
PHYSICAL REVIEW A 107, 012417 (2023)

Entanglement of mechanical modes in a doubly resonant optomechanical cavity
of a correlated emission laser

Mekonnen Bekele ,1,2,* Tewodros Yirgashewa ,1 and Sintayehu Tesfa 1,3,4

1Applied Physics Department, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
2Physics Department, Bule Hora University, P.O. Box 144, Bule Hora, Ethiopia

3Physics Department, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
4Physics Department, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia

(Received 23 June 2022; accepted 8 December 2022; published 13 January 2023)

We explore the extent of the induced entanglement of the mechanical modes that can be attributed to the
transfer of coherence from two-mode cavity radiation in a doubly resonant optomechanical cavity. It is expected
that this scheme can support a generation of mechanical oscillations with a robust degree of entanglement
combined with significant controllability. The entanglement is found to be sensitive to the specific choices of the
frequencies of the bichromatic drive laser. It also turns out that the degree of entanglement would be enhanced
with increasing rates of injection of the atoms but with decreasing initial lengths of a doubly resonant cavity
and atomic decay rates. In addition, the entanglement is found to behave qualitatively in the same way for the
measures of entanglement we have applied. Since the scheme we considered can possibly be implemented with
current technology and allows the quantum features of cavity radiation to be accessible for application, we
anticipate that it can be utilized in the realization of continuous-variable quantum information processing.
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I. INTRODUCTION

Cavity optomechanical systems (COMs) have become the
most desirable candidates to generate and exploit continuous-
variable (CV) nonclassical motional states of mechanical
oscillators, which can be achieved by employing induced
optomechanical coupling, which has a direct relation to the
frequency of the cavity radiation [1–3]. In this regard, sig-
nificant effort has been made to generate entangled states in
COMs that offer a rich avenue for experimenting with recent
quantum technologies, improving our understanding of quan-
tum optics in the macroscopic regime and at the fundamental
quantum physics level and leading to the implementation of
various applications [4–7]. These states have been detected in
two-mode cavity radiations [8], the cavity mode and mechan-
ical mode [9,10], and two mechanical modes [11,12] using
the logarithmic negativity. Further studies have also addressed
entangled states of hybrid modes as in two-level-atom [13–15]
and three-level-atom [16–18] optomechanical systems.

It has also been established that simultaneously emitted
correlated photons with different frequencies as in a cascade
three-level atomic system can be a source of robust entangle-
ment in a resonant cavity due to the inherent atomic coherence
in the upper and lower energy levels induced by initial prepa-
ration of a coherent superposition and/or pumping by a strong
coherent laser [19–22]. A strong pumping coherent field in a
correlated emission laser (CEL) has also been shown to act
as an entanglement amplifier owing to the additional atomic
coherence induced by the pumping process when all the atoms
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are initially in the lower energy level [19,20,23]. On the other
hand, whether a bichromatic driving laser can be employed
for the generation of entanglement in various configurations
has been investigated in some theoretical proposals [24–26]
and an experimental realization utilized for cooling a macro-
scopically heavy movable mirror [27].

Different authors have also shown the effects of various
parameters on quantum properties in a doubly resonant op-
tomechanical cavity. For instance, Ge et al. showed that the
degree of entanglement is reduced with increasing tempera-
ture of the thermal phonon bath, with smaller input power P,
and with high cavity loss for both the mirror pair and the field
pair using the logarithmic negativity [16]. Sete and Eleuch
found that two movable mirrors are entangled for a wide range
of the drive laser’s powers as well as the strength of the atomic
drive laser, and the degree of entanglement increases with
increasing power P of the cavity drive lasers, while the mirror-
mirror entanglement is strong against the thermal phonons
temperature but substantially more sensitive to the thermal
photon temperature [17]. In addition, Zhou et al. showed that
the frequency of the mirror oscillation and the injected atomic
coherence could affect the output entanglement of two-mode
fields [18]. More recently, Bekele et al. investigated various
mechanisms of enhancing the degree of mechanical squeezing
emerging from atomic parameters in a scheme similar to what
we intend in the present paper [28].

With this in mind, we seek to extend the scope of discus-
sion to the quantification of the degree of entanglement in the
quantum states of mechanical oscillators using realistic pa-
rameters like those in Table I to make the result accessible for
utilization in a wide range of various controllable parameters
other than the input laser power and thermal environmental
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TABLE I. Experimental values applied as in [38–41] to plot Figs. 2–7 in the standard case.

Parameter Values and units

Frequencies of a cavity ωL1 = 741.0π THz,
driving a bichromatic laser ωL2 = 564.0π THz
Cavity-mode ω1 = 864.0π THz,
frequencies ω2 = 866.0π THz
Atom-field coupling (g1 = g2) 2.0π × 3.00 MHz
Cavity damping rates κ1 = 4.22 kHz,

κ2 = 5.54 kHz
Mechanical damping rates (γm1 = γm2 ) 2π × 60.00 Hz
Angular frequencies of movable mirrors (ωm1 = ωm2 ) 2π × 3.00 MHz
Masses of the mechanical oscillators (m1 = m2) 145.00 ng
Initial lengths of a L1 = 0.532 mm,
doubly resonant cavity L2 = 0.405 mm
Frequencies of atomic energy levels ωa = 2π × 432.0 THz,

ωb = 2π × 864.0 THz,
ωc = 2π × 1297.0 THz,

Rate of atomic injection ra 1.60 MHz
Atomic decay rates (γa = γb = γc = γab = γbc = γac = γ ) 14.50 MHz
Powers of input lasers driving the cavity (P1 = P2) 30.00 mW
Thermal bath temperatures of movable mirrors (T1 = T2) 5.00 mK

temperatures in Ref. [17], in particular, its dependence on
atomic parameters such as injection rate and decay rate and
cavity parameters such as the frequency of a bichromatic
drive laser and the initial lengths of doubly resonant cavi-
ties. Specifically, instead of using the power of a laser that
drives a cavity [17] or employing the general amplitude of an
external pumping laser for the atoms as in [23], we exploit
the impact of the frequencies of a bichromatic external cavity
drive laser on the strength of entanglement of the modes of
mechanical oscillators. In this regard, the degree of entangle-
ment is found to be affected by slight changes to the choices
of cavity-driving laser frequencies. We also observed an en-
hanced degree of entanglement in the case of larger atomic
injection rates, smaller atomic decay rates, and smaller initial
lengths of a doubly resonant cavity.

To attain our objective, we obtain quantum Langevin equa-
tions in the adiabatic regime with the help of the master
equation for different modes of the system, confining our
study to linear analysis and a good cavity limit and employing
the field-mirror interaction Hamiltonian. Then the covariance
matrix of the mechanical modes is calculated so that the corre-
sponding entanglement can be calculated within the Gaussian
approximation.

II. DYNAMICAL EQUATIONS

In this section, we give the main results of the derivation
of the interaction Hamiltonian and the corresponding master
equation.

A. Interaction Hamiltonian

The system under consideration is shown in Fig. 1; it
comprises three-level atoms in a cascade configuration that
initially occupy the lower energy level and are pumped by
strong external radiation of amplitude χ and frequency ωp

to establish coherence in the upper and lower atomic energy

levels; then, they are injected at a rate ra into a doubly resonant
cavity. Two-mode cavity radiations are also coupled to the
vacuum reservoir via a port mirror M3. The doubly resonant
cavity, on the other hand, is driven by two coherent lasers with
frequencies ωL1 and ωL2 , and the two cavity radiations that
are split by a beam splitter (BS) in the cavity are coupled
to their respective movable mirrors via radiation pressure.
In this setting, the movable mirrors are treated as quantum-
mechanical harmonic oscillators with effective masses mj and
frequencies ωmj ( j = 1, 2), which may result in nonclassical
properties such as entanglement because the emerging coher-
ent correlation can be transferred to mechanical oscillations.
The corresponding quantum harmonic oscillators could thus
be modeled with their respective thermal baths at equilibrium
at temperatures T1 and T2, with the annihilation (creation) op-
erator of each vibrational mode b̂ j (b̂†

j) satisfying the relation

[b̂ j, b̂†
j] = 1, with j = 1, 2.

For such a system, the Hamiltonian of the system in the
interaction picture can be obtained under the rotating-wave
approximation. Therefore, the total interaction Hamiltonian
with atom field Ĥ (af)

I [29] and field mirror Ĥ (fm)
I [4] interaction

can be expressed as Ĥ = Ĥ (af)
I + Ĥ (fm)

I , with

Ĥ (af)
I = ih̄g1(σ̂abâ1 − â†

1σ̂ba) + ih̄g2(σ̂bcâ2 − â†
2σ̂cb)

+ h̄(ξ1 + ξ2)σ̂aa + h̄ξ2σ̂bb + ih̄
χ

2
(σ̂ac − σ̂ca), (1)

Ĥ (fm)
I = h̄

2∑
j=1

[δω j â
†
j â j + i(ε j â

†
j e

iδω j t − ε∗
j â je

−iδω j t )]

+ h̄
2∑

j=1

[ωmj b̂
†
j b̂ j + G0 j â

†
j â j (b̂

†
j + b̂ j )]. (2)

In Eq. (1), the atomic operators σ̂kk = |k〉〈k| for k = a, b, c
are represented by σ̂ab = |a〉〈b|, σ̂bc = |b〉〈c|, and σ̂ac = |a〉〈c|
with the frequency ωk of the kth atomic states. The term
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FIG. 1. (a) Schematic representation of a two-mode laser coupled to two movable mirrors, M1 and M2. The doubly resonant cavity is driven
simultaneously by a physically accessible bichromatic laser of frequencies ωL1 and ωL2 . The two-mode radiations with realistic frequencies ω1

and ω2 generated by a three-level atom are filtered by a beam splitter (BS) and are coupled to their respective harmonically oscillating mirrors
via radiation pressure. (b) The cascade configuration of a three-level lasing atom that emits two-mode light. An external laser of amplitude χ

is applied to generate coherent superposition between the involved atomic energy levels.

g1 (g2) expresses the coupling strength between the dipole-
allowed atomic transition |a〉 → |b〉 (|b〉 → |c〉) and the two
cavity-mode annihilation (creation) operators â j (â†

j ).
In Eq. (2), the terms |ε j | = √

(κ jPj )/h̄ωL j and G0 j =
(ω j/Lj )

√
h̄/(mjωmj ) ( j = 1, 2) denote the amplitude of the

lasers that drive the cavity and optomechanical coupling rates
between the mechanical and cavity fields, respectively, with
cavity lengths Lj , decay rates of cavity modes κ j , input power
Pj , and frequencies of the lasers driving the cavity ωL j . It is
also noted that ξ1 = ωab − ζ1 and ξ2 = ωbc − ζ2, with ωab =
ωa − ωb and ωbc = ωb − ωc being the frequencies of the
|a〉 → |b〉 and |b〉 → |c〉 transitions. Notably, ζ j = ω j − δω j

indicates the shifted cavity frequency, and δω j = G0 j 〈b̂†
j +

b̂ j〉 shows the frequency shift due to radiation pressure, while
the two-photon resonance is ωp = ζ1 + ζ2 and δ j = ζ j − ωL j .

B. Master equation

The master equation corresponding to the Hamiltonian in
(1) can be obtained by applying the standard approach intro-
duced to study a two-mode three-level laser similar to that
in many earlier treatments [29,30]. On the other hand, the
mechanical baths that the mechanical oscillators coupled with
are considered to be Markovian with a high mechanical Q
factor [7]. With these considerations, the master equation for
the cavity modes coupled to the vacuum reservoir and the
two mechanical oscillator modes coupled to their respective
thermal environments takes the form

d

dt
ρ̂(t ) = α11(ρ̂â1â†

1 − â†
1ρ̂â1) + α∗

11(â1â†
1ρ̂ − â†

1ρ̂â1)

+ α22(â2ρ̂â†
2 − â†

2â2ρ̂ ) + α∗
22(â2ρ̂â†

2 − ρ̂â†
2â2)

+ α12(ρ̂â†
2â†

1 − â†
1ρ̂â†

2) + α∗
12(â1â2ρ̂ − â2ρ̂â1)

+ α21(â†
1ρ̂â†

2 − â†
2â†

1ρ̂ ) + α∗
21(â2ρ̂â1 − ρ̂â1â2)

+ 1

2

2∑
j=1

k j (2â j ρ̂â†
j − â†

j â j ρ̂ − ρ̂â†
j â j )

+ 1

2

2∑
j=1

γmj [(n j + 1)(2b̂ j ρ̂b̂†
j − b̂†

j b̂ j ρ̂ − ρ̂b̂†
j b̂ j )

+ n j (2b̂†
j ρ̂b̂ j − b̂ j b̂

†
j ρ̂ − ρ̂b̂ j b̂

†
j )]. (3)

The coefficients αi j are given by

α11 = −g2
1ra

F

[
(γbc − iξ2)

Taa

D2
− χ

2

T ∗
ac

D1

]
, (4)

α12 = g1g2ra

F

[
(γbc − iξ2)

Tac

D1
+ χ

2

Tcc

D2

]
, (5)

α22 = g2
2ra

F

[
(γab − iξ1)

Tcc

D2
− χ

2

T ∗
ac

D1

]
, (6)

α21 = −g1g2ra

F

[
(γab − iξ1)

Tac

D1
− χ

2

Taa

D2

]
, (7)

with

Taa = 1

2
χ2γac, Tcc = 1

2
[2γaD1 + χ2γac],

Tac = χ (Tcc − Taa)

2D2
[γac − i(ξ1 + ξ2)],

D1 = γ 2
ac + (ξ1 + ξ2)2,

D2 = χ2γac
(γa + γc)

2
+ γaγc

[
γ 2

ac + (ξ1 + ξ2)2
]
,

where F = χ4/4 + (γab + iξ1)(γbc − iξ2), γab and γbc are de-
phasing rates for the atomic transitions from |a〉 to |b〉 and
|b〉 to |c〉, γ j ( j = a, b, c) is the jth atomic level spontaneous
emission decay rate, and γac is the two-photon dephasing rate
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for atomic transition between the upper and lower energy
levels.

Note that κ j and γmj account for the damping of the cavity
modes coupled to a vacuum reservoir and the damping rates
of the modes of mechanical oscillators coupled to thermal
baths at temperatures T1 and T2, with the corresponding mean
thermal phonon numbers represented by n1 and n2. Moreover,
n j ( j = 1, 2) is represented by n−1

j = exp(h̄ωmj /kBTj ) − 1,
where kB is the Boltzmann constant and Tj is the temperature
of the jth reservoir of the mechanical oscillator.

III. THE QUANTUM LANGEVIN EQUATIONS

After the master equation is applied, the quantum Langevin
equations for the atom-cavity mode and optomechanical sys-
tem can be determined separately in the regime where the
atom-field coupling turns out to be much stronger than the
optomechanical coupling to analyze the mechanical entangle-
ment [17,18]. With the aid of these equations, we obtain

dâ j (t )

dt
= −

(
k j

2
+ α j j + iδω j

)
â j (t ) − α jk â†

k (t )

− iG0 j â j (b̂
†
j + b̂ j ) + ε je

iδ j t + F̂j, (8)

db̂ j (t )

dt
= −

(
γmj

2
+ iωmj

)
b̂ j (t ) − iG0 j â

†
j â j + √

γmj f̂ j, (9)

where the terms F̂j and f̂ j stand for noise operators due to the
coupling of the vacuum reservoir with the cavity modes and
thermal reservoirs coupled to mechanical oscillators [31].

The correlation properties of the noise operators can be ob-
tained by using Einstein relations: 2〈DÂB̂〉 = d

dt 〈ÂB̂〉 − 〈( Â
dt −

F̂A)B̂〉 − 〈Â( B̂
dt − F̂B)〉, where 〈DÂB̂〉 is the diffusion coeffi-

cient for any operators Â and B̂ = (â j, b̂ j) ( j = 1, 2) and F̂A

and F̂B belong to their corresponding noise operators [31].
Using this relation, the equations for the second-order mo-
ments of the cavity-mode operators â j , and 〈F̂Â(t )F̂B̂(t ′)〉 =
2〈DÂB̂〉δ(t − t ′), the nonzero correlation properties for the
noise operators of the vacuum reservoir coupled to the cavity
mode are found to be

〈F̂ †
1 (t )F̂1(t ′)〉 = −2 Re(α11)δ(t − t ′), (10)

〈F̂1(t )F̂ †
1 (t ′)〉 = κ1δ(t − t ′), (11)

〈F̂2(t )F̂ †
2 (t ′)〉 = [κ2 + 2 Re(α22)]δ(t − t ′), (12)

〈F̂ †
1 (t )F̂ †

2 (t ′)〉 = (α∗
12 − α∗

21)δ(t − t ′), (13)

〈F̂2(t )F̂1(t ′)〉 = 〈F̂ †
1 (t )F̂ †

2 (t ′)〉∗ = −〈F̂ †
2 (t )F̂ †

1 (t ′)〉∗
= (α12 − α21)δ(t − t ′). (14)

In the same manner, the nonvanishing correlations between
the mechanical noise operators with the use of Eqs. (2) and
(3) can be written in the form

〈 f̂ †
j (t ) f̂ j (t

′)〉 = n jδ(t − t ′), (15)

〈 f̂ j (t ) f̂ †
j (t ′)〉 = (n j + 1)δ(t − t ′). (16)

A. Linearization of quantum Langevin equations

Nonlinearity in Eqs. (8) and (9) means they are not easy
to analyze. However, we can overcome this difficulty us-
ing the linearization approach [32,33] by assuming that each
operator in the system can be written as the sum of its steady-
state mean value and a small fluctuation around the steady
state:

â j = 〈a j〉 + δâ j, b̂ j = 〈b j〉 + δb̂ j . (17)

The parameters 〈a j〉 and 〈b j〉 are the solutions of the nonlinear
algebraic equations obtained using a transformed frame de-
fined by ã j = â j exp(−iδ jt ), then factorizing the steady-state
component of Eqs. (8) and (9) in the regime of the rotating-
wave approximation, and setting the time derivatives to zero:

〈ã j〉 = 2ε j

κ j + 2α j j − 2i� j
, 〈b̂†

j + b̂ j〉 = −8ωmj G0 j 〈ã†
j ã j〉

γ 2
mj

+ 4ω2
mj

,

(18)

where � j = ωL j − ω j − G0 j 〈b̂†
j + b̂ j〉 denote the cavity-

mode detunings.
On the other hand, a set of linearized differential equa-

tions for the fluctuation operators with zero mean can be
achieved by introducing the slowly varying fluctuation oper-
ators δâ(t ) = δã(t ) exp(iδ jt ) and δb̂(t ) = δb̃(t ) exp(−iωmj t )
into Eqs. (8) and (9) and keeping the the coupling terms
induced by the two-photon coherence in the absence of the
rotating-wave approximation. Then we have

d

dt
(δâ j ) = −

(
κ ′

j

2
− i� j

)
δâ j − α jk δâ†

k + F̂j

− iG0 j 〈ã j〉(δb̃†
je

i(δ j+ωm j )t + δb̃ je
i(δ j−ωm j )t ), (19)

d

dt
(δb̃ j ) = − γmj

2
δb̃ j − iG0 j 〈ã†

j〉δâ j e−i(δ j−ωm j )t

− iG0 j 〈ã j〉δâ†
j ei(δ j+ωm j )t + √

γmj f̃ j, (20)

with κ ′
j = κ j + 2α j j , f̃ j = f̂ j exp(iωmj t ), and F̃j =

F̂j exp(−iδ jt ). It can be shown that the operators δâ j and δb̂ j

satisfy the usual boson commutation relations.
Here, the optomechanical interaction describes parametric

amplification, which can be used to realize optomechanical
squeezing when δ j = ωmj [7], whereas the interaction is rel-
evant in inducing quantum state transfer and cooling when
δ j = −ωmj [7,34].

Since we are interested in transferring the entanglement
of the cavity fields to the mechanical modes, in this paper,
we employ δ j = −ωmj . We also choose ωL j ≈ ω j + G0 j 〈b̂†

j +
b̂ j〉, so that α j j and α jk are real. Upon adiabatically approx-
imating Eq. (19), we obtain coupled Langevin equations for
mechanical oscillators δb̃ j ,

d (δb̃1)

dt
= − A1

2
δb̃1 − G12δb̃†

2 − r1F̂ †
1 + r2F̂2 + √

γm1 f̃1,

(21)

d (δb̃2)

dt
= − A2

2
δb̃2 − G21δb̃†

1 + s1F̂1 − s2F̂ †
2 + √

γm2 f̃2,

(22)
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where A1 = γm1 − Ab1 and A2 = γm2 − Ab2 , with Ab1 =
4G1G∗

1κ
′
2/K and Ab2 = 4G2G∗

2κ
′
1/K , where K = κ ′

1κ
′
2 −

4α12α21 denotes the effective damping rates for the mechan-
ical modes induced by the radiation pressure. In the same
way, G12 = 4G1G2α

∗
12/K and G21 = 4G1G2α

∗
21/K are effec-

tive couplings between the two mechanical modes induced
by the laser system, whereas r1 = 2G1κ

′
2/K , r2 = 4G1α

∗
12/K ,

s1 = 4G2α
∗
21/K , and s2 = 2G2κ

′
1/K , where many-photon cou-

pling is denoted by Gj = iG0 j 〈ã j〉.

B. Covariance matrix at steady state

It turns out that the mechanical modes form a bipartite CV
system. In this section, we are interested in the properties of
its steady state, which, due to the linearized treatment and to
the Gaussian nature of the noise operators, is a zero-mean
Gaussian state, completely characterized by its symmetrized
covariance matrix (CM), which is given by a 4 × 4 matrix
with elements

Vi jss
= 〈JiJ j + J jJi〉ss

2
,

where Jiss is the asymptotic value of the ith component of the
vector of quadrature fluctuations

J(t ) = (δH̃1, δL̃1, δH̃2, δL̃2)T ,

with δH̃j = (δb̃†
j + δb̃ j )/

√
2 and δL̃ j = (δb̃ j − δb̃†

j )/i
√

2.

Therefore, the steady-state values are readily calculated using
equations of motion (21) and (22), from which we get the
matrix equation

J̇(t ) = M J(t ) + u(t ), (23)

with M being the drift matrix,

M =

⎛
⎜⎜⎜⎜⎝

−A1
2 0 −G12 0

0 −A1
2 0 G12

−G21 0 −A2
2 0

0 G21 0 −A2
2

⎞
⎟⎟⎟⎟⎠,

and u(t ) being a noise vector that contains the noise operators
of both the cavity and mirrors,

u(t ) = (
δĤ in

1 , δL̂in
1 , δĤ in

2 , δL̂in
2

)T
,

where the Hermitian input noise operators are δH̃ in
j = (F̃ †

b j
+

F̃b j )/
√

2 and δL̃in
j = (F̃b j − F̃ †

b j
)/i

√
2, with F̃b1 = −r1F̂ †

1 +
r2F̂2 + √

γm1 f̃1 and F̃b2 = s1F̂1 − s2F̂ †
2 + √

γm2 f̃2.

It turns out that the formal solution of the matrix equa-
tion (23) is given by

J(t ) = J(0)eM t +
∫ t

0
dt ′u(t − t ′) eM t ′

, (24)

where J(0) is the vector of the initial values of the com-
ponents. For the steady-state solution, we take the limit of
Eq. (24) as t → ∞. Since the noises F̂ and f̂ are δ correlated
so that they describe a Markovian process, the steady-state
CM can therefore be determined by solving the Lyapunov

equation [3]

M V + V T M = −P, (25)

where P is the 4 × 4 diffusion matrix which characterizes the
noise correlations and is defined by the relation Pi jδ(t − t ′) =
[〈ui(t )u j (t ′) + u j (t ′)ui(t )〉]/2. Using the correlations between
noise operators F̂ and f̂ , by considering Appendix B in
Ref. [28] with N = M = 0, the CM satisfies Eq. (25), and
we obtain a stable solution(s) when the eigenvalues of matrix
M are negative on the condition that A1A2 > 4G12G21 and
under the Routh-Hurwitz criterion [35], and therefore, P can
be written as

P =

⎛
⎜⎜⎜⎜⎝

P11 0 P13 P14

0 P11 P14 −P13

P13 P14 P33 0

P14 −P13 0 P33

⎞
⎟⎟⎟⎟⎠, (26)

with

P11 = r2
1

[
κ1 − 2α11

2

]
+ r2

2

[
κ2 + 2α22

2

]

− r1r2

[
α12 − α21

2

]
+ γm1

(
2n1 + 1

2

)
, (27)

P13 = r1s1

[
κ1 − 2α11

2

]
− r2s2

[
κ2 + 2α22

2

]

+ (r1s2 + r2s1)

2

[
α12 − α21

2

]
+ γm1

(
2n1 + 1

2

)
, (28)

P14 = i
(r2s1 − r1s2)

2

[
α21 − α12

2

]
, (29)

P33 = s2
1

[
κ1 − 2α11

2

]
+ s2

2

[
κ2 + 2α22

2

]

− s1s2

[
α12 − α21

2

]
+ γm2

(
2n2 + 1

2

)
. (30)

IV. ENTANGLEMENT OF THE MOVABLE MIRRORS

We are now poised to investigate the degree of entangle-
ment for the bipartite Gaussian state of the oscillating mirrors
using different criteria. By definition, a quantum state ρ̂ of a
bipartite system is said to be entangled (inseparable) if and
only if

ρ̂ 
=
∑

i

Piρ̂i1 ⊗ ρ̂i2, (31)

where ρ̂i1 and ρ̂i2 are density operators of modes 1 and 2, with
0 � Pi � 1 satisfying

∑
Pi = 1. With this in mind, several

inseparability criteria for continuous-variable product states
have been proposed on the basis of different conditions and
assumptions. Among these, the quadrature entanglement [36]
and the logarithmic negativity [37] are employed, although
they mostly render only sufficient conditions. It is therefore
compelling to study the relation among various entanglement
criteria and to search for prospective conditions under which
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this quantum system shows robust movable-mirror entangle-
ment with regard to simultaneously applied bichromatic input
lasers which drive the cavity at different frequencies, injected
three-level atoms, and altering the initial lengths of a doubly
resonant cavity by calculating the elements of the CM when
optimal quantum state transfer from the two-mode cavity field
to the mechanical modes is considered.

A. Quantification via the sum of quadrature variances

Quantification of entanglement in terms of the sum of
quadrature variances is one of the approaches used to verify
the entanglement between two mechanical modes [36]. In this
respect, a maximally entangled continuous-variable state can
be expressed as a coeigenstate of a pair of Einstein-Podolsky-
Rosen (EPR)-like operators û and v̂, and the quantum states
of the system are entangled provided that the sum of the
variances satisfies the inequality [20]

�u2 + �v2 < 2, (32)

where

û = δH̃1 + δH̃2, v̂ = δL̃1 − δL̃2, (33)

with

δH̃j = 1√
2

(δb̃ j + δb̃†
j ), δL̃ j = i√

2
(δb̃†

j − δb̃ j ), (34)

and [δH̃j, δL̃ j′ ] = iδ j j′ .
With the aid of Eqs. (33) and (34) and the relations 〈δH̃j〉 =

〈δL̃ j〉 = 0, we obtain the sum of the variances of EPR-like
operators as

(�u2 + �v2) = (〈δH̃1δH̃1〉 + 〈δL̃1δL̃1〉)ss

+ (〈δH̃2δH̃2〉 + 〈δL̃2δL̃2〉)ss

+ (〈δH̃1δH̃2〉 + 〈δH̃2δH̃1〉
− 〈δL̃1δL̃2〉 − 〈δL̃2δL̃1〉)ss. (35)

Upon substituting the elements of the CM for the correlations
on the right side of Eq. (35) from the solution of Eq. (25), we
obtain

(�u2 + �v2)ss = [V11 + V22 + V33 + V44

+ 2(V13 − V24)]ss. (36)

Even though there is no direct interaction between the
movable mirrors, it can be conceived that the quantum be-
havior of the two-mode laser in a CEL could be transferred
to the oscillations of the movable mirrors. As a result, the
modes of the mechanical oscillators become entangled due
to the effective coupling between the two mechanical modes
induced by the laser system.

It is also a well-established fact that the external radia-
tion that pumps a three-level atom induces atomic coherent
superposition that can significantly modify the absorption-
emission mechanism of atoms which is essentially responsible
for a strong dependence of the entanglement properties of
the radiation on the amplitude of the driving radiation [23].
Making use of the generated laser, the entanglement of the
mechanical modes is found to be induced for a wide range
of the amplitude χ of a laser that drives the atom, with

FIG. 2. Plots of (�u2 + �ν2) against χ/γ at steady state for
simultaneously applied two-input lasers driving the cavity with fre-
quencies ωL1 = 741.0π THz and ωL2 = 564.0π THz (brown solid
curve), ωL1 = ωL2 = 741.0π THz (blue dash-dotted curve), ωL1 =
ωL2 = 564.0π THz (red dashed curve), and ωL1 = 564.0π THz and
ωL2 = 741.0π THz (black dotted curve). The other parameters are as
shown in Table I.

the highest entanglement value appearing at around χ ≈
5.75γ . There also exists a minimum strength of the atomic
drive laser for which the mechanical-mode entanglement
occurs.

In this context, we extend the exploration of the effect
of the strength of a bichromatic laser that drives a doubly
resonant cavity with regard to the lasers’ frequencies, and in
Fig. 2, we examine the effect of varying the frequencies of the
lasers driving the cavity on the degree of entanglement of the
mechanical modes. Particularly, we observe that the degree of
mechanical-mode entanglement at steady state as quantified
by the sum of quadrature variances (�u2 + �ν2) is strongest
when the frequency of a bichromatic laser ωL1 is greater than
that of ωL2 , while the degree of entanglement is found to be
weakest when a bichromatic laser’s frequency ωL1 is less than
ωL2 . In addition, the degree of entanglement is also enhanced
but weaker than the strongest one for simultaneously ap-
plied equal-frequency input lasers, ωL1 = ωL2 = 741.0π THz.
However, a weaker (better than the weakest) degree of entan-
glement is observed when the frequencies of a bichromatic
laser are small but equal, i.e., ωL1 = ωL2 = 564.0π THz. This
can be explained by the fact that the degree of entanglement
is related directly to the effective couplings between the two
mechanical modes, G12 and G21, so that the entanglement can
be enhanced as the effective couplings rely directly on the
respective terms α12 and α21 and on the product G1G2. Here,
Gj = iG0 j 〈ã j〉 for j = 1, 2, which indicates the many-photon
coupling depends directly on the amplitude of a bichromatic
laser via 〈ã j〉 = 2ε j/(κ j + 2α j j − 2i� j ). These outcomes
evince that entanglement is affected by slight changes to the
specific choices of the frequencies of the bichromatic drive
laser.

In addition, the degree of entanglement of the mechanical
modes can be enhanced and controlled by using different
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FIG. 3. Plots of (�u2 + �ν2) against χ/γ at steady state for
different atomic injection rates ra = 3.12 MHz (brown dash-dotted
curve), ra = 1.30 MHz (blue dotted curve), ra = 1.00 MHz (black
dashed curve), and ra = 0 MHz (red solid curve). The other parame-
ters are as shown in Table I.

parameters of three-level atoms, such as atomic injection rates
and atomic decay rates. Figure 3 shows that the degree of
entanglement would be enhanced at the rate at which atoms
are injected into the doubly resonant cavity. In this regard,
the increase in atomic injection rate can increase the correla-
tion in the coupled field-mirror modes, which can lead to an
enhanced degree of entanglement. In addition, the maximum
degree of entanglement is obtained when the atomic injection
rate is 3.12 MHz, while very weak entanglement is exhibited
when no atoms are injected (ra = 0) into the cavity. On the
other hand, a decrease in the initial lengths of a doubly reso-
nant cavity as shown in Fig. 4 is found to enhance the degree
of entanglement of the mechanical modes since it increases
the field-mirror coupling, which results in an increase in the
effective coupling between mechanical modes that appears
in direct relation to the correlations in the CM of bipartite
mechanical modes. We also note that the optimum degree of
entanglement is achieved when the initial lengths of a doubly
resonant cavity are L1 = 0.426 mm and L2 = 0.324 mm. This
can be described by the fact that the field-mirror couplings
G01 and G02 through which the transfer of quantum properties
from the radiation modes to the mechanical modes has been
carried out depend inversely on the respective initial lengths
of a doubly resonant cavity.

B. Quantification via logarithmic negativity

Another relevant method which reveals the existence of
entanglement in a bipartite state is logarithmic negativ-
ity, in which the product density operator for a separable
composite state has a positive partial transpose [37]. No-
tably, the logarithmic negativity for a CV system is defined
as

EN = max[0,−ln(2Vs)], (37)

FIG. 4. Plots of (�u2 + �ν2) against χ/γ at steady state for dif-
ferent initial lengths of a doubly resonant cavity, L1 = 0.426 mm and
L2 = 0.324 mm (blue dash-dotted curve), L1 = 0.532 mm and L2 =
0.405 mm (red solid curve), L1 = 0.6384 mm and L2 = 0.486 mm
(black dotted curve), and L1 = 0.7448 mm and L2 = 0.567 mm
(brown dashed curve). The other parameters are as shown in Table I.

where Vs is the smallest eigenvalue of the symplectic matrix
[42]. In line with this, the two mechanical modes are said to
be entangled if and only if EN > 0 or Vs < 1

2 . In this regard,
the smallest symplectic eigenvalue Vs of the partial transpose
of the 4 × 4 correlation matrix is found to have the form

Vs =
(

σ − (σ 2 − 4det V )
1
2

2

)1/2

, (38)

with σ ≡ det VA + det VB − 2det VC,

V =
(

VA VC

V T
C VB

)
,

VA = diag(V11,V22), VB = diag(V33,V44), and

VC =
(

V13 V14

V23 V24

)
.

Here, VA and VB are the 2 × 2 block form of covariance ma-
trices that describe each of the mechanical modes separately,
while VC represents the 2 × 2 matrix of correlations between
the mechanical modes.

In the following, the smallest eigenvalue of the symplectic
matrix Vs at steady state is plotted against χ/γ by employing
Eq. (38). As we can see from Fig. 5, the degree of two-mode
mechanical entanglement is altered in a way similar to those
presented in Fig. 2 for variations in the frequency combina-
tions of a bichromatic laser; nonetheless, the two different
measures of entanglement originate from different sources.
On the other hand, we can see from Fig. 6 that the effect of
varying the atomic decay rate depends strongly on the value
of χ/γ . For χ/γ < 4, different atomic decay rates lead to
the same entanglement, but for χ/γ > 4, lower atomic decay
enhances the entanglement.
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FIG. 5. Plots of Vs against χ/γ at steady state for simultaneously
applied two-input lasers driving the cavity with frequencies ωL1 =
741.0π THz and ωL2 = 564.0π THz (red dash-dotted curve), ωL1 =
ωL2 = 741.0π THz (black solid curve), ωL1 = ωL2 = 564.0π THz
(blue dotted curve), and ωL1 = 564.0π THz and ωL2 = 741.0π THz
(brown dashed curve). The other parameters are as shown in Table I.

Moreover, the degrees of entanglement using the sum of
variances of the quadrature operators (�u2 + �ν2) and small-
est eigenvalue of the symplectic matrix Vs can be compared,
where (�u2 + �ν2) is multiplied by 0.5. As shown in Fig. 7,
the degree of entanglement of the mechanical modes that
can be quantified by using two different criteria changes and
becomes stronger almost in similar manner. But the disparity
between the two entanglement criteria, that is, in the sum of
quadrature variances and the smallest eigenvalue of a sym-

FIG. 6. Plots of Vs against χ/γ at steady state for differ-
ent atomic decay rates, γ = 14.50 MHz (black solid curve), γ =
13.50 MHz (red dotted curve), and γ = 12.50 MHz (blue dash-
dotted curve). The other parameters are as shown in Table I.

FIG. 7. Plots of (�u2 + �ν2) and Vs against χ/γ at steady state
for the parameters shown in Table I.

plectic matrix, is fundamentally related to the difference in
the correlations leading to these phenomena.

V. CONCLUSION

We studied an optomechanical system consisting of two
cavity modes coupled to mechanical modes; the cavity modes
are driven by lasers and a stream of coherently excited three-
level atoms. We showed that entanglement of the mechanical
modes can be induced with significant controllability and with
potential implementation of the outcome for utilization when
the atomic and cavity parameters are involved.

We also found that the entanglement is found to be
sensitive to the specific choices of the frequencies of the
bichromatic drive laser. This can be described by the fact that
the effective couplings between the two mechanical modes
can be enhanced because they rely directly on the product
of the many-photon coupling that depends directly on the
amplitude of a bichromatic laser. Particularly, the generated
entanglement can be controlled by adjusting the frequency of
the lasers that drive the cavity. It was also clearly shown that
the degree of entanglement in the two criteria we employed
behave qualitatively in the same way, while the slight dis-
parity between the magnitudes is basically attributed to the
variations related to the difference in the correlations leading
to these phenomena. In addition, the degree of entanglement
was found to be enhanced with an increase in the rates of
injection of atoms, smaller initial lengths of a doubly resonant
cavity, and smaller atomic decay rates. From the obtained
results, we observe that further investigation into inducing
other nonclassical correlations between the modes of the me-
chanical oscillators, such as quantum discord and steering,
might be required to fully understand the nature of the transfer
of coherent superposition from a correlated emission laser to
mechanical oscillators and vice versa.
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