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In this paper we calculate the ground-state energy of benzene under spatial deformations by using the
variational quantum eigensolver. The primary goal of the study is to estimate the feasibility of using quantum
computing Ansätze on near-term devices to solve problems with a large number of orbitals in regions where
classical methods are known to fail. Furthermore, by combining our advanced simulation platform with real
quantum computers, we provide an analysis of how the noise, inherent to quantum computers, affects the results.
At the center of our study are the hardware efficient and quantum unitary coupled-cluster (QUCC) Ansätze.
First, we find that the hardware efficient Ansatz has the potential to outperform mean-field methods for extreme
deformations of benzene. However, key problems remain at equilibrium, preventing real chemical application.
Moreover, the hardware efficient Ansatz yields results that strongly depend on the initial guess of parameters
(in both noisy and noiseless cases) and optimization issues have a higher impact on their convergence than
noise. This is confirmed by comparison with real quantum computing demonstrations. On the other hand, the
QUCC Ansatz alternative exhibits deeper circuits. Therefore, noise effects increase and are so extreme that the
method never outperform mean-field theories. Our dual simulator, (8–16)-qubit QPU computations of QUCC
Ansatz appears to be much more sensitive to hardware noise than shot noise, which further indicates where the
noise-reduction efforts should be directed. Finally, the study shows that the QUCC method better captures the
physics of the system as the QUCC method can be utilized together with the Hückel approximation. We discussed
how going beyond this approximation sharply increases the optimization complexity of such a difficult problem.
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I. INTRODUCTION

Quantum computing has opened a new era of calculations
due to quantum superposition and quantum entanglement.
While classical computers handle binary information, quan-
tum computers use an entangled superposition of states as
information carriers. Some algorithms, such as the well-
known Grover algorithm [1] and Shor’s algorithm [2], will
introduce new efficient ways of solving complex problems if
implemented on quantum computers. Moreover, the deepest
understanding of complex molecules will become possible [3]
with new techniques such as the quantum phase estimation
(QPE) algorithm [4,5] and the variational quantum eigen-
solver (VQE) algorithm [6–15]. This new technology uses
very fragile entangled states of matter, which makes the man-
agement of multiple qubits without error correction difficult.
As QPE requires quantum error correction, we focus solely on
the VQE in this paper.

There are in principle two approaches in which quantum
computing is foreseen to provide value: through development
of quantum inspired algorithms which are executed on quan-
tum simulators and through algorithms which are executed
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on actual quantum hardware. Quantum simulators exploit
advanced supercomputing platforms to emulate quantum-
computing-like environments. On the other hand, a bottleneck
in executing algorithms on actual hardware is produced by
quantum noise processes: qubit dephasing, qubit relaxation,
and readout errors. With two-qubit error rates on the order
of 1%, the maximal number of two-qubit gates applied in a
circuit is a few hundred [16,17].

An open question remains: Could either of these two
approaches offer immediate value in treating problems be-
yond, for instance, very simple molecules? We try to address
these questions by solving the problem of benzene, a cyclic
molecule with the formula C6H6.

In order to minimize the number of qubits required for a
computation, we choose to work with the least computation-
ally demanding basis: sto-3g. In addition to the computational
cost savings, this minimal basis set will amplify the errors,
which can help us identify the shortcomings of the methods
we use. In this basis, each H is represented with a 1s orbital
and each C is represented with 1s, 2s, 2px, 2py, and 2pz

orbitals [18]. Therefore, the treatment of the entire molecule
requires taking into account 36 orbitals or equivalently 72
spin orbitals for which 72 qubits would be required. Because
simulating 72 qubits is beyond the simulation capabilities of
our in-house simulator, which is capable of simulating up to
35 qubits, our approach relies on a reduction of the size of
the system via active-space selection. Then 132 qubits would
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(a) (b)

FIG. 1. (a) Molecular geometry of benzene. (b) Selections of the active orbital space used throughout the paper.

be required with the 6-31g basis and 228 qubits with the
cc-pVDZ basis set.

In this paper we consider four ways of selecting the active
orbital case. Figure 1(b) shows the active spaces used in this
paper, all of which have an equal number of occupied and
virtual orbitals. Intensive numerical testing shows that those
active spaces with N electrons on N orbitals lead to lower
energies as opposed to active spaces with unequal numbers
of occupied and virtual orbitals.

In order to test the added value of contemporary quan-
tum computing methodologies, we focus on situations
where mean-field theories such as Hartree-Fock and density-
functional theories are not precise enough [19,20]. Further-
more, we search for situations where classical coupled-cluster
Ansätze are expected to yield nonphysical solutions and full
configuration-interaction calculations are, although theoreti-
cally possible, quite impractical due to a large active space
[20,21]. Such situations occur when systems with a large
number of orbitals are subject to spatial deformations, referred
to as distortions. We choose three types of such distortions.
For each of these distortions, we compute the Hamiltonian
of the molecule in the three cases described in Fig. 1(b) and
calculate their lowest eigenvalue, which corresponds to the
ground-state energy of the size-reduced system.

Figure 2 describes the three types of distortions we use in
this paper. All the distortions studied here have the same spac-
ing between one carbon and its closest neighboring hydrogen
atom. This distance is fixed at 1.09 Å as in the equilibrium
conformation of benzene. Generally, all fixed parameters have
their equilibrium value. The first distortion is a uniform defor-
mation of the molecule, in which the distance between two
neighboring carbon atoms R1 varies. In the second distortion,
as Fig. 2 shows, the variable parameter is the distance R2

between two opposite sides of the hexagon. The distance
between the carbon atoms on each of these sides does not
vary. Moreover, the two carbon atoms not on one of these
sides have their spacing fixed. During the distortion, these two
carbon atoms are vertically halfway between the two sides.
For the third distortion, the idea is to divide the benzene into

two identical triplets of carbon-hydrogen pairs. Then these
two parts are laterally moved one from another by varying
the parameter R3.

TotalEnergies is in possession of a quantum learning ma-
chine (QLM) [22], which allows large-scale simulations of
quantum processing units (QPUs). This platform, operating
192 cores and 3 TB of RAM, is also compatible with QPUs
from various providers such as IBM’s quantum computers. In
particular, the IBMQ_Toronto quantum processing unit has T1

and T2 approximately at 100 μs, with an average controlled-
NOT (CNOT) error rate about 10−2. Moreover, it should be
noted that both MYQLM, an open source version of the QLM
libraries used, and the codes for this study are public [23].

This paper is organized as follows. In Sec. II we describe
the methodology. In Sec. III we show and discuss all our
simulations with an increasing level of complexity, going from
noiseless simulations to compare different Ansätze and iden-
tify optimizations issues, introducing shot noise, and finally
comparing simulated noise to real demonstrations in IBMQ.
We summarize in Sec. IV.

II. METHODS

A. State-of-the-art classical computing methodologies

A number of classical computational chemistry methods
were performed in order to benchmark the quantum comput-
ing results: Hartree-Fock (HF), second-order Møller-Plesset
perturbation theory (MP2), coupled-cluster single and double
(CCSD) and triple (CCSDT), configuration interaction with
single and double excitations (CISD), and configuration in-
teraction using a perturbative selection (CIPSI). With these
classical methodologies, the benzene system in the sto-3g
basis can be treated without orbital freezing. There are many
possible open-source realizations for the listed methods. In
our case for the HF, MP2, CCSD, CCSDT, and CISD meth-
ods, the PYSCF package version 1.7.5.1 was used [24,25] on
TotalEnergies in-house high-performance-computing (HPC)
architecture. Otherwise, the CIPSI method is the current
state-of-the-art methodology for calculating energy levels of
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FIG. 2. The three types of distortions studied. In the remainder of the paper these distortions are referred to as distortion 1, distortion 2,
and distortion 3 respectively.

benzene [26]. It is implemented in QUANTUM PACKAGE in
the Master clusters at the Laboratoire de Chimie Théorique
(LCT). An open source implementation of wave-function
quantum chemistry methods was used [27], mainly devel-
oped at the Laboratoire de Chimie et Physique Quantiques in
Toulouse, France, and LCT in Paris. The CIPSI codes were
executed in an efficient parallel fashion.

B. Orbital freezing

Chemically, the lowest orbitals will be frozen and con-
sidered as full and they will be taken into consideration in
the core energy, while the highest orbitals will be considered
as nonactive and empty. As Hückel’s approximation suggests
[28], most of the electronic behavior of aromatic molecules
such as benzene is described with the π orbitals of the carbon
atoms, so we try to keep them active while reducing the active
space. Since the two highest occupied orbitals are degenerate
in benzene, the smallest case we consider is four electrons
in four orbitals, which corresponds to the eight-qubit case in
Fig. 1(b). The 12-qubit case considers all π orbitals active,
while our 16-qubit case goes beyond the Hückel approxi-
mation. Mathematically, our in-house simulator, the quantum
learning machine (QLM) [22], defines two subspaces of in-
dices corresponding to active orbitals A and occupied orbitals
O. By computing the eigenvalues of the reduced density ma-
trix of the molecule, we obtain the natural orbital occupation
numbers ni for each molecular orbital i of the whole system.
Then the two subspaces are filled by a built-in function of the
QLM which requires upper and lower thresholds ε1 and ε2 to
select the orbitals

A = {i | ni ∈ [ε2, 2 − ε1]} ∪ {i | ni � 2 − ε1, 2(i + 1)

� Nelec},
O = {i | ni � 2−ε1, 2(i + 1) < Nelec}. (1)

Once we have these subspaces, the built-in function performs
an update of the one-body term and the core energy

hpq → hpq +
∑
i∈O

2hipqi − hipiq ∀ p, q ∈ A,

Ecore → Ecore +
∑
i∈O

hii +
∑

i, j∈O
2hi j ji − hi ji j . (2)

Finally, the choice of the thresholds implies directly the choice
of the active orbitals.

C. Variational quantum eigensolver

The VQE [6–15] algorithm gives an estimation of the low-
est eigenvalue of an eigenproblem, based on an optimization
loop. First, one starts with a molecule, whose one-body and
two-body terms are calculated by a chemistry package such
as PYSCF [24]. Second, one applies a qubit-mapping trans-
formation, such as the Jordan-Wigner transformation (see
Appendix B), in order to obtain HJW. This new Hamiltonian
is written as a sum of Pauli strings, so it is understandable
and measurable by quantum computers. Third, one creates a
unitary state |ψ (θ)〉 which depends on a set of parameters and
then one computes

E (θ) = 〈ψ (θ)|HJW|ψ (θ)〉
〈ψ (θ)〉 =

∑
j

h j〈ψ (θ)|Pj |ψ (θ)〉, (3)

where Pj are tensor products of Pauli matrices (labeled as
Pauli strings in Appendix B) and h j are weights obtained
from the Jordan-Wigner transformation. The result is then
communicated to a classical computer, which returns a new
set of parameters, so an expectation value of energy of the
new trial state |ψ (θ′)〉 will be calculated again with the quan-
tum computer. This loop occurs until the optimizer finds the
minimum energy. Due to the Ritz variational principle, the
variational solution obtained by the quantum computer cannot
be lower than the exact energy E0:

E0 � E (θ) = 〈ψ (θ)|HJW|ψ (θ)〉∀ θ. (4)

In the remainder of this paper, a constrained optimization by
linear approximation (COBYLA) optimizer with maximally
1000 iterations will be used [29].

A critical point in solving the eigenvalue problem with
the VQE is the selection of the trial state. There are mainly
two different types of trial states, known as hardware effi-
cient (HE) Ansätze and the quantum unitary coupled-cluster
(QUCC) Ansatz. The QUCC Ansatz is a chemically inspired
trial state, with a large number of quantum gates and a precise
estimation of the ground-state energy [30–33]. The HE Ansatz
is a trial state designed to be easily implementable on quantum
computers [30,34–37] but with a less precise estimation of the
ground-state energy.
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FIG. 3. Hardware efficient circuits used in this study: (a) v1, (b) v2, and (c) v3. All of the RY and RX gates are parametrized by an angle
θ . Here the three circuits have their depth d = 1. The number of parameters is (a) and (b) dNqubits and (c) 2d (3Nqubits − 2).

The Hadamard gate is an integral part of the HE Ansatz,
enabling the creation of superimposed states. Another ingre-
dient of the HE Ansatz is the CNOT gate, a controlled operation
which flips the |0〉 and |1〉 states if the controlled qubit is |1〉.
The RX and RY gates are the unitary rotation operators around
the x and y axes in the Bloch sphere, parametrized by an angle.
Defined by the exponentiation of the X and Y Pauli matrices,
with these two operators, one is able to cover the whole Bloch
sphere [38].

The circuit in Fig. 3(a) is chemically inspired. If we sup-
pose that the first Nqubits/2 qubits represent the occupied
orbitals, then the Hadamard gate creates an electron on each
of them. Starting from this hypothesis, combining these gates
with the first set of CNOT entanglements makes an occupied-
virtual mixing and then the second set makes a spin mixing.
The RX and RY gates parametrize the circuit. The circuit
in Fig. 3(b) is a circuit which is easily implementable on a
quantum computer with nearest-neighbor two-qubit interac-
tions (a linear chain of qubits). An electron is created in all
the orbitals and we use alternatively an RY or an RX gate
to parametrize the occupancy of each qubit (orbital). The
circuit in Fig. 3(c) is also connectivity inspired with more
single-qubit gates compared to its counterpart in Fig. 3(b).
We first create an electron on each orbital with the Hadamard
gates. Then, knowing that the Hadamard gate is given by a
product of RY and RX gates H = RY (−π

2 )RX (π ), the set of
RY -RX gates directly weights the occupancy of each orbital.
The CNOT entanglements produce a linear circuit, and after
each entanglement we add a new set of RY -RX gates in order
to prevent the errors due to noncommuting gates. In other
words, this theoretically could enable the circuit to determine

the best order of gates at a cost of an optimization function
with a larger number of variational parameters.

In our case, the depth of the circuit is the number of
parametrized layers one adds to the first set of Hadamard
gates. In Fig. 3 the depth is equal to 1 and the circuits are
displayed in the case of a four-qubit Hamiltonian.

For the implementation of the QUCC Ansatz, the circuit
is provided by built-in functions of the QLM. As an input
one- and two-body integrals are required, along with the total
number of electrons, the subspace of spin orbitals O, and
the natural orbital occupation numbers and the energies of
the active orbitals. By computing neact = ne − 2|O|, one has
the number of active electrons, that is to say, the number of
electrons that are distributed over the active orbitals. Then A is
divided into two subspaces, I ′, which contains the unoccupied
active orbitals, and O′, which contains the occupied active
orbitals, and the anti-Hermitian operator is created,

TQUCC(θ) =
∑

pr

θ r
p(a†

par − a†
r ap)

+
∑

p>q,r>s

θ rs
pq(a†

pa†
qaras − a†

r a†
s apaq )

×∀ p, q, r, s ∈ I ′2 × O′2, (5)

where θ is an array of parameters. After that, the built-in
functions give the Ansatz |ψ (θ)〉 = eTQUCC(θ)|�0〉, with |�0〉
the state obtained with the Hartree-Fock method [22]. The
operator is Trotterized up to first order [22,39], which gives
Pauli strings that are decomposed in single- and two-qubit
gates. Although the initial state would be the Hartree-Fock
guess if θ0 = 0, the QLM calculates an improved θ0, which
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returns the MP2 method guess as the initial guess,

θ r
p = 0 ∀p, r ∈ I ′ × O′,

θ rs
pq = hpqrs − hpqsr

εr + εs − εp + εq
∀ p, q, r, s ∈ I ′2 × O′2, (6)

with εi the energy of the orbital i. As the MP2 method is
a post-Hartree-Fock method, which takes into account some
of the electronic correlation, the initial guess of the QUCC
Ansatz is expected to be better.

D. Noise models

In this paper we compute both noiseless and noisy sim-
ulations. The noisy simulations take into consideration two
types of noise: shot noise and idle hardware noise. Shot noise
originates from the final measurement of the qubit register. As
we use a simulator of quantum computers, entire circuits are
applied to the qubit register and then the machine has access
to the exact frequencies. Including shot noise means using
a number of random shots to make an estimation of these
frequencies and using them as a result. If one wants to mea-
sure the exact probabilities of any quantum state, an infinite
number of shots is required. In a realistic demonstration it is
impossible to perform an infinite number of evaluations. Shot
noise is the difference in measured probabilities between a
finite and an infinite number of realizations in any demonstra-
tions in quantum computing. Our simulator is able to calculate
these two cases by fixing the number of shots nshots, which has
to be 0 to obtain the exact probabilities.

The hardware noise describes the decoherence through the
execution of the circuit [40–42]. Within our in-house simula-
tor, two ways of incorporating noise exist: an idle noise model
and a full noise model. In the first one, the qubit gates are

ideal and the noise appears only when the qubit is inactive. In
the latter noise model, decoherence and relaxation occur both
when the qubit is actively operated on and when the qubit is
inactive. Due to the long simulation times of the full noise
model, in the remainder of this paper we will tackle noise from
an idle perspective.

Indeed, unlike pure quantum states which are well de-
scribed with a state vector, open quantum systems must
employ a density-matrix description to capture the full noise
dynamics. Giving a description of noise in an open quan-
tum system where the state of the environment at time t1 is
correlated with the state of the environment at time t2 > t1
usually requires a solution of a generalized master equa-
tion for the density matrix such as the Zwanzig-Nakajima
equation [43,44]. As this integro-differential equation is per
se unsolvable for a realistic system, further approximations
needs to be made such as the commonly employed Markov
approximation. The Markov approximation assumes a mem-
oryless environment, one where the state of the environment
at time t1 is totally uncorrelated with the state of the envi-
ronment at time t2. Contemporary quantum computers, such
as those from IBM Quantum, have a so-called 1/ f noise
spectral density, where the noise is a mixture of predominantly
non-Markovian and a smaller fraction of Markovian noise
[45,46]. However, the Lindblad-like equation [47], which is
the result of such approximations, is a matrix partial differ-
ential equation and is still difficult to solve for large systems.
Consequently, our in-house simulator offers simplified quan-
tum noise models.

The QLM allows the incorporation of this model by ap-
plying amplitude damping and pure dephasing, with built-in
functions which are returned by the noisy quantum processing
unit simulator. By manipulating the density matrix describing
the qubits with Kraus operators, the dephasing is implemented

(a) (b)

(c) (d)

FIG. 4. Difference between the ground-state energy curves of the eight-qubit system obtained with the HE Ansatz and the reference
obtained with full diagonalization of the eight-qubit system. All the figures have the same y axis. (a) and (c) d = 1, (b) and (d) d = 2, (a) and
(b) noiseless, and (c) and (d) noisy.
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TABLE I. Relaxation, dephasing, and gate-duration times.

T1 T2 Z X Y RX RY RZ CNOT

50 μs 50 μs 60 ns 60 ns 60 ns 60 ns 60 ns 60 ns 150 ns

with a characteristic decay law on its antidiagonal terms,
while the amplitude damping affects both the diagonal and the
antidiagonal terms with a similar decay law (see Appendix 3).
The built-in functions of the QLM require T1 and T2, the two
characteristic relaxation and dephasing times, along with gate
duration. Table I lists the values we use in the remainder of
the paper.

III. RESULTS

A. Comparison of the HE Ansätze

In this section we perform a comparison between the dif-
ferent HE circuits, for size-reduced cases with four electrons
in four orbitals and for all three distortions. The first distor-
tion is represented in Fig. 4 (see Fig. 5 for second and third
distortions). First, for depths equal to 1 and 2, we display
noiseless simulations and then we display noisy simulations.
These noisy simulations take into consideration shot noise and
an idle noise model of the quantum processing unit. Moreover,
while state-of-the-art post-Hartree-Fock solvers such as the
CCSD method are known to be very precise around the equi-
librium position, they yield nonphysical solutions when the
chemical system is distorted [20]. Because of this and the fact
that we want to make sure how much two-body correlation
quantum computing captures, we choose the Hartree-Fock
energy to be the method which will be compared with our
quantum simulations.

The energetic reference Eref is, for each dimension of each
distortion, the exact ground-state energy of the frozen-orbital
system, which is obtained with a full numerical diagonal-
ization of the eight-qubit Hamiltonian. Since it is the target
energy, we refer to this energy as exact. This method is also
very similar to a CASCI calculation; however, it takes into
account CISD orbitals instead of Hartree-Fock orbitals. Each
point of the simulations represents an average of 50 trials. In
this work a trial consists of choosing an initial guess and using
it with the VQE (with or without a model of noise).

In Fig. 4 we can see that the v3 circuit yields a lower energy
compared to v1 and v2. The Hartree-Fock method, on the
other hand, works better around the equilibrium position, but
when the distortion start to be extreme, the system is in a po-
sition far from equilibrium and this hardware efficient circuit
has a supreme performance in calculating the ground-state
energy. The solution obtained with the v1 Ansatz is improved
with depth, while the v2 and v3 Ansätze have their depth
already optimal at d = 1. As the number of parameters in v1
and v2 is dNqubits, we can conclude that there is no obvious
link between the number of parameters and the accuracy.

For distortion 2, the v3 Ansatz is still supreme to its
HE counterparts but it cannot manage to be closer than the
Hartree-Fock energy. This difference from distortion 1 comes
from the distortion itself: As Fig. 2 shows, in the case of
distortion 1, when the distortion parameter is changed, all

(a)

(b)

FIG. 5. Difference between the ground-state energy curves of the
eight-qubit system obtained with the HE Ansatz for (a) the second
distortion and (b) the third distortion, and the reference obtained with
full diagonalization of the eight-qubit system.

the carbon atoms move. In the case of distortion 2, when the
distortion parameter is changed, there are two pairs of carbon
atoms that always have the same spacing, so their correlation
is the same as the equilibrium position correlation. This can
also explain why the Hartree-Fock method provides a better
approximation in the case of distortion 2 than for distortion 1;
its deviation from the target value is always lower than 0.2 Ha,
while it reaches 0.4 Ha in distortion 1.

For the three distortions we can make the same general
conclusions: The v3 circuit is supreme to v1 and v2 and the
depth of the circuit impacts those results in a minor fashion.
Around the equilibrium positions, the Hartree-Fock energy
is more precise than these quantum methods; howevver, as
we start to distort the system, the HE method gives better
results. Eventually, these methods are rather complementary.
Due to such a supreme performance of the v3 Ansatz, we
will use only this HE Ansatz in the remaining sections of the
paper. The supreme performance of the v3 Ansatz is somewhat
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FIG. 6. Difference between the ground-state energies of the eight-qubit system obtained with the HE and QUCC Ansätze and the reference
obtained with full diagonalization of the eight-qubit system. The box plots give an overview of the amplitude of the variations due to
optimization, shot noise, and hardware noise issues. Each row shares the same y axis.

expected: It provides entanglement between neighboring
qubits and has a large pool of single-qubit gates.

B. HE vs QUCC Ansätze

In this section we perform calculations in order to compare
the HE method with different depths with the QUCC method,
in the case of eight-qubit systems for each distortion. The
reference Eref is, for each length of each distortion case, the
ground-state energy of the eight-qubit system, obtained by a
full diagonalization of the active-space Hamiltonians of eight
qubits. The optimizer is COBYLA with a maximum of 1000
iterations.

In Fig. 6 (see Fig. 7 for second and third distortions), the
left and middle columns represent the ground-state energies
obtained with the HE Ansatz with depths equal to 1 and 2,
respectively. The right column shows the QUCC results. The
top row displays noiseless simulations, while the middle and
bottom rows show simulations with noise. The middle row
corresponds to the simulations with shot noise only and the
bottom row refers to simulations with both shot noise and
hardware noise. Finally, the HE results of the top and bottom
rows are the same as the results of Fig. 4. All the HE curves
and the noisy QUCC curves displayed are the average of 50
trials, while the noiseless QUCC simulations are computed
only one time.

The first thing that we direct attention to is the presence of
box plots, which represents a variance in the multiple trials.

The box denotes where 50% of the values converge to, while
the full 100% is between the whiskers. The single points
represents results that are beyond 1.5 times the whisker size.
This variance through the results is due to the choice of the
initial guess and the optimizer itself. For the initial guess of
parameters in the HE method we choose a random vector.
As every new trial requires a new initial guess, the starting
trial state is never the same, so at the end, the algorithm
can be confined in a local minimum which depends heavily
on the initial guess. This illustrates the shortcomings of the
COBYLA optimizer, which is not robust enough to escape
local minima and converge towards the global solution.

Generally, the noiseless simulation shows that the variance
is higher around the equilibrium position. Moreover, the im-
plementation of shot noise seems to equilibrate the variance
across the results, and the consideration of hardware noise
decreases the variance of the results, although this makes the
HE method outperformed by classical methods.

Otherwise, the QUCC method has a very low variance,
which can be explained by its accurate initial guess which
seems to prevent the optimizer from converging towards a
local minimum. In contrast to the HE method, the presence
of hardware noise causes QUCC methods to give less good
results compared to the HE method, a feature which is not too
surprising given the large number of gates in the Ansatz. It is
also important to point out that the QUCC method is much
more sensitive to the hardware noise than to the shot noise.
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(a)

(b)

FIG. 7. Difference between the ground-state energies of the
eight-qubit system obtained with the HE and QUCC Ansätze for
(a) the second distortion and (b) the third distortion, and the reference
obtained with full diagonalization of the eight-qubit system.

C. Optimization in QUCC simulations

In this section we focus on the QUCC simulations. We
compare the initial guess of the QUCC method with its value
obtained after optimization in Fig. 8 [see Figs. 9(a) and 9(b)
for the second and third distortions]. The reference Eref is, for
each length of each distortion case, the ground-state energy
of the Nqubits-qubit system (written on top of the columns),
obtained with a full diagonalization of the active-space Hamil-
tonians of Nqubits qubits. The optimizer is COBYLA with
a maximum of 1000 iterations. Each of the four columns
of graphs corresponds to a different selection of the active
orbital space in the system. Each row of graphs corresponds
to a particular noise model. The top row displays noiseless
simulations, while the two others show simulations with only
shot noise, fixed at 1024 for the middle row and 350 for the
bottom row. The initial guesses are single simulations. For the
4-, 8-, and 12-qubit systems, the noisy optimal guess with 350
shots displayed is an average of 50 trials. Except for these, all
the optimal guesses are obtained with only one trial.

For each distortion, the eight-qubit case shows that the
initial guess of the QUCC method is a really accurate guess.
In particular, for certain lengths in the first distortion, the
difference between the initial guess, the optimal guess, and
the target energy is not perceptible at this scale. On the other
hand, going from 4 to 12 qubits, the noiseless row illustrates
that the difference between the initial guess and the optimal
guess increases. However, when the number of qubits is 16
there is no substantial increase in precision between the initial
guess and the optimal solution. This has to do with the fact that
aromatic molecules such as benzene are well described with
an active space of six orbitals (12 qubits). Indeed, the larger
the system, the more parameters added. The more parameters
one adds, the more iterations one needs to converge. This lack
of iterations explains also why the 16-qubit optimal guesses
seem to be higher in energy than the 12-qubit ones.

Concerning the noisy simulations, the important informa-
tion is that the optimal energy may be higher than the initial
guess, which we find quite surprising. We understand that
this phenomenon is caused by quantum noise. Indeed, let us
imagine an optimization surface: Increasing the level of noise
decreases the smoothness of the optimization surface [29] and
the harder it is to reach the real minimum energy. Moreover,
the optimization surface dynamically changes between real-
izations; when the optimizer changes the parameters to check
if it there is a better solution, the presence of noise can prevent
the optimizer from recovering the previous “better” solution.

D. Increasing the number of qubits

In this section we compare the results computed for the
4-, 8-, 12-, and 16-qubit systems, for the first distortion in
Fig. 10. The top rows display the noiseless simulations, while
the bottom rows show the simulations with shot and hardware
noise, up to eight qubits due to capabilities of the QLM.
Each column refers to a particular size of the system. The
reference Eref is, for each length of each distortion case, the
ground-state energy of the 16-qubit system, obtained with a
full diagonalization of the active-space Hamiltonians of 16
qubits. The optimizer is COBYLA with a maximum of 1000
iterations. The QUCC noiseless simulations are obtained with
one trial, while the noisy ones are an average of 50 trials.
All the HE calculations are the results of 50 trials, except for
16-qubit systems where there is only one trial due to the large
computational times required to obtain more than one trial.

Generally, for each distortion in the noiseless row, the
QUCC method is very accurate in the case of noiseless
simulations and it outperforms the classical methods. Fig-
ures 10, 11(a), and 11(b) show that from eight-qubit systems
to 12-qubit systems, the QUCC Ansatz provides decreasing
energies, indicative of a better solution as a larger number of
orbitals are activated.

The HE method has variable precision depending on the
distortion and the size of the system. As said before, the
applicability of the HE Ansatz is proportional to the level
of distortion. Figure 10 shows explicitly that for extreme
distortions, the HE method provides a better energy than the
QUCC method and does so with the same maximum number
of iterations.
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FIG. 8. Comparison between initial and optimal guesses yielded by the QUCC Ansatz, for the first distortion, with Eref being obtained with
full diagonalization of the active-space Hamiltonian. The corresponding number of qubits is written on top of each column. All the figures share
the same y axis. The noise increases from the top line to the bottom.

Likewise, when the deformation is less pronounced, the
QUCC method and even the classical methods outperform the
HE method, which gives an increasing energy as the system
grows. This phenomenon, which occurs also in the second and
the third distortion, can also be due to the maximum number
of iterations available. Indeed, for both HE and QUCC meth-
ods, the number of parameters increases with the number of
qubits; therefore, the convergence becomes more difficult with
a growing system, while we have set our optimizer to maxi-
mally 1000 iterations throughout the paper. As in Sec. III C,
this explains why the QUCC method seems to stagnate be-
tween an active orbital selection of 12 and 16 qubits.

Concerning the noisy simulations, the three distortions
have mostly the same behavior. The QUCC method totally
fails when one tries to include hardware noise, and even if
the HE efficient method gives better results they are still sub-
optimal because both are outperformed by classical methods.
One can also notice that the quantum methods are further
from the reference around the equilibrium position than for
extreme distortions, for which quantum methods provide a
better solution.

E. Comparison of quantum and classical methodologies

In Fig. 12 we compare quantum computing methodologies
with state-of-the-art classical computing methods for the first

distortion (similar results for distortions 2 and 3 can be found
in Fig. 13). The natural orbital occupation numbers (NOONs)
are estimated from classical solvers in Figs. 12(a)–12(c),
the 12-qubit QUCC solution in Fig. 12(e), and the 16-qubit
QUCC solution in Fig. 12(f). Figure 12(d) shows the NOONs
obtained with the CASCI [48] calculation made on an active
space of eight electrons in eight orbitals. Figure 12(g) displays
the ground-state energy curve, in which the HE and QUCC
results are the 16-qubit optimal guesses shown in Fig. 10. The
black curve labeled “FDASH” corresponds to the ground-state
energy of the 16-qubit systems obtained with a full diagonal-
ization of the 16-qubit active-space Hamiltonians. The other
energies are obtained with classical methods applied to the
whole benzene system without orbital freezing.

In terms of energy [Fig. 12(e)], the MP2, CCSD, and
CCSD(T) methods yield unphysical dissociation curves. The
MP2 method starts to fail around R1 = 3.5 Å and the CCSD
and CCSD(T) methods start to fail around approximately
R1 = 2.5 Å. The CIPSI method has difficulty converging start-
ing from R1 = 3.5 Å. The CISD method gives a relatively
low energy and a physical dissociation curve without local
minima. From R1 = 2.5 Å, there is a competition between
dynamic and static correlations that is not captured by all
methods, especially by the CCSD method, which is limited
by its single-determinant nature. As said before, the QUCC
method is very precise, especially around the equilibrium
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(a)

(b)

FIG. 9. Comparison between the initial and optimal guesses with
the QUCC Ansatz for (a) the second distortion and (b) the third
distortion, with Eref the energies obtained with full diagonalization of
the active-space Hamiltonian. The corresponding number of qubits is
written on top of each column.

position, while the HE method gives results very close to
the reference energy when the system is strongly distorted.
The MP2 and CCSD energetic behavior can be understood
with the NOONs [Fig. 12(d)]. Indeed, when distortion 1 is
applied to benzene, we are artificially creating six C—H pairs.
Due to the symmetry of the chemical system, we expect, for
extreme distortions, to avoid the interaction between these
pairs and then to have noninteracting orbitals with the same
energy, which results in orbitals with the same occupation
number. However, MP2 and CCSD NOONs fail for the same
geometries in which the energies are nonphysical, while the
CISD method gives more realistic NOONs. Here the CASCI
NOONs act as a reference for the QUCC NOONs. Not only
do the QUCC NOONs show explicitly the expected phenom-
ena: The occupation numbers of natural orbitals (NOs) 2–7
are gathering as R1 is increasing, but also one can notice
that the QUCC 12-qubit NOONs match the CASCI NOONs
much better than the QUCC 16-qubit results. This explains
the convergence issues detailed in Sec. III E between the 12-

and 16-qubit results: By taking NOs 1 and 8 into consid-
eration, the optimization cost increases unnecessarily with
parametrizing orbitals that are already well described when
frozen. This phenomenon, coupled with a limited number
of optimizations steps, yields difficulties for solving larger
systems on real quantum computers, even without taking
into consideration the noise: At R1 = 1.41 Å, E (CIPSIfull ) −
E (QUCC16 qubits ) = 0.33 Ha, which means that even if active-
space selection induces errors that theoretically disappear
when increasing the size of the system, in practice optimiza-
tion problems start inducing significant errors. In addition, it
confirms the validity of the Hückel approximation as NO 1
and NO 8 remain frozen whatever the distortion.

F. Robustness against noise

In this section we compare the robustness against the shot
and decoherence noise of the HE and QUCC Ansätze at the
equilibrium point. Following some interesting works about
the noise effects on VQE calculations [49–52], we aim to go
into more detail about some noise effects when treating such
a complex system as benzene. Taking gate durations indicated
in Table I and setting T2 = T1, we calculated the ground-state
energy of the eight-qubit active-space Hamiltonian benzene,
for R1 = 1.41 Å, with T1 varying from 80 to 1000 μs.
Figure 14 shows the average of ten trials obtained with the
QUCC Ansatz and the average of 50 trials obtained with the
HE Ansatz. Here “HE” refers to the calculations made with a
random initial guess, while “HE_0” always had the same ini-
tial guess, which was zero. Each trial is computed with 1024
shots for the top row and 4096 shots for the bottom one. The
dashed curves with square markers are the average of trials,
while the shaded area represents the amplitude of variation
through the trials. While the whole VQE algorithm was used
for the simulations, only the last optimization step (obtained
in a noiseless case) was taken and we launched it on an
actual quantum computer IBMQ_Toronto, which has T1 and
T2 approximately at 100 μs. This was done in order to estimate
the effect of noise on the estimation for the expectation value
itself as estimating the noise during the classical optimization
process would run beyond the scope of this paper. The stars
denotes the average of ten demonstrations, and maximum and
minimum values are represented by horizontal lines.

This figure shows that increasing the number of shots does
not have obvious consequences and it confirms some claims
made in Sec. III B. First, one can see that from 1024 to
4096 shots the variance of the QUCC results decreases while
the average remains constant. This confirms that the QUCC
method is much more affected by decoherence noise than by
measurement noise. Furthermore, for the HE results it is the
opposite: The average has dropped by 0.2 Ha, independently
of T1, while the variance of HE results has the same order
of magnitude. This confirms the greater sensibility of the HE
Ansatz to shot noise than to hardware noise. On the other
hand, for HE_0 results, neither the average nor the variance
changed when increasing the number of shots. This seems
to illustrate that some areas of the optimization landscape
are robust against noise; initializing a state in |0〉 ⊗ · · · ⊕ |0〉
makes it more immune against qubit relaxation than any string
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FIG. 10. Comparison of the ground-state energy curves of different numbers of qubits obtained with different methods, for the first
distortion. Here Eref is the energy obtained with full diagonalization of the 16-qubit active-space Hamiltonian. Each row share the same y
axis.

involving |1〉 would be. In addition, the difference between
extreme values is 0.34 Ha for the HE Ansatz without noise
(Fig. 5, top row and left column), 0.46 Ha for the HE Ansatz
with noise, and 0.15 Ha for HE_0 with noise. This shows
that, for the HE Ansatz, the choice of a random initial guess
has a higher impact on the convergence than the noise itself.
On the other hand, an extrapolation of QUCC results yields
T1 � 36 ms to reach a 10−2 precision, or T1 � 3.6 s to be
close to within 10−4 of the reference. This gives numerical
confirmation that the QUCC Ansatz will never be compatible
with actual noisy intermediate-scale quantum (NISQ) hard-
ware without noise mitigation.

Regarding real QPU calculations, even if the QUCC results
are quite close to the noise model both quantitatively and qual-
itatively, the HE results are a bit further away from it despite
the slight overlap between the HE error bar and shaded area.
However, our noise model is simplified and the values for T1

and T2 change dynamically between calibrations of the IBM
Quantum hardware. Furthermore, the connectivity of the IBM
Quantum hardware is not all to all and this is compensated
with additional SWAP gates.

In Fig. 15 we compare the results obtained with our
noise model (see Table I) with real QPU calculations due to
IBMQ_Toronto, for eight-qubit active-space Hamiltonians of
benzene under distortion 1. As before, the VQE has been fully
used in our noise model case, and only the last optimization
step (yield by a noiseless computation loop) was processed on
quantum computer. The dashed curve corresponds to the noise
model and holds an average of 50 trials, while the shaded area
illustrates the amplitude of variation of the results. The stars

correspond to an average of ten real QPU demonstrations,
with maximum and minimum values represented by hori-
zontal dashes. In both case, the reference is the ground-state
energy of the eight-qubit system, obtained by a full diagonal-
ization of the active-space Hamiltonians of eight qubits.

First, one can see that the average of the QUCC demonstra-
tions matches quite well our noise model, while the average
of the HE demonstrations is less than 0.3 Ha away from
it. However, despite the slight quantitative gap between the
HE Ansatz results on QPUs and HPCs, the error bars are
close to the value obtained for the noise model. One can also
notice that the curves have the same shape, meaning that the
influence of noise with R1 is similar in both situations. In
particular, the noise dominates much more around the equi-
librium position than for extreme distortions, which confirms
the previous statements. This can also be seen in the 16-qubit
results (see Fig. 16). Moreover, increasing the number of shots
has no significant impact on the average of demonstrations but
it decreases the variance of the results. From a more chemical
point of view, even for extreme distortions, actual QPUs with
the HE Ansatz would not enable one to outperform the HF
calculations.

IV. CONCLUSION

We have estimated the feasibility to execute families of
hardware efficient quantum computing Ansätze and quantum
unitary coupled-cluster Ansätze on near-term quantum com-
puters. By incorporating a realistic noise model, we found that
hardware efficient Ansätze could be executed on near-term
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(a)

(b)

FIG. 11. Comparison of ground-state energy curves of different
numbers of qubits, for (a) the second distortion and (b) the third
distortion, with the reference energy being obtained with full di-
agonalization of the active-space Hamiltonian. The corresponding
number of qubits is written on top of each panel in the top row of
(a) and (b).

hardware, giving better precision than mean-field methods
far away from the charge equilibrium point. In contrast, the
QUCC method is superior to mean-field methods but will
remain a method for simulators in the pre-error-correction era.
The QUCC method also preserves well the particle number of
individual orbitals. Noise remains a central issue, particularly
around the equilibrium position. For all approaches, noise
appears as a consequence, but its importance is shown to be
more critical in the case of the QUCC Ansatz, which could
be a nonoperational method on the NISQ era real quantum
computers for such a large system as benzene. Real demon-
strations on the IBM Quantum show that our noise model
describes well the noisy operation of a QPU both qualitatively
and somewhat quantitatively. Overall, more research is needed
to develop advanced noise-resistant Ansätze, especially for
those based on the QUCC method. Regarding the fact that the
QUCC method is much more sensitive to the hardware noise
than to the shot noise and knowing that reaching an unlimited
number of measurements seems difficult on a real machine,
it seems important to work out noise-reduction techniques in
this particular area. In addition, Ansätze continue to evolve

and recent works directed toward VQEs may improve the
robustness of QUCC-based methodologies in the near future
[53,54]. Anecdotally, although adapt-VQE methodologies are
state of the art on the algorithmic side for QPUs, the number of
gradients to be calculated remains a huge problem for practi-
cal implementation [22]. Indeed, the large number of gradient
evaluations scales suboptimally with system size and would
overconsume actual QPU resources. Making a calculation on
a real QPU requires a compromise between circuit depth and
number of executions. Thus we foresee that if adapt-VQE-like
algorithms would reduce circuit depth, they will also enhance
the complexity of each execution. In this form, it would have
a limited impact on large systems, especially in the NISQ era,
as system size is limited not only by the noise but also by the
optimizations issues that strongly increase with it. Therefore,
our future path should be directed towards solving this prob-
lem.

Our findings further suggest that the HE Ansatz is sensitive
to the random initial guess of the parameters, commonly lead-
ing to false minima of the optimizer. Furthermore, increasing
the size of the active space can lead to a similar result, a
solution which is trapped in a local minimum. Finally, in con-
trast to classical methods, quantum computing methodologies
manage to preserve physically relevant orbital occupancies.
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APPENDIX A: SECOND QUANTIZATION HAMILTONIAN

Generally, a molecule is composed of atoms, which are
composed of nuclei and electrons. The Hamiltonian of any
molecule can be written as

H = T + V, (A1)

with T the kinetic energy operator and V the potential energy
operator. Using atomic units, T describes the movement of the
particles and V describes the Coulomb interaction between
them:

T = −
N∑

i=1

1
2∇2

i︸ ︷︷ ︸
electron

−
M∑

A=1

1
2∇2

A︸ ︷︷ ︸
nuclei

, (A2)

V = −
∑
i,A

ZA

riA︸ ︷︷ ︸
electron-nuclei

+
∑
j>i

1

ri j︸ ︷︷ ︸
electron-electron

+
∑
B>A

ZAZB

rAB︸ ︷︷ ︸
nuclei-nuclei

. (A3)
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(a) (b) (c)

(d)

(g)

(e) (f)

FIG. 12. NOONs obtained with the (a) CISD, (b) CCSD, (c) MP2, (d) CASCI, and (e) and (f) QUCC methods for distortion 1 (a)–
(c) through a calculation on the whole benzene system and (d)–(f) within different active-space selections. They all share the same axis. The
vertical red dashed line indicates the equilibrium geometry. (g) Ground-state energy curves obtained with different methodologies. Here and
in the following figures FDASH stands for full diagonalization of the active-space Hamiltonian.

These equations are simplified when one works with the
Born-Oppenheimer approximations, by neglecting the kinetic
energy term of nuclei and the Coulomb interaction term be-
tween them. So the Hamiltonian is

H = −
∑

i

1

2
∇2

i −
∑
i,A

ZA

riA
+

∑
j>i

1

ri j
. (A4)

The principle of second quantization consists in rewriting
the Hamiltonian with the creation and annihilation operators
a† and a, respectively, which acts on the occupation number
vector

H =
∑
p,q

hpqa†
paq +

∑
p,q,r,s

hpqrs

2
a†

pa†
qaras. (A5)

The first term describes both the kinetic energy and the
Coulomb interaction with nuclei of an electron, while the
second term describes the two-body Coulomb interaction be-

tween pairs of electrons. With x = (r, σ ), these terms can be
written as

hpq =
∫

dx φ∗
p(x)

(
−1

2
∇2 −

∑
A

ZA

|r − RA|

)
φq(x) ∀ p, q,

(A6)

hpqrs =
∫

dx1dx2φ
∗
p(x1)φ∗

q (x2)

×
(

1

|r1 − r2|
)

φr (x1)φs(x2) ∀ p, q, r, s. (A7)

Each φ(x) = φ(r, s) represents a spin orbital of the basis
set. Finally, the more elaborate the basis set, the larger the
Hamiltonian: If we stick with a basis with Norb orbitals, then
it has 2Norb spin orbitals, which results in a full Hamiltonian
stored in a (22Norb, 22Norb ) matrix.
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(a)

(d)

(e)

(b) (c)

(f)

(i)

(j)

(g) (h)

FIG. 13. NOONs obtained with the (a) and (h) CISD, (b) and
(i) CCSD, (c) and (j) MP2, (d) and (k) CASCI, and (e) and (l),
and (f) and (m) QUCC methods for distortions 2 and 3, respec-
tively. (a)–(c) and (h)–(j) were obtained through a calculation on
the whole benzene system while (d)–(f) and (k)–(m) were obtained
within different active-space selections. They all share the same
axis. The vertical red dashed line indicates the equilibrium geome-
try. (g) and (n) Ground-state energy curves obtained with different
methodologies.

APPENDIX B: JORDAN-WIGNER TRANSFORMATION

Quantum computers are composed of qubits, whose state
is modified by rotations in the Bloch sphere, which are
performed by single-qubit quantum gates. In order to be un-
derstandable by quantum computers, the second quantized
Hamiltonian has to be transformed into a new form, obeying
the fermionic algebra of electrons but also behaving similarly
to the SU(2) group behavior of qubits. While the occupation
number vector is quite easy to transform, by asserting a qubit

to |0〉 if a spin orbital is empty and |1〉 if a spin orbital con-
tains an electron, the main problem is the conservation of the
antisymmetric properties of the system. The Jordan-Wigner
transformation converts the creation and annihilation opera-
tors while preserving their antisymmetric properties [55]:

a†
i →

⎛
⎝∏

j<i

σ Z
j

⎞
⎠σ X

i − iσY
i

2
∀ i < Nqubits, (B1)

ai →
⎛
⎝∏

j<i

σ Z
j

⎞
⎠σ X

i + iσY
i

2
∀ i < Nqubits. (B2)

Finally, the Hamiltonian of the system can be written as a sum
of Pauli strings [30]

HJW =
∑

j

h jPj . (B3)

APPENDIX C: IDLE NOISE MODEL

Briefly, let us consider a qubit in the state |φ〉 = α|0〉 +
β|1〉. The density matrix ρ0 of the pure state is

ρ0 = |φ〉〈φ| =
(|α|2 αβ∗

α∗β |β|2
)

. (C1)

The Kraus operators for pure dephasing [56,57] are, with
pph(t ) the decaying law of the phase,

E0 =
(

1 0
0

√
1 − pph(t )

)
, E1 =

(
0 0
0

√
pph(t )

)
. (C2)

Then the density matrix which takes into account this phe-
nomenon becomes

ρ =
∑

k

Ekρ0E†
k =

( |α|2 αβ∗√1 − pph(t )
α∗β

√
1 − pph(t ) |β|2

)
.

(C3)
Moreover, the Kraus operators for amplitude damping are,
with pa(t ) the decreasing law of the amplitude,

E0 =
(

1 0
0

√
1 − pa(t )

)
, E1 =

(
0

√
pa(t )

0 0

)
. (C4)

Then the density matrix which takes into account this phe-
nomenon becomes

ρ =
(|α|2 + |β|2 pa(t ) αβ∗√1 − pph(t )

α∗β
√

1 − pph(t ) |β|2[1 − pa(t )]

)
. (C5)

At the end, one remarks that the pure dephasing impacts only
the off-diagonal terms. Therefore, we can rewrite the density
matrix for the two combined phenomena, and considering
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FIG. 14. Ground-state energy of the active-space Hamiltonian of eight qubits of benzene at R1 = 1.41 Å, as a function of T1. The curves
are noisy simulations while the stars were obtained with IBMQ_Toronto. The top row shows results with 1024 shots and the bottom one with
4096 shots. They share the same y axis.

time-exponential relaxations pa(t ) = 1 − e−t/T1 and pph(t ) =
1 − e−2t/T2 ,

ρ =
(|α|2 + |β|2(1 − e−t/T1 ) αβ∗e−t/T ′

2

α∗βe−t/T ′
2 |β|2e−t/T1

)
, (C6)

with T ′
2 defined as 1

T ′
2

= 1
T2

+ 1
2T1

. Generalized to the whole
qubit register, one is able to incorporate the effect of noise in
the simulations.

FIG. 15. Difference between the ground-state energies of the eight-qubit system obtained with the HE and QUCC Ansätze, with either our
noise model or the real IBMQ_Toronto, and the reference obtained with full diagonalization of the eight-qubit system, for the first distortion.
The top row shows results with 1024 shots and the bottom one with 4096 shots. All figures share the same y axis.
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FIG. 16. Difference between the ground-state energies of the 16-qubit systems obtained with the HE and QUCC Ansätze, for the first
distortion. Dashed lines are obtained with noiseless simulations using the QLM, while the real IBMQ_Toronto demonstrations are shown with
stars. The reference is obtained with full diagonalization of 16-qubit active-space Hamiltonians. The effect of noise has the same behavior with
R1 as in the eight-qubit case (Fig. 15 in Sec. III D), although the order of magnitude is larger. Not all values are available due to interoperability
issues.
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