Fig. 3(a). We observe that the average FCT from T = 3 to
T = 10 is 0.9954 ± 0.0008, which is much better than the
results with the coin set {Ĥ, F̂ } as shown with red squares. For
the Hadamard QW, FCT < 0.8 and oscillates as T increases
(shown with yellow diamonds). We calculate the average
entanglement 〈SE〉 over 296 initial coin states with the re-
constructed χ

exp
CT

, and the results are shown in Fig. 3(b). The
error bar indicates initial-state independence, and we observe
a stronger initial-state independence with the coin set {Ĥ , 1̂}
than with the other two. This is also reflected by the geometric
interpretations of FCT as shown in Fig. 3(c) (coin set {Ĥ, 1̂})
and Fig. 3(d) (coin set {Ĥ , F̂ }) at T = 4, 6, 8, and 10, respec-
tively. It is obvious that the results with {Ĥ , 1̂} are much more
dense than the results with {Ĥ, F̂ }, which indicates the entan-
glement generation with the coin set {Ĥ , 1̂} has independence
of the initial coin states stronger than that with the other two.
More details are shown in Appendix C.

We investigate the spreading properties of the demon-
strated QW. We first investigate the uniformity of the
probability distribution P (x, T ) at step T , which can be char-
acterized by the normalized Shannon entropy

SS(T ) = −∑
x P (x, T ) lnP (x, T )

ln(T + 1)
, (10)

with 1/ln(T +1) being the normalization parameter. The walker
is able to occupy T + 1 positions after t steps so that the max-
imal value of −∑

x P (x, T ) lnP (x, T ) is ln(T + 1), which
corresponds to the uniform distribution over T + 1 positions
[78]. Larger SS(T ) implies P (x, T ) is more uniform. For a
T -step QW associated with the corresponding optimal CT ,
we measure the probability distribution P (x, T ) at step T ,
according to which we calculate the normalized Shannon
entropy SS(T ). The results of P (x, T ) with the initial coin
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FIG. 4. Measured P (x, T ) with initial coin states (a) |H〉 and (c) |L〉 driven by the coin sequences with coin sets {Ĥ , 1̂}, {Ĥ, F̂ }, and {Ĥ},
respectively. The calculated SS(T ) with measured P (x, T ) of input states (b) |H〉 and (d) |L〉, where the results of coin sets {Ĥ , 1̂}, {Ĥ , F̂ },
and {Ĥ} are shown with blue up-pointing triangles, red squares, and yellow diamonds, respectively.

states |H〉 and |L〉 are shown in Figs. 4(a) and 4(c), and
the corresponding SS(T ) values are shown in Figs. 4(b) and
4(d), respectively. Compared with the other two cases, the
uniformity of the QW with the coin set {Ĥ, 1̂} is enhanced at
T = 3 and T = 7. We also investigate the trend of probability
distributions, which can be indicated by the second moment
of the walker:

m(t ) =
∑

x

x2P (x, t ). (11)

The walker shows a ballistic behavior if m(t ) ∝ t2, while
it shows a diffusive behavior if m(t ) ∝ t . Moreover, m(t ) ∝
tα with 1 < α < 2 indicates a superdiffusive behavior [79].
Figure 5(a) shows the results of average m(t ) with the initial

coin states |H〉, |V 〉, |+〉, and |L〉 in a ten-step QW with
three different coin sets. We observe that QWs with three coin
sets spread faster than the classical random walk [m(t ) ∝ t].
We simulate 1000 QW with the coin operation randomly
selected from the coin set {Ĥ, 1̂}, and the results of m(t ) are
shown in Fig. 5(b). Asymptotically, the QW with the coin
set {Ĥ, 1̂} exhibits superdiffusive behavior as m(t ) ∝ t1.47,
which is slower than the ballistic behavior [m(t ) ∝ t2] in the
Hadamard walk [80]. However, for smaller t (t � 10), the QW
with most fixed CT spreads faster than the Hadamard walker
as shown in the insert of Fig. 5(b). This is the reason why we
observe the QW with the coin set {Ĥ , 1̂} spreads faster than
the Hadamard walk in our experiment (T = 10) as shown in
Fig. 5(a).

FIG. 5. (a) The experimental results of the second moment m(t ) in a ten-step QW. The blue up-pointing triangles represent the results with
the coin set {Ĥ, 1̂}. The red squares and yellow diamonds represent the results with the coin sets {Ĥ , F̂ } and {Ĥ}, respectively. The black
line is m(t ) = t . (b) The simulated 500-step QW with the coin sets {Ĥ, 1̂} and {Ĥ}. For QW with the coin set {Ĥ , 1̂}, the coin operation is
randomly selected from the coin set {Ĥ , 1̂} at each step. The average of m(t ) (blue line) is calculated on a sample of 1000 different CT values,
and the blue shade corresponds to the standard deviation of m(t ). The insert is m(t ) from t = 1 to t = 20.
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In conclusion, we design coin sequences that can rig-
orously generate maximal entanglement between the coin
and the position of the walker in a 1D DTQW with the
following three key features: to be available at any T � 3,
to be independent of initial coin state, and to be the sim-
plest for experimental implementation. A comparison of our
coin sequence CT with the other coin sequences is shown
in Appendix D, and MEG with our coin sequence signif-
icantly outperforms all other proposed coin sequences in
the three features mentioned above. The QW with proposed
coin sequences is equivalent to gEQW, which exhibits faster
spreading.

Experimentally, we realize a ten-step 1D DTQW with
proposed coin sequences, and we observe the entanglement
generation as well as spreading behaviors. The results show a
significant enhancement in terms of the entanglement gener-
ation, which benefits the intermediate quantum information
processing that requires maximal qubit-qudit entanglement.
Moreover, the spreading of probability distributions with our
coin sequence reflects a higher uniformity and faster speedup,
which is favorable and useful in various quantum algorithms
and in quantum simulation of biological processes [78,81,82].
Our protocol can also be generalized to a p-diluted disordered
QW [83,84], in which transport behavior can be engineered by
controlling the probability of coin operations. As our model
is equivalent to gEQW [56,59], a hyperballistic speedup is
expected while maintaining the maximal entanglement gen-
eration.
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APPENDIX A: MEG WITH OPTIMAL COIN SEQUENCE

1. Fourier analysis of quantum walks

We use Fourier analysis to analyze the dynamical evolution
in DTQW [85–88], which is defined as

|k〉 =
∑
x∈Z

eikx|x〉, |x〉 =
∫ π

−π

dk

2π
e−ikx|k〉. (A1)

With a Fourier transformation, the shift operator in Eq. (3) can
be expressed in momentum space as

Ŝm = (e−ik|0〉〈0| + eik|1〉〈1|) ⊗ |k〉〈k|

=
(

e−ik 0
0 eik

)
⊗ |k〉〈k|. (A2)

Accordingly, the evolution unitary operator Û = Ŝ(Ĉ ⊗ 1̂p) is
expressed by

Ûm = Ŝm(Ĉ ⊗ 1̂p)

=
(

e−ik 0
0 eik

)
Ĉ ⊗ |k〉〈k|

∑
x

|x〉〈x|

= 1

4π2

∫
dk

∫
dk′

(
e−ik 0

0 eik

)
Ĉ ⊗

∑
x

e−i(k−k′ )x|k〉〈k′|

= 1

2π

∫
dk

(
e−ik 0

0 eik

)
Ĉ ⊗ |k〉〈k|

=
∫

Ĉm ⊗ dk

2π
|k〉〈k|, (A3)

where we have used the orthonormalization relation∑
x∈Z

e−i(k−k′ )x = 2πδ(k − k′), (A4)

and we denote (e−ik 0
0 eik )Ĉ as Ĉm. Specifically, for the coin

operations Ĉ = Ĥ and Ĉ = 1̂, we obtain

Ĥm = 1√
2

(
e−ik e−ik

eik −eik

)
, 1̂m = 1√

2

(
e−ik 0

0 eik

)
. (A5)

Thus, the dynamic evolution of the initial state |θ, φ〉in
c ⊗ |0〉p

is

|θ, φ〉f =
∫∫ T∏

t=1

Ĉm,t ⊗ dk

2π
|k〉〈k| · |θ, φ〉in

c ⊗ dk′

2π
|k′〉

=
∫ T∏

t=1

Ĉm,t |θ, φ〉in
c ⊗ dk

2π
|k〉. (A6)

The reduced density matrix of the coin is

ρf
c = trp(|θ, φ〉f〈θ, φ|)

=
∫∫ ∑

x∈Z

T∏
t=1

Ĉm,t |θ, φ〉in
c 〈θ, φ|Ĉ†

m,t

dkdk′

4π2
〈x|k〉〈k′|x〉

=
∫

dk

2π

T∏
t=1

Ĉm,t |θ, φ〉in
c 〈θ, φ|Ĉ†

m,t (A7)

2. Superoperator

We describe the evolution acting on the coin state by a
superoperator L̂:

ρt+1
c = L̂ρt

c. (A8)

According to Eq. (A7), the one-step evolution is

ρt+1
c =

∫
dk

2π
Ĉmρt

cĈ
†
m. (A9)

An arbitrary coin state ρt
c can be described with Pauli

matrices {1, σx, σy, σz} by

ρt
c = α01 + α1σx + α2σy + α3σz

=
(

α0 + α3 α1 − iα2

α1 + iα2 α0 − α3

)

=
(

1
2 + α3 α1 − iα2

α1 + iα2
1
2 − α3

)
, (A10)
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where α0 = 1
2 satisfying tr(ρ) = 2α0 = 1. Using the affine

map approach [86], we represent L̂ as a matrix acting on
the 2 × 2 ρt

c, which can be further expressed as a four-
dimensional column vector αt

c [87]:

αt
c =

⎛
⎜⎜⎝

1
2
α1

α2

α3

⎞
⎟⎟⎠, (A11)

where αi = 1
2 tr(ρσi ). Along this spirit, dynamic evolution of

the density matrix of the coin can be expressed as

αf
c =

∫
dk

2π

T∏
t=1

L̂tα
in
c , (A12)

where αin
c and αf

c correspond to ρ in
c and ρf

c, respectively.
For Ĥm, we have

Ĥmρt
cĤ†

m

=
(

1
2 + α1 (α3 + iα2)e−2ik

(α3 − iα2)e2ik 1
2 − α1

)

=

⎛
⎜⎜⎝

1
2

α3 cos 2k + α2 sin 2k
−α2 cos 2k + α3 sin 2k

α1

⎞
⎟⎟⎠. (A13)

Then we can calculate L̂H by

L̂H

⎛
⎜⎜⎝

1
2
α1

α2

α3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
2

α2 sin 2k + α3 cos 2k
−α2 cos 2k + α3 sin 2k

α1

⎞
⎟⎟⎠ (A14)

and obtain the expression of L̂H as

L̂H =

⎛
⎜⎜⎝

1 0 0 0
0 0 sin 2k cos 2k
0 0 − cos 2k sin 2k
0 1 0 0

⎞
⎟⎟⎠. (A15)

Similarly, the expression of L̂1 is

L̂1 =

⎛
⎜⎜⎝

1 0 0 0
0 cos 2k − sin 2k 0
0 sin 2k cos 2k 0
0 0 0 1

⎞
⎟⎟⎠. (A16)

3. Optimal coin sequence

The optimal coin sequence CT maps any initial coin state
ρ in

c = |θ, φ〉in
c 〈θ, φ| to identity state ρf

c = 1/2. In the context
of superoperator, we have the following definition of optimal
coin sequence.

Definition 1 (Optimal coin sequence). A coin sequence
CT is the optimal sequence if its corresponding superoperators
can transform αin

c to αf
c, where

αin
c = 1

2

⎛
⎜⎜⎝

1
cos φ sin θ

sin φ sin θ

cos θ

⎞
⎟⎟⎠, αf

c = 1

2

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠. (A17)

We first propose the following optimal coin sequence with
one Hadamard operation.

Theorem 1. Given l1,2 ∈ N, the coin sequence with b =
1⊗l1 01⊗l2 is optimal if l1 and l2 satisfy l1 �= 0 and l1 �= l2 + 1.

Proof. Given an l ∈ N+, L̂1 has the property of

(L̂1)⊗l =

⎛
⎜⎜⎜⎝

1 0 0 0
0 cos(2lk) − sin(2lk) 0
0 sin(2lk) cos(2lk) 0
0 0 0 1

⎞
⎟⎟⎟⎠. (A18)

Then we calculate αf
c by

αf
c =

∫ π

−π

dk

2π
(L̂1)⊗l2L̂H (L̂1)⊗l1αin

c

=
∫ π

−π

dk

2π

1

2

⎛
⎜⎜⎝

1
α1

α2

α3

⎞
⎟⎟⎠, (A19)

where

α1 = cos θ cos[2(l2 + 1)k]

+ sin φ sin θ sin[2(l2 + 1)k] cos(2l1k)

+ cos φ sin θ sin[2(l2 + 1)k] sin(2l1k),

α2 = cos θ sin[2(l2 + 1)k]

− sin φ sin θ cos[2(l2 + 1)k] cos(2l1k)

− cos φ sin θ cos[2(l2 + 1)k] sin(2l1k),

α3 = cos φ sin θ cos(2l1k) − sin φ sin θ sin(2l1k). (A20)

The momentum integral for α3 is under the condition l1 �= 0,
and that of α1 and α2 are 0 as well under the condition l1 �=
l2 + 1. Then the coin sequence with b = 1⊗l1 01⊗l2 transforms
αin

c to αf
c, satisfying Definition 1, and is the optimal coin

sequence. �
We then propose another optimal coin sequence with two

Hadamard operations.
Theorem 2. Given l1,2,3 ∈ N, the coin sequence with b =

1⊗l1 01⊗l2 01⊗l3 is the optimal coin sequence if l1, l2, and
l3 satisfy l1 �= l2 + 1, l1 �= l3 + 1, l2 ± l1 �= l3, and l2 +
l3 − l1 �= 2.

Proof. αf
c is calculated by

αf
c =

∫ π

−π

dk

2π
(L̂1)⊗l3L̂H (L̂1)⊗l2L̂H (L̂1)⊗l1αin

c

=
∫ π

−π

dk

2π

1

2

⎛
⎜⎜⎝

1
α1

α2

α3

⎞
⎟⎟⎠, (A21)
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TABLE I. Experimental settings of coin sequences CT with coin
sets {Ĥ , 1̂} and {Ĥ, F̂ }.

T CT with coin set {Ĥ, 1̂} CT with coin set {Ĥ, F̂ }
3 {Ĥ, Ĥ , 1̂} {F̂ , F̂ , Ĥ}
4 {Ĥ , Ĥ , 1̂, 1̂} {Ĥ , F̂ , Ĥ , Ĥ}
5 {Ĥ , Ĥ , 1̂, 1̂, 1̂} {Ĥ , F̂ , Ĥ , F̂ , F̂ }
6 {Ĥ, Ĥ , 1̂, 1̂, 1̂, 1̂} {F̂ , Ĥ , F̂ , Ĥ , Ĥ , F̂ }
7 {Ĥ , Ĥ , 1̂, Ĥ , 1̂, 1̂, 1̂} {Ĥ, Ĥ , F̂ , Ĥ , F̂ , F̂ , Ĥ}
8 {Ĥ , Ĥ , 1̂, Ĥ , 1̂, 1̂, 1̂, 1̂} {Ĥ , F̂ , F̂ , F̂ , F̂ , Ĥ , F̂ , F̂ }
9 {Ĥ, Ĥ , 1̂, Ĥ , 1̂, 1̂, 1̂, 1̂, 1̂} {F̂ , Ĥ , F̂ , F̂ , Ĥ , Ĥ , Ĥ , Ĥ , F̂ }
10 {Ĥ , Ĥ , 1̂, Ĥ , 1̂, 1̂, 1̂, 1̂, 1̂, 1̂} {F̂ , F̂ , Ĥ , Ĥ , Ĥ, F̂ , F̂ , F̂ , Ĥ, Ĥ}

with

α1 = cos θ sin[2(l2 + 1)k] sin[2(l3 + 1)k]

− sin φ sin θ{cos(2l1k) cos[2(l2 + 1)k] sin[2(l3 + 1)k]

+ sin(2l1k) cos[2(l3 + 1)k]}
− cos φ sin θ{sin(2l1k) cos[2(l2 + 1)k] sin[2(l3 + 1)k]

− cos(2l1k) cos[2(l3 + 1)k]},
α2 = − cos θ sin[2(l2 + 1)k] cos[2(l3 + 1)k]

− sin φ sin θ{cos(2l1k) cos[2(l2 + 1)k] cos[2(l3 + 1)k]

+ sin(2l1k) sin[2(l3 + 1)k]}
− cos φ sin θ{sin(2l1k) cos[2(l2 + 1)k] cos[2(l3 + 1)k]

− cos(2l1k) cos[2(l3 + 1)k]},
α3 = cos θ cos[2(l2 + 1)k]

+ sin φ sin θ cos(2l1k) sin[2(l2 + 1)k]

+ cos φ sin θ sin(2l1k) sin[2(l2 + 1)k]. (A22)

The momentum integral for α3 is under the condition l1 �=
l2 + 1, and that of α1 and α2 are 0 under the conditions
l2 ± l1 �= l3, l2 + l3 − l1 �= 2, and l1 �= l3 + 1. �

The coin operation Ĉ1 at the first step (T = 1) is equivalent
to changing the initial coin state so that we have the following
corollary.

Corollary 1. Given l1, l2, l3 ∈ N satisfying Theorem 1 and
Theorem 2, the coin sequences with b = 01⊗(l1−1)01⊗l2 and
b = 01⊗(l1−1)01⊗l2 01⊗l3 are the optimal sequences.

Note that optimal b in Theorem 1, Theorem 2, and Corol-
lary 1 is not limited to generating the maximal entanglement
step T , but also leads to MEG in the intermediate steps t if the
corresponding sequence b = b1b2 · · · bt fulfills the conditions
in Theorem 1, Theorem 2, or Corollary 1. We experimentally
set the coin sequences CT according to Corollary 1; they are
listed in Table I.

APPENDIX B: GENERALIZED ELEPHANT
QUANTUM WALK

In this section, we briefly introduce the gEQW in
Refs. [56,59]. The main difference between the Hadamard
QW and the gEQW is the shift operator in Eq. (8). The
probability of �t is determined by the discrete version of the

q-exponential distribution in [1, T ] as

Pr(�t ) = e�t
q = τt [1 − (1 − q)�t ]

1/1−q, (B1)

with τt being a time-dependent normalization factor. The sup-
port of function Eq. (B1) is given by

supp[eq(x)] =
{[

0, 1
1−q

]
q � 1,

[0,∞] q > 1.
(B2)

When q = 1
2 , we obtain �t � 2 with probability distri-

butions Pr(�t = 1) = 1 and Pr(�t = 2) = 0, which is the
Hadamard QW; when q → 1, we obtain a decreasing ex-
ponential Pr(�t ) = τt e−�t ; and when q → ∞, we obtain a
uniform distribution Pr(�t ) = 1

T .
The QWs with the optimal coin sequence in Corollary 1 are

equivalent to the gEQW, i.e., b = 01⊗(l1−1)01⊗l2 corresponds
to a two-step gEQW with �1 = l1 and �2 = l2 + 1, and b =
01⊗(l1−1)01⊗l2 01⊗l3 corresponds to a three-step gEQW with
�1 = l1, �2 = l2 + 1, and �3 = l3 + 1. In this sense, QWs
with the optimal coin sequence in Corollary 1 are gEQW with
specific shift-operator configurations, for which the maximal
entanglement generation in the asymptotic approach has been
reported [59].

APPENDIX C: MORE EXPERIMENTAL RESULTS

The reconstructed χ
exp
CT

with the coin sequences in Ta-
ble Iare shown in Eq. (C1), according to which we cal-
culate the process fidelities FC3 = 0.9976 ± 0.0003, FC4 =
0.9955 ± 0.0016, FC5 = 0.9939 ± 0.0011, FC6 = 0.9951 ±
0.0009, FC7 = 0.9975 ± 0.0004, FC8 = 0.9885 ± 0.0015,
FC9 = 0.9968 ± 0.0004, and FC10 = 0.9980 ± 0.0003. The
geometric representations of the reconstructed χ

exp
CT

with
coin sets {Ĥ , 1̂} and {Ĥ , F̂ } at T = 3, 5, 7, and 9
are shown in Fig. 6. The reconstructed χ

exp
CT

are as

FIG. 6. (a) Geometric representation of the reconstructed χ
exp
CT

with the coin set {Ĥ , 1̂} at T = 3, 5, 7, and 9. (b) Geometric repre-
sentation of the reconstructed χ

exp
CT

with the coin set {Ĥ, F̂ } at T = 3,
5, 7, and 9.
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TABLE II. Comparison of performances of entanglement generation with different coin sequences.

Stepsa Independenceb
Number of
operationsc Techniqued

Figure of
merit

Experimental
demonstrations

This work T � 3 Yes Nc = 1;
Ns = 1

Annealing and
Fourier analysis

FCT Linear optics (this
work)

Vieira et al. [41] T → ∞ Yes Nc = 2;
Ns = 1

Disorder 〈SE〉 Linear optics
(Wang et al. [53])

Govind et al. [66] T = 3, 5 Partiallye Nc = 2;
Ns = 1

Parrondo sequences 〈SE〉 None

Gratsea et al. [64] T � 1 No Full set of
SU(2) coins;

Ns = 1

Basin hopping 〈SE〉 and
Inverse

participation
ration

Linear optics (Tao
et al. [54])

Gratsea et al. [65] None Partiallyf Nc = 2;
Ns = 1

Reinforcement
learning

〈SE〉 None

Zhang et al. [55] Odd steps No Nc = 2;
Ns = 1

Numerical 〈SE〉 Linear optics
(Zhang et al. [55])

Pires et al. [56];
Naves et al. [59]

T → ∞ Almost Nc = 1;
Ns → ∞

q-exponential
distribution

〈SE〉 Our demonstration
corresponds to a

specific case of this
protocol

aThe steps that the average von Neumann entropy 〈SE〉 = 1 or the process fidelity FCT = 1 is fulfilled.
bThe independence of the initial coin state |θ, φ〉in

c = cos(θ/2)|0〉c + eiφ sin(θ/2)|1〉c.
cThe number of coin operations Nc in the coin sequence CT and the number of shift operations Ns.
dTechniques and algorithms to determine the coin set or the coin sequence CT .
eIndependent of φ.
fUniversal sequence: independent of θ when φ = 0. Optimal sequence: dependent on θ and φ.

follows:

χ
exp
C3

=

⎛
⎜⎜⎝

0.2580 − 0.0000i 0.0013 − 0.0003i −0.0135 − 0.0118i 0.0050 − 0.0006i
0.0013 + 0.0003i 0.2320 − 0.0000i −0.0084 + 0.0020i −0.0163 + 0.0042i

−0.0135 + 0.0118i −0.0084 − 0.0020i 0.2520 − 0.0000i 0.0074 + 0.0046i
0.0050 + 0.0006i −0.0163 − 0.0042i 0.0074 − 0.0046i 0.2579 − 0.0000i

⎞
⎟⎟⎠,

χ
exp
C4

=

⎛
⎜⎜⎝

0.2461 − 0.0000i −0.0046 + 0.0056i 0.0101 + 0.0059i 0.0028 − 0.0145i
−0.0046 − 0.0056i 0.2518 − 0.0000i −0.0082 − 0.0092i −0.0327 + 0.0011i
0.0101 − 0.0059i −0.0082 + 0.0092i 0.2408 − 0.0000i 0.0062 − 0.0037i
0.0028 + 0.0145i −0.0327 − 0.0011i 0.0062 + 0.0037i 0.2613 − 0.0000i

⎞
⎟⎟⎠,

χ
exp
C5

=

⎛
⎜⎜⎝

0.2441 − 0.0000i 0.0165 + 0.0087i 0.0071 − 0.0204i 0.0133 + 0.0021i
0.0165 − 0.0087i 0.2524 − 0.0000i −0.0093 + 0.0090i −0.0366 − 0.0049i
0.0071 + 0.0204i −0.0093 − 0.0090i 0.2405 − 0.0000i −0.0001 + 0.0054i
0.0133 − 0.0021i −0.0366 + 0.0049i −0.0001 − 0.0054i 0.2630 − 0.0000i

⎞
⎟⎟⎠,

χ
exp
C6

=

⎛
⎜⎜⎝

0.2728 − 0.0000i −0.0247 − 0.0021i −0.0038 − 0.0147i −0.0046 − 0.0035i
−0.0247 + 0.0021i 0.2594 − 0.0000i 0.0099 + 0.0002i −0.0138 + 0.0025i
−0.0038 + 0.0147i 0.0099 − 0.0002i 0.2298 − 0.0000i 0.0061 + 0.0188i
−0.0046 + 0.0035i −0.0138 − 0.0025i 0.0061 − 0.0188i 0.2380 − 0.0000i

⎞
⎟⎟⎠,

χ
exp
C7

=

⎛
⎜⎜⎝

0.2333 − 0.0000i 0.0051 − 0.0009i 0.0005 − 0.0085i −0.0044 − 0.0086i
0.0051 + 0.0009i 0.2634 − 0.0000i 0.0049 − 0.0041i −0.0191 + 0.0035i
0.0005 + 0.0085i 0.0049 + 0.0041i 0.2642 − 0.0000i −0.0040 + 0.0050i

−0.0044 + 0.0086i −0.0191 − 0.0035i −0.0040 − 0.0050i 0.2392 − 0.0000i

⎞
⎟⎟⎠,

χ
exp
C8

=

⎛
⎜⎜⎝

0.2327 − 0.0000i 0.0146 + 0.0030i 0.0267 − 0.0002i 0.0214 − 0.0324i
0.0146 − 0.0030i 0.2353 − 0.0000i 0.0191 + 0.0321i 0.0211 − 0.0020i
0.0267 + 0.0002i 0.0191 − 0.0321i 0.2461 − 0.0000i 0.0038 + 0.0123i
0.0214 + 0.0324i 0.0211 + 0.0020i 0.0038 − 0.0123i 0.2859 − 0.0000i

⎞
⎟⎟⎠,
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χ
exp
C9

=

⎛
⎜⎜⎝

0.2563 − 0.0000i −0.0141 + 0.0002i −0.0144 + 0.0135i 0.0103 − 0.0064i
−0.0141 − 0.0002i 0.2480 − 0.0000i −0.0112 + 0.0124i 0.0110 + 0.0101i
−0.0144 − 0.0135i −0.0112 − 0.0124i 0.2524 − 0.0000i −0.0066 + 0.0063i
0.0103 + 0.0064i 0.0110 − 0.0101i −0.0066 − 0.0063i 0.2433 − 0.0000i

⎞
⎟⎟⎠,

χ
exp
C10

=

⎛
⎜⎜⎝

0.2596 − 0.0000i −0.0011 − 0.0055i 0.0026 − 0.0127i −0.0037 + 0.0004i
−0.0011 + 0.0055i 0.2384 − 0.0000i −0.0031 − 0.0117i −0.0156 − 0.0060i
0.0026 + 0.0127i −0.0031 + 0.0117i 0.2516 − 0.0000i −0.0036 + 0.0065i

−0.0037 − 0.0004i −0.0156 + 0.0060i −0.0036 − 0.0065i 0.2503 − 0.0000i

⎞
⎟⎟⎠. (C1)

APPENDIX D: A COMPARISON OF OUR COIN SEQUENCE WITH THE OTHER COIN SEQUENCES

In the context of MEG, a comparison of our coin sequence CT with the other coin sequences including the disordered coin
sequence [41], Parrondo sequences [66], three coin sequences proposed by Gratsea et al. [64,65], the position-inhomogeneous
coin sequence [55], and the gEQW with disordered shift operations [56,59] is shown in Table II.
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