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In contexts where relevant problems can easily attain configuration spaces of enormous sizes, solving linear
differential equations (LDEs) can become a hard achievement for classical computers; on the other hand, the rise
of quantum hardware can conceptually enable such high-dimensional problems to be solved with a foreseeable
number of qubits, while also yielding quantum advantage in terms of time complexity. Nevertheless, to bridge
towards experimental realizations with several qubits and harvest such potential in a short-term basis, one must
dispose of efficient quantum algorithms that are compatible with near-term projections of state-of-the-art hard-
ware, in terms of both techniques and limitations. As the conception of such algorithms is no trivial task, insights
on new heuristics are welcomed. This work proposes an approach by using the quantum amplitude damping
operation as a resource to construct an efficient quantum algorithm for solving homogeneous LDEs. As the
intended implementation involves performing amplitude damping exclusively via a simple equivalent quantum
circuit, our algorithm shall be given by a gate-level quantum circuit (predominantly composed of elementary
two-qubit gates) and is particularly nonrestrictive in terms of connectivity within and between some of its main
quantum registers. We show that such an open quantum-system-inspired circuitry allows for constructing the real
exponential terms in the solution in a noninterferometric way; we also provide a guideline for guaranteeing a
lower bound on the probability of success for each realization, by exploring the decay properties of the underlying
quantum operation.
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I. INTRODUCTION

The foreseeable reality of quantum technologies operating
in a fully coherent manner imposes the challenge of being able
to explore the underlying quantum phenomena as resources
to enhance processes of interest effectively. Results ranging
from quantum information processing, with the famous Shor’s
quantum factoring algorithm [1], to quantum heat engines [2]
help foster those expectations. Nevertheless, identifying the
quantum protocol that can conceptually surpass its classical
counterparts (while also being adapted to near-term hardware
in terms of employable paradigms and experimentally achiev-
able techniques) has proven to be a generally nontrivial task,
and the development of new strategies is welcomed.

Solving linear differential equations is one of the impor-
tant examples for which classical computers can struggle to
perform the task, particularly in contexts where one can quite
easily reach very large configuration spaces, as the size of the
problem increases, and a quantum computer can offer a real
advantage. Indeed, several efficient quantum algorithms were
already proposed for nonlinear differential equations [3–5]
and linear differential equations [6]. Whereas the first set
of examples allow for solving wide-ranging classes of equa-
tions, they lack a straightforward quantum circuit form, which
could make its translation to an experimental implementa-
tion especially difficult. The second example, on the other
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hand, was experimentally verified for a few qubits and is
given by an equivalent quantum circuit, although it is still
described in a high-level manner with abstract, potentially
many-qubits quantum gates, which could hinder scaling to
larger experimental setups with connectivity and other hard-
ware limitations.

Here we introduce an efficient quantum algorithm for
solving homogeneous linear differential equations (HLDEs),
based on a strategy to construct the correct answer through
the heuristic use of amplitude Damping (via an equivalent
quantum circuit). Indeed, instead of using interference to
suppress the wrong outcomes, we explore the decay proper-
ties of said quantum operation to favor the correct answer.
This approach allows for an equivalent quantum circuit which
(to the exception of a Hamiltonian simulation submodule) is
given at a decomposed gate-level description, hence being
significantly more friendly towards a potential experimental
implementation, as well as towards application to use-cases
of interest in foreseeable scalable hardware. The algorithm
will solely use a quantum phase dstimation (QPE) module
followed by a section exclusively composed of elementary
two-qubits gates (CNOTs and parameterized controlled one-
qubit rotations) with an extra auxiliary register, responsible
for implementing the nonunitary aspect of the calculations via
a subsequent set of measurements. Also notably, this chain
of controlled gates only requires entanglement to be created
within pairs of qubits (one for each register), which can be less
restrictive in terms of qubit connectivity on a quantum chip
and facilitate the underlying mapping, as well as scalability.
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The use of quantum operations as direct resources to a
specific protocol was already explored in [7] for classical ver-
ification of quantum computations. Here we exemplify their
potential as building blocks to quantum algorithms as well,
specifically as a versatile strategy for realizing nonunitary ma-
nipulations. Indeed, this could potentially be only an example
from a family of circuit-defined algorithms inspired by open
quantum system dynamics.

II. PROBLEM DELIMITATION

Our goal will be to solve HLDE, i.e., for a given set of ini-
tial conditions x0 ∈ CN , time value t ∈ R+, and A ∈ MN (C),
we would like to calculate an unknown vector x(t ) ∈ CN that
obeys the following:

dx(t )

dt
= Ax(t ),

x(0) = x0. (1)

In addition, a couple of extra conditions are imposed on
matrix A. The primary extra condition is that A must be
Hermitian, specifically because the existence of a basis of
eigenvectors of A on CN (yielded by the spectral theorem) is
a chore aspect on which our framework stands, as in [8]. The
generalization to non-Hermitian cases can be achieved by it-
erating the presented algorithm and a Hamiltonian simulation
module for the anti-Hermitian component via the Lie-Trotter
formula [9].

As a second restriction, we will initially assume that all
eigenvalues of A are strictly positive, as we deem this particu-
lar case to be illustrative of how our algorithm operates. This
constraint will be promptly released in Appendix B, where it
is shown that the more general case can be achieved by the
same quantum circuit layout and size by simply redefining a
few gate parameters.

Finally, we will hereby let the dimension N be a power of
2 for simplicity while describing the algorithm, given that the
generalization to other cases should be trivial.

III. ALGORITHM’S OVERVIEW

A. Algorithm’s framework

The HDLE problem from Eq. (1) has an analytical solution
given by x(t ) = eAt x0. One way of going about solving this
equation would be to calculate the matrix exponential eAt ,
for instance by finding the decomposition A = V DV −1, where
D is diagonal, and calculating eAt = VeDtV −1, which can be
achieved efficiently if one is able to calculate the exponential
of a scalar efficiently. Nevertheless, any method for a clas-
sical computer to approximate eAt in general requires time
that scales at least as O(N3) [10], which dominates the total
complexity since the subsequent matrix-vector multiplication
eAt x0 only takes quadratic time.

Alternatively, one could rewrite the right-hand side of
the expression as x(t ) = ∑N

i=1 eait c̃ivi, where {vi}1�i�N and
{ai}1�i�N are the normalized eigenvectors and associated
eigenvalues of A, respectively, and c̃i ≡ 〈x0, vi〉CN ; this de-
composed analytical expression provides a guideline for our
quantum algorithm. In what follows, we will consider that

(vi )1�i�N and (ai )1�i�N are labeled in such a way that the
eigenvectors are sorted in ascending order, i.e., aN is an in-
stance of the largest eigenvalue and thus ||A||2 = aN . For now
on, whenever we evoke ||A||, it will correspond to the 2-norm,
unless an alternative subindex is given.

For the sake of translating the basics of our problem
into quantum, we now define the following normalized state
vectors, which are, respectively, proportional to the initial
conditions and the solution

|x0〉 ≡ 1

||x0||
N∑

i=1

(x0)i|i〉,

|x(t )〉 ≡ 1√
γ (t )

N∑
i=1

e−(aN −ai )t ci|vi〉. (2)

For the |x(t )〉 expression, γ (t ) is a normalisation fac-
tor [with γ (0) = 1 and γ (t ) � 1], ∀i ∈ {1, 2, . . . , N} ci ≡
c̃i/||x0|| and |vi〉 = ∑N

j=1(vi ) j | j〉. Note that the expression for
|x(t )〉 is chosen such that it includes a global factor e−aN t in
such a way that the explicit exponential terms in Eq. (2) are
either vanishing or constant in t . This choice is motivated by
the gamut of operations that are more intuitively implemented
via amplitude damping (the algorithm’s main resource) due to
its generally dissipative nature.

Our global goal will be to initialize a quantum register
composed of n ≡ log2(N ) qubits (the work register) with the
state |x0〉 and to apply a series of operations to approximate
|x(t )〉. We hereby identify the need to perform a nonunitary
operation locally to the associated quantum register given the
scaling by real exponential terms that must be performed. For
equivalent reasons, we will allow for a potentially nonunit
probability of success pS ∈]0, 1], i.e., the algorithm might
fail for a finite set of repetitions as long as it also outputs
classical information telling if the algorithm succeeds, which
will come in the form of a measure to a set of auxiliary qubits
at the end of the calculations.

We also explore the following constraint: for some given
A and x0, one should be able to affirm that the algorithm
succeeds for any t with at least some nonzero probability, i.e.,
we should be able to put a t-independent positive lower bound
on pS . Generally, for all the instances that do not inherently
meet the aforementioned criterion, we propose a very simple
alternative method in Sec. IV that can also be used to boost
the probability of success pS even in cases where it already
holds a positive lower-bound. One could also aim at adapting
our algorithm to an amplitude amplification [11] framework
to optimize the number of required repetitions.

Finally, if the algorithm succeeds, then some global char-
acteristic F (x) = 〈x(t )|M|x(t )〉 can be extracted through the
application of the corresponding observable M. Alternatively,
the entire state can be approximated through several repeti-
tions and quantum tomography [12,13]. Under any of these
circumstances, all findings are linked to the original problem
through the explicit relation x(t )=̇√

γ (t ) ||x0||e||A||t |x(t )〉.

B. Equivalent quantum circuit

The overall intuition behind the algorithm’s functioning
can be understood as follows: after preparing the work reg-
ister in the initial condition state |x(0)〉, we let it nonunitarily
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FIG. 1. Proposed quantum circuit for solving HDLEs when A is Hermitian. It includes three main quantum registers: the work register [of
size n ≡ log2(N )], the phase register and the environment register [both of size l ≡ log2(L), stipulated by the intended precision]; the circuit
is divided into four modules plus measurements at the end.

evolve to |x(t )〉 by creating a set of decay effects to the qubits
on an auxiliary register. The probability of such decays are
conditioned on the eigenvalues (ai )1�i�N and on t and can
thus be used to create the (e−(aN −ai )t )1�i�N terms. Measuring
the auxiliary register and verifying that no decay occurred
from the other registers (i.e., measurement yields |0〉) will
then project the state of the work register into the desired
(potentially approximated) |x(t )〉 state.

The resulting implementation is given by the quantum
circuit in Fig. 1 and is composed of four main modules,
which will be covered by order of appearance in the following
subsections.

1. IC preparation

As previously stated, the first stage of our algorithm cor-
responds to loading the initial conditions (IC) vector into the
work register, resulting in |ψ1〉 ≡ |x0〉 as given by Eq. (2). This
is a reoccurring starting module for several algorithms aimed
at solving similar problems [6,8] and also in quantum machine
learning applications [14].

2. Quantum phase estimation

To create the dependency of the upcoming decay effects
on the eigenvalues of A, representations of (ai )1�i�N must be
loaded into an auxiliary register. First, we define the operators
Ā ≡ A/||A|| and the unitary operator M ≡ e−i2π Ā. The second
stage of our algorithm is the quantum phase estimation (QPE)
[15] of M, i.e., the phase estimation module is constructed
via controlled-M operations. The register used to code the
phases (hereby called phase register) is of size l ∈ N∗, thus
individually corresponding to a Hilbert space of size L ≡ 2l .
The output of the quantum circuitry presented so far is

|ψ2〉 ≡
N∑

i=1

ci|φ̃i〉|vi〉, (3)

where the state vectors (|φ̃i〉)1�i�N code the phases
(ei2πφi )1�i�N ≡ (e−i2πai/||A||)1�i�N , the spectrum of M,
in a potentially approximated manner, and are explicitly given
by [16]

|φ̃i〉 = 1

L

L−1∑
k, j=0

e− i2πk j
L ei2πkφi | j〉,

with φi ≡ 1 − ai/||A||. It should be noted that at least φ̃N is
an exact approximation, that is, |φ̃N 〉 = |0〉l .

Indeed, it can be verified that by rewriting |φ̃i〉 as a su-
perposition

∑L−1
j=0 βi; j | j〉, then |βi; j | takes a high value iff

j ≈ L(1 − ai/||A||) (mod L). If this approximation is valid
for all i ∈ {1, 2, . . . , N − 1} and for some j ∈ {0, L − 1} each,
then the right-hand side of Eq. (3) can be simplified as

|ψ2〉 ≈
N∑

i=1

ci|di〉|vi〉, (4)

where di ≡ 
L(1 − ai/||A||)� (mod L), with the 
.� notation
indicating the closest integer value. The validity of this ap-
proximation depends on the distribution of eigenvalues of
M around the unitary circle, but is also a fair assumption if
the phase register is sufficiently large, i.e., allowing for more
possible values of j. This is intuitively depicted in Fig. 2.

We shall continue by using Eq. (4) as the expression for
|ψ2〉, given that much more substantial analysis over the asso-
ciated error will be provided in Appendix C.

3. sim-AD modules

The subsequent section in our quantum circuit concentrates
the heuristic use of the quantum operation known as amplitude
damping (AD). This operation is an important tool for describ-
ing processes that dissipate energy in open quantum systems,
where a (ground) state amplitude is favored against others due
to their decay. Here we explore and combine several of these
amplitude decay effects to construct the exponential terms
(e−(aN −ai )t )1�i�N that appear on the solution. As shown in
Sec. IV, such a feature can also be used to single out the
correct answer through the amplitude decay of the wrong
outcomes, differing from the standard approaches which rely
on interferometric schemes.

Before proceeding, it should be made clear that we do not
demand the manipulation of an actual open quantum system
to implement our algorithm; such a requirement would not be
desirable in several physical implementations since it could
be hard ensuring that only such a process would be present.
Nevertheless, we deem the AD operation to be heuristic in
our task, as we shall use the quantum circuit shown in Fig 3,
which is capable of simulating this effect [16], particularly if
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FIG. 2. Illustrative example of the eigenvalues mapping between
A and M, given by (mi )1�i�N ≡ (e−i2πai/||A||)1�i�N . The eigenvalues
of A are wrapped in a clockwise manner around the unit circle,
as indicated by the dashed arrow. The black filled dots around the
circle represent all phases that can be exactly represented by a single
computational state in the phase register, in this example for L = 8.
These can also be regarded as the allowed levels of damping that can
later be performed by the sim-AD chain. The largest eigenvalue of
A is always set to mN = 0. For all other eigenvalues, a mismatch
with relation to the black dots will engender a superposition of
computational states in the phase register, which is a mechanism of
error in the algorithm.

it were happening under completely controlled circumstances:
hence our usage of the term sim-AD.

If the measurement result from Fig. 3 is unknown, then the
output for an input density operator ρ follows the operator-
sum expression given by ρ ′ = Ek

0 ρEk
0

† + Ek
1 ρEk

1
†
, where

Ek
0 =

[
1 0
0 cos(θk/2)

]
,

Ek
1 =

[
0 sin(θk/2)
0 0

]
, (5)

FIG. 3. White-box representation of a sim-AD module. This
simple quantum circuitry realizes the amplitude damping quantum
operation on ρ, whereas the auxiliary upper qubit plays the role of
an environment. Ry(θk ) ≡ e−iθkσy/2, where σy is the complex Pauli
matrix.

correspond to the AD’s Kraus operators [17]. However, if the
measurement result is known and equal to 0, then the final
state is proportional to Ek

0 ρEk
0

†
, i.e., if the input is a pure state

|ψ〉, the output is Ek
0 |ψ〉√

〈ψ |Ek
0

†
Ek

0 |ψ〉
.

We now introduce a third and last register, calledthe envi-
ronment register, which should also be composed of l qubits.
Each ADk module from Fig. 1 corresponds to the two-gates
circuit from Fig. 3 applied to the kth phase qubit and the
kth environment qubit, while the state of all the other qubits
is trivially operated upon. The parameters (θk )0�k�l−1 are
selected such that cos(θk/2) ≡ e−||A||2kt/L, leading to the fol-
lowing set of design equations:{∀k ∈ {0, 1, . . . , l − 1} θk ≡ arccos(2e−||A||2k+1t/L − 1).

(6)

Furthermore, if the measurements for each sim-ADk mod-
ule outputs 0, the resulting (nonunitary) operator applied to
the phase register is G0 ≡ ⊗l−1

k=0 Ek
0 . An expression for this

operator is explicitly calculated in Appendix A, where it is
shown to be equal to

∑L−1
j=0 e−||A||t j/L| j〉〈 j|.

Finally, we can look into the outcome of applying the chain
of sim-AD modules to |ψ2〉, if the measurement outcomes are
all 0:

|ψ3〉 ≈ 1√
γ (t )

N∑
i=1

cie
−(aN −ai )t |di〉|vi〉, (7)

where, once again, a more thorough step-by-step calculation is
given in Appendix A. The explicit value of the normalization
constant is γ (t ) ≡ ∑N

i=1 |ci|2e−2(aN −ai )t .
Intuitively, if each local |1〉 state is interpreted as an ex-

citation [18], then the sim-AD chain models the qubit-wise
decay of excitations to the environment register. This is set
up such that the excitations in more significant phase qubits
have a higher probability of decaying into their respective
environment qubit. Since smaller eigenvalues are represented
by larger phases, they are more likely to induce a decay and
are thus more severely damped when the measurement of the
environment register does not find any excitation.

4. Reverse operations and measurement

The final step is the uncomputation of the phase register
through the reversely applied QPE module, engendering the
product state |ψ4〉 ≈ |0〉l |0〉l |x(t )〉. Moreover, in Fig. 1, the
measurements corresponding to the AD stage are pushed back
to the end as it is customary in quantum circuits. This does
not, however, alter our calculations, nor does it temper with
the probability of measuring all 0’s (i.e., the probability of
success ps).

The final link to the original problem is guaranteed by
noting x(t )=̇√

γ (t ) ||x0||e||A||t |x(t )〉. To calculate γ (t ) term-
by-term by its expression given above, one should find the
components (ci )1�i�N and the eigenvalues (ai )1�i�N , which
is just as hard as solving the original HLDE [10]. However,
this apparent obstacle is suppressed if one notices that ps =
γ (t ) and thus that γ (t ) can be estimated with the quantum
algorithm itself and does not need to be classically pre or
postcalculated, much like the normalization constant in [8].
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IV. SETTING THE LOWER-BOUND ON pS

In cases where pS goes to zero as t increases or in cases
where the stationary value (lower-bound) of pS is deemed
too low for some given application, one can opt to solve the
following alternative HDLE problem:

d

dt

[
y(t )
x(t )

]
=

[||A|| IN 0
0 A

]
2N×2N

[
y(t )
x(t )

]
, (8)

[
y(0)
x(0)

]
=

[
y0

x0

]
2N×1

.

This is equivalent to calculating simultaneously the evolu-
tion of two noninteracting systems, one that follows dx(t )

dt =
Ax(t ) and one that follows dy(t )

dt = ||A||y(t ), the first being the
one we are interested in and the second only being used to
increase the lower bound on pS .

The reasoning behind this method is to assure the ex-
istence of a (at least N-degenerate) subspace associated to
the eigenvalue ||A||, such that the weight decomposition of
the normalized initial condition over this space is at least

||y0||√
||x0||2+||y0||2

. This implicates the existence of a non-anishing

term, which also plays the role of a lower bound, in the
expression of γ (t ).

Indeed, if one takes y0 ∈ {r ∈ CN |||r|| � ||x0||}, then it is
guaranteed that pS � 0.5 for any t ∈ R+. In terms of im-
plementation, this is payed off by adding an extra qubit to
the work register, doubling the dimension of the associated
Hilbert space. If one aims to extract a global characteristic of
x(t ) through an observable, the choice of y0 must be made
accordingly; for instance, if the chosen global characteristic
is the absolute average | 1

N

∑N
i=1(x(t ))i|, then y0 should be set

such that its absolute average is 0, thus not interfering in the
final result.

Moreover, since this new larger matrix inherits the very
same eigenvalue distribution of A, the other registers’ sizes
can be chosen as if the original problem was being tackled,
hence yielding the same result in both cases if all measure-
ment outcomes are 0.

V. TIME COMPLEXITY ANALYSIS

As our algorithm makes use of a QPE module for decom-
posing the initial condition state vector |x0〉 into the eigenbasis
of A, one can observe parallelism of the nonunitary oper-
ations realised for all resulting subspaces, which are each
conditioned on the associated entangled state |φ̃i〉 in the phase
register. Under such a scheme, one needs not to explicitly
calculate the eigenvectors and eigenvalues of A, as would be
required by a general classical approach. Hence, we deem it
natural to encounter a quantum speed-up on the problem’s di-
mension. This will be explicitly shown in this section through
the inspection of all underlying modules. We also conclude
on the limitations imposed on the complexity for the time
variable t .

A. Potential speed-up for scaling N

There are two main ways to address the IC preparation
stage: either it hints at another section of a larger routine (in

which case the algorithm here described is simply a module)
or an efficiently implemented unitary gate Ux0 should be ap-
plied to load |x0〉 starting from some initial state |φ〉, more
closely in accordance with Fig. 1. In this second case, the
loading of classical data can be thought of as some standard
state-preparation method such as [19] or through a quantum
random access memory (qRAM) approach [20]. Indeed, when
quantum memory is established, the complexity for loading
the data into a qRAM can be about O[log(N )] [21].

As for the QPE module, the implementation of M trans-
lates to the problem of the Hamiltonian simulation of A for the
simulated interval of time τ ≡ 2π/||A||, which can be done
efficiently if A is efficiently row-computable and s-sparse (i.e.,
if each row has at most s nonzero entries). More explicitly,
the QPE requires the implementation of the family of uni-
tary operators (e−i2πAτ2 j

)0� j�l−1, applied to the work register.
Several approaches for the sparse Hamiltonian simulation
were proposed in past years [22–25]. A known lower bound
for the query complexity of this problem is �(s||A||maxτ +
log(1/εH )/ log log[1/εH )], and an optimal method in all pa-
rameters of interest was already introduced [26]. The error
introduced by this step (εH ) will not be considered, as the
dominant source of error in the context of our calculations will
be the nonexact phase estimation, hence the adoption of the
soft complexity Õ(s||A||maxτ ) for subsequent considerations.

In our algorithm, the total simulated time interval for im-
plementing all the controlled-M gates within the QPE module
amounts for (L − 1)τ and thus O(L/||A||). The subsequent
inverse quantum Fourier transform, only takes (l2) steps,
which can be efficiently implemented [27]. Similarly, the
sim-AD modules contribute with a total count of (l ) gates
applied to two qubits each. Thus, the total run-time complex-
ity of the algorithm can be expressed as

O[log(N ) + sL + log2(L) + log(L)]. (9)

We now derive, in a simple way, the complexity introduced
by L, given the problem’s parameters and some allowed ad-
ditive error ε when approximating x(t ). This approach will
only acknowledge the error introduced by the best possible ap-
proximation of each eigenvalue, given that a far more detailed
approach (considering the totality of components in each |φ̃i〉)
is given in Appendix C. This second approach yields the same
result here depicted, albeit slightly more complete with the
addition of the condition number of A as a new term in the
complexity expression.

Let bi ≡ (1 − j
L )||A||, for some j ∈ {0, 1, . . . , L − 1}, be

the best valid approximation of some eigenvalue ai. Then, the
algorithm errs by at most O(||A||/L) when estimating ai as bi.
This error is propagated to the exponential terms (εi ≡ |ebit −
eait |) as follows:

εi � eait |e ||A||t
L − 1| � e||A||t (e

||A||t
L − 1).

Solving for L and using the asymptotic behavior 1/ ln(1 +
ae−bx ) = (ebx/a), found through the first-order Taylor series
approximation of ln(1 + y) around y = 0:

L = O

( ||A||te||A||t

εi

)
.
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More globally, if ε is the global additive error allowed
to x(t ), it suffices to take ||εi|| ≡ ||ε||/||x0||, for all i ∈
{1, 2, . . . , N}. Thus

L = O

( ||A||te||A||t ||x0||
ε

)
. (10)

By combining Eqs. (9) and (10), if s, ||x0|| and 1/ε are
polylogarithmic in N and if ||A||t = O(1) [28], the algorithm
reaches an exponential speedup compared to classical meth-
ods, in relation to the size of the problem N .

B. Limitations on the complexity for scaling t

Whereas granting the aforementioned speedup in relation
to the problem’s size N , Eqs. (9) and (10) imply an expo-
nential complexity in ||A||t . In this section, we present two
complementary arguments for why this cannot be enhanced
for any similar algorithm built from applying QPE with the
Hamiltonian simulation.

First, since the QPE module implicates an additive error
when approximating the eigenvalues and given that this error
scales linearly in relation to 1/L, the Hilbert space dimension
L must scale exponentially with t to keep the exponential
terms (eait )1�i�N under some error boundary.

Second, It should be noted that the only term in Eq. (9)
that takes linear L is the one related to the Hamiltonian
simulation, hence dominating the run-time when it comes to
scaling t . This complexity, however, cannot be vanquished,
coming as a direct result of the No-Fast-Forwarding Theorem
[22], which yields that the simulation of a sparse Hamiltonian
cannot be achieved in sublinear complexity in relation to the
simulated time, which in our construction is itself O(L) (when
one accounts for the accumulated simulated time among all
controlled-M gates in the QPE module).

VI. CONCLUSION

In summary, the quantum circuitry presented here succeeds
in solving HLDEs with a potentially exponential speedup
while compared to any classical method, concerning the prob-
lem’s dimension N . Although no such speedup is observed
for other parameters (perhaps most importantly for t), we
provided the underlying results that yield the impossibility to
perform better with any similar algorithm based on QPE with
the Hamiltonian simulation. Also importantly, features such
as the dominance of at most two-qubits elementary gates and
the low connectivity requirements between the phase and en-
vironment registers boost the algorithm’s appeal for scalable
experimental implementations.

The usage of a sim-AD chain also bears novelty by al-
lowing the solution to be found through an open quantum
system-inspired scheme, creating a subspace where each state
of the computational basis is adequately decayed thanks to
the tuning of a set of parametric gates. We stress that such a
strategy does not demand real open system dynamics. Despite
its noninterferometric nature, we showed that one can also
foster the decaying property of AD to favor the correct output
(Sec. IV), which ultimately imposes a t-independent mini-
mal probability of success for every single realization of the
algorithm, independently of the underlying HDLE problem.

Such a scheme may create a new perspective for designing
quantum algorithms based on open-systems-inspired opera-
tions, particularly for applications where specific nonunitary
transformations are needed.

ACKNOWLEDGMENTS

F.B. is supported by Instituto Nacional de Ciência
e Tecnologia de Informação Quântica (CNPq INCT-IQ
465469/2014-0), Brazil. The authors would like to thank Pro-
fessor Diogo Soares-Pinto for the fruitful discussions.

APPENDIX A: CLOSER LOOK INTO
THE NONUNITARY SECTION

The chore of the algorithm here presented lies in the
sim-AD stage, as it enables the nonunitary calculation using
exclusively two common types of one-qubit controlled gates,
and with a gate depth that only scales linearly with the register
size l (hence logarithmically in the allowed error 1/ε). In
this Appendix, we explicitly derive Eq. (7), while also taking
the opportunity to justify our choice of operator M for the
previous QPE step.

As presented before, the correct transformation over the
phase register is applied if and only if the measurement
outcomes are all 0. In this case, we know that the output
state of the QPE stage |ψ2〉 has been taken into the state

G0|ψ2〉
〈ψ2|G†

0G0|ψ2〉 . An uncomplicated way to find the expression for

G0, which was used in this article is to look into how it
operates over a state of the computational basis | j〉. First of
all, it should be noted that the Ek

0 operators can be rewritten
as Ek

0 = ∑1
n=0 e−||A||2knt/L|n〉〈n|. If j is expressed in its binary

form ( jl−1 jl−2, . . . , j0)2, it becomes clear that

G0| j〉 =
l−1⊗
k=0

1∑
n=0

e−||A||2knt/L|n〉〈n| jk〉

=
l−1⊗
k=0

e−||A||2k jkt/L| jk〉

= e−||A||(∑l−1
k=0 jk2k )t/L| j〉

= e−||A|| jt/L| j〉.
Thus, G0 can be generally expressed as the following sum

of projectors in the computational basis:

G0 =
L−1∑
j=0

e−||A|| jt/L| j〉〈 j|. (A1)

Recalling that the states | j〉0� j�L−1 code the phases of
the spectrum of M, Eq. (A1) shows that the damping effect
increases (i.e., the exponent’s absolute value increases lin-
early) as we scan the complex unit circle in an anticlockwise
manner starting from the rightmost extremity (recall Fig. 2).
While |0〉 suffers no damping, the largest allowed damping is

e−||A||(L−1)t/L L→∞−−−→ e−||A||t . This should be enough to justify
our choice of unitary operator M as it linearly wraps the
eigenvalues of A around the complex unit circle in such a
way that subspaces related to the smallest eigenvalues suffer

012431-6



QUANTUM AMPLITUDE DAMPING FOR SOLVING … PHYSICAL REVIEW A 107, 012431 (2023)

more damping (i.e., are associated to larger phases within the
[0, 2π [ range.

The effect of G0 on |ψ2〉 from Eq. (4) can now be calcu-
lated:

G0|ψ2〉 =
N∑

i=1

ci

L−1∑
j=0

e−||A|| jt/L| j〉〈 j|di〉|vi〉

=
N∑

i=1

cie
−||A||(
L(1−ai/||A||)� (mod L))t/L|di〉|vi〉.

We can dispose of the modular notation by assum-
ing that there is no i ∈ {1, 2, . . . , N − 1} such that 
L(1 −
ai/||A||)� = L; note that if the negation of this statement is
true, then we could observe an additive error which grows
as fast as O(e||A||t ) since at least one subspace associated to
some ai < ||A|| would suffer no damping. This is particularly
bound to happen if L is not sufficiently large for a particular
high value of the condition number (κ) of A. This is the
case because m1 approximates 0 in Fig. 2 through the fourth
quadrant as κ increases. This consideration will be further
developed in Appendix C, where it will ultimately lead to the
introduction of 1/κ in a revised form of Eq. (10).

Without the modular notation, we will now

provide a guideline for proving that G0|ψ2〉 L→∞−−−→∑N
i=1 cie−(aN −ai )t |di〉|vi〉 and thus that the precision can

always be enhanced by augmenting the size of the phase
register. Indeed, for any z ∈ [0, 1[:∣∣∣∣
Lz�

L
− z

∣∣∣∣ �
∣∣∣∣Lz + 1

L
− z

∣∣∣∣ = 1/L,

which implies 
L(1 − ai/||A||)�/L
L→∞−−−→ 1 − ai/||A||. The

convergence that we aim to prove then follows from the con-
tinuity of the associated exponential functions.

APPENDIX B: GENERALIZED ALGORITHM FOR ANY
HERMITIAN MATRIX

As suggested in this article, our algorithm can be extended
to solve HDLE problems with any Hermitian matrix A. In fact,
this task can be achieved by simply modifying a few param-
eters of the equivalent quantum circuit: as the number and
size of quantum registers and applied quantum gates remain
untouched.

The first modification comes to the QPE stage: While the
Ā ≡ A/||A|| operator is still defined the same way, the new
form of the unitary operator M should be constructed such
that the interval [−||A||, ||A||] is mapped in one single lap
around the unit circle, without overlapping both ends. The
revised operator is given by

M ≡ e−i2π ( L−1
2L Ā+ L+1

2L IN ). (B1)

One may refer to Fig. 4 for a visual interpretation of M.
A brief side-note should be made about the implementation
for the equivalent circuit: M can be achieved by Hamiltonian
simulation of L−1

2L Ā + L+1
2L IN , which, for a s-sparse matrix A,

is at most (s + 1)-sparse. As a direct result, this stage keeps
the same overall complexity as presented in Sec. V for the
more restrict formulation.

FIG. 4. Illustrative example of the eigenvalues mapping between
A and M, for the less restrictive Hermitian A formulation. The
[−||A||, ||A||] interval is mapped to the complex phase interval
[0, 2π (L − 1)/L]. The black filled dots around the circle represent
the allowed values of damping, in this case for l = 3.

The output of the QPE stage will still follow the same
form depicted in Eq. (3), where if |φ̃i〉 = ∑L−1

j=0 βi; j | j〉, then

|βi; j | takes a high value if and only if j ≈ L−1
2 (1 − ai/||A||)

(mod L). The mod notation is immediately dropped with no
loss of generality since min1�i�N (ai ) � −||A||. Thus, follow-
ing the same assumptions described in Sec. III B 2:

|ψ2〉 ≈
N∑

i=1

ci

∣∣∣∣
⌊

L − 1

2
(1 − ai/||A||)

⌉〉
|vi〉. (B2)

The second and last modification to our algorithm comes
to the rotation angles within the sim-AD modules:

{∀k ∈ {0, 1, . . . , l − 1} θk ≡ arccos(2e−||A||2k+2t/(L−1) − 1).
(B3)

By comparing Eq. (B3) to Eq. (6), the new expression for
G0|ψ2〉 is

G0|ψ2〉 =
N∑

i=1

ci

( L−1∑
j=0

e−2||A|| jt/(L−1)| j〉〈 j|
)

|di〉|vi〉.

If all measurements to the environment register result
in 0, the global output is once again achieved as
|ψ3〉 ≈ 1√

γ (t )

∑N
i=1 cie−(||A||−ai )t |di〉|vi〉, with γ (t ) ≡∑N

i=1 |ci|2e−2(||A||−ai )t . However, a new subtlety compared to
the more restrictive case is that aN can now be strictly smaller

than ||A||. Under such circumstances, pS = γ (t )
t→∞−−−→ 0, i.e.,

the probability of success necessarily vanishes as t increases,
regardless of the initial conditions. Nevertheless, this can be
simply resolved by the approach presented in Sec. IV.
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APPENDIX C: IN-DEPTH ANALYSIS OF
THE PHASE RESIGTER SIZE

In Sec. V, a simple calculation of the complexity of L was
given [Eq. (10)]. In this Appendix, we present a more thor-
ough analysis of the phase register size, which will ultimately
lead to the same conclusion on the complexity, although with
a new parameter, the condition number κ . We start by look-
ing into the particular case of one single eigenvalue ai, i.e.,
|x0〉 ≡ |vi〉 and easily extend it to any initial condition. Indeed,
one can revisit Eq. (3) and the exact expression for |φ̃i〉 given
in Sec. III B 2. The latter should be modified upon relabeling
the phase register as shown below [16]:

|φ̃i〉 =
L/2∑

k=−L/2+1

α j|i| j〉,

with α j|i = 1

L

L/2∑
k=−L/2+1

[ei2π (φi− di+ j
L )]k,

where φi ≡ (1 − āi ) and di/L ∈ [0, 1[ is the best l bits ap-
proximation of φi (mod 1). Continuing with the procedure,
the sim-AD modules and the inverse QPE, upon a successful
final measurement and after the adequate rescaling, will result
in

x̃(t ) =
∣∣∣∣∣∣

L/2∑
k=−L/2+1

α j|ieb j|it

∣∣∣∣∣∣vi,

with b j|i ≡ ||A||
(

1 − di + j

L

)
,

where the absolute value is introduced to discard a global
phase that may appear. However, the analytical solution sim-
ply yields x(t ) = eaitvi. We also introduce the overall additive
error εi = x̃(t ) − x(t ) of the algorithm.

To proceed, the j subindexes shall be clustered into two
groups, by verifying if they respect the following criteria:
|φi − di+ j

L | < P, for some precision P ∈]0, 1[ which will be
later specified. Since di/L ≈ φi, this criteria can be simplified
as | j| � p, with p ≡ �LP�, which stipulates the following
upper bound on ei:

||εi||2 � ||εQPE||2 + ||εPr ||2,

with ||εQPE||2 ≡
∥∥∥∥∥∥

∑
j �∈{−p,...,p−1,p}

|α j|i|ebj|itvi

∥∥∥∥∥∥
2

,

and ||εPr||2 ≡
∥∥∥∥∥∥
⎛
⎝ p∑

j=−p

|α j|i|ebj|it − eait

⎞
⎠vi

∥∥∥∥∥∥
2

.

We will hereby refer to the first term as the QPE error ||εQPE||2
and the second term as the precision error ||εPr||2.

1. QPE error

The QPE error can be bounded as follows:

||εQPE||2 �

⎛
⎜⎜⎝

∑
−L/2< j<−p

p< j�L/2

|α j|i|2

⎞
⎟⎟⎠e2||A||t .

This sum of squared probability has 1
2(p−1) as a valid upper

bound [16]. Using p ≡ �2lP�:

||εQPE||2 � e2||A||t

2(2lP − 1)
.

Solving for l , one may conclude that it suffices to use a
phase register as large as

l � log2

(
e2||A||t

2||εQPE||2 + 1

)
+ log2

(
1

P

)
,

and, thus

l = O

[
||A||t + log

(
1

||εQPE||
)

+ log

(
1

P

)]
(C1)

Equation (C1) will be revisited when we set a bound on P,
which will come naturally as we delve into the precision error
analysis.

2. Precision error

For every value of j within {−p,−p + 1, . . . , p − 1, p},
the individual error introduced can be bounded as follows:

|ebj|it − eait |2 � |eb−p|it − eait |2.
The right-hand side can then be rewritten as |eb−p|it −

eb0|it |2 + |eb0|it − eait |2 through triangular inequality. The first
term in this sum translates to how close the most extreme
accepted approximation (eb−p|it ) of the exact exponential term
is from the best possible approximation (eb0|i ) of the exponen-
tial term and the second term corresponds to how close this
best approximation meets the exact solution. While the first
quadratic error will lead to a bound on P, the second will result
in another bound on the phase register size l .

Indeed, the first aforementioned quadratic error can be
rewritten as follows:

||εPr;I ||2 � e2b0|it |ep/L − 1|2 � e2||A||t |e�LP�/L − 1|2,
shich, simplifying and solving for P, yields

1

P
� 1

ln(1 + ||ePr;I ||e−||A||t )
,

and, once again using 1/ ln(1 + ae−bx ) = (ebx/a):

1

P
= O

(
e||A||t

||εPr;I ||
)

. (C2)

One can also advocate for the inclusion of κ , the condition
number of A, in the expression of 1/P. Figure 2 gives some
visual input to why this is the case. Indeed, we should not
allow P to be bigger than a1/aN ≡ 1/κ as this would imply
that the region covered by the {−p,−p + 1, . . . , p − 1, p}
indexes (normally associated to significant amplitudes |α j|1|
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according to our construction) would cross over to the first
quadrant, where terms suffer much less damping, generating
an error that could grow as fast as O(e||A||t ). Hence, it would
also be more suitable to set 1/P = O(κe||A||t/||εPr;I ||).

Moving to the second quadratic error term, it should be
noted that the difference between the exact eigenvalue ai

and its best allowed approximation b0|i cannot be larger than
||A||/2L. With that being said,

||εPr;II ||2 � e2ait |e ||A||t
2L − 1|2 � e2||A||t ∣∣e ||A||t

2L − 1
∣∣2

,

and upon some very similar calculations to those that preceded
Eq. (C2)

l = O

[
||A||t + log

(
1

||εPr;II ||
)]

, (C3)

where a slower growing logarithmic term on ||A||t was sup-
pressed.

3. Concluding on the phase register size

Putting Eqs. (C1), (C2), and (C3) together, we stipulate that
the overall expression for the phase register size so far is l =
O[||A||t + log ( 1

||εi|| ) + log(κ )].
As we finally lift the constraint of looking into one single

eigenvalue and move to any initial condition x0 = ∑N
i=1 c̃ivi,

it suffices to verify that the total error is bounded by ||ε||2 �
||x0||2 max1�i�N (||εi||2), and thus that one can choose ||ei|| ≡
||ε||/||x0|| in our last expression to conclude about the asymp-
totic behavior imposed over l:

l = O

[
||A||t + log(||x0||) + log

(
1

||ε||
)

+ log(κ )

]
. (C4)
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