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Experimental violation of the Leggett-Garg inequality in a three-level trapped-ion system
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Leggett-Garg inequality (LGI) is used to detect whether the macroscopic superposition state exists. Classical
systems obey the LGI, but quantum systems may violate it. In the multilevel system, different state update rules
determine different upper bounds of LGI. In this work, we experimentally test the LGI in a three-level trapped-ion
system under the Lüders and the von Neumann state update rules, respectively. The maximum observed value of
the Leggett-Garg correlator under the von Neumann state update rule is K3 = 1.739 ± 0.014, which demonstrates
a violation of the Lüders bound by 17 standard deviations and is by far the most significant violation under the
specific model. The method used in our experiment could also be used in other multilevel experiments in the
trapped-ion system.
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I. INTRODUCTION

One of the most counterintuitive features of quantum
mechanics is the superposition of quantum states [1]. In
1935, Schrödinger extended the superposition from the micro
world to the macro world through the thought experiment
of Schrödinger’s cat [2]. However, it seems to contradict
the fact that objects in our daily life are always in a cer-
tain state. According to this contradiction, in 1985, Leggett
and Garg proposed the Leggett-Garg inequality (LGI) based
on two fundamental assumptions of the macro world [3]:
(A1) Macroscopic realism (MR): A macroscopic system is
always in one of the macroscopically distinct states; (A2)
Noninvasive measurability (NIM) at the macroscopic level:
A determination method can be found that does not affect
the past and the future of the system [3]. Because these two
assumptions are invalid in quantum mechanics, quantum sys-
tems may violate the LGI.

Based on the above two assumptions, the standard LGI is

−3 � K3 � 1, (1)

where K3 is a linear combination of temporal correlations
of observables measured sequentially at different moments
[4]. The upper bound 1 is usually called the classical bound
(CB), which limits the behavior of classical systems. For two-
dimensional quantum systems, the maximum value of K3 is
1.5 [3], which is usually called the Lüders bound (LB) [4]
(this bound is also called the temporal Tsirelson bound (TTB)
[5–7]). For higher-dimensional quantum systems, it has been
strictly proved that the maximum value of K3 is still 1.5 [8]
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under the Lüders state update rule (LSUR) [9]. Later, Budroni
and Emary proved that K3 might exceed 1.5 in systems with
three or more dimensions under the von Neumann state update
rule (VSUR) [10], and the maximum value of K3 increases
with increasing dimension, which can approach 3, the alge-
braic bound [4].

In 2010, Palacios-Laloy announced the first experimental
violation of LGI [11]. Subsequently, several experimental
tests of LGI in two-level quantum systems were reported,
including the single-photon system [12], the spin-bearing
phosphorus impurities in silicon system [13], the nuclear mag-
netic resonance system [14], the superconducting system [15],
etc. The first violation of LGI in a three-level system was
reported by George et al. They implemented their experiment
under the LSUR in a nitrogen-vacancy center in diamond
system [16]. In 2017, the first three-level experiment that
tested the LGI under the VSUR was realized in the nuclear
magnetic resonance system [17]. In the same year, the viola-
tion of three-dimensional LGI under the VSUR was realized
in the single-photon system [18]. In 2022, Maimaitiyiming
et al. used a three-level system to test the LGI under the
VSUR in a nitrogen-vacancy center in diamond system [19].
However, they only collected one data point, and the experi-
mental value is not very consistent with the ideal theoretical
value subject to the short coherence time of this system.
Moreover, all the experiments in three-level systems men-
tioned above only adopted one state update rule and did not
give a direct comparison of K3 under two state update rules
experimentally.

In this work, we experimentally test the LGI in a three-level
trapped-ion system under the evolution model of a large spin
precessing in a magnetic field [4]. Under this model, we ob-
tained a significant violation in a three-level system benefiting
from the high-fidelity operations and long coherence time of
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FIG. 1. Scheme for the LGI test. ρ0 represents the initial density
operator. Three separate experiments need to be performed to obtain
C21, C32, and C31. The Q values are measured at the corresponding
two moments, and each experiment is performed multiple times to
obtain the joint probability Pi j (Qi, Qj ).

the trapped-ion system. Moreover, the VSUR and LSUR are
employed in LGI research for direct experimental comparative
analysis. Our results show different upper bounds of LGI
under two state update rules.

II. THEORETICAL MODEL

LGI considers the temporal correlation of system evo-
lution. We can assume that there exists a dichotomous
observable quantity Q = ±1 in a macroscopic system. Due to
the MR assumption, a system’s state can only take a definite
ontic state corresponding to Q = +1 or Q = −1. The correla-
tion function between moments ti and t j is

Ci j =
∑

Qi,Qj=±1

Qi Qj Pi j (Qi, Qj ), (2)

where Pi j (Qi, Qj ) represents the joint probability of obtaining
the measurement outcomes Qi and Qj at moments ti and t j .
Three correlation functions C21, C31, and C32 can be defined
by selecting three measurement moments t1, t2, and t3, and
then we can define

K3 = C21 + C32 − C31. (3)

Under the restriction of the NIM assumption, it is easy to
derive Eq. (1) [20]. The measurement of K3 requires three
independent experiments, and each experiment selects two of
the three measurement moments to obtain C21, C32, and C31.
The experimental process is shown in Fig. 1.

A quantum system can violate the LGI, and the maximum
value of K3 is 1.5 in a two-dimensional quantum system. Re-
garding systems with three or more dimensions, the maximum
value of K3 depends on the state update rule. According to the
LSUR, the state after measurement updates following

ρL �→ �±ρ�±, (4)

where �+ and �− denote projection operators corresponding
to +1 and −1, respectively [4]. Under the VSUR, the state
updates following

ρV �→
∑

k

(�k
±ρ�k

±), (5)

where �k
± denote one-dimensional projection operators and

k denotes the degeneracy of eigenvalue Q [4]. It is easy
to see that the measurement under the LSUR only distin-
guishes eigenspaces corresponding to different eigenvalues
but does not distinguish which one-dimensional subspace is
projected to. However, the measurement using the VSUR
projects each one-dimensional subspace and obtains more
information. Therefore, the LSUR respects degeneracy, but
the VSUR destroys degeneracy. The maximum value of K3

is 1.5 and is independent of the system’s dimension under the
LSUR, but it can exceed 1.5 when the VSUR is adopted. Some
works claim that this transcendental behavior comes from the
fact that the VSUR introduces an additional nonclassicality
and cannot be considered a violation of macrorealism in the
usual sense [21].

In this work, we employ the model of a large spin precess-
ing in a magnetic field mentioned in Ref. [4] in a three-level
system. The corresponding Hamiltonian (h̄ = 1) can be ex-
pressed as

H = �Jx, (6)

where � is the level spacing and Jx is the x component of
the angular momentum operator. The correlation function be-
tween two moments tα and tβ can be written as

Cβα =
∑
l,m

ql qmTr{�mUβα�lUα0ρ0U
†
α0�lU

†
βα}, (7)

where ql and qm denote the output results ±1 related to the
projection operators �l and �m, respectively [4]. The VSUR
is adopted when �l and �m represent a one-dimensional
projection operator, and the LSUR is adopted when �l and
�m represent the projection operator of the eigenspace cor-
responding to a certain eigenvalue. ρ0 denotes the density
operator at the initial moment t0. Uβα denotes the unitary
evolution operator between the moments tα and tβ , which can
be written as

Uβα = e−iH (tβ−tα ). (8)

We define three measurement moments t1, t2, and t3, and set
the time intervals as

�(t1 − t0) = π ; (9)

t2 − t1 = t3 − t2 = τ. (10)

According to our experimental settings under the LSUR, K3

reads

K3 = −1

8
+ 2 cos(�τ ) − cos(2�τ ) + 1

8
cos(4�τ ). (11)

Under the VSUR, K3 reads

K3 = 1

16
+ 2 cos(�τ ) − 5

4
cos(2�τ ) + 3

16
cos(4�τ ). (12)

We measure the magnitude of K3 under different values of
�τ ∈ [0, 2π ].

In the trapped-ion system, we use the laser-ion interaction
to control the ion qutrit. An ion with an energy level spacing
ω0, interacting with a laser of the frequency ωl forms a system,
and the Hamiltonian reads

HL = H0 + HI , (13)
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where H0 describes the energy of the ion itself and HI

describes the laser-ion interaction. The coupling strength
is given by Rabi frequency �R. H0 and HI can be
expressed as

H0 = 1

2
h̄ω0σz (14)

and

HI = 1

2
h̄�R(σ+ + σ−)

(
ei(ωl t+φ) + e−i(ωl t+φ)). (15)

Here, φ denotes the initial phase of the laser, t denotes the
duration of interaction between the laser and the ion, σz de-
notes the z component of the Pauli operator, and σ+ (σ−) is
the spin-flip operator. In the rotating frame with ω0 = ωl , the
interaction Hamiltonian can be written as

HI = 1

2
h̄�R(eiφσ+ + e−iφσ−). (16)

The evolution operator under HI is the rotation operation in a
two-dimensional Hilbert space

R(θ, φ) =
(

cos θ
2 −i sin θ

2 e−iφ

−i sin θ
2 eiφ cos θ

2

)
, (17)

where θ and φ denote the angle and phase of the rotation
operation. All operations in the experiment must formally
satisfy Eq. (17). For example, two-dimensional rotations in

the three-dimensional space can be represented as Eqs. (18)
and (19),

R1(θ1, φ1) =

⎛
⎜⎜⎝

cos θ1
2 −i sin θ1

2 e−iφ1 0

−i sin θ1
2 eiφ1 cos θ1

2 0

0 0 1

⎞
⎟⎟⎠, (18)

R2(θ2, φ2) =

⎛
⎜⎜⎝

cos θ2
2 0 −i sin θ2

2 e−iφ2

0 1 0

−i sin θ2
2 eiφ2 0 cos θ2

2

⎞
⎟⎟⎠. (19)

For three-dimensional unitary evolution, we need to decom-
pose it into two-dimensional evolution with this form. We
also need to convert the two-dimensional matrix that does not
conform to the form of Eq. (17) into this form. A unitary
matrix which acts on a high-dimensional Hilbert space can
be decomposed into a product of two-level rotation matrices
which act nontrivially only on two vector components [22]. To
facilitate the decomposition process of the three-dimensional
unitary matrix, we introduce an auxiliary dimension in our
experiment, defined as the fourth dimension in the matrix.
According to the general method mentioned in Ref. [22], we
decompose the three-dimensional matrix into the product of
two-dimensional matrices. But some two-dimensional matri-
ces differ by a π phase in one dimension from the form shown
in Eq. (17). The auxiliary energy level is employed to elimi-
nate this π phase so that the two-dimensional matrix conforms
to the form shown in Eq. (17). Equations (A6) and (A7) in
Appendix A give examples of its application.

If the system’s evolution time satisfies �(tβ − tα ) = π , the
original three-dimensional evolution operator, via expanding
to four-dimensional Hilbert space, can be decomposed into the
product of three matrices as

U10 =

⎛
⎜⎜⎜⎜⎝

0 0 −1 0

0 −1 0 0

−1 0 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 0 −1 0

0 1 0 0

1 0 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠. (20)

If the evolution time does not satisfy �(tβ − tα ) = π , the
high-dimensional matrix needs to be decomposed according
to the method given in Ref. [22] (see Appendix A for a
detailed decomposition process).

III. EXPERIMENTAL SETUP AND RESULTS ANALYSIS

In this work, the LGI test is demonstrated using a single
40Ca+ ion trapped in a blade linear Paul trap [23]. The ion
needs to be cooled first. The cooling schemes used in our
experiment include Doppler cooling [24], electromagnetically
induced transparency (EIT) cooling [25–27], and sideband
cooling [24]. After the whole cooling process, the mean
phonon number of the ion can be brought down below 0.1. In
addition, we trigger the experimental sequence synchronized
to the 50-Hz frequency to prevent noise from the power supply
[28].

The energy levels of 40Ca+ have fine structure splitting
under the magnetic field, as shown in Fig. 2. We construct
a qutrit using three levels of |0〉 = |4S1/2(mJ = −1/2)〉, |1〉 =
|3D5/2(mJ = −1/2)〉, and |2〉 = |3D5/2(mJ = +1/2)〉, and set
the lowest energy level |0〉 as the initial state of our experi-
ment. We select |aux〉 = |4S1/2(mJ = +1/2)〉 as the auxiliary
energy level. We define Q = −1 when the ion is in state |0〉
and Q = +1 when the ion is in state |1〉 or |2〉.

The transition 4S1/2 ↔ 3D5/2 involved in our experiment
is controlled by a 729-nm light provided by the Ti:sapphire
laser. The laser’s frequency, phase, amplitude, and duration
are controlled by an arbitrary waveform generator (AWG) via
an acousto-optic modulator (AOM). We calibrate the transi-
tion frequencies and �R of the four spectral lines 4S1/2(mJ =
±1/2) ↔ 3D5/2(mJ = ±1/2) by scanning laser frequency
and duration. According to the specific τ , we can determine
the specific form of the evolution operators Uβα by Eq. (8).
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FIG. 2. Energy level diagram of 40Ca+. The three lev-
els 4S1/2(mJ = −1/2), 3D5/2(mJ = −1/2), and 3D5/2(mJ = +1/2)
form a qutrit and 4S1/2(mJ = +1/2) is the auxiliary energy level.

A set of R(θ, φ) can be obtained by matrix decomposition of
the evolution operator. In the rotation operation R(θ, φ), θ is
related to the laser duration, which can be determined by

t = θ

�R
, (21)

and φ denotes the relative phase of the laser that can be set
directly by the AWG. According to the Pound-Drever-Hall
(PDH) error signal spectrum measured by a rf spectrum an-
alyzer, the phase noise has been proved to be from the specific
frequency band of the Ti:sapphire laser [27]. To avoid the
ac Stark frequency shift under the high power laser and the
noise mentioned above, we select �R at about 2π × 8 kHz in
our experiment. The 3D5/2 level has a long lifetime. The ion
needs to be quickly initialized to the ground state by using an
854-nm laser during the sideband cooling process and after the
quantum state manipulation. The specific method is to use the
854-nm laser to make the ion transition from the 3D5/2 level
to the short-lived 4P3/2 level, after which the ion will rapidly
decay to the ground energy level spontaneously.

The electron shelving technique [29–31] is used to discrim-
inate between state |0〉 and state |1〉 or |2〉. State |0〉 is detected
when the photomultiplier (PMT) collects the fluorescence. No
fluorescence can be observed if the ion is in state |1〉 or |2〉, as
the D5/2 level is not coupled to the P1/2 level by the 397-nm
laser. Since the ion in the P1/2 level has a probability of leaking
to the D3/2 level, an 866-nm laser is needed to pump the ion
back to the S1/2 ↔ P1/2 transition cycle. In the LGI test under
the LSUR, we define Q as 1 when the ion is in state |1〉 or
|2〉, so we only need to distinguish state |0〉 and state |1〉 or
|2〉 by the electron shelving technique as shown in Fig. 3(a).
However, in the LGI test under the VSUR, we need to deter-
mine whether the ion is located in state |0〉, state |1〉, or state
|2〉. The sequence of four-step operations of the measurement

FIG. 3. Schemes for two different measurement methods. (a) The
measurement scheme using the LSUR. (b) The measurement scheme
using the VSUR. The laser sequence used in the four-step operations
of the measurement is shown by serial numbers I, II, III, and IV.

is shown by serial numbers I, II, III, and IV in Fig. 3(b). We
first distinguish whether the ion is in state |0〉 by the electron
shelving technique. Secondly, we exchange state |0〉 and state
|1〉 with the 729-nm laser. Then, we determine whether the ion
is in state |0〉 at this time. If so, the ion is in state |1〉 before
the state exchange; otherwise, it is in state |2〉 before the state
exchange. Finally, if the measurement is carried out before
the second unitary evolution, we need to use the identical
729-nm laser to make the state of the ion return to the state
before step II for the second unitary evolution by applying step
IV. We discuss the effects of additional energy levels and the
reliability of this measurement method in Appendix B. After
the electron shelving process, the ion will be heated and may
spontaneously decay to the 4S1/2(mJ = +1/2) level. We use
EIT cooling after each electron shelving process to suppress
the heating effect. We use optical pumping to ensure the ion
returns to the 4S1/2(mJ = −1/2) level.

Each set of experiments is repeated at least 10 000 times
to obtain the populations of ion state. According to the pop-
ulations, we can calculate Cβα , and then get K3 by Eq. (1).
The values of K3 corresponding to different �τ are shown
in Fig. 4. Figures 4(a) and 4(b) are the experimental results
under the LSUR and VSUR, respectively. The black curve is
the theoretical result, the red dots are experimental results, the
orange horizontal line is the CB, and the violet horizontal line
is the LB. It can be seen that K3 exceeds the CB regardless
of which state update rule is used. It is not surprising that the
LGI is violated, as the state of a single ion definitely can be
superposition. Under the same experimental settings, we dis-
cover that the K3 does not exceed the LB under the LSUR, but
it exceeds the LB under the VSUR. Under the VSUR, the the-
oretical maximum value is 1.7565, appearing at about �τ =
1.585π . The maximum value in our experiment is 1.739 ±
0.014, appearing at �τ = 1.6π , which exceeds the LB with a
17σ confidence level, and agrees with the theoretical value
at �τ = 1.6π , which is 1.750. The difference of LGI’s
upper bound is related to the projection measurement pro-
tocol of two state update rules. The projection measurement
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FIG. 4. Experimental results of K3 under 31 different settings of
�τ ∈ [0, 2π ]. (a) The experimentally determined result under the
LSUR. (b) The experimentally determined result under the VSUR.
The black curve is the theoretical result, the red dots are the experi-
mental results, the orange horizontal line is the classical bound, and
the violet horizontal line is the Lüders bound. The error bars are not
visible as the statistical error is about 10−2.

protocol under the VSUR measures each one-dimensional
space, which makes the wave function collapse completely,
but the projection measurement protocol under the LSUR
retains the coherence between states |1〉 and |2〉. When the
eigenvalue Q = −1, there is no difference between the pro-
jection measurement protocol under the LSUR and VSUR
because there is no degeneracy. However, the situation is
different when the eigenvalue Q = +1. �1 and �2 project
the ion state to states |1〉 and |2〉, respectively. According to
the LSUR, after one measurement, the change of the density
operator can be described as

ρL = �+ρ0�+ = (�1 + �2)ρ0(�1 + �2)

= �1ρ0�1 + �2ρ0�2 + �1ρ0�2 + �2ρ0�1. (22)

However, the change of the density operator under the VSUR
is described as

ρV = �1ρ0�1 + �2ρ0�2

= ρL − (�1ρ0�2 + �2ρ0�1). (23)

The term −(�1ρ0�2 + �2ρ0�1) is responsible for the viola-
tion of the LB.

The experimental error in our LGI test mainly comes from
the following four factors. Firstly, the decoherence of the ion
contributes to the deviation between theoretical and experi-
mental results. It is worth mentioning that the measurement
under the VSUR has more experimental steps but the experi-
mental results under the VSUR are more consistent with the
theory. Unlike the measurement protocol under the VSUR, the
measurement under the LSUR retains the coherence between
states |1〉 and |2〉, so the coherence time has more effect on
the measurement under the LSUR. Secondly, according to
data from the experimental calibration process, the fidelity of
the evolution operations is slightly worse at low power of the
729-nm laser. There will be a large ac Stark frequency shift
when the 729-nm laser power is high; on the other hand, the

phase noise will increase with the decrease of the laser power
due to the locking circuit of this narrow line-width laser. The
ac Stark frequency shift will affect the energy level spacing
in our experiment, and the phase noise will affect the purity
of the 729-nm laser. To trade off the influence of the ac Stark
frequency shift and the phase noise, we choose the appropriate
laser power. �R of four spectral lines in our experiment are
about 2π×8 kHz. Under this �R, the influence of the ac
Stark frequency shift can be almost ignored, and the average
evolution fidelity is about 98%. There are two main influences
of the evolution infidelity. One is that the ion is not evolved
according to the expected probability distribution after the
operation of the laser pulse, and the error is accumulated after
the operation of multiple imperfect laser pulses. The second
influence comes from the auxiliary energy level. During the
actual experiment, the auxiliary energy level involved in the
evolution has a small residual probability, which will increase
the probability that the ion is in state |0〉. However, all the
evolved pulses involved in the auxiliary energy level are 2π

pulses, and the fidelity of 2π pulses will be significantly
higher than other non-π integer times pulses, so the proba-
bility of electrons remaining in the auxiliary energy level is
rather small and has no great influence on our experimental
results and the conclusion. Thirdly, the fidelity of our initial
state preparation is about 99.4% because the polarization of
the laser is not pure, and it is difficult to make the laser
absolutely parallel with the magnetic field. Fourthly, during
this period of our experiment, the power of the 397-nm laser
slightly fluctuates. Since the electron shelving technique is
implemented by a 397-nm laser, the fluctuation may slightly
affect the measurement fidelity, and the 397-nm laser instabil-
ity affects the effect of Doppler cooling too.

IV. CONCLUSION

We have realized the LGI test in a three-level trapped-ion
system, and obtained K3 under the LSUR and the VSUR,
respectively, which are consistent with the theoretical predic-
tions. We directly compared the upper bound of LGI under
two state update rules in the same experimental system. We
adopted the model of a large spin precession in the mag-
netic field, and experimentally obtained a significant violation
under the VSUR, which benefits from the high-fidelity opera-
tions and long coherence time of the trapped-ion system.
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APPENDIX A: THE MATRIX DECOMPOSITION

The corresponding relationship between the energy levels and the elements Mqp of the four-dimensional matrix is shown in
Table I. Three experimental levels, 4S1/2(mJ = −1/2), 3D5/2(mJ = −1/2), 3D5/2(mJ = +1/2), and an auxiliary 4S1/2(mJ =
+1/2) energy level correspond to the first, second, third, and fourth dimension of the matrix, respectively.
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TABLE I. The corresponding relationship between the energy levels and matrix elements Mqp.

4S1/2(mJ = −1/2) 3D5/2(mJ = −1/2) 3D5/2(mJ = +1/2) 4S1/2(mJ = +1/2)

4S1/2(mJ = −1/2) M11 M12 M13 M14

3D5/2(mJ = −1/2) M21 M22 M23 M24

3D5/2(mJ = +1/2) M31 M32 M33 M34

4S1/2(mJ = +1/2) M41 M42 M43 M44

The x component of the spin angular momentum in the three-dimensional space is

Jx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠. (A1)

When �(tβ − tα ) �= π , let �τ = ε, then the unitary evolution operator can be written as

Uβα = e−iH(tβ−tα ) = e−iJx�(tβ−tα ) = e−iJxε =

⎛
⎜⎜⎜⎝

1
2 + cos ε

2
−i sin ε√

2
− 1

2 + cos ε
2

−i sin ε√
2

cos ε −i sin ε√
2

− 1
2 + cos ε

2
−i sin ε√

2
1
2 + cos ε

2

⎞
⎟⎟⎟⎠. (A2)

According to the method in Ref. [22], Uβα can be decomposed into

Uβα =

⎛
⎜⎜⎜⎝

√
2(1+cos ε)√

5+4 cos ε−cos 2ε

2i sin ε√
5+4 cos ε−cos 2ε

0

− 2i sin ε√
5+4 cos ε−cos 2ε

−
√

2(1+cos ε)√
5+4 cos ε−cos 2ε

0

0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

cos2 ε
2

√
3−cos ε√

2|cos ε
2 | 0 1

2 (−1 + cos ε)

0 1 0

1
2 (−1 + cos ε) 0 − cos2 ε

2

√
3−cos ε√

2|cos ε
2 |

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

1 0 0

0 −1−cos ε

|cos ε
2 |√6−2 cos ε

2i sin ε√
5+4 cos ε−cos 2ε

0 2i sin ε√
5+4 cos ε−cos 2ε

−1−cos ε

|cos ε
2 |√6−2 cos ε

⎞
⎟⎟⎟⎠. (A3)

In Sec. II, we have derived that only matrices in the form of Eq. (17) can be realized in the trapped-ion system, and its form is

R(θ, ϕ) =
(

cos θ
2 −i sin θ

2 e−iϕ

−i sin θ
2 eiϕ cos θ

2

)
. (A4)

We note that the forms of the matrices in Eq. (A3) are different from Eq. (A4). We first expand the three matrices in Eq. (A3)
from three-dimensional to four-dimensional:

Uβα =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2(1+cos ε)√

5+4 cos ε−cos 2ε

2i sin ε√
5+4 cos ε−cos 2ε

0 0

− 2i sin ε√
5+4 cos ε−cos 2ε

−
√

2(1+cos ε)√
5+4 cos ε−cos 2ε

0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

cos2 ε
2

√
3−cos ε√

2|cos ε
2 | 0 1

2 (−1 + cos ε) 0

0 1 0 0

1
2 (−1 + cos ε) 0 − cos2 ε

2

√
3−cos ε√

2|cos ε
2 | 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1−cos ε

|cos ε
2 |√6−2 cos ε

2i sin ε√
5+4 cos ε−cos 2ε

0

0 2i sin ε√
5+4 cos ε−cos 2ε

−1−cos ε

|cos ε
2 |√6−2 cos ε

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠. (A5)

Observe the form of Eq. (A4), where the positive and negative signs of the diagonal elements are the same, and the positive and
negative signs of the antidiagonal elements can be the same or the opposite. For the first matrix in Eq. (A5), which does not meet
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this requirement, we can transform it into

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2(1+cos ε)√

5+4 cos ε−cos 2ε

2i sin ε√
5+4 cos ε−cos 2ε

0 0

− 2i sin ε√
5+4 cos ε−cos 2ε

−
√

2(1+cos ε)√
5+4 cos ε−cos 2ε

0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2(1+cos ε)√

5+4 cos ε−cos 2ε

2i sin ε√
5+4 cos ε−cos 2ε

0 0

2i sin ε√
5+4 cos ε−cos 2ε

√
2(1+cos ε)√

5+4 cos ε−cos 2ε
0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(A6)

Similarly, the second matrix in Eq. (A5) needs a similar transformation:

⎛
⎜⎜⎜⎜⎜⎜⎝

cos2 ε
2

√
3−cos ε√

2|cos ε
2 | 0 1

2 (−1 + cos ε) 0

0 1 0 0

1
2 (−1 + cos ε) 0 − cos2 ε

2

√
3−cos ε√

2|cos ε
2 | 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

cos2 ε
2

√
3−cos ε√

2|cos ε
2 | 0 1

2 (−1 + cos ε) 0

0 1 0 0

− 1
2 (−1 + cos ε) 0

cos2 ε
2

√
3−cos ε√

2|cos ε
2 | 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A7)

The third matrix in Eq. (A5) conforms to the form of Eq. (A4), but it involves an infeasible coupling between 3D5/2(mJ = −1/2)
level and 3D5/2(mJ = +1/2) level. We convert it to the coupling of 4S1/2 level and 3D5/2 level:

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1−cos ε

|cos ε
2 |√6−2 cos ε

2i sin ε√
5+4 cos ε−cos 2ε

0

0 2i sin ε√
5+4 cos ε−cos 2ε

−1−cos ε

|cos ε
2 |√6−2 cos ε

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

−1−cos ε

|cos ε
2 |√6−2 cos ε

0 2i sin ε√
5+4 cos ε−cos 2ε

0

0 1 0 0

2i sin ε√
5+4 cos ε−cos 2ε

0 −1−cos ε

|cos ε
2 |√6−2 cos ε

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠. (A8)

Combining Eqs. (A6), (A7), and (A8), and the matrix element M44 of the second matrix on the right side of the equal sign of the
Eqs. (A6) and (A7) can be taken as positive under the premise that the product is unchanged, we finally get

Uβα =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2(1+cos ε)√

5+4 cos ε−cos 2ε

2i sin ε√
5+4 cos ε−cos 2ε

0 0

2i sin ε√
5+4 cos ε−cos 2ε

√
2(1+cos ε)√

5+4 cos ε−cos 2ε
0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

cos2 ε
2

√
3−cos ε√

2|cos ε
2 | 0 1

2 (−1 + cos ε) 0

0 1 0 0

− 1
2 (−1 + cos ε) 0

cos2 ε
2

√
3−cos ε√

2|cos ε
2 | 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

−1−cos ε

|cos ε
2 |√6−2 cos ε

0 2i sin ε√
5+4 cos ε−cos 2ε

0

0 1 0 0

2i sin ε√
5+4 cos ε−cos 2ε

0 −1−cos ε

|cos ε
2 |√6−2 cos ε

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠. (A9)
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TABLE II. The probability of three states and their sum.

Serial Probability Probability Probability
number in |0〉 in |1〉 in |2〉 Sum

1 94.07% 0.82% 5.06% 99.95%
2 68.20% 3.73% 27.88% 99.81%
3 34.91% 12.01% 52.66% 99.58%
4 7.38% 49.53% 42.66% 99.57%
5 2.51% 69.63% 27.58% 99.72%
6 1.94% 92.82% 4.85% 99.61%

APPENDIX B: DISCUSSION ON MEASUREMENT
METHOD UNDER THE VSUR

We prepared the initial state of the ion in state |0〉 and
randomly selected some unitary evolutions to control the ion
state. Then we measured the three states of |0〉, |1〉, and |2〉,
respectively. The specific measurement process is to measure

state |0〉 first, then we exchange state |0〉 with state |1〉 and
measure whether the ion is in the 4S1/2(mJ = −1/2) level.
Next, we exchange state |0〉 this moment with state |2〉 and
measure whether the ion is in the 4S1/2(mJ = −1/2) level.
The experiment was repeated 10 000 times to obtain the prob-
abilities of the ion being in states |0〉, |1〉, and |2〉, respectively.
The probabilities were added together to see if their sum was
100%. Our experimental results are shown in Table II.

Table II shows that the sum of the probabilities of the
three states is above 99.5%. In this experiment, there are two
state exchange processes. The fidelity of each state exchange
process is about 99.5%, so the overall fidelity of the two state
exchange processes is about 99%. Therefore, our measure-
ment results are within the measurement error allowed by the
evolution fidelity. This result can be explained as follows: In
our experiment, the energy level spacing between adjacent
Zeeman levels is about 2π×4.4 MHz, and the Rabi frequency
is about 2π×8 kHz, so the probability of nonresonant transi-
tion is almost zero.
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