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Thermal devices powered by generalized measurements with indefinite causal order
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A quantum-controlled device may produce a scenario in which two general quantum operations can be
performed in such a way that it is not possible to associate a definite order for the operation’s application.
Such an indefinite causal order can be explored to produce nontrivial effects in quantum thermal devices. We
investigate a measurement-powered thermal device that consists of generalized measurement channels with
adjustable intensity parameters, where energy is exchanged with the apparatus in the form of work or heat.
The measurement-based device can operate as a heat engine, a thermal accelerator, or a refrigerator, according
to a measurement intensity setting. By employing a quantum switch of two measurement channels, we explore
a thermal device fueled by an indefinite causal order. We also discuss how a coherent control over an indefinite
causal order structure can change the operating regimes of the measurement-powered thermal device to produce
an advantage when compared to a scenario with an incoherent control of the order switch.
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I. INTRODUCTION

A systematic understanding of the superposition principle
and its role applied to quantum systems and quantum-
controlled processes as well are essential to a deeper
understanding of many foundational and applied questions
such as the indefiniteness of realism in quantum systems
[1,2], wave-and-particle duality [3–5], thermodynamic arrow
of time [6–8], and quantum gravity [9,10]. The quantum-
controlled switch of the application order of two or more
quantum maps showed new counterintuitive predictions con-
cerning the possibility to have an indefinite causal order
[11–18]. Processes with indefinite causal order were explored
with several novel advantages and applications for quantum
computation [11,19,20], communication [21–26], metrology
[27], and quantum thermodynamics [8,28–32].

Quantum thermodynamics [33–35] emphasized the rel-
evance of thermal and quantum fluctuations [36–40] for
proper manipulation of the system’s energetic [41]. The recent
development of quantum thermal devices can find possible ap-
plications in the emerging downscale technologies [37,38,42–
52]. A new class of thermal devices powered by quantum
measurements was introduced and they were realized by ex-
ploring the fact that measurements on a quantum system
were invasive and may change its internal energy [53–55].
Employing nonselective measurements, a single temperature
heat engine without feedback control to extract work was
recently introduced [53]. In addition, several measurement-
based thermodynamic protocols were studied in the last few
years [42,56–79]. Recently, a proof-of-concept experiment
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of a spin heat engine powered by generalized measurements
employing a nuclear magnetic resonance platform [79] was
performed. The cycle consists in two nonselective general-
ized measurements channels with adjustable measurement
strengths, one dedicated to fueling the device, then playing
the role of a heat source, and the other committed to work
extraction when applied in an isentropic way. By changing the
internal energy in an isentropic way, the working substance is
considered informationally closed in a way that this operation
can be recognized as work extraction. An interesting point,
which was observed in the experimental results reported in
Ref. [79], is that this kind of quantum thermal device can
reach unit efficiency while also achieving maximum extracted
power at the same time with the fine-tuning of the measure-
ment strengths.

Thermodynamic tasks, for instance, cooling quantum
systems, are pivotal to many applications in quantum tech-
nologies. Considering further applications, it is of significant
importance to look for methods to perform such thermo-
dynamic tasks on quantum devices in fast and efficient
ways. Interestingly, the intrinsic indefiniteness in the causal
structure revealed by a quantum-controlled process (with in-
definite causal order) was recently employed to perform a
refrigerator cycle [28,80], which suggests a new kind of
nonclassical resource for a thermodynamic task [8,28]. A
quantum-controlled switch of two processes was present in
an investigation of a possible indefinite thermodynamic ar-
row of time [8]. It was demonstrated how the entropy of
a quantum system can distinguish between two directions
(forward and backward evolution) of a mutually time-reversal
thermodynamic processes [8]. This was done by extending the
so-called two-point measurements (TPM) [33,34,36] protocol
to encompass indefinite causal order structures to analyze
their consequences on the stochastic work distribution per-
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formed on each thermodynamic evolution (in the forward
and backward direction). Moreover, it was demonstrated how
quantum interference effects can be used to reduce undesired
thermal fluctuations resulting from an effective quantum-
controlled superposition of a heat engine and a power-driven
refrigeration [8].

In this work, we first present a nonselective generalized
measurement powered cycle that can operate in the thermal
accelerator, heat engine, or refrigerator modes, by just ad-
justing the generalized measurement parameters. The cycle
is composed of two measurement channels, one playing the
role of heat source and another dedicated to invest or extract
work. By employing information-theoretical quantities, we
show the impossibility to extract work directly from a thermal
equilibrium state using an isentropic nonselective generalized
measurement channel. Thus, it is necessary to pass through
one or more nonequilibrium states before extracting work
using a nonselective generalized measurement channel. In the
following, we employ a quantum-controlled switch of the two
causal orders in which the measurement channels are being
applied to explore unusual quantum interference effects on the
performance of thermal devices. More specifically, the device
operation regime is extended to encompass a parameter’s set
in which it does not operate when the causal order of the
measurement channels is defined. The difference between a
coherent and incoherent control of the order switcher will also
be explored.

II. THERMAL DEVICES POWERED
BY GENERALIZED MEASUREMENTS

Quantum heat engines allow work extraction from a heat
flow from hot to cold thermal baths, while thermal accelera-
tors reinforce this natural heat flow by investing energy in the
form of work. On the other hand, quantum refrigerators have
the purpose of pumping heat from a cold to a hot environment
by investing work.

The quantum thermal devices proposed here perform cy-
cles with the use of only one temperature reservoir which will
be considered as a cold environment and a set of nonselec-
tive generalized measurements that will act upon a two-level
working or cooling substance. The generalized measurements
are described as completely positive and trace-preserving
(CPTP) maps with varying measurement parameters. It can
be implemented in experimental contexts by building suit-
able positive operator-valued measurements (POVMs), as
performed, for instance, in Ref. [79] in a proof-of-concept
experiment using nuclear magnetic resonance techniques to
investigate a spin quantum heat engine driven by nonselective
weak measurements without feedback control. The specific
outcome of the generalized measurement is associated with
a given probability and to have a deterministic result of the
cycle, we also consider here two nonselective (without post-
selection) generalized measurements channels with suitable
adjusted parameters, with the only difference that instead
of working with the generalized measurements investigated
in Ref. [79], we change their structure to make easy the
further analysis for the reverse order and quantum switch
protocols. A measurement apparatus can be modeled as a
device that has some microscopic quantum degrees of free-

FIG. 1. Generalized measurements powered thermal device.
(a) Schematic representation of the quantum thermal cycle powered
by generalized measurements. In the first stroke, the system is initial-
ized in the cold thermal equilibrium state ρ (1) at inverse temperature
β. The second stroke is a generalized measurement channel Ma with
a varying measurement (strength) parameter a. The third stroke is
another generalized measurement Mb with a varying measurement
parameter b. Both measurement channels represent nonselective
measurements. (b) Description of the measurement parameter setting
to perform the measurement powered cycle in three operation modes:
accelerator, engine, or refrigerator.

dom which are further coupled to a macroscopic pointer to
amplify the measurement information to the classical realm.
Along the generalized measurement thermal cycle, energy is
exchanged with two different meters via the interaction of the
system with the meter’s internal degrees of freedom. When
the measurement channel changes the von Neumann entropy
of the working or cooling substance, the stochastic energy
exchanged with the meter is recognized as heat. On the other
hand, when the von Neumann entropy remains constant along
the measurement channel (isentropic channel), the energy ex-
changed with the meter has a nature of work [67,79,81].

A. Thermal devices operated in the forward order

The generalized measurements’ powered cycle consists of
three strokes, depicted in Fig. 1(a). We consider a single-qubit
working or cooling substance, however, the ideas presented
here can be generalized to others’ systems. The first stroke
is a full thermalization with a cold environment, so that the
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working or cooling substance will be initialized in a ther-
mal (Gibbs) equilibrium state ρ (1) = exp[−βH]/Z at inverse
spin temperature β = 1/(kBT ), with Z = tr[exp(−βH )] as
the associated partition function and a generic Hamiltonian
H = −εσz (where σ(x,y,z) are the usual Pauli matrices and 2ε

is the energy gap) that will be fixed along the cycle.
In the second stroke, the working or cooling substance

undergoes a nonselective measurement channel whose effect
can be described by a CPTP map with a Kraus decompo-
sition Ma : ρ (1) → ρ (2) = ∑

j Ma
j ρ

(1)Ma†
j . For this channel,

we choose the following Kraus operators Ma
1 = √

1 − a|0〉〈0|,
Ma

2 = √
1 − a|0〉〈1|, Ma

3 = √
a|1〉〈1|, and Ma

4 = √
a|1〉〈0|,

with measurement parameter a. The POVM associated to jth
generalized measurement outcome is Ma†

j Ma
j [occurs with

probability tr(Ma†
j Ma

j ρ
(1) )] and satisfies

∑
j Ma†

j Ma
j = 1. Af-

ter the application of the measurement channel, the working
substance evolves to the out-of-equilibrium state (with rela-
tion to the cold environment) ρ (2) = Ma(ρ (1) ). In this stage,
the meter A leads to a change in the system internal energy
given by

〈�U (2)〉 = tr[H (ρ (2) − ρ (1) )]

= 2ε

[
a − 1

2
[1 − tanh(βε)]

]
.

(1)

The von Neumann entropy variation �S(2) = S(ρ (2) ) −
S(ρ (1) ) [with S(ρ) = −trρ ln ρ] for the measurement channel
A can be written as function of the binary entropy h(u) :=
−u ln(u) − (1 − u) ln(u), as

�S(2) = h(a) − h

(
1

2
[1 − tanh(βε)]

)
. (2)

It is straightforward to note that for a = 1
2 [1 ± tanh(βε)]

this measurement channel is isentropic, and consequently, the
energy exchange with meter occurs in the form of work.
Meanwhile, for 1

2 [1 − tanh(βε)] < a < 1
2 [1 + tanh(βε)] it

has a positive entropy variation �S(2) > 0. In this case the
meter will supply energy in the form of heat to the system.

In the third stroke, another measurement channel will be
applied Mb : ρ (2) → ρ (3) = ∑

j Mb
j ρ

(2)Mb†
j with the Kraus

operators Mb
1 = √

1 − b|1〉〈1|, Mb
2 = √

1 − b|1〉〈0|, Mb
3 =√

b|0〉〈0|, and Mb
4 = √

b|0〉〈1|. In this stroke the associated
POVM is Mb†

j Mb
j with

∑
j Mb†

j Mb
j = 1. After the measure-

ment channel B, the system will be in the state ρ (3) =
Mb[Ma(ρ (1) )]. In this stage, the mean internal energy vari-
ation of the system due to the measurement channel and the
entropy variation are

〈�U (3)〉 = tr[H (ρ (3) − ρ (2) )] = 2ε(1 − a − b), (3)

and

�S(3) = h(b) − h(a), (4)

respectively.
To close the cycle, the working or cooling substance will

interact again with the cold environment at inverse tempera-
ture β. The system’s internal energy change (heat exchange

with the cold environment) is given by

〈�U (1)〉 = tr[H (ρ (1) − ρ (3) )]

= −2ε

[
1

2
[1 + tanh(βε)] − b

]
.

(5)

Depending on the choices of the measurement channel
parameters a and b, the cycle can act as an engine, a thermal
accelerator, or a refrigerator. First, if we adjust the mea-
surement channel B interaction parameter to have the same
intensity as in the channel A, i.e., b = a, it leads to an isen-
tropic process in the stroke three �S(3) = 0, but with a change
in the internal energy given by 〈�U (3)〉 = 2ε(1 − 2a) and re-
lated to a work absorbed or delivered from or to the measuring
apparatus B.

To operate the thermal quantum device in the accelera-
tor and heat engine modes, we should have in the stroke
two 〈�U (2)〉 = Qhot > 0 equivalent to a flow of stochastic
energy from the meter A to the system. For the thermal
accelerator, the measurement parameter of the channel A is
limited by 1

2 [1 − tanh(βε)] < a < 1
2 and for the engine mode

it is constrained as 1
2 � a < 1

2 [1 + tanh(βε)]. Such intervals
combined with parameter choice b = a in the measurement
channel B result in 〈�U (3)〉 = W > 0 in the accelerator mode
and 〈�U (3)〉 = W � 0 for the engine mode. In both operation
modes 〈�U (1)〉 = Qcold < 0 will be the heat delivered to the
thermal bath to close the cycle.

The refrigerator mode is obtained when we explore the
first measurement channel (A) as a source of thermodynamic
work, adjusting the measurement parameter as a = [1 +
tanh(βε)]/2. In this case W = 〈�U (2)〉 = 2ε tanh(βε) > 0
and the channel A turns out to be an isentropic one �S(2) = 0.
In the next stages a heat flow from the cold environment to the
meter B is implemented by adjusting b > 1

2 [1 + tanh(βε)],
which leads to 〈�U (3)〉 = Qhot < 0, 〈�U (1)〉 = Qcold > 0,
and �S(3) > 0. In this regime a heat flux form the cold en-
vironment to the meter B will be established.

The possible measurement parameters’ choices and the
operation modes of the quantum thermal device are illustrated
in Fig. 1(b). The operation mode of each generalized mea-
surement powered cycle is also sketched in Figs. 2(a) to 2(c)
in terms of the internal energy and von Neumann entropy
variations.

Before commenting on the figures of merit for each oper-
ation mode, let us rewrite Eqs. (1), (3), and (5) in terms of
entropic quantities. The internal energy variation in the �th
stroke can be written as

β〈�U (�)〉 = �S(�) + �S(ρ (�)||ρ (1) ), (6)

where we introduced the difference of relative entropy with
respect to the thermal state, defined as �S(ρ (�)||ρ (1) ) ≡
S(ρ (�)||ρ (1) ) − S(ρ (�−1)||ρ (1) ) (for � = 1 we adopt ρ (�−1) =
ρ (3)), S(ρ (�)||ρ (1) ) = tr[(ρ (�) − ρ (1) ) ln ρ (1)] is the relative en-
tropy, and the von Neumann entropy variation is �S(�) ≡
S(�) − S(�−1) (for � = 1 we adopt S(�−1) = S(3)).

From Eq. (6), we observe a general result that it is not
possible to extract work directly from a thermal equilibrium
state using only an isentropic nonselective measurement chan-
nel. To make this point clear, suppose that in the second
stroke we perform a general isentropic map, so �S(2) = 0
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FIG. 2. Thermal devices powered by non-selective generalized
measurements. (a) Engine cycle. Straining from a thermalization
with the cold environment two generalized measurement channels
are sequentially applied. The Ma channel increases the energy and
von Neumann entropy of the working substance (heat absorption
from the meter A), while the second measurement Mb is dedicated
to work extraction (to the meter B) by changing the internal energy
in an isentropic way. (b) Thermal accelerator cycle, with the first
measurement parameter adjusted (in the meter A) to increase energy
and entropy of the working substance, while the second measurement
channel adds energy in an isentropic way (work invested by the
meter B). (c) Refrigerator cycle, with a first isentropic measurement
channel (meter A), which performs work on the system, while the
second measurement parameter is now adjusted to produce a heat
flux from the cold environment to the meter B.

and the internal energy variation turns out to be 〈�U (2)〉 =
kBT S(ρ (2)||ρ (1) ) � 0 since the relative entropy is nonnegative,
work can only be inserted in the system. Therefore, to extract
work from a nonselective generalized measurement protocol
it is necessary to perform measurement channels that lead
the system to an out-of-equilibrium state before applying the
extracting work channel. Of course, using selective measure-
ments or its combination with a feedback control protocol,
it is possible to extract work from the system in a thermal
state probabilistically [82–84]. It is interesting to emphasize at
this point that the present model of a thermal device powered
by measurements is deterministic since we are considering
the complete set of outcomes of the measurement without
postselection.

The figure of merit for the accelerator mode is the coef-
ficient of performance (COPacc) giving by the ratio between
heat delivered to the cold environment (〈�U (1)〉 = Qcold) and
the amount of work invested (〈�U (3)〉 = W) that can be
written as

COPacc = −Qcold

W = S(ρ (3)||ρ (1) ) + �S2

S(ρ (3)||ρ (1) ) − S(ρ (2)||ρ (1) )

= 1

2

(
1 − tanh(βε)

2a − 1

)
. (7)

The efficiency in the heat engine mode is given by the
amount of extracted work from the system by the meter B
(Wext = −〈�U (3)〉) divided by the amount of heat absorbed
from the meter A,

η = Wext

Qhot
= S(ρ (2)||ρ (1) ) − S(ρ (3)||ρ (1) )

S(ρ (2)||ρ (1) ) + �S2

= 2

(
1 + tanh(βε)

2a − 1

)−1

.

(8)

In the refrigerator mode, the coefficient of performance
(COPref) is defined as the ratio between the amount of heat
absorbed from the cold environment and the work invested by
the measurement channel Ma,

COPref = Qcold

W = �S1 − S(ρ (3)||ρ (1) )

S(ρ (2)||ρ (1) )

=
(

b − 1

2

)
coth(βε) − 1

2
.

(9)

In addition to the microscopic informational analysis, the
figures of merit for each operation mode written in terms
of the entropy quantities are useful for designing different
measurement channels for each thermodynamic task.

B. Thermal devices operated in the backward order

Before introducing the switch model for the two gen-
eralized nonselective measurements, first let us discuss the
result of changing the causal order in which the maps (A
and B) are being applied. In other words, we consider in the
following the reverse order of the cycle in Sec. II A. It is
straightforward from the symmetry of the maps that chang-
ing the channel A by B is the same as using the following
relation b′ = 1 − a. Then it is easy to recover the engine,
thermal accelerator, and refrigerator operating regimes with
the reverse order of the sequential measurement channels,
B followed by A. When carrying out the first measurement
channel Mb′

after the first thermalization, the average change
in internal energy of the working substance is 〈�U (2)〉 =
2ε{ 1

2 [1 + tanh(βε)] − b′}. Note that this value corresponds
to Eq. (1) with b′ = 1 − a. In the third stroke, we consider
now Ma′

to have 〈�U (3)〉 = 2ε(a′ + b′ − 1), which can be
identified with Eq. (3) with a′ = 1 − b and b′ = 1 − a. The
heat engine and thermal accelerator can be obtained setting
a′ = b′ in such a way that the regimes are inverted in the
reverse order 1

2 [1 − tanh(βε)] < a′ � 1
2 for the thermal ac-

celerator and 1
2 < a′ < 1

2 [1 + tanh(βε)] for the heat engine.
Then we can write COPacc = 1

2 (1 + tanh(βε)
2b′−1 ) and η = 2(1 −

tanh(βε)
2b′−1 )−1. The refrigerator can be found by adjusting a′ <

b′ = 1
2 [1 − tanh(βε)] with COPref = ( 1

2 − a′)coth(βε) − 1
2 .

In the following, we explore the employment of the quantum
switch to investigate the role of indefinite causal order in the
measurement-based thermal devices.

III. QUANTUM SWITCH OF THE GENERALIZED
MEASUREMENT CHANNELS

In this section we examine the quantum switch of causal
orders between the two measurement channels in the cycle
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FIG. 3. Indefinite causal order between measurement channels
Ma and Mb. (a) Coherent control of generalized measurement chan-
nels causal order which is realized by projecting the controller in
an orthogonal basis which produces in each postselected results an
indefinite causal order. (b) Schematic description of the incoherent
mixtures of causal orders which are implemented by tracing (nonob-
serving) the control qubit. This is equivalent to a stochastic control of
the two causal orders of the measurement maps, i.e., Mb[Ma(ρ (1) )]
with probability pa→b and Ma[Mb(ρ (1) )] with probability pb→a.

described in the previous section. With that, we will be able to
explore quantum interference associated with different appli-
cation orders to enhance a thermal cycle based on generalized
measurements.

The nonclassical switch of causal orders is realized by
employing a quantum-controlled device, which here will be a
control qubit parametrized as |cθ 〉 = cos θ

2 |0〉 + sin θ
2 |1〉 (0 �

θ � π ). We choose to associate the control qubit state |0〉 with
the sequential application of the channels A and B (as in the
previous section), while the state |1〉 will be associated with
the switched order of the channels’ application, as depicted
in Fig. 3(a). When the controller has initial coherence, it is
possible to obtain an indefinite causal order for the measure-
ment maps application [28,32]. Let us consider the case when
the measurement parameters of the channels A and B are
chosen as b = a [accelerator and engine modes as depicted
in Fig. 1(b)]. In this setting, we can construct the Kraus de-
composition of the resulting map from the quantum switch of
channels A and B as described by the following operators:

Ki j := Mb
i Ma

j ⊗ |0〉c〈0| + Ma
j Mb

i ⊗ |1〉c〈1|, (10)

FIG. 4. Probability for the projection of the causal order con-
troller in the state |x−〉. We note that p− varies from 38% to 50%.
The probability for the projection of the causal order controller in
the state |x+〉 is complementary to the figure since p+ = 1 − p−.

where Ma
j and Mb

i denote the Kraus operators acting on
the working system for the channels Ma and Mb, respec-
tively, and the projectors |�〉c〈�| (� = 0, 1) lie in the quantum
controller space. The resulting CPTP map for the quantum
controlled channels has 16 operators to be applied in the
composite system-controller state

ρsw =
∑

i j

Ki j (ρ
(1) ⊗ ρc)K†

i j, (11)

where ρ (1) is the system initial Gibbs state and ρc = |cθ 〉〈cθ | is
the controller initial state. We now have an interpolation con-
trolled by 0 < θ < π between the two measurement channels’
causal orders that are settled for θ = 0 (the natural order) and
θ = π (the switched order), respectively.

We note that, if the quantum controller is not observed, an
incoherent mixture of the two causal orders of the measure-
ment maps is obtained

ρsw
inc = trc(ρsw) = cos2

(
θ

2

)
ρ (ab) + sin2

(
θ

2

)
ρ (ba), (12)

with ρ (ab) = Mb[Ma(ρ (1) )] (natural channels causal order)
and ρ (ba) = Ma[Mb(ρ (1) )] (switched channels causal order).
This scenario is depicted in Fig. 3(b). Moreover, by rewriting
Eq. (12) as ρsw

inc = 1
2I + (a − 1/2) cos (θ )σz, it becomes clear

that, for the quantum controller angle θ = π/2, we have a
maximal mixture for any choice of the measurement parame-
ter a and the same happens when a = 1/2 for any choice of
the quantum controller angle θ .

Let us now consider the indefinite causal order sce-
nario by projecting the controller system in an orthogonal
basis, |x±〉 = (|0〉 ± |1〉)/

√
2. These two projective measure-

ments on the causal order controller happen with probability
p± = [1 ± a(1 − a) sin θ ]/2 (displayed in Fig. 4). After the
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postselection of the controller measurement, the working sub-
stance state turns out to be

ρ (±) = 1

2p±
ρsw

inc +
(

1 − 1

2p±

)
ρ (1). (13)

The differences between the incoherent and coherent (with
postselection) control of causal orders are remarkable in the
present context. First, when both measurement channels Ma

and Mb are applied after the first thermalization stroke in each
defined order (natural or switched), it completely erases the
information of the initial equilibrium state, the states ρ (ab)

and ρ (ba) [in Eq. (12)] do not carry any information about
the cold environment temperature (although in the limits of
the measurement parameter, these states depend on the initial
thermal state). Second, when we project the controller on a
state of an orthogonal basis (|x±〉), it is clear from Eq. (13)
that we have an interpolation (as a function of the parameters
a and θ ) between the incoherent mixture of the two orders of
the measurement maps (natural and switched) and the initial
thermal state. Then this partial erasing of the initial thermal
state information can be interpreted as being the result of
quantum interference effects between the two causal orders
with a quantum control. In the following, we discuss how to
use this quantum interference effect on the order controller to
enhance the performance of a thermal device.

IV. THERMAL DEVICES POWERED BY GENERALIZED
MEASUREMENTS WITH INDEFINITE CAUSAL ORDER

A. Coherent controlled-device

Here we will explore the distinct operation modes of the
measurement powered thermal device with indefinite causal
order of the measurement channels Ma and Mb, as illustrated
in Figs. 5(a) and 5(b). Again in the first stroke we consider
a thermalization with the cold environment, initializing the
system in the thermal equilibrium state ρ (1) at inverse temper-
ature β. Now the second stroke [for the accelerator and engine
modes as depicted in Fig. 5(a)] is the quantum controlled
switch of the measurement channels’ (A and B) causal orders,
as discussed in the previous section. Such a causal order will
be controlled by the parameter θ and the controller state will
be further postselected by a projective measurement, resulting
in the state (13). In this case, the internal energy variation in
the second stroke will be given by

〈�U (2),(±)〉 = ε

2p±
[(1 − 2a) cos (θ ) + tanh(βε)], (14)

where index ± refers to each possible outcome of the quantum
controller selective measurement in the orthogonal basis, |x±〉.
The von Neumann entropy variation for the second stroke
with indefinite causal order as �S(2),(±) = S(ρ (±) ) − S(ρ (1) )
[where ρ (±) is defined in Eq. (13)]. A not-null variation of
the von Neumann entropy indicates heat flux to or from the
meter, in this way the internal energy variation is associ-
ated to the heat transfer Q(±)

hot = 〈�U (2),(±)〉. As discussed
before, an isentropic variation of energy can occur for the
state in thermal equilibrium only when the following equality
is satisfied: 〈�U (2),(±)〉 = 2ε tanh(βε). Let us introduce the

FIG. 5. Quantum thermal device with indefinite causal order
between measurement channels Ma and Mb. (a) Accelerator and
engine cycles. Starting from the cold thermal equilibrium state at
inverse temperature β (stroke 1), measurement channels (Ma and
Mb) with indefinite causal order are applied (stroke 2) transferring
heat from the meters to the working substance. Next, the isentropic
measurement channel Mc is applied to extract or invest work (stroke
3). (b) Refrigerator cycle. Starting from the cold thermal equilibrium
state, the isentropic measurement channel Md is applied to invest
work (stroke 2). Next measurement channels (Ma and Mb) with
indefinite causal order are applied (stroke 3) to establish a heat flux
from the cold environment to the meters.

following useful function:

�± ≡ 1

4p±

(
1 + 1 − 2a

tanh(βε)
cos (θ )

)
, (15)

to evaluate the operation regimes of the quantum device.
The condition �± = 1 implies in an isentropic process
(�S(2),(±) = 0). At this point, it is noteworthy that for the
choice of measurement parameters b = a (for the channels
A and B), a particular quantum controller of causal orders,
θ = π/2 (with maximum initial coherence) is not able to
produce an isentropic variation of the internal energy in the
second stroke with indefinite causal order since there is no
solution to reach the condition �± = 1. Another limit is to
emphasize what happens when the switch operation does not
change the initial thermal equilibrium state, which is associ-
ated to the condition �± = 0. If the condition 0 < �± < 1
is satisfied, the quantum thermal device with indefinite causal
order can operate as an accelerator or an engine (Q(±)

hot > 0
and �S(2),(±) > 0). In Figs. 6(a) and 6(b) we display the heat
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FIG. 6. Heat and invested work for the quantum engine and accelerator with indefinite causal order of measurement channels. (a) Heat
absorbed from the meters A and B as a function of the measurement parameter a (b = a) and the causal-order-control parameter θ , considering
the projection of the causal order controller in |x+〉. (b) Absorbed heat considering the projection of the causal order controller in |x−〉. (c) Work
by the channel Mc considering the projection of the causal order controller in |x+〉. (d) Work considering the projection of the causal order
controller in |x−〉. The thermal device operates as an engine when W (±) � 0 (blue color gradient) and it is a thermal accelerator when W (±) > 0
(red color gradient). The gray regions are excluded from the respective operation modes. All quantities were computed for βε = 1.39.

absorbed from the meters (A and B) in the second stroke
as a function of the measurement parameter a (with b = a)
and the causal-order-control parameter θ , excluding the region
out of the limit for �± (out of the accelerator and engine
operation mode).

Next we consider an additional isentropic generalized mea-
surement channel M(c) to extract or invest work from or
on the system in the stroke three, as illustrated in Fig. 5(a).
The Kraus decomposition of the generalized measurement
channel M(c) will be the same of the channel M(b) re-
placing the measurement parameter b by w±, explicitly
given by Mc

1 = √
1 − w±|1〉〈1|, Mc

2 = √
1 − w±|1〉〈0|, Mc

3 =√
w±|0〉〈0|, and Mc

4 = √
w±|0〉〈1|. The isentropic nonselec-

tive measurement (�S(3),(±) = 0) is performed, adjusting the
measurement parameter of the channel C, accordingly with p±
and θ , as

w± = 1

2p±

[
1

2
−

(
a − 1

2

)
cos(θ )

]

+
(

1 − 1

2p±

)
1

2
[1 − tanh(βε)]. (16)

From this choice follows that the internal energy variation in
this third stroke (performed by the measurement channel Mc)
will be given by

W (±) = 〈�U (3),(±)〉 = tr{H[Mc(ρ (±) ) − ρ (±)]}
= ε

p±
[(2a − 1) cos(θ ) + (2p± − 1) tanh(βε)], (17)

where W (±) > 0 means work investment, or W (±) < 0 is
related to work extraction in the measurement channel C.
In Figs. 6(c) and 6(d) we display the invested work to the
meter C in the third stroke as a function of the measurement
parameter a (with b = a) and the causal-order-control param-
eter θ , excluding the region out of the accelerator and engine
operation mode. Negative values of W (±) are associated with
the engine operation mode and positive ones represent the
thermal accelerator mode. In the interval 1/2 < �± < 1 the
device operates as an engine, whereas in the complementary
interval 0 < �± < 1/2) the device is a thermal accelerator.

It is interesting to note that, for the measurement powered
cycle with definite causal order presented in Sec. II, no work

can be invested or extracted with nonselective generalized
measurements (in the third stroke) when we set a = 1/2,
which leads to ρ (2) = Ma(ρ (1) ) = I/2, a maximal mixture
state. When we consider an incoherent control of the causal
order, the state just after the second stroke will be given by
Eq. (12) and if we set a = 1/2 (and/or θ = π/2) it turns out
to be the maximal mixture state. So in this case no work can
be invested or extracted with further nonselective generalized
measurements (in the third stroke). Remarkably, for coherent
control of the causal order (with a postselection on an orthog-
onal basis), it is possible to invest or extract work (in the
third stroke) when we set a = 1/2 (or/and θ = π/2) owing
to quantum interference effects of the indefinite causal order
of the measurement channels A and B. This result can be
observed in Figs. 6(c) and 6(d).

Finally, to close the cycle, the system interacts again with
the cold environment and the internal energy variation is
given by

Q(±)
cold = 〈�U (1),(±)〉 = tr[H (ρ (1) − Mc(ρ (±) )]

= − ε

2p±
[(2a − 1) cos(θ ) − (1 − 4p±) tanh(βε)].

(18)
In both the accelerator and engine operation modes Q(±)

cold < 0.
The efficiency for the engine mode of the device with

indefinite causal order can be written as

η(±) = 2 − 1

�±
. (19)

The coefficient of performance of the thermal accelerator
mode turns out to be

COPacc,(±) = 1 −
(

2 − 1

�±

)−1

. (20)

The figures of merit for both operation modes’ thermal accel-
erator and engine are displayed in Figs. 7(a) to 7(d), where we
consider the projection of the causal order controller on the
state |x±〉.

The operation of the quantum thermal device with indef-
inite causal order depends on the projective measurement
of the order-controller qubit. In a cycle implementation, the
generalized measurement channels’ parameters should be
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FIG. 7. Engine efficiency and accelerator COP with indefinite causal order of measurement channels. (a) Efficiency in the engine operation
mode, considering the projection of the causal order controller in |x+〉. (b) Efficiency in the engine operation mode, considering the projection
of the causal order controller in |x−〉. (c) Coefficient of performance in the thermal accelerator mode, considering the projection of the causal
order controller in |x+〉. (d) Coefficient of performance in the thermal accelerator mode, considering the projection of the causal order controller
in |x−〉. The gray regions are excluded from the respective operation modes. All quantities were computed for βε = 1.39.

adjusted according to one of the possible outcomes ± for the
controller projection. In the case of an undesired measurement
outcome one should restart the aforementioned cycle before
investing or extracting work and repeat the switch operation
until the desired projective result is obtained. In this sense,
there is no need to include the probabilistic effect on the
figures of merit for these both thermal modes (accelerator and
engine). Of course, this probabilistic operation will affect the
device power in contrast with the deterministic operation of
the definite causal order device introduced in the Sec. II. The
success probability for the projection of the controller qubit in
the state |x−〉, in our example, varies from about 38% to 50%
as displayed in Fig. 4.

It is also possible to set the generalized measurement-
powered thermal device with indefinite causal order to operate
in the refrigerator mode. To this end, we will consider in
the second stroke the isentropic generalized measurement
channel Md and the indefinite causal order of channels
Ma and Mb in the third stroke, as illustrated in Fig. 5(b).
The Kraus decomposition of the generalized measurement
channel M(d ) will be the same of the channel M(a) replac-
ing the measurement parameter a by d , explicitly given by
Md

1 = √
1 − d|0〉〈0|, Md

2 = √
1 − d|0〉〈1|, Md

3 = √
d|1〉〈1|,

and Md
4 = √

d|1〉〈0|. Setting d = [1 + tanh(βε)]/2, we en-
sure that �S(2) = 0 and the invested work in this stroke will be
given by

Winv = 〈�U (2)〉 = 2ε tanh(βε) > 0. (21)

In next stages a heat flow from the cold environment to the
meters A and B will be stabilized with the indefinite causal
order of later measurement channels. In this case the internal
energy variation in the third stroke will be written as

Q(±)
hot = 〈�U (3),(±)〉

= − ε

2p±
{[2a − 1) cos(θ ) + tanh(βε)]}, (22)

where we considered the following �± < 0, which leads to
Q(±)

hot < 0 heat delivered to the meter.
Finally, the thermalization with cold environment closes

the cycle, resulting in the heat exchange with the cold

reservoir as

Q(±)
cold = 〈�U (1),(±)〉

= ε

2p±
[(2a − 1) cos(θ ) + (1 − 4p±) tanh(βε)]. (23)

The device will absorb heat from the cold environment
(Q±

cold) > 0.
The coefficient of the performance of the refrigerator setup

with indefinite causal order is

COPref,(±) = Q(±)
cold

Winv
= 1

2p±
− (�± + 1). (24)

In Fig. 8, we display the COPref,(±) considering the projection
of the causal order controller in state |x±〉.

The refrigerator powered by a generalized measurement
with indefinite causal order also depends on the projective
measurement on the order-controller qubit. The probability of
success, in this case, is also displayed in Fig. 4. In the case
of an undesired measurement outcome, the work invested in
the second stroke can be completely recovered by a subse-
quent isentropic measurement channel (work channel) and the
protocol should be repeated to get the desired projection on
the order-controller qubit. Of course, the probabilistic nature

FIG. 8. Refrigerator COP with indefinite causal order of mea-
surement channels. (a) Coefficient of performance in the refrigerator
mode, considering the projection of the causal order controller in
|x+〉. (b) Coefficient of performance in the refrigerator mode, con-
sidering the projection of the causal order controller in |x−〉. The
gray regions are excluded from the respective operation modes. Both
quantities were computed for βε = 0.45.
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FIG. 9. Thermal device with incoherent causal order control. (a) Heat absorbed from the meters A and B as function of parameters a
and θ . (b) Work invested by the channel Mc. (c) Efficiency in the engine mode. (d) Coefficient of performance in the accelerator mode. The
gray regions are excluded from the respective operation modes. All quantities were computed considering the scenario where the causal order
controller is not observed (incoherent control) and for βε = 1.39.

of the refrigerator protocol with indefinite causal order will
affect the cooling rate.

B. Incoherent controlled-device

To highlight the differences between applying a coherent or
incoherent quantum control to perform the order switch of the
measurement channels (i.e., the differences between having
quantum interference effects or just a stochastic mixture of
the orders), we now analyze the incoherent mixture of the
two causal orders of the measurement maps (A and B) and
compare it with the engine or accelerator modes developed
with coherent control. In this case, the quantum controller is
not observed as depicted in Fig. 3(b). The incoherent switch of
the causal order will be employed in the second stroke, lead-
ing the working substance to the state described in Eq. (12).
Now, we introduce the following useful function to analyze
the regimes in which the thermal device with an incoherent
mixture of orders operates:

�inc ≡ 1

2

(
1 + 1 − 2a

tanh(βε)
cos (θ )

)
. (25)

Let us evaluate the scenario where the incoherent switch of
casual orders of the measurement maps A and B occurs in the
second stroke. Considering the interval 0 < �inc < 1, the heat
absorbed from the meters (Qinc

hot > 0) can be written as

Qinc
hot = ε[(1 − 2a) cos(θ ) + tanh(βε)]. (26)

In this respect, the von Neumann entropy variation is positive
�S(2),inc > 0. In Fig. 9(a), we display the absorbed heat in the
second stroke with incoherent causal order control.

Once again, we consider an additional isentropic gener-
alized measurement channel M(c) to extract or invest work
from or on the system in the stroke three. In the scenario with
incoherent causal order control, the measurement parameter
for the channel M(c) is

winc =
[

1

2
−

(
a − 1

2

)
cos(θ )

]
, (27)

while the Kraus decomposition has the form introduced in
the previous section replacing w± by winc. This choice turns
the measurement channel C into an isentropic nonselective
measurement for the incoherent controlled device, so the the

work (in the third stroke) may be written as

W inc = 2ε[(2a − 1) cos(θ )]. (28)

For the negative values of work [blue region in Fig. 9(b)],
which happens for 1

2 < �inc < 1, the device operates as an
engine with efficiency

ηinc = 2

[
1 + tanh(βε)

(1 − 2a) cos(θ )

]−1

= 2 − 1

�inc
. (29)

While for positive values of work [red region in Fig. 9(b)],
which happens for 0 < �inc < 1

2 , the device operates as an
thermal accelerator with coefficient of performance

COPacc,inc = 1

2

[
1 − tanh(βε)

(1 − 2a) cos(θ )

]

= 1 −
(

2 − 1

�inc

)−1

. (30)

Figures 9(c) and 9(d) display the engine efficiency and
the accelerator COP for the thermal device with incoherent
causal order control. In this scenario, the thermal device op-
erates in a deterministic way since the causal-order-control
qubit is not observed. The differences between coherent and
incoherent causal order control are prominent and can be
straightforwardly observed by comparing Figs. 6(c) and 6(d)
with Fig. 9(b). In particular, we notice that when we set
the measurement parameter as a = 1/2 or the causal order
parameter as θ = π/2, it is not possible to invest or extract
work (in the third stroke) in the incoherent case [Fig. 9(b)]. On
the order hand, in the coherent case it turns out to be a possible
work extraction or investment due to quantum interference
effects of the indefinite causal order for the measurement
channels [Figs. 6(c) and 6(d)].

Finally, employing the auxiliary functions �± and �inc,
one can easily demonstrate for a fixed parameters pair (a, θ )
where it is possible to obtain an advantage by employing
coherent control over its incoherent version in the thermal
device. For instance, consider the engine efficiencies for
the two versions of the order controller given by Eqs. (19)
and (29). For a fixed pair of parameters, it is straightfor-
ward to verify that the advantage for work extraction occurs
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whenever the condition �± > �inc is satisfied, which is asso-
ciated with p± < 1

2 . Therefore, as can be observed in Fig. 4,
the probability for the projection on |x−〉 of the quantum
controlled device enhances the heat engine performance for
all the points in operation mode except where p− = 1

2 . More-
over, the maximum advantage (with coherent control) occurs
for the two values in which the incoherent version has always
a null efficiency, i.e., for a = 1

2 and θ = π
2 [as observed com-

paring Figs. 7(b) and 9(c)]. The same argument can be applied
for the projection in |x+〉, which can fuel the performance of
the accelerator mode by employing measurements with indef-
inite causal order to enhance the natural heat flux (from the
meters to the cold environment) with lesser invested work in
relation to the incoherent mixture of the measurement orders.

V. CONCLUSION

We introduced a quantum thermal device model pow-
ered by nonselective generalized measurements. Setting the
measurement parameter, the device can operate as a ther-
mal accelerator (transferring heat from the meter to a cold
environment), an engine (extracting work to the meter), or
a refrigerator (transferring heat from the cold environment
to the meter). In this context, we discussed the impossi-
bility of extracting work using a nonselective generalized
measurement directly from an equilibrium thermal state and
highlighted the need for a set of nonselective measurement
channels (that lead to a nonequilibrium state in the inter-
mediate stages) for such a task. We also investigated the
implication of an indefinite causal order in the measurement
channels, controlled by an ancillary quantum system. We
explored the notion of a quantum switch of the measure-
ment channels to extend the operation regimes of the device.
As can be observed in the figures of merit for the devices
with indefinite causal order of the measurement channels, by
comparing the order control parameter, set as θ = 0 (with-
out order switch) and 0 < θ < π (with order switch). Such
performance behavior is associated with interference effects
given by the indefinite causal orders which cannot be obtained
for the specific values of measurement parameters and the
initial coherence of the quantum controlled device in both
definite orders of measurement application and also on the
incoherent mixture of them. Moreover, we also demonstrated
that the coherent control over the order switcher enhances
the device performance for some parameters settings over the
incoherent case.

The superposition principle of quantum mechanics offers
the possibility of controlling operations beyond classical ca-
pabilities. In particular, the quantum switch of operations
with coherent control has been claimed to present a genuine
superposition of causal orders. In particular, the interpretation
of such proposals as realizations of a process with indefinite
causal structure has recently been questioned [85–87]. In fact,
there is an interesting and ongoing debate concerning causal

structures, with counterpoints to some objections [88]. In
Ref. [85], the authors argued that, in contrast to the gravi-
tational switch, the current experimental implementations do
not feature superposition of space-time causal orders and that
they are variants of the time double-slit experiment [85]. An-
other recent investigation can be found in Ref. [87], where it
was argued that any physical implementation of an indefinite
order process can ultimately be fine-grained to one that admits
a fixed acyclic information-theoretic causal order that is com-
patible with the space-time causal order. On the other hand, a
counterpoint to the discussion is presented in Ref. [88], where
the authors introduced an unambiguous definition of causal
order between two events in terms of the proper time of a third
particle. From such a definition different notions of indefinite
causal order (information-theoretic and gravitational) were
connected. A superposition of causal order that cannot be
rendered definite was also explored in Ref. [88].

Regardless of the discussion associated with the causal
order interpretation, the quantum control of operations in
thermodynamic cycles leads to new effects that cannot be
reproduced with incoherent control of the same operations
[28–30,32]. Indeed, our results corroborate that there are
effects for work extraction in the measurement-powered quan-
tum thermal devices that are observed with indefinite causal
order and cannot be observed using the same operations with
a definite order. A similar conclusion can be seen regarding
activation of work extraction when quantum maps are applied
with indefinite causal order using finite-time regime protocols
[32]. By employing the notion of ergotropy, which quantifies
the maximal work that can be extracted from a quantum sys-
tem through a cyclic unitary transformation of the reference
Hamiltonians’ parameters, gain was observed in ergotropy
with the quantum switch of the maps compared to their con-
secutive application in Ref. [32]. Further developments in this
context would be associated with exploring nonsymmetrical
measurement parameters on the quantum switch operation
and the role of an initial coherence in the system due to a
not complete thermalization (with a cold environment) in a
finite-time regime.
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tion of thermodynamic evolutions with opposing time’s arrows,
Commun. Phys. 4, 251 (2021).

[9] L. Hardy, Towards quantum gravity: A framework for prob-
abilistic theories with non-fixed causal structure, J. Phys. A:
Math. Theor. 40, 3081 (2007).

[10] M. Zych, F. Costa, I. Pikovski, and Č. Brukner, Bell’s theorem
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L. M. Procopio, Č. Brukner, and P. Walther, Experimental ver-
ification of an indefinite causal order, Sci. Adv. 3, e1602589
(2017).

[16] O. Oreshkov, Time-delocalized quantum subsystems and op-
erations: On the existence of processes with indefinite causal
structure in quantum mechanics, Quantum 3, 206 (2019).

[17] K. Goswami, C. Giarmatzi, M. Kewming, F. Costa, C.
Branciard, J. Romero, and A. G. White, Indefinite Causal Order
in a Quantum Switch, Phys. Rev. Lett. 121, 090503 (2018).

[18] K. Goswami and J. Romero, Experiments on quantum causality,
AVS Quantum Sci. 2, 037101 (2020).
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