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Partition-function estimation: Quantum and quantum-inspired algorithms
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We present two algorithms, one quantum and one classical, for estimating partition functions of quantum
spin Hamiltonians. The first is a DQC1 (deterministic quantum computation with one clean qubit) algorithm.
The second, for real temperatures, achieves performance comparable to a state-of-the-art DQC1 algorithm
[A. N. Chowdhury, R. D. Somma, and Y. Subaşi, Phys. Rev. A 103, 032422 (2021)]. Both our algorithms take
as input the Hamiltonian decomposed as a linear combination Pauli operators. We show this decomposition to
be DQC1-hard for a given Hamiltonian, providing insight into the hardness of estimating partition functions.
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I. INTRODUCTION

It is hoped that quantum computational devices will make
more tractable classically intractable computations required
for the study of condensed matter systems, including those in
materials science, quantum chemistry [1], and farther afield
[2]. Meanwhile, classical computers remain the sole route
to unravelling the properties of strongly correlated quantum
systems such as the two-dimensional Hubbard model [3] or a
chain of hydrogen atoms [4].

Central among such problems is the computation of parti-
tion functions, which embody all thermodynamic information
of a system at equilibrium. Evaluating partition functions of
spin systems exactly is #P-hard [5] in the worst case [6,7].
Their exact evaluation is thus unlikely to be efficient with
either classical or quantum devices. The complexity barriers
to exact evaluation are often circumvented by aiming for
approximations, provided the error can be limited. However,
this can still be prohibitively hard [8]. Approximating the
partition function for the classical Ising model with com-
plex coefficients, even on the two-dimensional (2D) square
lattice, to exponentially large additive (absolute) error, is
bounded-error quantum polynomial (BQP)-hard [9,10]. This
makes it unlikely to be tractable on classical computers,
but may be possible on a BQP device [11,12]. Furthermore,
for logarithmically local quantum Hamiltonians, obtaining an
approximation (of the partition function) to additive error
exponential in both the size (N) of the system and the product
of the inverse temperature (β) with the sum of the lowest
eigenvalue of each Hamiltonian term is deterministic quantum
computation with one clean qubit (DQC1)-hard [13].

Deterministic quantum computation with one clean qubit
(DQC1) [14,15] is a complexity class believed to properly
contain BPP but not be equivalent to BQP [16–18]. It is
therefore not expected to be efficiently simulable classically
to within multiplicative (relative) error unless the polynomial
hierarchy collapses to the second level [19].

Lately, the concepts of quantum computation have been de-
ployed to develop quantum-inspired classical algorithms [20].

Not only can these often unexpected results be useful in and
of themselves [21], but also provide en passant insight into
the distinctions between classical and quantum computation
[22]. They also can be used more readily, rather than waiting
for quantum technology to mature.

In this paper, we present a quantum-inspired classical algo-
rithm for approximating partition functions of quantum spin
Hamiltonians at real temperatures to multiplicative error. Its
complexity is comparable (see Table I) to a state-of-the-art
DQC1 algorithm for the same problem [13]. Along the way,
we also present a DQC1 algorithm for the same task at com-
plex temperatures to additive error. The Hamiltonian input
to our algorithms is expressed as a linear decomposition of
Pauli operators with real coefficients. Given a Hamiltonian as
a set of circuits implementing each term and the associated
coefficients (the form required for input to the algorithm in
Ref. [13]), we show the task of obtaining this decomposition
to be DQC1-hard in the worst case.

Our paper thus provides an alternative perspective on the
hardness of estimating partition functions, one requiring no
mention of the sign problem [24]. It is rather based on the
hardness of decomposing a Hamiltonian into a linear combi-
nation of tensor products of Pauli operators. As the task of
simulating quantum spin systems often begins with such a de-
composition, their hardness may be dubbed the decomposition
problem.

II. DQC1 ALGORITHM

The DQC1 model of quantum computation takes as inputs
the completely mixed state, a single qubit in the state |0〉, and
a description of a unitary U as illustrated in Fig. 1. Estimating
(via sampling) the expectation value of the first qubit with
bounded error gives the output: an estimate of the normalized
trace of the unitary operator U [14].

The partition function Z for a HamiltonianH at a complex
inverse temperature β = bR + ibI , bR, bI ∈ R, is given by

Z = Tr(exp(−βH)) = Tr[exp(−bRH) exp(−ibIH)]. (1)
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TABLE I. Lower bound on the expected runtime of our quantum-
inspired classical algorithm vis-a-vis the DQC1 algorithm from
Ref. [13] for approximating the partition function (Z) of an N-qubit
Hamiltonian H consisting of L terms with multiplicative error εm.
ξ is the largest absolute value of the coefficients of the Pauli de-
composition of H and β is the inverse temperature. Finally, CH ∼
O[polylog(N )] is an overhead for implementing required unitaries
in Ref. [13] using a quantum walk operator [23]. The two runtimes
being similar despite one algorithm being quantum and the other
classical is not a contradiction, from a complexity perspective, as
mapping from the input for Ref. [13] to the corresponding input for
the algorithm presented herein is DQC1-hard.

Algorithm Computational model Lower bound on expected runtime

This paper Classical (BPP) O( L2β2ξ2

ε2
m ln (εm+1)

[ eLβξ 2N

Z ]2)

Ref. [13] Quantum (DQC1) O(CH
L3β2ξ2

ε2
m

[ eLβξ 2N

Z ]2)

Estimating the partition function using a DQC1 algorithm
would require quantum circuits for the operators exp(−bRH)
and exp(−ibIH). These may be thought of as imaginary and
real time evolutions, respectively. We implement both approx-
imately using the first-order Trotter decomposition. However,
as exp(−bRH) is not unitary, we cannot implement it directly
and so have to implement it “in the aggregate” by implement-
ing various unitaries with different probabilities to implement
it up to an easily calculated factor (see lemma 1 for how this
is done). This factor is corrected for by considering its effect
on the DQC1 trace estimation algorithm (as in Fig. 1).

Our DQC1 algorithm partition function estimation has
two sources of errors: from sampling and from the Trotter
decomposition. Their origins lie in the trace estimation and
the approximation by the first-order Trotter decomposition of
the operators in Eq. (1), respectively, as outlined in the two
preceding paragraphs. Denoting these errors in the additive
case as εaS and εaT, the total additive error in our algorithm is
bounded by εa = εaS + εaT.

Given an εaT, the number of Trotter steps ν required to
achieve it depends on the specifics of the problem. Let H =∑L

j=1 h jP j be a N-qubit Hamiltonian, where h j ∈ R, each
P j = P1 ⊗ P2 ⊗ · · · ⊗ Pn, acts on some subset of n � N
qubits labeled by j and P j ∈ {I,X,Y,Z} is the set of single-
qubit operators. Then the first-order Trotter decomposition of
the imaginary time evolution is given by

TR ≈ exp(−bRH), where TR =
⎡
⎣ L∏

j=1

exp(c jP j )

⎤
⎦

ν

, (2)

|0〉

I
2N

H

U

FIG. 1. DQC1 circuit for estimating Tr(U )/2N for a N-qubit
unitary U . Its real and imaginary parts are obtained by measuring
the X and Y Pauli operators, respectively, on the first qubit [14].

Γ1 Γ−1
1

Γ2 Γ−1
2

Γ3 Γ−1
3

Γ3 ecjZ Γ−1
4

FIG. 2. Gadget implementing the imaginary time (nonuni-
tary) evolution exp(−bRH) on n = 4 qubits. With each � j ∈
{H, Rx (π/2)}.

where ν is the number of Trotter steps and c j = −bRh j/ν.
TI ≈ exp(−ibIH) for the real time evolution is defined simi-
larly with bR replaced by ibI (and we use the same number of
Trotter steps for convenience). Trotter expansions have been
well studied for real time evolutions [25–28]. In the following,
we adapt the approach in Ref. [25] for the imaginary time
evolution. We restrict ourselves to the first order given the
dominance of gate errors over Trotter errors in near-term
devices [29].

These approximate operators lead to an approximation of
the partition function

Z ≈ ZT ≡ Tr(TRTI ) such that |Z − ZT| � εaT. (3)

The number of Trotter steps ν required to achieve this Trotter
error is given by Theorem 1.

Theorem 1. The number of Trotter steps ν required to
implement the operator exp(−βH) using first-order Trotter
decomposition with additive Trotter error, in the trace, εaT is

ν = O

(
1

εaT
2N |β|2�2 exp(bR�)

)
, (4)

where � = ∑L
j=1 |h j |.

The proof is in Appendix A.
Each of these Trotter steps can be implemented as in

Ref. [25] (for real time) or via the gadget in Fig. 2 (for
the imaginary time), which is based on the methods of the
authors of Ref. [25]. The correctness of Fig. 2 is proven in
Appendix B. It uses lemma 1, which holds because the Pauli
operators square to the identity and is proved below.

Lemma 1. Let c ∈ R and P (I) be the tensor product of
single-qubit Pauli, including identities, (identity) operators on
any number of qubits. Then

exp(cP) = (cosh c)I+ sinh |c|(	(c)P), (5)

where 	(c) denotes the sign of c.
Proof. For r ∈ R, expanding

exp(rP) =
∞∑
j=0

(
(rP) j

j!

)
(6)

=
∞∑
j=0

(
(rP)2 j

(2 j)!
+ (rP)2 j+1

(2 j + 1)!

)
(7)
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FIG. 3. Quantum circuits corresponding to the two terms in
Eq. (5).

=
∞∑
j=0

(
r2 j (P2) j

(2 j)!
+ r2 j+1(P2) jP

(2 j + 1)!

)
. (8)

As P2 = I,

exp(rP) =
∞∑
j=0

(
r2 jI
(2 j)!

+ r2 j+1P

(2 j + 1)!

)
(9)

=
∞∑
j=0

(
r2 j

(2 j)!

)
I+

∞∑
j=0

(
r2 j+1

(2 j + 1)!

)
P (10)

= (cosh r)I+ (sinh r)P. (11)

As cosh c/exp |c| and sinh |c|/exp |c| are positive and sum
to unity, they may be treated as probabilities. This allows
the nonunitary imaginary time evolution ecjZ (as in Fig. 2)
to be effectively implemented, up to the constant exp |c j |,
by instead applying 	(c)Z with probability sinh |c|. This
implementation of ecjZ is exactly what is used in our partition-
function estimation algorithm.

Indeed, the quantum circuits corresponding to both terms
in Eq. (5) are reducible to single-qubit gates, as illustrated
in Fig. 3. The sign 	(c j ) associated with c j is omitted there
and is applied as a phase when implementing the Pauli [as
the entire implementation of exp(cP) is controlled this is not
an overall phase]. This probabilistic implementation of the
nonunitary evolution contributes to the sampling error in our
algorithm.

In particular, given an εaS, the number of samples νS (or
repetitions of the circuit in Fig. 1) required to achieve it is

νS = O

(
1

ε2
aS

22N exp(2|bR|�)

)
. (12)

Algorithm 1. Algorithm for partition function estimation to
multiplicative (relative) error.

Input : hj,P j, L, N, β, νB, Zmax, δ, εmS

Set ApproxNum = 0
ZR = Zmax

RequiredTrotterSteps = νB

ZRPrime = 0
while ZR � ZRPrime do

ApproxNum++
ZR = Zmax

2ApproxNum

absError = εmS

2
× ZR

deltaPrime = 6δ

π 2 × ApproxNum2

Fraction = AES(hj,P j, β, νB, L, N, δεaS)
ZRPrime = Fraction × 2N exp(β�)

Output : ZRPrime

The runtime of our DQC1 algorithm is given by the product
of the bounds in Eqs. (4) and (12).

III. CLASSICAL ALGORITHM

Our quantum-inspired classical algorithm differs in two
respects from the preceding DQC1 algorithm. It takes a real
inverse temperature β ∈ R as input and outputs an estimate of
the partition function

Z = Tr[exp(−βH)] (13)

to multiplicative error. This classical algorithm is stated as
algorithm 1 (which, in turn, relies on algorithm 2). The clas-
sical algorithm is essentially the same as the aforementioned
DQC1 algorithm but the insistence on the inverse temperature
being real now means all the gates in Figs. 1 and 3 are Clifford
(for our purposes, it is most important that the right-hand side
of Fig. 3 consists entirely of Pauli gates as ∀k ∈ N, �kZ�−1

k
reduces to a single Pauli gate, via lemma 3. Consequently,
the right-hand side of Fig. 3 can be implemented classically
[30,31] and so can a controlled version of Fig. 3 (as required
for our algorithm). Again, there are two sources of errors:
from the Trotter decomposition and from sampling.

We consider the Trotter error first. If the multiplicative
Trotter error in approximating Z by ZT = Tr(TR) is given by
εmT, then

|Z − ZT| � ZεmT, (14)

Algorithm 2. Additive error samples (AES).

Input : hj,P j, β, νB, L, N, δ, εaS

Set SAMPLES = ∅
numSamples = �−2 ln(δ)/ε2

abs�
k = 1
for k � numSamples do

SAMPLE = SSA(hj,P j, β, νB, L, N)
Add SAMPLE to SAMPLES
k+ = 1

Output : Average of SAMPLES
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Algorithm 3. Single Sample Algorithm (SSA).

Input : hj,P j, β, νB, L, N
Set CIRCUIT = I.
while (k � νB) do

for ( j � L) do
RAND = uniformly random number in [0, 1]

if (RAND � sinh |c j |
e|c j | ) then

CIRCUIT = CIRCUIT × 	(c j )P j

DQC1 = Circuit in Fig. 1 applied with U = CIRCUIT
INITIAL = uniformly selected N-bit binary string.
SAMPLE = Outcome of classically evaluating DQC1 on INITIAL.
Output : SAMPLE

and the number of Trotter steps ν is determined by theorem 2.
Its proof is in Appendix C and uses methods from Ref. [32].

To fully exploit mutual noncommutativity among the terms
ofH, we require the notion of the noncommuting set [32].

Definition 1 (kth noncommuting set). The kth noncom-
muting set ζk is the set of all terms in the Hamiltonian
H = ∑L

j=1 h jP j that do not commute with the kth term of
the Hamiltonian Pk .

Theorem 2. The number of Trotter steps ν required to ap-
proximate Z = Tr[exp(−βH)] up to multiplicative error εmT

using the first-order Trotter decomposition is

ν � β2�h

ln(1 + εmT)
, (15)

where � = ∑L
j=1 |h j | and h = ∑L

k=2 |hk|Nk with Nk = |{z �
k such that z ∈ ζk}|.

For the sampling error, we follow Ref. [13, algorithm 3]
(For completeness, we present it as algorithm 1.). It shows
that estimates with successively smaller additive error lead to
an estimate to within the required multiplicative error, with
probability as high as required. If the multiplicative sampling
error is εmS and Zmax an upper bound on the value of the
partition function, then this algorithm provides an estimate ZS

of ZT in Eq. (14) such that

Pr(|ZT − ZS| � ZTεmS) � 1 − δ, (16)

where δ > 0 is the upper bound on the probability of obtaining
an estimate beyond the precision εmS. The runtime of this
algorithm is a random variable with an expected value of [13]

TS = O

[
22N exp(2β�)

ε2
mSZ2

log2

(
1

δ

)
log2

(
Zmax

ZT

)]
. (17)

The multiplicative Trotter and sampling errors in our esti-
mation algorithm for the partition function combine to give a
total multiplicative error εm such that

εm = εmS + εmT + εmSεmT. (18)

This follows from Eqs. (14) and (16), the positivity of the
partition functions, their estimates, and the errors. Using this
in conjunction with Eqs. (15) and (17) and neglecting the
log2(·) contributions gives the total expected runtime of our
classical algorithm as in Table I. It is comparable to that of the
DQC1 algorithm in Ref. [13], despite the belief that DQC1 is

more powerful than classical computation [14–18]. This is be-
cause the two algorithms take as input the Hamiltonian in two
different forms which encode different degrees of hardness, as
we will show in Sec. IV

To complete this section, we formally present our classical
algorithm. Our algorithm takes as inputs a N-qubit Hamilto-
nian H = ∑L

j=1 h jP j described by h j,P j, L, a real inverse
temperature β, the multiplicative sampling error εmS, the
upper bound on the probability δ of obtaining an estimate
beyond this precision, the number of Trotter steps νB given by
the RHS of [Eq. (15)] achieving a designated multiplicative
Trotter error in the estimate of the partition function, as well
as its maximum value Zmax. The methods of obtaining multi-
plicative error bounds from additive error bounds is identical
to algorithm 3 in Ref. [13], except for the exponential factors
in the last line.

IV. HARDNESS OF PARTITION FUNCTION ESTIMATION

Our classical algorithm requires the Hamiltonian input as a
linear combination of tensor products of Pauli operators. This
is a special case of the Hamiltonian input as a linear combina-
tion of unitary operators, each of which can be implemented
by an efficient quantum circuit, which is the input format
Ref. [13] requires. We now show that given a Hamiltonian, as
a linear combination of unitary operators with the associated
circuit, obtaining the same Hamiltonian as a linear combina-
tion of tensor products of Pauli operators (what our algorithm
takes as input) is DQC1-hard. This shows that part of the
hardness of estimating partition functions of quantum spin
Hamiltonians may be ascribed to a decomposition problem.

We begin with a formal statement of the decomposition
problem.

Definition 2 (Obtaining an H decomposition). Given an
N-qubit Hermitian operator H as a set of poly(N ) positive
coefficients ci and unitary operators Ui, the latter described by
poly(N )-sized quantum circuits each such that H = ∑

i ciUi,

a N-qubit Pauli operator σ , δ � 0, δ = poly(n), and a bit Re
or Im, the goal is to output either r̂ or t̂ , depending on whether
the bit is Re or Im, such that

|r̂ − Re(Tr(σH ))| � δ, (19)

|t̂ − Im(Tr(σH ))| � δ. (20)

We also define a problem of known hardness: that of esti-
mating up to polynomial additive error the real or imaginary
part of the coefficient of a unitary in its Pauli expansion.

Definition 3 (Obtaining a U decomposition). Given an N-
qubit unitary operator U as a poly(N )-sized quantum circuit,
an N-qubit Pauli operator σ , δ � 0, δ = Poly(n), and a bit Re
or Im, the goal is to output either r̂ or t̂ , depending on whether
the bit is Re or Im, such that

|r̂ − Re[Tr(σU )]| � δ, (21)

|t̂ − Im[Tr(σU )]| � δ. (22)

Theorem 3 ([14]). Obtaining a U decomposition is DQC1-
hard.
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We prove that obtaining a U decomposition can be poly-
nomially transformed into obtaining a H decomposition, thus
the hardness of the latter.

Theorem 4. Obtaining a U decomposition �p Obtaining an
H decomposition. Therefore, obtaining an H decomposition is
DQC1-hard.

Proof. It suffices to provide a polynomial-time algorithm
for transforming the inputs to the problem of obtaining a U
decomposition into the inputs of obtaining an H decompo-
sition problem, such that the transformed problem has same
output as the original. This algorithm does the following: It
takes as input the circuit description of U . It generates the
description of U † by reversing the circuit and conjugating all
the gates. In the case we are asked to calculate the real part
of the coefficient corresponding to σ , the algorithm generates
the output {{

1
2 ,U

}
,
{

1
2 ,U †

}}
, σ, δ, Re. (23)

This is a valid input to the problem of obtaining a
H-decomposition as 1

2 (U + U †) is Hermitian and the descrip-
tions of the unitary operators are of polynomial size. We also
have

Re

[
Tr

(
σ

U + U †

2

)]
= Re[Tr(σU )] + Re{Tr[(Uσ )†]}

2
(24)

= Re[Tr(σU )] + Re[Tr(σU )∗]

2
(25)

= Re[Tr(σU )]. (26)

Thus, the output of the transformed problem will be the same
estimate with the same precision as in the original problem.

Similarly, if we are asked to calculate the imaginary part
of the coefficient that corresponds to Pauli σ , the algorithm
generates the output{{

− i

2
,U

}
,

{
i

2
,U †

}}
, σ, δ,

A bit specifying the real or imaginary part. (27)

Again, this is a valid input to the problem of obtaining a
H decomposition because i

2 (U † − U ) is Hermitian and the
descriptions of the unitary operators are of polynomial size.
We also have

Re

[
Tr

(
iσ

U † − U

2

)]

= Re[−iTr(σU )] + Re{Tr[(−iUσ )†]}
2

(28)

= Re[Tr(−iσU )] + Re[Tr(−iσU )∗]

2
(29)

= Im[Tr(σU )], (30)

and the same reasoning as before applies for the output. The
hardness follows directly from theorem 3. �

V. NUMERICAL RESULTS

As the purpose of an algorithm is to solve a problem,
we now present results of numerical investigations into our
classical partition function estimation algorithm (algorithm

FIG. 4. Histogram of the multiplicative (relative) error in our
algorithm’s estimation of 100 randomly generated Hamiltonians on
between one and three spins.

1). To recapitulate, our classical algorithm is designed for
real temperatures and estimates the partition function up to
a multiplicative error.

We first experimentally verify the correctness of our al-
gorithm 1, although it follows formally from Ref. [13]. To
that end, we generate 100 Hamiltonians with (uniformly in
[−1,1]) random coefficients h j of up to L = 4 random Pauli
terms each acting on up to N = 3 spins. We then estimate
their partition functions at random real inverse temperatures β

using our algorithm 1 for εmS = εmT = 0.048, δ = 0.15, and
Zmax was set to twice the true value of the partition function.
The latter was obtained, up to numerical error, using full
diagonalization. Comparing the estimate and the true values
shows that our algorithm 1 indeed produces estimates well
within εm ≈ 0.098 of the exact value, as shown in Fig. 4.

To illustrate the performance of our algorithm in a problem
of interest, we resort to the two-dimensional (2D) one-band
Fermi-Hubbard model, solutions of which have been widely
studied using different numerical algorithms [3]. Its simplest
rendition is given by

H = −t
∑
〈i, j〉

σ ∈ {↑, ↓}

(
Ĉ†

i,σĈj,σ + Ĉ†
j,σĈi,σ

)+ U
∑

k

n̂k,↑n̂k,↓, (31)

where 〈i, j〉 indicates adjacent vertices i, j of a 2D graph,
Ĉ†

i,σ , Ĉi,σ , and n̂i,σ = Ĉ†
i,σĈi,σ denote Fermionic creation, an-

nihilation, and number operators, respectively, for spin σ at
vertex i of the graph. t denotes the nearest-neighbor hopping
strength and U the onsite interaction strength. It is typical
to set the energy scales in the Hamiltonian in terms of t .
Thus, the dimensionless onsite interaction strength is given
by Ũ = U/t and the dimensionless inverse temperature by
β̃ = βt .

Being inspired by a quantum algorithm (Ref. [13]), the
above Hamiltonian must undergo a Fermion to qubit mapping
before being fed into our algorithm 1. We use a recent low-
weight encoding [33] for this. For a 3 × 3 square lattice, this
leads to a Hamiltonian on N = 26 qubits with L = 60 terms.
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FIG. 5. Numerical test of time requirements. Darker red indi-
cates a greater value of the ratio of the time our algorithms takes
compared to full diagonalisation using ALPS. The black dots in-
dicate the value is given in Table II. These numbers were obtained
using a Dell PowerEdge C6420 with 2 x Intel Xeon Platinum 8268
(Cascade Lake) 2.9 GHz 24-core processors with 192 GB of (DDR4-
2933) RAM.

The projected ratio between the time to estimate the partition
function using our algorithm 1 (with εmS = εmT = 0.15, δ =
0.20) and the time to estimate using full diagonalization in
ALPS [34], is shown in Fig. 5. This enables a comparison
of the performance of our algorithm 1 against a recognised
benchmark, as illustrated in Table II. In line with keeping
this comparison valid, the choice of both the Hubbard model
and the low-weight encoding are not made to benefit either
our algorithm or exact diagonalization. Both are chosen as an
illustration of a scenario relevant for quantum simulation.

Unsurprisingly, in Fig. 5 and Table II, larger β̃ and Ũ
results in our algorithm performing comparatively worse.
Furthermore, an increase in β̃ has a larger effect than an
equivalent one in Ũ . The latter follows from Eq. (15) where
an increase in Ũ only increases some of the terms in �

and h, whereas an equivalent increase in β̃ is tantamount to
increasing all the terms in � and h.

As to the space requirements, our algorithm requires mem-
ory scaling linearly in N. This is favorable compared to full
diagonalization, which requires processing matrices exponen-
tially large in N and is thus very memory-intensive.

VI. CONCLUSION

Our paper provides a different perspective on the root of
the hardness of estimating partition functions. In this view,

TABLE II. The ratio of the time our algorithms takes compared
to full diagonalization using ALPS for the four marked points in
Fig. 5.

���������Ũ
β̃

0.25 1.25

1.25 0.0522 1.3043
0.25 0.0215 0.5351

the hardness of estimating partition functions may be due to
the decomposition problem. This vantage may provide useful
insights into the complexity of simulating hard quantum prob-
lems, as has been the case for the sign problem [35,36]. For
instance, the exponential contributions in our runtime (Table I)
arise from sampling [Eq. (17)]. These, and the runtime as
a whole, are independent of the sign of the Hamiltonian in
certain bases. Thus our classical algorithm may be exponential
even for sign-problem-free systems. However, it could be sig-
nificantly more efficient when the partition function is large.
Low temperatures, of typical interest, do not correspond to
such a scenario. Endeavors to explore other Hamiltonians and
parameters could be worthwhile given the general hardness
and importance of estimating partition functions.
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APPENDIX A: PROOF OF THEOREM 1

Following the main text, letTR,TI be the first-order Trotter
approximations to e−bRH, e−ibIH, respectively, with ν Trotter
steps. Denote

 = |Tr(e−βH) − Tr(TRTI )|. (A1)

Then,

 = |Tr(e−βH) − Tr(TRTI ) + Tr(e−bRHTI ) − Tr(e−bRHTI )|
= |Tr(e−bRH[e−ibIH − TI ]) + Tr([−TR + e−bRH]TI )|

(A2)

� |Tr(e−bRH[e−ibIH − TI ])| + |Tr([TR − e−bRH]TI )|.
(A3)

Denoting || · || as the spectral norm (the largest singular value)

 � 2N ||e−bRH[e−ibIH − TI ]|| + 2N ||[TR − e−bRH]TI ||
� 2N ||e−bRH||||e−ibIH − TI || + 2N ||TR − e−bRH||, (A4)

where we used the submultiplicative property of the spectral
norm and ||TI || = 1 as TI is a unitary. Lemma 2 shows that

||exp(−ibIH) − TI || � ν

∣∣∣∣
∣∣∣∣exp

(
−i

bI

ν
H
)

− TI,1

∣∣∣∣
∣∣∣∣,

(A5)

||TR − exp(−bRH)|| � ν exp

[(
1 − 1

ν

)
|bR|�

]∣∣∣∣∣
∣∣∣∣∣TR,1

− exp

(
−bR

ν
H
)∣∣∣∣
∣∣∣∣, (A6)
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where TR,1 = [TR]1/ν = ∏L
j=1 exp(c jP j ) denotes one Trotter

step for the imaginary time evolution, TI,1 similarly de-
notes one Trotter step for the real time evolution, and � =∑L

j=1 ||h jP|| = ∑L
j=1 |h j |.

Using these with lemma 1 in Ref. [32] for the first-order
Trotter expansion

||TR − exp(−bRH)|| = O

(
b2

R

ν
�2 exp(bR�)

)
and

||exp(−ibIH) − TI || = O

(
b2

I

ν
�2

)
. (A7)

Substituting these in Eq. (A4), and using Eq. (A18)

 � O

(
1

ν
2N�2|β|2 exp(bR�)

)
� εaT, (A8)

where the last inequality uses Eq. (3). Thus,

ν � O

(
1

εaT
2N�2|β|2 exp(bR�)

)
. (A9)

Lemma 2. For a HamiltonianH = ∑L
j=1 h jP and bR, bI ∈ R,

||TR − exp(−bRH)|| � ν exp

[(
1 − 1

ν

)
|bR|�

]∣∣∣∣
∣∣∣∣TR,1 − exp

(
−bR

ν
H
)∣∣∣∣
∣∣∣∣, (A10)

||exp(−ibIH) − TI || � ν

∣∣∣∣
∣∣∣∣exp

(
−i

bI

ν
H
)

− TI,1

∣∣∣∣
∣∣∣∣, (A11)

where � = ∑L
j=1 ||h jP|| = ∑L

j=1 |h j |.
Proof. Using the triangle inequality and submultiplicativity of the spectral norm

||TR − exp(−bRH)|| = ∣∣∣∣[TR,1]ν − exp(−bRH)
∣∣∣∣ (A12)

=
∣∣∣∣
∣∣∣∣[TR,1]ν − exp

(
−bR

ν
H
)

[TR,1]ν−1 + exp

(
−bR

ν
H
)

[TR,1]ν−1 − exp(−bRH)

∣∣∣∣
∣∣∣∣ (A13)

�
∣∣∣∣
∣∣∣∣[TR,1]ν − exp

(
−bR

ν
H
)

[TR,1]ν−1

∣∣∣∣
∣∣∣∣+

∣∣∣∣
∣∣∣∣ exp

(
−bR

ν
H
)

[TR,1]ν−1 − exp(−bRH)

∣∣∣∣
∣∣∣∣ (A14)

�
∣∣∣∣[TR,1]ν−1

∣∣∣∣∣∣∣∣
∣∣∣∣TR,1 − exp

(
−bR

ν
H
)∣∣∣∣
∣∣∣∣+

∣∣∣∣
∣∣∣∣exp

(
−bR

ν
H
)∣∣∣∣
∣∣∣∣
∣∣∣∣
∣∣∣∣[TR,1]ν−1 − exp

(
−bR

(
1 − 1

ν

)
H
)∣∣∣∣
∣∣∣∣.

(A15)

Recursively applying the above procedure for the second term

||TR − exp(−bRH)|| �

⎛
⎜⎜⎝ ∑

j,k�0
j+k=ν−1

∣∣∣∣
∣∣∣∣exp

(
−bR

ν
H
)∣∣∣∣
∣∣∣∣

j

||TR,1||k

⎞
⎟⎟⎠
∣∣∣∣
∣∣∣∣TR,1 − exp

(
−bR

ν
H
)∣∣∣∣
∣∣∣∣. (A16)

Since ||P|| = 1 and c j = −bRh j/ν,

||TR,1|| =
∣∣∣∣∣∣
∣∣∣∣∣∣

L∏
j=1

exp(c jP)

∣∣∣∣∣∣
∣∣∣∣∣∣ �

L∏
j=1

∣∣∣∣exp(c jP)
∣∣∣∣ � L∏

j=1

exp(|c j |) = exp

⎛
⎝ L∑

j=1

|c j |
⎞
⎠ = exp

( |bR|
ν

�

)
, (A17)

and ∣∣∣∣
∣∣∣∣exp

(
−bR

ν
H
)∣∣∣∣
∣∣∣∣ � exp

( |bR|
ν

�

)
. (A18)

Using the above bounds on each of the terms in the sum of Eq. (A16) gives the final result. The result for the real time evolution
follows similarly, albeit more simply as ||TI,1|| = 1 = || exp(−i bI

ν
H)||. �

APPENDIX B: IMPLEMENTING IMAGINARY TIME
EVOLUTION

In this Appendix, we show that gadgets in Fig. 2, analogous
to those in Ref. [25], can be used to implement imaginary time
evolutions such as exp(bRH).

1. Overview and preparatory lemmas

We denote by P = {X,Y,Z} the set of single-qubit Pauli
operators, by P j ∈ P a Pauli operator on qubit j, and by � j ∈
{H, Rx (π/2)} the single-qubit Hadamard gate and that which
implements a rotation about the x axis by π. Then
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Lemma 3. X = HZH and Y = Rx(π/2)ZRx(−π/2).
Proof. Follows from matrix multiplication. �
Lemma 4. For any real or complex number hj, given a

gadget for the time evolution of the Hamiltonian H1 = h j ·

Z1 ⊗Z2 ⊗Z3 ⊗ · · · ⊗Zn, on n qubits, the time evolution
of any Hamiltonian H2 = h j · P1 ⊗ P2 ⊗ · · · ⊗ Pn of Pauli
operators may be implemented through the addition of the
single-qubit gates �.

Proof. As each Pauli operator acts on a different qubit, they mutually commute, giving

eH2 = ehj ·P1⊗P2⊗···⊗Pn =
∞∑

k=0

(
(h j · P1P2 · · ·Pn)k

k!

)
=

∞∑
k=0

(
(h j )k (P1)k (P2)k · · · (Pn)k

k!

)
, (B1)

where we suppressed the ⊗ for brevity. Using lemma 3, Pi = �iZi�
−1
i , gives

eH2 =
∞∑

k=0

(
(h j )k

(
�1Z1�

−1
1

)k · · · (�nZn�
−1
n

)k

k!

)
=

∞∑
k=0

(
(h j )k�1(Z1)k�−1

1 · · · �n(Zn)k�−1
n

k!

)

=
∞∑

k=0

(
�1 · · · �n

(h j )k (Z1)k · · · (Zn)k

k!
�−1

1 · · ·�−1
n

)
= �1 · · · �n

∞∑
k=0

((
h j ·Z1 · · ·Zn

)k

k!

)
�−1

1 · · ·�−1
n

= (�1 · · · �n)eH1
(
�−1

1 · · ·�−1
n

)
, (B2)

where each � j can be identified and implemented efficiently a single gate. �
To obtain a quantum circuit for implementing eH2 , we begin with a quantum circuit for implementing eH1 .

2. Implementing eH1

We begin with a quantum circuit for implementing eH1 for just two qubits.
Lemma 5. The quantum circuit in Fig. 6 implements eH whereH = h j ·Z1 ⊗Z2.
Proof. Considering the matrix representation of the circuit in the computational basis gives⎡

⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦
(
I⊗

[
ehj 0
0 e−h j

])⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ehj 0 0 0
0 e−h j 0 0
0 0 e−h j 0
0 0 0 ehj

⎤
⎥⎥⎦, (B3)

where I denotes the identity gate. This is identical to

eH =

⎡
⎢⎢⎣

ehj 0 0 0
0 e−h j 0 0
0 0 e−h j 0
0 0 0 ehj

⎤
⎥⎥⎦, where H = h j ·Z1 ⊗Z2 =

[
h j 0
0 −h j

]
⊗
[

1 0
0 −1

]
=

⎡
⎢⎢⎣

h j 0 0 0
0 −h j 0 0
0 0 −h j 0
0 0 0 h j

⎤
⎥⎥⎦. (B4)

�

Lemma 6. Let Un = ehj ·H1 act on n qubits, and Cx denote
a CNOT gate with the target on qubit n and the control on a new
qubit labeled n + 1 then

Un+1 = CxUnCx. (B5)

Proof. Denoting Lh j = cosh (h j ) and Sh j = sinh (h j ),
Un = ehj (Lh jI1I2 · · ·In + Sh jZ1Z2 · · ·Zn). For each of
these two terms, the circuit identities in Fig. 7 show that
conjugating them with CNOTs increases n by 1.

ehjZ

FIG. 6. Quantum circuit to implement eH where H = hj ·Z1 ⊗
Z2.

3. Implementing eH2

A quantum circuit implementing eH2 can be obtained by
combining lemmas 6 and 4. It leads to circuits of the form of
Fig. 8, reminiscent of Ref. [25].

APPENDIX C: PROOF OF THEOREM 2

This Appendix uses methods from Ref. [32] to prove The-
orem 2. Other methods [37,38] may also be used.

1. Preparatory lemmas

Lemma 7 (Inverse product). For a sequence of operators
{A1, · · · , AL} and j, k ∈ {1, · · · , L},

L∏
j=k

(eτAj )
1∏

j=L

(e−τAj ) =
1∏

j=k−1

(e−τAj ). (C1)
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I
= and

Z
=

Z

Z

FIG. 7. Circuit identities for conjugation by CNOTs.

Proof. Noting that

L∏
j=k

(eτAj )
1∏

j=L

(e−τAj ) =
L−1∏
j=k

(eτAj ) eτAL e−τAL

1∏
j=L−1

(e−τAj )

=
L∏

j=k

(eτAj )
1∏

j=L−1

(e−τAj ), (C2)

the result follows by repeatedly redefining L, and iterating. �
Lemma 8 (Lemma A.3 of Ref. [32]). Let U (t ) be an invert-

ible and continuously differentiable operator-valued function
for t ∈ R. Then there exists G (t ) such that

U (t ) = exp

{∫ t

0
(G (τ ))dτ

}
U (0), and

G (τ ) = d

dτ
(U (τ ))U−1(τ ). (C3)

Proof. Using the chain rule on U (t ) which is invertible and
continuously differentiable, let

G (τ ) = d

dτ
(ln (U (τ ))) = d

dτ
(U (τ ))U−1(τ ). (C4)

Then ∫ t

0
(G (τ ))dτ =

∫ t

0

[
d

dτ
(ln (U (τ )))

]
dτ

= ln [U (t )] − ln [U (0)], (C5)

whereby exp { ∫ t
0 (G (τ ))dτ }U (0) =

exp { ln (U (t )) − ln [U (0)]}U (0). As U (t ) is invert-
ible, ln [U (t )] − ln [U (0)] = ln [U (t )] U−1(0) and

exp{∫ t
0 (G (τ ))dτ }U (0) = exp{ln [U (t )U−1(0)]}U (0) =

U (t ). �
Lemma 9 (Lemma A.2 of Ref. [32]). If A(β ) and B(β ) are

continuous operators, then

exp

{∫ β

0
[A(τ ) + B(τ )]dτ

}

Γ1 Γ−1
1

Γ2 Γ−1
2

Γ3 Γ−1
3

Γ4 ehjZ Γ−1
4

FIG. 8. Nonunitary gadget for four qubits.

= exp

{∫ β

0
A(τ )dτ

}
· exp

{∫ β

0

(
exp

{
−
∫ τ1

0
A(τ2)dτ2

}

· B(τ1) · exp

{∫ τ1

0
[A(τ2)]dτ2

})
dτ1

}
. (C6)

2. From operator Trotter error to scalar
multiplicative (relative) error

Lemma 10. Let μ j (·), and σ j (·) be the j’th smallest sin-
gular value and eigenvalue, respectively, of their arguments.
Then, for a HamiltonianH, β ∈ R and ν ∈ Z+,{

μ j

[
exp

(
−β

ν
H
)]}ν

= σ j (exp[−βH)]. (C7)

Proof. As exp(− β

ν
H) is positive-semi-definite,

μ j[exp(− β

ν
H)] = σ j[exp(− β

ν
H)]. Furthermore, as

σ j[exp(− β

ν
H)] = exp(− β

ν
σ j (H)), the result follows from

raising both sides to the power ν. �
Recall from Appendix A that TR,1 denotes one Trotter

step for the imaginary time evolution. As this Appendix deals
exclusively with real temperatures which correspond to imag-
inary time evolutions, we suppress the subscript R and denote
T1 ≡ TR,1 for brevity. Note that the number of Trotter steps
ν is implicit in T1 [see Eq. (2)]. We denote the operator error
Wν in one Trotter step as

exp

(
−β

ν
H
)
Wν = T1 ≡

L∏
j=1

exp

(
−β

ν
h jP j

)
. (C8)

Lemma 11. The multiplicative (relative) Trotter error εmT

in Eq. (14) in approximating Z = Tr[exp(−βH)] by ZT =
Tr([T1]ν ) is bounded by εmT � ||Wν ||ν − 1.

Proof. Using Lemma 10, the submultiplicity of the spectral
norm and that the spectral norm is greater than or equal to all
singular values

ZT = Tr([T1]ν ) = Tr

([
exp

(
−β

ν
H
)
Wν

]ν)

�
2N∑
j=1

σ j (exp(−βH))||Wν ||ν = Z||Wν ||ν, (C9)

where the Hamiltonian H acts on N qubits. Thus, |Z −
ZT| � (||Wν ||ν − 1)Z. The result follows by setting εmT �
||Wν ||ν − 1 in Eq. (14). �

3. Proof of Theorem 2

The following proof follows the strategy of Ref. [32] to
exploit the noncommutativity among the terms of Hamilto-
nian. However, for simplicity, it is specialized to the first-order
Trotterization. It uses lemma 8 to set up the use of lemma
9. This gives us an expression of an operator essentially ap-
plying the error W(β ). This then leads to a bound of the
spectral norm of the error operator in a single Trotter step
W(β/ν) = Wν.

012421-9



JACKSON, KAPOURNIOTIS, AND DATTA PHYSICAL REVIEW A 107, 012421 (2023)

Proof. Denote Aj ≡ h jP j, and

�(β ) =
L∏

j=1

(e−βAj ). (C10)

Note that �(β/ν) = T1 = ∏L
j=1 exp(− β

ν
h jP j ). By differen-

tiation

d�(β )

dβ
= −A1�(β ) −

L∑
k=2

⎡
⎣k−1∏

j=1

(e−βAj ) · Ak ·
L∏

j=k

(e−βAj )

⎤
⎦

(C11)

=
⎧⎨
⎩−A1 −

L∑
k=2

⎡
⎣k−1∏

j=1

(e−βAj ) · Ak ·
L∏

j=k

(e−βAj )

⎤
⎦ 1∏

j=L

(eβAj )

⎫⎬
⎭

× �(β ) (C12)

=
⎧⎨
⎩−A1 −

L∑
k=2

⎡
⎣k−1∏

j=1

(e−βAj ) · Ak ·
1∏

j=k−1

(eβAj )

⎤
⎦
⎫⎬
⎭�(β ),

(C13)

where we used lemma 7 in the last step. Denoting

F(β ) ≡ −A1 −
L∑

k=2

Sk (β ) with

Sk (β ) =
k−1∏
j=1

(e−βAj ) · Ak ·
1∏

j=k−1

(eβAj ), (C14)

whereby

d�(β )

dβ
= F(β )�(β ). (C15)

Lemma 8 gives

�(β ) = exp

{∫ β

0

(
dT1(τ )

dτ
T−1

1 (τ )

)
dτ

}

= exp

{∫ β

0
F(τ ) dτ

}

= exp

{∫ β

0
(−H+ [F(τ ) +H]) dτ

}
. (C16)

Lemma 9 gives

�(β ) = exp

{∫ β

0
(−H) dτ

}

× exp

{∫ β

0

(
exp

{∫ τ1

0
H dτ2

}
[F(τ1) +H]

× exp

{∫ τ1

0
(−H) dτ2

})
dτ1

}
(C17)

= exp {−βH) exp

{∫ β

0

(
eHτ1 [F(τ1) +H]e−Hτ1

)
dτ1

}

(C18)

≡ exp {−βH)W(β ), (C19)

where W, denotes the error operator when exp{−βH) is
approximately implemented via �(β ). Then using Eq. (C14)

W(β )

= exp

{∫ β

0
(eHτ1 [F(τ1) +H]e−Hτ1 ) dτ1

}

= exp

{∫ β

0
(eHτ1F(τ1)e−Hτ1 +H) dτ1

}
(C20)

= exp

{∫ β

0

(
eHτ1

[
−A1 −

L∑
k=2

Sk (τ1)

]
e−Hτ1 +H

)
dτ1

}
.

(C21)

Let z be the greatest index in ζk less than k. Then

Sk (τ1) =
k−1∏
j=1

(e−τ1Aj ) · Ak ·
1∏

j=k−1

(eτ1Aj )

=
z−1∏
j=1

(e−τ1Aj ) · e−τ1Az Akeτ1Az ·
1∏

j=z−1

(eτ1Aj ) (C22)

=
z−1∏
j=1

(e−τ1Aj ) · Ak ·
1∏

j=z−1

(eτ1Aj ) (C23)

+
z−1∏
j=1

(e−τ1Aj ) · [Az, Ak]τ1 ·
1∏

j=z−1

(eτ1Aj )

+
z−1∏
j=1

(e−τ1Aj ) ·
∫ τ1

0

∫ τ2

0
(e−τ3Az [Az, [Az, Ak]]eτ3Az )

× dτ3dτ2 ·
1∏

j=z−1

(eτ1Aj ), (C24)

where this last line follows from the identity

etABe−tA = B + [A, B]t +
∫ t

0
dt2

∫ t2

0
dt3et3A[A, [A, B]]e−t3A.

(C25)
Note that the first term in Eq. (C23) is devoid of Az. Repeating
the above on the first term

Sk (τ1) = Ak + Dk (τ1), (C26)

where

Dk (τ1) =
∑
z�k
z∈ζk

⎡
⎣z−1∏

j=1

(e−τ1Aj )[Az, Ak]τ1

1∏
j=z−1

(eτ1Aj )

+
z−1∏
j=1

(e−τ1Aj )
∫ τ1

0

∫ τ2

0
(e−τ3Az [Az, [Az, Ak]]eτ3Az )

× dτ3dτ2

1∏
j=z−1

(
eτ1Aj

)⎤⎦. (C27)

012421-10



PARTITION-FUNCTION ESTIMATION: QUANTUM AND … PHYSICAL REVIEW A 107, 012421 (2023)

Thus, the quantity in the square brackets in Eq. (C21) equals
H+∑L

k=2 Dk (τ1), whereby

W(β ) = exp

{
−
∫ β

0

(
eHτ1

[
L∑

k=2

Dk (τ1)

]
e−Hτ1

)
dτ1

}
.

(C28)
Thus,

||W(β )|| � exp

{∫ β

0

(
e||H||τ1

[
L∑

k=2

||Dk (τ1)||
]

e||H||τ1

)
dτ1

}
.

(C29)
As the commutator of Paulis are Paulis, and their spectral
norm is unity, ||[Az, Ak]|| = 2|hz||hk| and ||[Az, [Az, Ak]]|| =
4|hz|2|hk|. Denoting

�k =
k∑

j=1

∣∣∣∣Aj

∣∣∣∣ =
k∑

j=1

|h j |, and � ≡ �L, (C30)

||Dk (τ1)|| � 2|hz||hk|
∑
z�k
z∈ζk

[
e2τ1�z−1τ1 + 2|hz|e2τ1�z−1

×
∫ τ1

0

∫ τ2

0
e2|hz |τ3 dτ3dτ2

]

= |hk|
∑
z�k
z∈ζk

[e2τ1�z − e2τ1�z−1 ]. (C31)

Denoting ωz = 2(� + �z ),

||W(β )|| � exp

⎧⎪⎪⎨
⎪⎪⎩

L∑
k=2

|hk|
∑
z�k
z∈ζk

[
eβωz − 1

ωz
− eβωz−1 − 1

ωz−1

]⎫⎪⎪⎬
⎪⎪⎭.

(C32)
Setting w = 2β�/ν, the spectral norm of the Trotter error in
ν Trotter steps of size β/ν each is

||Wν ||ν � exp

{
βh

[
e2w − 1

2w
− ew − 1

w

]}
≈ exp

{
βh

w

2

}
,

(C33)
where h = ∑L

k=2 |hk|Nk, with Nk = |{z � k such that z ∈ ζk}|
accounting for the mutual noncommutativity amongst the
terms of H, The last approximation neglects higher-order
terms in w because for a fixed Hamiltonian (�) and tempera-
ture (β), w → 0 as ν → ∞. Finally, using lemma 11,

ν � β2�h

ln(1 + εmT)
. (C34)
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