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Continuous simultaneous measurement of position and momentum of a particle
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We formulate a model of a quantum particle continuously monitored by detectors measuring simultaneously
its position and momentum. We implement the postulate of wave-function collapse by assuming that upon
detection the particle is found in one of the meters’ states chosen as a discrete subset of coherent states.
The dynamics, as observed by the meters, is thus a random sequence of jumps between coherent states. We
generate such trajectories using the quantum Monte Carlo wave-function method. For sparsely distributed
detectors, we use methods from renewal theory of stochastic processes to obtain some semianalytic results. In
particular, the different regimes of dynamics of the free particle are identified and quantitatively discussed: from
stroboscopic motion in the case of low interrogation frequency, to delayed dynamics reminiscent of the Zeno
effect if monitoring is frequent. For a semicontinuous spatial distribution of meters the emergence of classical
trajectories is shown. Their statistical properties are discussed and compared to other detection schemes in which
the operation on the system due to measurement corresponds to “spatial filtering” of the wave function.
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I. INTRODUCTION

For more than a century the principles of quantum me-
chanics have been employed successfully in the study of an
immensely broad range of phenomena and the theory forms
a basis of the modern physical worldview. It is developed
from a set of axioms including, at least in the conventional
Copenhagen formulation [1,2], the postulate of wave-function
collapse: upon observation, the premeasurement state of the
system immediately changes to the projection onto the eigen-
subspace associated with the measurement’s outcome [3–6].
From its outset this rule sparked an ongoing controversy, and
as part of the measurement problem it remains a subject of
debate to the present day. Measurement grows into the cen-
tral issue in most attempts to understand the emergence of
the classical from the quantum [7]. It is often treated as a
destructive process performed repeatedly on an ensemble of
identically prepared quantum states. The problem of contin-
uous monitoring of a single quantum system was considered
merely of academic interest by the founding fathers of quan-
tum mechanics since in these days it was inconceivable to
experimentally study an isolated quantum system in a single
(nonaveraged) realization.

Single quantum systems suitable for controlled long-time
observations appeared with the first trapped ions [8]. This
experimental achievement triggered theoretical advances in
the field of repeated measurement of optical transitions in a
single quantum system [9]. Advances in techniques of manip-
ulating and observing atoms in periodic lattices, in particular
the construction of atomic microscopes, allowed for direct
observation of the motion of individual quantum objects in
present-day experiments with ultracold atoms [10–16]. One
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can directly monitor atoms illuminated by light and jumping
between adjacent sites in optical lattices. These experiments
raised again some interest in the effect of continuous ob-
servation of quantum systems [17–20]. They have found
recently applications in feedback control of quantum systems,
quantum metrology, and quantum information (see [21] and
references therein).

One of the motivations for the present study stems from
the work on single-shot measurements of many-body quantum
systems [22,23] where high-order spatial correlations may
reveal distinct geometric structures. Similarly, simultaneous
detection of many particles unveils the solitonic nature of
type-II excitation in the Lieb-Liniger model on a ring [24,25].
In both these cases the one-particle density does not indicate
any of said structures. They emerge only in the course of
multipoint measurement on the same system. A similar effect,
but in the time domain, is responsible for the phenomenon of
time crystals as envisioned by Wilczek [26] (see also [27–29]).
Breaking the time-translational symmetry of stationary states
initiates a periodic motion of the system. Repeated measure-
ment of the same system is necessary to prove this periodic
motion. If the sequence of measurements was performed each
time on a newly prepared system some chaotic rather than
periodic motion would be observed. Every measurement on
a newly prepared system breaks the symmetry differently, so
the initial position of the system will vary randomly from one
realization to the other.

To account for the effects mentioned above a back-action
of the meters must be incorporated into the description.
Canonical theory of quantum measurement [4,30–34] as-
sumes a quantum system coupled to a meter. The interaction
between the two introduces correlations, and the meter wave
function becomes entangled with the system; then a projection
operator corresponding to the observable of interest is applied
to read out the meter.
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Historically, continuous measurements of quantum objects
were first considered in 1969 by Davies as a quantum stochas-
tic process in the context of photon counting [35] and then
discussed in broader context in [36]. Later, a description of
continuous measurement in the framework of path integral
formalism was suggested in [37,38]. Von Neumann’s idea of a
system coupled to meters via Hi ∝ X̂ p̂m where X̂ is the posi-
tion operator of the system and p̂m the momentum operator of
the meter [4] was studied in [33,34]. Most modern approaches
in continuous measurement theory are based on the stochastic
Schrödinger equation or on stochastic quantum differential
equations for the density operator [39–45], describing a sys-
tem interacting with meters and subject to noise.

Measurements represented by projection operators, also
known as von Neumann measurements [or in the con-
text of the mathematical theory, projection-valued measures
(PVMs)], are not the most general ones. They assume un-
limited precision, since after performing the measurement,
the state of the system—an eigenstate of the observable—is
exactly known. This assumption is obviously problematic for
observables with continuous spectra, such as the position op-
erator, for which the projector is P(x0) = |x0〉〈x0|. Moreover,
it does not account for measurements which extract only par-
tial information from the system. Finally, it is obvious that, in
a real measurement, the particular realization of the measuring
device will influence the outcome. This is why modern treat-
ments employ a more general notion of measurement called
positive operator-valued measure (POVM) [36]. A POVM is
constructed in analogy to a PVM by substituting projection
operators Pi with an arbitrary number of positive operators Fi

(also called effects) fulfilling
∑

Fi = I , where I is the unity
operator. These operators are usually decomposed into the
measurement or jump operators Fi = M†

i Mi. The probability
of obtaining the result i associated with their operation is given
by Tr[M†

i ρMi]. As an example, in the case of position mea-
surement the generalized operator corresponding to a POVM
can be chosen as M f (x0) = √

γ
∫

dx f (x − x0)|x〉〈x|, where
f (x − x0) is a smooth function focused around x0. This oper-
ator transforms the input state φ(x) to the (not normalized)
postmeasured state 〈x|φ f 〉 = 〈x|M f (x0)|φ〉 = √

γφ(x) f (x −
x0) with probability density

∫
dx|φ(x)|2 f (x − x0)2 condi-

tioned on the measured value of position x0. For more details
see [36,46–49].

This kind of description departs from the orthodox postu-
late of the collapse of the wave function onto the meter state.
The localization scheme does not affect significantly the wave
function locally at the position of the meter, x0, but filters the
wave function by diminishing distant amplitudes. In particular
the filtering does not change substantially the local phase
ϕ(x0) of the wave function, φ(x) = |φ(x)|eiϕ(x). Therefore,
the local velocity at the measured position v(x0) ∝ i∂xϕ(x0)
is “almost” not modified. The particle is not “stopped” by the
measurement but can continue its motion. The postmeasure-
ment state of the system is not completely determined by the
meter; it preserves some information of its premeasurement
history. Nevertheless, in the words of Caves [33], this filtering
type of localization “nowhere invokes wave-function collapse,
yet hidden within it must be a way of thinking in terms of
collapse.” The projective measurement is performed on the
system’s environment.

In this paper we want to present an approach rooted in
standard quantum mechanics which is capable of tracing the
dynamics of a quantum system at the level of a single realiza-
tion of a sequential measurement—a trajectory of a meter’s
clicks—where each readout is related to the position and
momentum of the observed quantum particle at the given
time. Although position and momentum are not commuting
variables, their simultaneous measurement is possible, though
limits on precision are set by the Heisenberg uncertainty rela-
tion, as discussed by Arthurs and Kelly [32], and later by Scott
and Milburn [34]. We assume both for Born’s rule, stating that
the probability of transitioning to a (detector) state is given
by its squared overlap with the wave function, as well as von
Neumann’s postulate that after the measurement the system
collapses to said “detector state.” After such a measurement,
the wave function does not preserve any information of its
premeasurement state.

Position and momentum are canonical variables of unique
importance. They define a phase space—the stage for the
theory of classical physics with trajectories as the fundamen-
tal object. The problem of observing unique trajectories of
quantum particles was first raised by Darwin [50], who in
1929 noticed that though an α particle emitted by a nucleus
should be described by a spherical wave, it leaves a straight
continuous track in a cloud chamber. The issue was taken up
by Mott [51], who formulated the problem as follows: “. . .
the α-particle, once emerged, has particle-like properties, the
most striking being the ray tracks that it forms in a Wilson
cloud chamber. It is a little difficult to picture how it is that an
outgoing spherical wave can produce a straight track . . ..”

He resolved the trajectory issue by noticing a proper setting
for the problem: accounting not only for the α particle but also
for every atom in the Wilson chamber—the detectors. Only
those located at a straight line passing through the nucleus
have a significant probability of joint ionization. This marks
the first description of emergence of classical trajectories from
the wave-function formalism. In this case, ignoring the back-
action of detectors on the highly energetic α particle was
reasonable. At low energies this approximation is not valid—a
quantum particle is disturbed by an observation.

One peculiarity of standard quantum mechanics is that
a probabilistic quantity—the wave function—is at the very
heart of its formalism. Comparing theoretical predictions
with experimental observations in quantum theory inheres the
necessity of repeated measurements. In a vast majority of
experiments single-particle observables are measured on an
ensemble of identically prepared samples. Results are then
averaged over the ensemble—a probabilistic description fits
perfectly to such an arrangement. The situation changed dra-
matically with the advent of ion trapping [8].

In 1985 Cook and Kimble, based on the idea of Dehmelt
[52], proposed to monitor in situ quantum jumps—transitions
of an electron between levels of a single trapped atom (ion)
[53]. The quantum jumps to or from the metastable state
would be marked by a sudden interruption or resumption of
the fluorescence of an atom (ion) resonantly driven at the
optical transition. The picture of a jumping electron is present
in our thinking about emission or absorption of radiation since
Bohr introduced his model of the atom more than a century
ago [54]. Nevertheless, the relation of such discontinuous

012420-2



CONTINUOUS SIMULTANEOUS MEASUREMENT OF … PHYSICAL REVIEW A 107, 012420 (2023)

processes to standard quantum mechanics is a matter of debate
(see [9] for discussion).

Rather than with the Schrödinger equation, the rapid
switching between bright and dark periods in the fluorescence
signal as observed in 1986 [55–57] seems to be understood
in terms of a stochastic process. However, the discontinuities
in fluorescence do not necessarily imply classical stochastic
electron jumps, as noted in [58]. The stochastic jumps might
simply be induced by the measurement of the fluorescence
giving a classical random sequence of photon counts. Mea-
surement links the quantum and classical world and it is not
clear at which stage, on the part of the atom or the photons,
the transition between the two worlds takes place.

The continuous quantum mechanical formalism was
merged with a stochastic approach in the quantum Monte
Carlo wave function (QMCWF) method introduced by Dal-
ibard, Castin, and Mølmer [59]. The method is designed
to describe the dynamics of a small system coupled to a
Markovian environment. The standard treatment of such a
problem involves solving the master equation, which yields
the evolution of the density matrix. However, the master equa-
tion can be substituted by an ensemble of pure state vectors
of the small subsystem where each vector undergoes some
random evolution [59,60]. The smooth (nonunitary) evolution
of the wave function describing the system is interrupted
by random quantum jumps due to the interaction with the
environment. Each “quantum trajectory” obtained this way
can be interpreted as a single realization of the system’s
dynamics. Averaging over many such realizations gives a
smooth evolution equivalent to the solution of the Gorini-
Kossakowski-Sudarshan-Lindblad equation for the density
matrix in the Markovian approximation [61,62]. A very sim-
ilar quantum trajectory method was developed by Tian and
Carmichael [63] (see also [64]) as well as by Dum, Gardiner,
and Zoller [65–67]. This is in contrast to the approach pro-
posed by Gisin and Percival, which instead of jumps considers
a continuous stochastic diffusion of the state vector [68].

In the following we will use the jump approach as in-
troduced in [59]. Our ideal system is a particle in one- or
two-dimensional space subject to repeated simultaneous mea-
surement of position and momentum. Formally, the model
consists of a POVM of operators proportional to projections
on Gaussian states centered at discrete positions and mo-
menta, together with a “no-measurement” operator. Choosing
the jump operators to be projections means that, in the mo-
ment of detection, the system “forgets” its previous history.

The paper is organized as follows. First we illustrate the
method in action by showing trajectories of a particle ap-
pearing in the course of a continued measurement. Then we
study in detail a single detector and show how the Zeno effect
emerges in the limit of very intense measurement. Next we
consider spatially sparse detectors and show that the observed
motion of a free particle varies depending on the frequency
of observation: from stroboscopic jumps for rarely clicking
meters, up to the Zeno-kind delayed motion for a very fre-
quent interrogation of the system. We analyze the particle’s
motion in terms of a stochastic renewal process. Finally we
study the statistical properties of the observed trajectories, i.e.,
mean values of position as well as dispersion in position and
momentum. We show how these quantities scale with time for

a dense and a sparse spatial grid of detectors. These results
are compared to another model of continuous measurement
of position which is based on filtering of the particle’s wave
function in position space [18]. We summarize the results in
the final section.

II. METHOD

Our exemplary object of study is a particle “observed” by
a grid of detectors. The approach can be generalized to a
larger number of particles, though this is not the subject of
the present study. Each of the detectors is able to measure
simultaneously position and momentum of a quantum parti-
cle. The detectors are located at discrete points in phase space
on a rectangular grid of spacing Dx × Dp. This way positions
and momenta measured can take discrete values of (xm, kn),
and the spacing is Dx = xm − xm−1, Dp = kn − kn−1. As we
will elaborate at a further point, each possible measurement
is associated with a projection on a single detector wave
function. A convenient choice for the detector wave function,
in one dimension (and with trivial generalization to higher
dimensions), is the Gaussian wave packet centered at (xm, kn)
having a width in position space equal to σ :

〈x|αmn〉 = 1

(2πσ 2)
1
4

e− (x−xm )2

4σ2 eiknx. (1)

In the limit of infinitely small detector spacing, the func-
tions αmn become coherent (squeezed coherent) states of an
overcomplete, nonorthogonal basis of the particles’ Hilbert
space. The detector wave function in momentum space is the
Fourier transform of Eq. (1), i.e.,

〈k|αmn〉 = 1

(2πσ 2)
1
4

√
2σ 2e−σ 2(k−kn )2+ixm (k−kn ). (2)

Evidently, the resolution of measurement in position space
is equal to σx = σ and in momentum space equal to σp =

1
2σ

. This way the simultaneous measurement of the noncom-
muting observables minimizes the Heisenberg uncertainty
principle [32],

σxσp = 1

2
. (3)

Here we work in dimensionless units. In particular both the
reduced Planck constant and the mass of the particle are set
to one: h̄ = m = 1. We also specify a0 = √

2σ as our unit
of length. In these units the detector wave functions have
the same width in position and momentum space, meaning
that the detectors have equal “precision” in measuring both
conjugate variables. Similarly, the (dimensionless) spacings
between detectors in position and momentum are assumed
to be equal: Dx = Dp = D. The unit of time is τ0 = mσ 2/h̄.
Since every detector wave function is associated with a mea-
surement outcome (xm, kn), our approach differs from the
method introduced by Scott and Milburn [34], where position
and momentum are measured by two principally independent
detectors.

The crucial issue is to define the effect of the measuring
instrument on the particle under observation. To this end we
denote by Cα the jump operators acting in the space of the
small system, where, to simplify notation, by |α〉 we denote
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the detector state |α〉 = |αm,n〉. The measurement transforms
the input state into a coherent state |α〉.

Therefore, we define Cα to be proportional to projectors:

Cα = √
γ |α〉〈α|. (4)

Here γ is a coupling strength determining the characteristic
detection frequency. We assume that it has constant value, but
in general it can depend both on position and momentum of
the meter α.

To generate individual sequences of detectors’ clicks we
make use of the quantum Monte Carlo wave-function (QM-
CWF) method [59,60]. The following paragraphs give a
summary of the formalism.

In detail, the procedure consists of one of two options for
each small time step δt of the evolution. First the wave func-
tion |φ(t )〉 is evolved using the non-Hermitian Hamiltonian H
defined as follows:

H = HS − i

2

∑
α

C†
αCα, (5)

where HS is the Hamiltonian of the small system, HS = k2

2 +
V (x). For a small time increment δt we can write

|φ(1)(t + δt )〉 ≡ (1 − iHδt )|φ(t )〉. (6)

The above evolution is nonunitary so the norm is not pre-
served:

〈φ(1)(t + δt )|φ(1)(t + δt )〉 = 1 −
∑

α

δpα, (7)

with

δpα = δt〈φ(t )|C†
αCα|φ(t )〉. (8)

The δpα are interpreted as probabilities of quantum jumps
“in direction” of the respective states Cα|φ(t )〉 during time δt .
Thus, the wave function at t + δt is selected according to the
values of probabilities δpα:

(i) With probability 1 − ∑
α δpα the wave function is the

one obtained from nonunitary evolution (with necessary nor-
malization),

|φ(t + δt )〉 = |φ(1)(t + δt )〉
|| |φ(1)(t + δt )〉 || . (9)

(ii) One of the meters clicks with probability δpα/δp and
the particle jumps to the measured state

|φ(t + δt )〉 = Cα|φ(t )〉
||Cα|φ(t )〉|| = |α〉. (10)

Evidently δp = ∑
α δpα needs to be smaller than 1. This

is usually achieved by tuning the time-step parameter δt to be
sufficiently small. In particular the probability of two clicks
within δt should be negligible; thus, δt � γ −1. The effect
operators Fα = δtC†

αCα together with F0 = 1 − ∑
α Fα form

a complete set of probability operators, known as a POVM.
Note also that although we study the case of a single particle
possibly in an external potential, the evolution is far from
trivial due to dissipation, i.e., since the particle permanently
“feels” all the detectors in its proximity.

Assuming that the particle wave function itself is roughly
Gaussian, one can get from Eq. (8) an estimate for the to-
tal jump probability per time step, δp ≈ γ δt ( 4π2

D + 1). This

FIG. 1. Evolution of the wave function of a particle initially at
rest in two dimensions without quantum jumps. Probability density
is plotted. Contrary to the case of a free particle, the particle’s wave
function does not simply broaden, but also tends to concentrate
around neighboring detectors.

formula is particularly useful when choosing appropriate
parameters for numerical calculations. It provides a good es-
timate for both limiting cases of dense (small D) and sparse
(large D) detector grids.

The jump probability δpα in a small time interval δt
is related to the exclusive probability density λα (t |φ(0)) of
jumping to the state α at time t , assuming no jump in [0, t ),
given the initial condition φ(0):

λα (t |φ(0)) = ||Cαe−iHt |φ(0)〉||2. (11)

Evidently we have δpα = δtλα (t |φ(0)). Similarly, the proba-
bility of no count up to time t is given by

P0(t |φ(0)) = ||e−iHt |φ(0)〉||2. (12)

In the following we drop the argument φ(0) in case the initial
condition is obvious from the context. Since after each jump
the particle returns to one of the coherent states |α〉, the set
of functions λβ (t |α) together with P0(t |α) is sufficient to
characterize the complete dynamics of the system.

The evolution of the initial coherent state |α0〉 which is
generated by the free Hamiltonian HS and “dissipation” im-
plied from presence of the meters is illustrated in Fig. 1 for a
motionless particle located at the central detector. In the con-
secutive panels it is shown that as the time grows (left to right,
top to bottom), in addition to quantum diffusion, the modulus
(squared) of the wave function tends to increase around the
positions of the meters—as if the detectors “attracted” the
particle. Note that we presented here a scenario in which no
jumps occurred within the given time interval.

In QMCWF, single “trajectories” |φ(t )〉 of the system are
generated via a stochastic method. Given the same initial
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conditions, the average |φ(t )〉〈φ(t )| over multiple trajectories
is equal to ρS , the density operator of the particle, in the limit
of many realizations.

In the quantum statistical description we treat the particle
as a (small) open system coupled to the “reservoir” of de-
tectors. Averaging the individual trajectories one can show
that the statistical operator satisfies the Gorini-Kossakowski-
Sudarshan-Lindblad equation, [61,62] for the (sub)system’s
density operator ρS:

ρ̇S = i[ρS, HS] + Lrelax(ρS ). (13)

The relaxation operator Lrelax describes the interaction
with the environment. For general Markovian and time-
homogeneous processes Lrelax is of the Lindblad form, which,
for the jump operators defined by Eq. (4), is

Lrelax = −1

2

∑
α

(C†
αCαρS + ρSC†

αCα ) +
∑

α

CαρSC†
α, (14)

and summation is performed over the set of all detector states,∑
α = ∑

{αmn}. Solving Eq. (13) leads to statistical predictions
such as one-time operator average values 〈A〉(t ) = Tr(AρS (t ))
within the conventional probabilistic interpretation of quan-
tum mechanics, but it leaves open the question of what the
evolution of the system in a single realization might look
like. The QMCWF method is fully equivalent to the master
equation treatment when it comes to predicting statistical
quantities. On the other hand, in practice it may provide a
computational advantage as well as possible additional phys-
ical insight from studying the preaveraged single trajectories.
Such observations are well within the reach of modern ex-
perimental techniques and we want to include them in our
model.

We want to mention that the quantum Monte Carlo wave-
function method is not the only possible implementation
of the wave-function dynamics which after averaging over
many realizations gives the Gorini-Kossakowski-Sudarshan-
Lindblad equation. These alternative approaches are usually
based on formulating a stochastic Schrödinger equation (SSE)
(e.g., [40,43,44]). The SSE is a stochastic differential equa-
tion which is a generalization of the standard Schrödinger
equation, supplied with some dissipative term, accounting for
the continuous observation. Such an equation is mathemat-
ically interpreted within the Itô formalism or an alternative
quantum stochastic calculus.

III. EXEMPLARY DYNAMICS OF A MONITORED
PARTICLE

A. Initial state

In principle the initial state may be an arbitrary wave func-
tion |φ(0)〉. However, after the first detection event (“click”)
this state collapses to a Gaussian wave packet αi and all mem-
ory of |φ(0)〉 is lost. It is therefore of particular importance to
analyze the statistics of these first clicks. Note that for jump
operators (4), the collapse probabilities (10) are given by

δpαi (t ) = (δtγ )〈αi|φ(t )〉〈φ(t )|αi〉
= (δtγ )〈αi|ρ(t )|αi〉 ∝ Q(αi, t ). (15)

FIG. 2. Sample evolution of the probability density |φ(x)|2 of
a particle in free space (top) and an external harmonic potential
(bottom). In the first case the particle has some nonzero initial
momentum, and in the second it is located initially at rest at some dis-
tance from equilibrium. Detections (marked by red dots) are clearly
visible as discontinuities in the vertical direction. Both simulations
were performed at γ = 2 and a moderately sparse grid.

Assuming very dense detectors, this is essentially (up to a
constant) the Husimi representation Q(αi ) of a quantum state.
It gives an approximation for the distribution (not normalized
to unity) of the first clicks in our process. We assume that the
first click occurs at t = 0, at a detector state chosen according
to Q(α).

B. Emergence of classical trajectories

It was shown in many theoretical studies that frequent or
continuous observations of a system lead to the emergence of
classical trajectories [69,70] or even a classical chaotic motion
[71–73].

The method introduced in the previous section provides
trajectories as sets of detection events, each consisting of a
position and momentum label of the detector activated and a
corresponding time stamp. From a numerical point of view,
we also have access to the full wave function of the particle in
between detections. However, since only the detection events
are supposed to model actual data obtained in an experi-
ment, henceforth we pretend to know nothing more about the
evolution of the particle, unless explicitly stated otherwise.
As long as detection is sufficiently frequent (with respect to
some characteristic time of the system), we assume that this
allows us to meaningfully reconstruct the trajectories of a
particle and study its properties. We begin with an exemplary
trajectory with the spatial separation of detectors chosen to
be D = 3, so that the overlap of two neighboring meters is
rather small (∼0.1). In the upper panel of Fig. 2 we show the
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trajectory of a particle with initial momentum k0 = 5 moving
on such a grid of detectors. Red points signify measurement
events. Evidently they are aligned along a trajectory, which
only slightly deviates from the expected straight line. This
deviation is due to the effect of measurement back-action onto
the system and the stochastic nature of the process. In addition
to the detected positions we show the probability density as
given by the quantum Monte Carlo wave-function formalism.
Collapse upon measurement results in visible discontinuities
of the wave function in time. Similarly, the lower panel of
Fig. 2 shows a sample trajectory of a particle in an external
harmonic potential V (x) = 1

2 x2. The particle is initially po-
sitioned at some distance from equilibrium. As expected the
oscillatory motion is clearly visible.

As the final example we present the evolution of a particle
in a 2D harmonic oscillator potential V (r) = 1

2ω(x + y)2 with
nonzero initial angular momentum. We choose the initial state
in accordance with

χlz (ρ, φ) ∼ e−ωρ2/2(
√

ωρeiφ )lz , (16)

where (ρ, φ) are polar coordinates and lz = 25 is the quantum
number associated with the angular momentum Lz. Assuming
only the trapping potential and no detectors this state would
be stationary, i.e., symmetric under time translation. However,
detecting the particle at some instant breaks this symmetry
and triggers motion. Upon repeated particle detection, this
motion is visible as some form of circular movement. This
type of dynamics may be regarded as a caricature of a time
crystal (see [26]). In Fig. 3 we show the evolution as averaged
over many quantum trajectories. The top left panel shows the
distribution of clicks in position space for many trajectories,
integrated over time. In Figs. 3(a1)–3(a4), we show examples
of individual classical trajectories, i.e., the particle’s positions
detected at different instants. The orange line is drawn to
guide the eye and visualize the time sequence of the different
measurements. A counterclockwise circular motion as well as
perturbations due to interaction with the meters is visible. The
bottom panels show analogous plots in momentum space. In
order to be able to visualize the statistical average of the tra-
jectories as seen in the left plots, without loss of generalization
we assumed the first detection to be at a predetermined angle
ϕ with the x axis in position space. This allowed us to account
for the rotational symmetry of the state, broken with the first
measurement.

C. Single detector

Quantum systems under frequent observation are known
to exhibit a range of phenomena known as the (anti-)Zeno
effect [74,75]. This term relates to the fact that the decay of a
quantum state may be arrested (or enhanced) under repeatedly
performed measurements of a given kind. We now wish to
study whether our model [with the measurement operator
specified in Eq. (4)] exhibits similar features. We will proceed
by introducing incrementally more complex configurations of
detectors.

We begin with the simplistic case of a particle detected at
t = 0 at a single meter centered at position and momentum
α = (x0 = 0, k0). We would like to observe the “leakage,” i.e.,
the probability as a function of time with which the wave

FIG. 3. Left: Histogram of trajectories for a particle in a
two-dimensional (2D) harmonic potential and nonzero angular mo-
mentum: (a) position space and (b) momentum space. For this
histogram we simulate trajectories with the first measurement sam-
pled from the distribution given by Eq. (16), and postselected in
position in order to only have runs starting in a circular sector cov-
ering the upper region of the distribution centered at (x, y) = (0, 5),
(kx, ky ) = (−5, 0). Right: (a1)–(a4) Exemplary individual trajecto-
ries in position space; (b1)–(b4) the same trajectories in momentum
space.

packet will escape the reach of the detector. The particle trav-
els with group velocity equal to the central momentum of its
Gaussian profile, v = k0, moving away from the detector. The
detector is able to “prevent” this escape by measurement and
projecting back onto the meter state. One might expect that
if this happened sufficiently frequently, the particle’s motion
would be effectively frozen, resulting in a typical Zeno effect
[74,76,77]. In the following we discuss this question in more
detail.

Obviously, for fixed v, the entire process will be a function
of the γ parameter only. Observe first that, in accordance with
Eq. (8), the probability rate of jumping back to the detector
state (i.e., the initial state) is given by

δp

δt
= γ |〈φ(t )|α〉|2, (17)

i.e., it is proportional to the modulus (squared) of the overlap
of the system wave function, |φ(t )〉, and the detector state,
|α〉. The probability rate is large when both (i) the particle
is located close to the detector’s spatial location, x0 = 0, and
(ii) if its velocity v ∝ Imφ∇φ matches the momentum of the
meter, v 
 k0.

For small time, if |φ(t )〉 ≈ |α〉, Eq. (17) simplifies to
δp/δt = γ . We may thus interpret γ as a decay rate: its in-
verse, τ = 1/γ , gives the characteristic time of the meter’s
clicks, i.e., the return time to the detector position.

We can further quantify the limit mentioned above. The
rate with which |φ(t )〉 evolves away from its initial state
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is characterized by two times: First it is t1 = σ/v ∼ 1/v,
which accounts for the particle traveling the distance equal
to the sensitivity range of the detector ∼σ . Second it is t2 =
2mσ 2/h̄ ∼ 1, which accounts for quantum dispersion of the
wave packet. We can identify the regime

τ � min(t1, t2 = 1), (18)

where the particle remains in the reach of the meter.
The effect of unitary dynamics generated by the Hamilto-

nian HS = k2
0
2 may be compared against the dissipation due to

the coupling to the detectors iγ
2 |α〉〈α|. If k2

0 � γ the particle’s
dynamics is dominated by the nonunitary term—the wave
function mainly leaks backs to the meter while moving away
from the detector with the velocity v. In the limit of infinite γ ,
given |φ(0)〉 = |α〉, we may find the time dependence analyt-
ically as

|φ(t )〉 ∝ e−iHt |φ(0)〉 = e− γ

2 t |α〉, (19)

and if one accounts for the normalization, |φ(t )〉 = |α〉. Thus,
in this limit the detector state is stationary.

Monitoring by the detectors manifests itself in two ways. In
addition to the described smooth nonunitary dynamics (which
occurred to give a stationary probability of the meter clicks),
irregular detection events collapse the wave function onto the
detector state. These are the events seen by the “observer.”
Since in this case the intensity of the clicks d p/dt = γ is con-
stant, the meter provides clicks in accordance with the Poisson
point process. The probability distribution of the time interval
between two consecutive measurements is thus an exponential
distribution, e−γ t , and the probability of observing a particle
n times in the time interval t is equal to Pcapt (n) = (γ t )n

n! e−γ t .

D. Two separated detectors

We now investigate the case of two detectors in the afore-
mentioned limit of large γ , i.e., γ → ∞, assuming some
variable distance between them. The Hamiltonian is then as-
sumed to be

H = − iγ

2
(|α〉〈α| + |β〉〈β|). (20)

Let us assume that these two detectors are centered at α =
(x = 0, k0 = 0) and β = (x = D, k0 = 0). The purpose of this
exactly solvable example is to give some intuition of the
dynamics of a slow particle, very intensively observed by
sparsely distributed meters.

Not accounting for jumps, the initial state localized at the
meter α evolves as

e−iHt |α〉 = e− γ t
2 cosh

cγ t

2
|α〉 − c∗

|c|e− γ t
2 sinh

cγ t

2
|β〉. (21)

The probability rates λα = δpα

δt and λβ = δpβ

δt of a detection at
one of the two meters α and β can be easily found:

λα = γ
|〈α|e−iHt |α〉|2
||e−iHt |α〉 ||2 = γ

(
cosh t

t0
− |c| sinh t

t0

)2

cosh 2t
t0

− sinh 2t
t0

, (22)

λβ = γ
|〈β|e−iHt |α〉|2
||e−iHt |α〉 ||2 = γ

(|c| cosh t
t0

− sinh t
t0

)2

cosh 2t
t0

− sinh 2t
t0

, (23)

FIG. 4. Time dependence of the probability rates 1
γ

δpα

dt =
|〈α|e−iHt |α〉|2 ≡ 1

γ
λα (top, blue lines) and 1

γ

δpβ

dt = |〈β|e−iHt |α〉|2 ≡
1
γ
λβ (bottom, orange lines) of detecting a particle at α or β, respec-

tively, provided that at t = 0 the particle is found at α and assuming
no clicks afterwards. At a sufficiently large time both rates are equal:
δpα

dt ≈ δpβ

dt . The probability rates are given by the overlaps (squared)
of the detectors’ wave functions and the state |α〉 evolved according
to the the non-Hermitian Hamiltonian. These quantities define the
intensities of the renewal processes λα and λβ corresponding to
recapturing of the particle by the detector α and β, respectively.

where c = 〈α|β〉 and we identify a characteristic time scale
t0 = 2

γ |c| . For sparsely distributed detectors c ∼ exp(−D2/4)

is very small and t0 ∼ (2/γ ) exp(D2/4) � 1/γ is very large
cf. Fig. 4.

Equations (22) and (23) give some insight into the physical
picture of events. First, at times t < 1/γ the probability to
monitor the particle at the initial detector α is large, λα (t )δt �
λβ (t )δt ∼ γ |c|2δt . The particle is frequently measured only at
α. Finally an attempt occurs where there is no click within
an interval of order t0. λα (t )δt and λβ (t )δt evolve to grow
comparable. This eventually allows the particle to be located
at β, and the whole situation repeats with the role of detectors
β and α interchanged. Given that there exists some charac-
teristic time of passing from α to β, the dynamics may be
understood as an alternating renewal processes. Contrary to a
single detector, when the particle stays frozen at the detector
position, the particle has a significant chance to be found at the
second meter after sufficiently long time (tending to infinity
with γ ). In many respects the process resembles the tunneling
of a particle between two separated potential wells perturbed
by observation [76,77].

The results presented here may be generalized to the case
of a slowly moving particle v < D/γ in the limit of very fre-
quent interrogation γ � v2. The particle will jump randomly
between neighboring detectors in a kind of diffusive motion
(in space and momentum). A quantitative description of the
diffusion is presented in Sec. V.

We want to stress that, excluding very dense detectors, the
transition time from α to β is generally significantly larger
than t0, and it constitutes a rather weak lower bound. This
is because, as we have pointed out, the particle would return
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many times to |α〉 before reaching a state of comparable λα

and λβ . The dynamics of a system randomly recurring to its
initial state is known as a renewal process. We elaborate on
this in the following section.

IV. RENEWAL DYNAMICS

A. General considerations

For a better understanding of the Zeno-like dynamics we
observe in certain settings, we now discuss the problem of a
particle trying to “escape” a single detector while dropping
the assumption of large γ . The particle’s initial position and
momentum (chosen to be nonzero) are set to be equal to the
detector’s eigenstate. The probability of capturing the particle
will vary in time and every detection returns the whole system
to its initial state. This kind of behavior is known as a renewal
process and is usually difficult to treat analytically. In the
following we present a general treatment supplemented by
some exact formulas.

The stochastic intensity of capturing a particle at time t is
given by

λ(t ) = δp

δt
. (24)

We want to stress that time in Eq. (24) is the time passed
since the last click, not since the beginning of the evolution.
Consecutive returns of the particle to the initial state are inde-
pendent of its previous history.

In this analysis we assume that the function λ(t ) is well be-
haved, in particular that its integral over any interval is finite.
Furthermore, an obvious necessary condition for the particle
to be able to ‘escape the detector is limt→∞ λ(t ) = 0, which
is very plausible for this physical setting (note, however, that
this need not be true for a general arrangement of detectors).
Noticing that the probability of not capturing the particle in
a small interval δt around ti is given by 1 − λ(ti)δt , one can
easily prove that the probability of zero events on a finite
interval [0, t] is

P(N = 0) = e−�(t ), (25)

where

�(t ) =
∫ t

0
λ(t ′)dt ′. (26)

Thus the probability of the particle escaping the reach of
the detector without being captured even once is obtained by
calculating the limit of Eq. (25) for infinite t . To calculate the
probability of a single capture followed by escape, we assume
a large interval [0, T ] and capture time t ′ localized within a
small interval dt ′. In accordance with the above remarks, the
probability of such a realization is given by

e−�(t ′ )λ(t ′)dt ′e−�(T −t ′ ). (27)

This formula may be understood by dividing the timeline into
three intervals: before the measurement, around detection, and
afterwards. Since we want to account for a detection at an
arbitrary instant, we integrate the above equation for t ′ over
[0, T ]. Since T is supposed to be very large, we approximate

exp(−�(T − t ′)) = exp(−�(T )). This finally gives us

P(N = 1) = e−�(T )(1 − e−�(T ) ). (28)

To obtain a formula for escape after two detections, we apply
an analogous reasoning, assuming the timeline [0, T ] and
detection times t ′ and t ′′. Without loss of generality we assume
that t ′ < t ′′, which means that t ′ is located anywhere on the
timeline and t ′′ within [t ′, T ]. This gives us the limits of the
corresponding double integral, yielding

P(N = 2) = e−�(T )(1 − e−�(T ) )2. (29)

For the general case we obtain

p(N = n) = p(1 − p)n, (30)

with p = exp(−�(T )). Equation (30) is the geometric distri-
bution. Its expectation value

〈Nclick〉 = e�(T ) − 1 (31)

is the mean number of detections before the particle escapes
the meter. The interarrival time, i.e., the time between consec-
utive returns to the detector position due to the collapse caused
by the measurement, coincides with the random variable T1 of
the time of the first click. The probability distribution of such
an event is given by the product of the probability e−�(t ) of no
jump until t and the jump intensity λ(t ):

fT1 (t ) = λ(t )e−�(t ), (32)

which allows us to calculate the average waiting time between
two clicks as

〈T1〉 =
∫ ∞

0
t fT1 (t )dt . (33)

Equations (31) and (33) allow to estimate the escape time, Tesc,
i.e., the time needed for the particle located at the position of
the meter to escape its reach. This estimation is given by the
number of renewals multiplied by the interarrival time, Tesc =
〈Nclick〉〈T1〉:

Tesc = (e�(T ) − 1)
∫ ∞

0
tλ(t )e−�(t )dt . (34)

In Fig. 5 we show the dependence of the escape time on the
detector rate γ and velocity v. The data points were obtained
by calculating the respective λ(t ) numerically and then sub-
stituting into Eq. (34). The blue line (lower scale) shows the
dependence on γ : the larger the parameter, the more time
it takes to escape. The dependence is close to a linear one.
The orange line depicts the escape time for different values of
velocity of the particle. The escape time scales approximately
as Tesc ∼ 1

vκ , where κ takes a value between 2 and 3. The
larger the velocity, the shorter the escape time.

B. Rarely interrogated particle

Equipped with the basic results of the previous section we
now move on to analyze the one-dimensional (1D) motion of
a particle with initial finite velocity v observed by a lattice of
detectors of finite γ where both the unitary and the nonunitary
evolution compete. We will present some analytical predic-
tions and compare them with numerical results.
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FIG. 5. The escape time. The blue solid line (the scale at the
bottom edge of the figure) shows dependence of the escape time as a
function of the detector rate γ for a fixed velocity v = 2. The escape
time grows almost linearly with γ . The larger γ , the more time it
takes to escape. The orange dashed line (the scale at the top edge
of the figure) displays dependence of the escape time on the particle
velocity for fixed detector rate γ = 15. The larger the velocity, the
shorter the time of escape.

We start by considering the case of sparsely distributed
detectors, D � 1, characterized by “low” clicking rate γ �
1. We associate each detector with the stochastic intensity
function λi(t ) = γ |〈φ(t )|αi〉|2, where φ(0) = α0. The sum of
these is the total intensity function λ(t ) with the usual relation
�(t ) = ∫ t

0 λ(t ′)dt ′. Given these definitions, the probability
distribution of the first clicks (interarrival time) fT1 (t ) at any
detector is again given by Eq. (32).

To get an approximate expression for fT1 (t ) let us observe
that for short times after a detection (t ∼ 1) the evolution
may be very well approximated by assuming that for the
first i detectors λi(t ) ≈ γ exp (−[vt − iD]2). This means es-
sentially neglecting wave-packet spreading due to quantum
dissipation and the “leakage” to nearby detectors due to the
non-Hermitian part of the evolution. Similarly, if γ � 1 then
�(t ) ≈ γ t , and the probability distribution of the interarrival
time for sparsely distributed detectors D > 1, small clicking
intensity γ � 1, and t � 1 is approximately equal to

fT1 (t ) ≈ γ e−γ t
∑
i=0

e−[vt−iD]2
. (35)

The approximation works because the expected number of
clicks for this time interval is rather small and breaks for larger
γ , as shown later on.

In Fig. 6 we present the probability distribution of the
interarrival times. The function fT1 (t ) obtained by numerically
solving the integral (32) (black dotted line) perfectly agrees
with the histograms obtained from an ensemble of individual
trajectories generated using the QMCWF method (grey line;
see Fig. 6). Only small stochastic fluctuations of the quantum
trajectories allow to distinguish the two approaches. In this
scenario, the particle is initially located at the detector α0 and
has velocity v = k0 = 5. The separation between detectors is

FIG. 6. Probability distribution of the arrival time of the first
click fT1 (t ) for D = 5, γ = 1, and v = 5. The colored areas are
suitably normalized histograms, with different colors indicating a
first click at the nth detector. The grey noisy line is the sum of
these and gives the distribution fT1 (t ) of being caught first at an
arbitrary detector after time t . This line coincides with the black
dotted line, which is the same function obtained numerically from
Eq. (32). Because γ is not too large, the positions of the first few
colored maxima correspond roughly to the time when the particle
would arrive classically at the position of the meters. The data for
the histogram were obtained from 100 000 single trajectories and
grouped into bins of width δt = 0.02. The first three or four maxima
are well separated, which corresponds to visible steps in Fig. 8. The
inset shows the individual intensities λi(t ) plotted in different colors.
Their sum, the total intensity, is depicted by the dashed line.

D = 5; therefore, Dγ /v = 1. This means that in a character-
istic interval between consecutive clicks the particle travels
roughly the distance equal to the separation between neigh-
boring detectors. This is close to the edge of the parametric
region which can be termed as the “small γ region” (cf. the
following section).

The results shown in Fig. 6 can be understood in terms of
Eq. (35). The positions of the peaks at t = i D

v
correspond to

the local maxima of the Gaussian functions e−[vt−iD]2
in λi(t ).

The prominence of these peaks depends on the values of v and
γ . For γ /v � 1 the first few peaks are of comparable height.
For large γ /v the mean of the distribution shifts to the left,
so that ultimately only the peak at t = 0 is prominent and the
others are strongly suppressed. In either case, further peaks are
not as prominent, since, after a long time without detection,
the particle wave function tends to delocalize heavily due
to the non-Hermitian part of the Hamiltonian. However, this
tail of fT1 (t ) does not play a significant role in the evolu-
tion, since such large periods of nondetection happen very
seldom. This fact can be utilized when constructing numerical
schemes for approximate solution of the dynamics (cf. Fig. 8
and the following section). The accuracy of such a scheme
is arbitrarily high, tunable by setting a cutoff time tc such
that

∫ tc
0 fT1 (t ′)dt ′ is sufficiently close to 1. The colored areas

mark suitably normalized histograms of first clicks at the nth
detector obtained from QMCWF simulations (n = 0, 1, . . .)
with each color representing a different meter. Their sum
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FIG. 7. The mean position of the particle as a function of time
observed by two well-separated detectors characterized by γ = 1
(blue line). The first detector is located at α1 = (x = 0, v = 5) and
the second at α2 = (x = 5, v = 5). The grey (normalized) histogram
shows the frequency of clicks at both detectors (bin width δt = 0.02).
At time t < 0.5 the particle is almost exclusively captured by α1 and
is thus measured at the position x = 0. At larger times t > 0.5 a
growing number of trajectories arrives at the second detector. There
is a time window around t = 0.5 when the frequency of clicks at
both detectors is significantly lower. This is because at this time, the
particle tends on average not to have a large overlap with either of
the detectors. It is detected at x = 0 or at x = 5 with roughly the
same small probability, which is why its average position is between
the detectors.

gives fT1 (t ). Evidently for times 0 < t < D/2v the first clicks
result from the action of the first meter. If the first click
occurs at a later time, D/2v < t < 3D/2v, it is the action
of the second detector, and so on. The inset of Fig. 6 shows
the intensities λi(t ) = γ |〈α0(t )|αi〉|2 obtained by numerical
propagation of the initial state |α0(t )〉 = e−iHt |α0〉, according
to the non-Hermitian Hamiltonian H .

Choosing the above set of parameters, Fig. 7 shows the ex-
pected position of the particle as a function of time, calculated
by averaging over many trajectories obtained via QMCWF
(blue line). The grey histogram in the background shows
the number of clicks per given time interval as a function
of time. Contrary to a classic straight line, the function is
rather a “step”: Around t = 0 (x = 0), the particle tends to be
(relatively) frequently measured by the first detector. Around
t = 0.5, the frequency of clicks is very low. Finally, as we
approach t = 1 (x = 5), it rises again, this time (predomi-
nantly) at the second detector. The dispersion of the position
measurements is minimal in the vicinity of the plateaus t =
0 and t = 1 and reaches a local maximum in between (cf.
Fig. 9). Since we find ourselves in the regime of low γ , the
shape of the step is well approximated by the expression
〈x(t )〉 = D

∑
i iλi(t )/

∑
i λi(t ), which for t � 1 and sparsely

distributed detectors, D > 1 can be approximated by

〈x(t )〉 = D
e2vtD

eD2 + e2vtD
. (36)

FIG. 8. Mean positions as a function of time for a sparse grid
of detectors, v0 ∼ 5, and various γ . Note how for large γ there is
a retardation effect. The retardation tr may well be approximated
by Eq. (34). Estimates from a linear asymptotic fit for γ = 10,
20, 50: tr = 0.24, 0.51, 1.26, indicated by the colored dots. These
curves were obtained using an exact numerical procedure under
the assumption that there are no jumps to neighboring momentum
states. This assumption is valid for a sparse grid and was tested with
results obtained from a full QMCWF simulation—in the extreme
case, i.e., for γ = 50, for N = 106 detections only around 0.1% of all
detection events resulted in a change of momentum. A comparison
of results from the numerical procedure and the QMCWF calculation
for γ = 50 is shown in the inset.

C. Frequently clicking detectors

We now turn to study differences between low and high
monitoring frequency γ . Furthermore, we assume that de-
tectors are sparsely distributed, since this is a regime with a
broad range of dynamical behaviors. Simulations with large γ

are computationally demanding since they require to choose a
very small time step δt . To study statistical characteristics of
the dynamics, in addition to the approach based on simulating
of individual trajectories, we therefore employ a different
method, too.

We solve the Gorini-Kossakowski-Sudarshan-Lindblad
equation numerically for a 1D geometry by finding the first
few jump amplitudes λi(t ) = γ|〈αi|e−iHt |α0|〉|2 as a function
of time. To simplify the problem we also assume that jumps
to states with a different than initial velocity are very unlikely.
For a particle with initial velocity v = 5, detectors spaced
by D = 5, and measurement intensity γ = 50, among 106

simulated quantum trajectories only 103 showed a collapse to
a neighboring momentum state. Using the discrete symmetry
of the lattice and the “renewal” property of the dynamics, we
then employ a numerical scheme to find the stochastic inten-
sity at the different detectors as a function of time. In the inset
of Fig. 8 we show the average position of the particle as a func-
tion of time obtained with the QMCWF method (orange noisy
curve), while the blue line represents the calculation based on
the nonstochastic approach. The agreement is evident.

The averaged trajectories for different values of γ are
presented in the main panel of Fig. 8. We show results for
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γ = 0.5, 10, 20, and 50, starting from detectors with relatively
low measurement intensity up to very high values. One can
see how the previously described initial stroboscopic motion,
characteristic for small γ = 0.5, disappears as γ grows. The
disappearance of the “steps” is directly related to the more
frequent interrogation of the particle by the meters. As detec-
tion events become more frequent, the different trajectories
in the ensemble get “out of sync” earlier, so that comparing
several trajectories, different detectors may be active in the
same time intervals. We want to stress that the same effects
are responsible for smearing out the steps at later times of
evolution for small γ .

Interestingly, for large times the average evolution 〈x〉(t ) is
always a straight line with a slope equal to the initial velocity,
regardless of the character of the dynamics at the initial stages.
By extending the “asymptotic” behavior (at large time) to the
initial position x = 0 we see that from the point of view of
a distant observer it looks like (the ensembles of) the trajec-
tories with different γ started at different moments, delayed
with respect to the classic case (or the limit γ → 0). This is
visualized as the crossing point of the colored dashed lines
with the x axis marked as a black line in Fig. 8. The delay
grows with γ and is reminiscent of a Zeno effect. The value
of the delay agrees very well with Eq. (34), which was earlier
used to estimate the escape time from a single detector. The
numerical values obtained from this equation are shown as
colored dots.

Clearly, the delay effect stems from the interaction with the
first detector, at whose position the particle is initialized. The
other meters detecting the particle may just as well accelerate
the particle’s motion (by detecting it before it would classi-
cally arrive at their position). Because the trajectories quickly
grow out of sync, the cumulative effect of retarding and/or
accelerating the particle averages to zero.

Finally, we shortly comment the case of a dense detector
grid. A particle moving within such a grid will have at any
given time a substantial chance of being measured by many
different detectors. The renewal-type dynamics disappear,
along with the delay effect and steplike stroboscopic motion
for small γ . The particle follows effectively a classical trajec-
tory with diffusion characterized by γ and the grid’s density.

V. COMPARISON WITH OBSERVATIONS BASED
ON SPATIAL FILTERING

We have shown that repeated measurements reveal classi-
cal dynamics perturbed by the back-action of the meters, as
visible in the exemplary trajectories in Figs. 2 and 3. Due to
the probabilistic nature of “detection,” the trajectories form a
random sequence of clicks. In this section we present some
statistical characteristics of an ensemble of such trajectories.

We will compare them with statistics obtained from an
alternative model of continuous observation based on mea-
surement described as a spatial filtering of the particle’s wave
function by a filter function centered at X [18,33,39,41].
In these approaches the assumed form of the jump
operator is

K (X ) = √
γ

∫
f (X − x′)|x′〉〈x′|dx′, (37)

where f is a suitable localized function. The action of K (X )
effectively reduces to multiplying the wave function in posi-
tion space by an envelope centered around the measurement
outcome X . We are going to refer to the measurement de-
scribed by the operator K (X ) as “filtering,” as opposed to the
“projection” on coherent states related to our jump operators
Cα . The filtering approach can be easily incorporated into the
scheme of the QMCWF method we use here. It amounts to
a substitution of the jump operators Cα by the filters K (X ).
To have a direct correspondence between the two methods we
assume that in both cases the meters are located on the same
spatial grid of spacing D. Moreover, we choose the filtering
functions f (xm − x), centered at xm, to be identical (up to
the phase factor e−ixkn ) to the Gaussian function of the jump

operators Cα; i.e., we choose f (xm − x) = 1

(2πσ 2 )
1
4

e− (xm−x)2

4σ2

with σ = 1/
√

2. An important difference between the two
approaches is that the effect of filtering results only in a
measurement of the particle’s position, and not its momentum.

Note also that repeatedly applying the operator K (X ) dif-
fers from a single measurement. This is in contrast to our
method in which the jump operator Cα is proportional to a
projection operator. Hence, immediately after detection, the
particle is in an eigenstate of the measurement operation, with
maximum probability of being captured again at this position
and momentum (indeed, for an orthogonal set of detector
functions this would be the only possible measurement out-
come at this point in time).

We limit our study to the case of a free particle launched
with initial momentum k0 = 5 and meters characterized by
measurement intensity γ = 1. We assume that at t = 0 the
particle’s wave function is described by a Gaussian wave
packet located at x0 = 0 and identical to the spatial profile of
the detector 〈x|α〉 which we set at the origin of the coordinate
system, α = (x0 = 0, k0 = 5).

As discussed earlier, the dynamics crucially depend on the
detector spacing D. According to our choice the separation
between different momentum states is also equal to D. We
discuss the case when the spatial distance between the detec-
tors is larger than the range of their sensitivity, D = 5.1 >

σ = 1√
2
, and the opposite regime when the detectors cover

“almost continuously” the entire space, D = 0.73 
 σ = 1√
2
.

In the first case the classical time to travel the distance D is of
the order of t = 1; i.e., it is of the order of the average time
between two clicks of a single detector. For the dense grid, the
particle arrives at a neighboring meter in a time significantly
smaller than the “reaction” time 1/γ = 1 of the meters.

To compare the statistics of trajectories provided by the
two models, we simulate a number of individual realizations
using the QMCWF method. In the case of our jump model,
each trajectory is a set of measurement events {xi, ki, ti}. In the
case of filtering measurement operators (37), the results only
comprise position measurements xi at times ti, so we infer the
particle’s velocity at these times as ki = xi−xi−1

ti−ti−1
, where x0 is

the particle’s initial position. We collect these results for both
a very dense and very sparse detector grid. As before, the
detection events of the trajectory ensemble are grouped into
small time intervals, for which we calculate the mean value
and standard deviation of x and k.
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FIG. 9. Average position (top) and the dispersion of position
(middle) and momentum (bottom) measurements as a function of
time for the particle launched with initial velocity k0 = 5 observed
by detectors characterized by γ = 1 and distributed along a line with
spacing D = 5.1 (left panels) and D = 0.73 (right panels). The thin
orange line corresponds to the jump approach from the present study.
Results from the filtering method are shown for comparison as a thick
blue line. The black dotted lines indicate classical trajectories (top
row), quadratic ∼t2 (thick blue) and ∼t3/2 (thin orange) fits (middle
row), and linear ∼t (thick blue) and ∼t1/2 (thin orange) fits (bottom
row).

The time dependence of the mean position of the particle is
shown in the upper left panel of Fig. 9. In all figures the orange
lines correspond to our quantum jump approach while blue
lines indicate a filtering measurement. As we have already
shown, the initial evolution of the particle localized initially
at one of the meters has a stroboscopic (steplike) character if
detectors are very sparse. The particle spends some substantial
time at one of the detectors and then rapidly jumps to the
neighboring one. As soon as the characteristic width of the
wave packet is similar to the detectors’ spacing, the observed
motion of the particle becomes classical (top right panel).
Both approaches give here the same results. The dashed black
line shows the classical trajectory of a particle moving with
initial velocity k0 = 5.

In the middle panel we present the dispersion of the posi-
tion of the particle as a function of time. For sparse detectors
(left middle panels) both methods predict large oscillations.
They are directly related to the “stroboscopic motion” of the
particle predicted at the early times of the evolution. The
dispersion has peaks at times classically corresponding to half
the distance between the detectors. This effect is analogous to
shot noise found in many physical settings. At larger times,
the dispersion grows linearly, though the slope is larger in the

filtering approach. For dense detector spacing the dispersion
of the particle’s position scales as ∼t3/2 for the quantum jump
approach while scaling as ∼t2 for the filtering method (right
middle panel). The growth of the dispersion is again faster in
the filtering scenario.

Significant differences may be observed in the case of the
dispersion of the particle’s momentum. For sparse detectors,
the jump measurement leaves the particle’s average momen-
tum constant and its dispersion is negligible (left bottom
panel). This is because, for the chosen spacing, it is extremely
unlikely to jump to a neighboring momentum state. In the case
of filtering meters the dispersion of the momentum exhibits
oscillations at initial time mimicking the change of the parti-
cle’s average position, and stays constant later on.

In the case of dense detector spacing the filtering method
gives linear growth of the momentum dispersion, σk ∼ t ,
while the dispersion obtained from the jump measurements
grows as σk ∼ √

t . This dependence revokes the characteristic
of a random walk in momentum space. This is supported by
the fact that the momenta maintain a Gaussian distribution
around their mean (i.e., initial) value over time.

From a theoretical point of view this scaling of the disper-
sion in the quantum jump scheme is plausible since indeed,
in the absence of an external potential, the particle always
has the same probability of jumping to k + dk as to k − dk.
In the limit of dense detectors and frequent measurement we
thus expect that the random walk will pass into a Wiener
process, and the momentum distribution will be governed by
a standard diffusion equation, which is physically equivalent
to constantly heating the system.

If we do not wish the system to heat up indefinitely,
the approach must be generalized. The simplest way is to
introduce a dependency of the coupling strength γ on the
absolute momentum measured by the respective detector
αm,n = (xm, kn). One particularly simple approach is to set
Cαm,n = √

γn|αm,n〉〈αm,n|, where γn = γ0e−k2
n/k2

cut , where kcut is
a characteristic cutoff momentum above which the detectors
are supposed to become less sensible. One might also con-
sider different modifications of the scheme going beyond the
Markov approximation. This is, however, not the subject of
the present study.

VI. SUMMARY AND OUTLOOK

In this paper we discussed the dynamics of a particle
whose position and momentum are continuously measured.
The detectors, regularly distributed in phase space, act as a
permanent perturbation on the particle. Upon measurement,
the particle wave function φ(t ) is reduced to a coherent state
(the detector “eigenstate”) centered at the phase-space point
α = (xm, kn). The probability per unit time of a detector click
is proportional to the overlap (squared) |〈α|φ(t )〉|2 of the par-
ticle wave function and the coherent eigenstate of the detector,
in direct analogy to Born’s rule. Likewise, the postmeasure-
ment state of the particle is fully determined by the detector
eigenstate.

After introducing the model, we presented a number of
(semi)analytical results explaining several features of the dy-
namics, coming from different choices of the parameters γ

and D. In particular, we identify the occurrence of a Zeno
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effect in the limit of a sparse spatial grid of meters and fre-
quent clicking, γ > v/D. In this case, the particle’s motion
(found initially at one of the detectors) is delayed as com-
pared to its free evolution. We showed that the delay time can
be explained in terms of renewal theory. Our estimation of
the interarrival time matches numerical results. Moreover, we
showed that if the clicking rate is low, γ < v/D, the average
position of the particle is initially a steplike function of time,
in contrast to a dense detector grid, where classical trajectories
emerge independent of γ .

Finally we compared our method to an alternative model
of continuous measurement, in which the postmeasurement
state is obtained by applying a Gaussian filter centered around
a given position on the wave function. For better comparison
we assume that these filters are localized at the same discrete
points in space as our projective meters. We show that both
approaches provide similar results when it comes to the mean
position of the particle; however, they differ with respect to
how the dispersion of position and momentum scale with
time.

In this study, we assumed that the detectors project on
Gaussian states with equivalent width in position and momen-
tum space. One could instead study detectors characterized by
squeezed coherent states 〈x|αm,n〉 ∝ e(x−xm )2/(2σ 2 )+iknx, where
σ �= 1/2 determines the level of squeezing.

By varying σ one can smoothly change the relative pre-
cision of position and momentum measurement. Likewise,
varying the relative spacing in position and momentum of the
detectors is another way of further exploring the model. As
mentioned at the end of the previous section, introducing a
γ parameter which varies between the detectors could also
lead to new dynamical features. However, probably the most
rewarding extension of this work is to explore an equivalent
model in a many-body setting.

In the paper we compared our original scheme with the
“filtering model.” Both approaches assume some function
characterizing the detection—denoted by |α〉 in the first case
and f (x) in the latter. |α〉 is necessarily complex, i.e., having a
nontrivial position-dependent phase factor like eipx. Otherwise
the motion would freeze after the first measurement. On the
contrary, f (x) may be real or complex, where the latter case
would result in giving the particle an additional “kick” with
each measurement. Most relevant for the effects discussed in

this work are the first moments of these distributions, i.e., their
mean and variance. Obviously Gaussian functions are not the
only space-localized states. From a purely theoretical point of
view any localized state might realize a position measurement.
The particular shape depends, in principle, on the physical
realization of the detector and the system under observation.
For periodic systems, such as atomic gases in optical lattices,
a natural choice would be ground-state Wannier functions lo-
calized at every lattice site. These functions are complete and
mutually orthogonal. If, in addition, the momentum p of a par-
ticle is to be measured, each Wannier function should be mul-
tiplied by phase factors eipx. In either case we do not believe
a different profile of the wave function would lead to substan-
tively different results from the ones presented in this work.

Commenting on what sets apart the model presented here
from the various other continuous measurement schemes
studied so far—and summarized in the Introduction of this
article—we would like to point out that we consider a si-
multaneous measurement of noncommuting observables, that
is, position and momentum. The result of this measurement
operation is the projection on a predefined state, in the spirit of
Born’s rule. This simplicity introduces a potential advantage
when it comes to theoretical study of the model: a dynam-
ics which consists of returning every so often to the same
Gaussian state (albeit translated in position and/or momen-
tum) may be understood in the context of extended renewal
theory. By this we mean that the evolution of the system is
characterized completely by stochastic intensities λi(t ) which
depend only on time and the arrangement of detectors. The
computational advantage coming from this fact was not ex-
plored fully in the present work, since the systems under
study were simple enough to be treated within the QMCWF
approach. Nevertheless, we believe that further investigation
in this direction could lead to future valuable insights.
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