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In the adiabatic perturbation theory, Berry curvature is related to the generalized force, and the quantum
metric tensor is linked with energy fluctuation. While the former is tested with numerous numerical results and
experimental realizations, the latter is less considered. Quantum Fisher information, the key to quantum precision
measurement, is a four times quantum metric tensor. It is difficult to relate the quantum Fisher information with
some physical observable. One interesting candidate is the square of the symmetric logarithmic derivative, which
is usually tough to obtain, both theoretically and experimentally. The adiabatic perturbation theory enlightens
us to measure the energy fluctuation to directly extract the quantum Fisher information. In this article we first
adopt an alternative way to derive the link of energy fluctuation to the quantum Fisher information. Then we
numerically testify to the direct extraction of the quantum Fisher information based on adiabatic perturbation
in two-level systems and simulate the experimental realization in a nitrogen-vacancy center with experimentally
practical parameters. Statistical models such as the transverse-field Ising model and Heisenberg spin chains are
also discussed to compare with the analytical result and show the level crossing, respectively. Our discussion
will provide a practical scheme to measure the quantum Fisher information and will also be a benefit to quantum
precision measurement and the understanding of the quantum Fisher information.
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I. INTRODUCTION

Quantum Fisher information (QFI) and the quantum Fisher
information matrix (QFIM) are at the heart of quantum preci-
sion measurement theory [1–6]. The QFI is usually denoted by
Fλ and, originating from the classical Fisher information, de-
picts how much information a quantum state contains for the
metrology of a certain parameter. In the usual unbiased esti-
mation process, the estimator for the parameter λ, constructed
from other experimental parameter outcomes, is assumed to
have an expectation equal to the real value of the parameter λ.
And the sensitivity of the parameter, described by the variance
of the estimator �2λ, is lower bounded by the reciprocal of
QFI, 1/Fλ, known as the quantum Cramér-Rao bound. As
a result, larger quantum Fisher information is required for
better estimation of the corresponding parameter. QFIM Fμν

is a generalization of QFI and is crucial to the multiparameter
estimation. Although the QFI is crucial in the measurement
theory, recently a few schemes [7–13] were proposed for the
direct extraction of the QFI. Moreover, the calculation of the
QFI is not that simple, and the expression of the estimating
state is even not known. This remains an interesting prob-
lem in the quantum measurement. Inspired by the work of
Ref. [14], we notice that the adiabatic perturbation may be
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a starting point for the measurement of QFI, and a physical
quantity naturally emerges from that.

The quantum geometric tensor [15–18] consists of two
important physical quantities, i.e., the Berry curvature cor-
responding to its imaginary part, and the quantum metric
tensor corresponding to its real part. The former is an intrinsic
topological quantity, and its integral gives the Chern number
[19,20]. The latter is usually less considered in condensed-
matter theory, but it plays a better role in quantum precision
measurement since it is exactly a quarter of QFIM. Since
the Berry curvature is particularly important in topological
physics, it is useful to find a way to measure it directly
[21–24]. It has been realized that the Berry curvature emerges
as the dynamical response in the nonadiabatic evolution. An
excellent tool is the adiabatic perturbation theory [25–32],
which regards the quantum adiabatic approximation as the
zeroth-order case and depicts a perturbation extension in
terms of the small parameter’s changing rate v to correct
the quantum adiabatic theorem. In the work of Gritsev and
Polkovnikov [14], they used the result from adiabatic per-
turbation theory to calculate the linear response of a slowly
driven system, and the Berry curvature emerges due to the
quench. This means

−〈ψ (t f )|∂μH |ψ (t f )〉 = const + Bμλvλ + O(v2), (1)

where the quench velocity vλ = λ̇ is the changing rate of
the parameter, and the above quantities are evaluated in the
final time t f . The decorated Bμν is the Berry curvature of the
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FIG. 1. Illustration of the extraction of the QFI (matrix). The initial state is prepared to be the ground state of the initial Hamiltonian. (The
green block represents the population in each level and it is located in the ground state, obviously.) Then the parameter(s) of the Hamiltonian is
(are) slowly changed with vanishing switching-on velocity. The populations in higher levels are still small but not zero due to quasiadiabaticity.
When the Hamiltonian is evolved into the interested one, the energy fluctuation is measured in the final state of the system. The ratio between
the expectation to the square of the final velocity of parameter(s) gives the QFI (matrix).

ground state of the final Hamiltonian. The left-hand side of
the equation is called the generalized force. This remarkable
finding can benefit the direct measurement of the Berry curva-
ture and even the topological transition [33–36], regardless of
the system’s size and interaction strength. On the other hand,
in the work [31,37] they achieve a similar result concerning
the quantum metric tensor; hence we find a way to directly
measure the QFIM in the context of adiabatic perturbation.
The results can be written as the following expressions with
respect to QFIM:

〈ψ (t f )|�2H |ψ (t f )〉 = 1

4
Fλvλ

2 + O(v3), (2)

〈ψ (t f )|�2H |ψ (t f )〉 = 1

4

∑
μν

Fμνv
2 + O(v3). (3)

Fλ and Fμν are the QFI and QFIM, respectively, of the ground
state of the final time Hamiltonian. The ground state of
a Hamiltonian is extremely important, since it exhibits the
properties of the system, e.g., quantum phase transition [38].
When two parameters are slowly driven with the same time-
dependent part, the result gives the sum of QFIM entities (3).
These results show that the QFI of the ground state of the
corresponding final Hamiltonian can be directly observed as
the slope of the expectation value of energy fluctuation with
respect to the square of the parameter’s changing velocity.
Therefore we can measure the QFI of the ground state of
nondegenerate Hamiltonians even if the ground state is not
expressed explicitly. In contrast with Eq. (1), Eqs. (2) and (3)
are often not considered and not verified with numerical and
experimental simulation. In this article, we depict how to use
these results to extract the QFI and QFIM. Furthermore, the
experimental setup is considered with the nitrogen-vacancy
center. The illustration of whole QFI (matrix) extraction pro-
tocol is Fig. 1.

This paper is divided into four parts. We first describe how
to obtain Eqs. (2) and (3) using a different way from that
of Refs. [31,37]. Then we use a two-level system to demon-
strate the validity of our method. Next, we briefly discuss the
experimental protocols via the NV center. Third, we exhibit

the applications of our result to the statistical models, i.e., a
one-dimensional transverse-field Ising model and Heisenberg
spin chains, to testify as to their validity and utility. Since the
one-dimensional transverse-field Ising model can be solved
analytically, this provides a wonderful platform for us to
compare our method with the analytic result. It is shown that
our method matches the result of the standard procedure of
diagonalization well. The last part concludes our work and
gives some discussion.

II. MEASURING THE QFI OF THE GROUND STATE
USING ADIABATIC PERTURBATION

In this part we will provide a method to measure the QFI
and QFIM of certain ground states based on the adiabatic
perturbation. It is known that for a Hamiltonian H (λ(t )), the
spectrum can be expressed as

H (λ(t ))|φn(λ(t ))〉 = En(λ(t ))|φn(λ(t ))〉, (4)

where |φn〉 is the nth eigenstate of the Hamiltonian H with the
eigenvalue En. We assume that the spectrum is finite and the
Hamiltonian is nondegenerate. The QFI of the ground state
|φ0〉 of the Hamiltonian is

Fλ = 4(〈∂λφ0|∂λφ0〉 − 〈∂λφ0|φ0〉〈φ0|∂λφ0〉)

= 4
∑
n �=0

〈∂λφ0|φn〉〈φn|∂λφ0〉

= 4
∑
n �=0

|〈∂λφ0|φn〉|2. (5)

To directly measure the QFI, we need to connect it with some
observables.

In contrast with the method of [31,37], we give an alter-
native approach to prove Eqs. (2) and (3). First, we follow the
work of Berry and Robbins [39] to do the adiabatic expansion.
By using a small constant ε, called the adiabatic parameter, to
change the timescale as t → t/ε, the Schrödinger equation be-
comes

iε
dρ(t )

dt
= [H (λ(t )), ρ(t )], (6)
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where the time-dependent quantities are rewritten with the
new timescale, i.e., ρ(t/ε) → ρ(t ) and λ(t/ε) → λ(t ).

Berry and Robbins [39] expanded the density operator of
the evolving state as

ρ(t ) =
∞∑

r=0

εrρr (t ), (7)

where the rth order ρr (t ) is required to satisfy

[H, ρ0] = 0, (8)

[H, ρr] = iρ̇r−1 ∀ r > 0. (9)

It is easy to verify from Eqs. (8) and (9) that ρ(t ) given by
Eq. (7) satisfies the Schrödinger equation. Let |φk〉 be the in-
stantaneous eigenstate of H with the instantaneous eigenvalue
Ek . It follows from Eq. (9) that the off-diagonal elements of
ρr can be determined by the time derivative of ρr−1 as [39]

〈φk|ρr |φl〉 = i
〈φk|ρ̇r−1|φl〉

Ek − El
= iλ̇

〈φk|∂λρr−1|φl〉
Ek − El

(10)

for all k �= l . The diagonal elements of ρr should be deter-
mined by other conditions in addition to Eqs. (8) and (9), as
the sum of ρr and any other constant operator that is simulta-
neously diagonalizable with H still satisfies Eq. (9).

Assume that the system is initially in the ground state of
the Hamiltonian. In such a case, ρ0 is chosen as the adiabatic
state |φ0〉〈φ0|, i.e., the instantaneous ground state at time t ,
which obviously satisfies the condition given by Eq. (8). We
shall investigate the adiabatic expansion of the expectation
Tr[(H − E0)2ρ]:

Tr[(H − E0)2ρ] =
∞∑

r=0

εr Tr[(H − E0)2ρr]. (11)

We can use the basis constituted by the instantaneous eigen-
states of H to represent the operators, that is,

Tr[(H − E0)2ρ] =
∑
k>0

(Ek − E0)2 pk, (12)

where pk for k > 0 is the transition probability defined as

pk := 〈φk|ρ|φk〉 =
∞∑

r=1

εr〈φk|ρr |φk〉. (13)

Berry and Robbins [39] used the pure state condition, ρ(t ) =
ρ(t )2, to determine the diagonal elements of ρr . Using the
adiabatic expansion ρ = ∑

r εrρr , the pure state condition can
be written as

∞∑
r=0

εrρr =
∞∑

r=0

∞∑
s=0

εr+sρrρs. (14)

The zeroth approximation of the above equality automat-
ically holds, as the adiabatic state ρ0 is a pure state. It then
follows from the first-order approximation ρ1 = ρ0ρ1 + ρ1ρ0

that

〈φk|ρ1|φk〉 = 2δ0k〈φk|ρ1|φk〉, (15)

meaning that 〈φk|ρ1|φk〉 = 0. To the second-order approxima-
tion, the pure state condition implies that ρ2 = ρ0ρ2 + ρ1ρ1 +

ρ2ρ0. For k �= 0 it follows that

〈φk|ρ2|φk〉 =
∑

l

〈φk|ρ1|φl〉〈φl |ρ1|φk〉. (16)

Combining the condition Eq. (9) and the first-order approx-
imation of the pure state condition, it can be shown that

〈φk|ρ1|φl〉 =
{

iλ̇ 〈φk |∂λφl 〉(δ0l −δ0k )
Ek−El

, if k �= l,
0, if k = l.

(17)

Substituting Eqs. (16) and (17) into Eq. (12) and neglecting
the higher-order terms, we get

Tr[(H − E0)2ρ] ≈ ε2
∑
k �=0

〈φk|ρ2(t )|φk〉(Ek − E0)2

= ε2λ̇2
∑
k �=0

|〈φk|∂λφ0〉|2. (18)

Note that the adiabatic parameter ε can be absorbed into
the velocity of λ as ελ̇ → λ̇ when we change to the original
timescale. We denote the quantity (H − E0)2 as the square
of the absolute Hamiltonian (SAH), since the eigenvalues of
this quantity are independent of the choice of the zero of the
energy. Since SAH is different from the energy fluctuation by
high-order negligible quantities, i.e.,

〈(H − E0)2〉 − 〈(H − 〈H〉)2〉
= (〈H〉 − E0)2

=
⎛
⎝∑

n �=0

|an(λ f )|2En

⎞
⎠

2

∼ O(λ̇4), (19)

we then recover the result Eq. (2), as briefly discussed in
[31,37]. From this expression, once we obtain the expectation
of the �2H or (H − E0)2 at the final time, the QFI of the
ground state of the final Hamiltonian H can be seen from the
proportional coefficient with respect to the square of velocity
λ̇2

f . The subscript f denotes quantity at the final time.
We can conclude the measurement procedure above as

follows. We set the estimating parameter of the Hamiltonian
at arbitrary initial value and the initial state at the ground
state. Then we evolve the parameter of the Hamiltonian to
the required value, and the evolving velocity needs to be very
slow. At the final time, we measure the energy fluctuation
or SAH in the instantaneous state. The ratio of expectation
with respect to the square of final time parameter’s changing
velocity gives a quarter of QFI of the ground state of the final
time Hamiltonian. We do not need to calculate the explicit
expression of the final time ground state.

We now move to the extraction of the multiparameter
QFIM. Inspired by the work of Ozawa and Goldman [7],
we use a two-parameter modulation to extract the multipa-
rameter QFIM. When the arbitrarily selected two parameters
share the same time-dependent part, i.e., λ1 = C + f (t ) and
λ2 = D + f (t ), Eq. (17) becomes

〈φk|ρ1(t )|φl〉 = iλ̇

∑
μ〈φk|∂μφl〉(δ0l − δ0k )

Ek − El
, (k �= l ), (20)
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FIG. 2. Measurement of the QFI with respect to θ , Fθ , of the
ground state of a two-level system. The numerical result is obtained
by the dynamical simulation using the software packages developed
in Refs. [40,41].

and Eq. (18) is corrected as

Tr[(H − E0)2ρ(t )] = ε2λ̇2
2∑

μν=1

∑
k �=0

〈∂μφ0|φk〉〈φk|∂νφ0〉, (21)

where λ̇ = df (t )/dt is the velocity of both parameters. The
ratio between the final expectation of the SAH and the param-
eters’ velocity gives a quarter of the sum of QFIM elements, as
in Eq. (3). Notably, C and D are time-independent constants,
and their difference should be set to satisfy the difference
between our anticipated final λ1, λ2. The time-dependent part
f (t ) is not necessarily periodically small perturbation and
constrained only by the adiabatic conditions. Since Fλ1λ1 and
Fλ2λ2 can be extracted from Eq. (18), the off-diagonal mul-
tiparameter QFI Fλ1λ2 is easily obtained. Next we show the
feasibility of the measurement protocol on QFI and QFIM in
the context of adiabatic perturbation.

These results can be testified within a two-level system. We
consider the following typical Hamiltonian,

H (t ) = Bn(t ) · σ, (22)

where n(t ) is a three-component vector defined as n(t ) =
(sin θ cos φ, sin θ sin φ, cos θ ). In this situation, we follow the
proposal of Ref. [14] and set the polar angle θ = v2t2

2π
and the

azimuthal angle φ = 0. This kind of ramp can make the initial
parameter’s velocity vanish to lift the oscillation caused by
the initial state; otherwise an extra integration process is re-
quired, as discussed in Ref. [33]. Actually, any ramp satisfying
λ̇(t )|t=0 = 0 and λ̇(t )|t=t f = v is the candidate, where t f is the
final time, v is the final velocity, and we want to incorporate
v into the function λ(t ) to serve as a constant denoting the
evolving velocity. The ground state of the initial Hamiltonian
is (0, 1)T , and it evolves with the time-dependent Hamiltonian
until the final time t f = π

v
. At the final state, the observable

(H − E0)2 or �2H is measured. Since the parameter’s chang-
ing velocity at last is just v, the QFI of the ground state of the
final Hamiltonian H is obtained. The theoretical computation
of the final QFI is unity, and the above procedure gives the
same result from the Fig. 2.

In order to validate Eq. (21), we construct a nontrivial
two-level example since the Hamiltonian (22) with θ and
φ as parameters has vanishing off-diagonal quantum Fisher

(a)

(b)

FIG. 3. (a) Sum of elements of the QFIM with respect to x(0)
when the final Hamiltonian’s ground state is estimated. (b) Diagonal
elements of the QFIM evaluated using Eq. (18) and off-diagonal
elements of the QFIM obtained using half of the difference between
the sum of all QFIM elements and all the diagonal QFIM elements.

information. We still use the form Eq. (22), but the vec-
tor becomes n(t ) = [sin(x + y) cos(xy), sin(x + y) sin(xy),
cos(x + y)], where x and y are the parameters to be estimated.
The parameters are driven as follows: x(t ) = x(0) + v2t2

2π
and

y(t ) = v2t2

2π
. The final time t f = π

v
parameters’ changing ve-

locities are both v. Using our method, we plot the function of
the sum of Fisher information matrix elements with respect
to the initial x(0). The QFIM is evaluated at the final time
Hamiltonian’s ground state with respect to x(t f ) = x(0) + π

2
and y(t f ) = π

2 . From Fig. 3 we find that our method matches
the exact solution perfectly.

III. EXPERIMENTAL CONSIDERATION

We now carry out some experimental discussions. Here we
choose the nitrogen-vacancy (NV) center [42–46] in diamond
as the applicable settings and employ the work of Yu et al.
to exhibit our measuring procedure. The NV center has three
sublevels ms = 0,±1, and by using external magnetic field
Bz 
 510 Gauss can lift the degeneracy between | + 1〉 and
| − 1〉. Then the two lower sublevels |0〉 and | − 1〉 consti-
tute a two-level system with a gap ω0 = D − γeBz, where
the D = 2π×2.87 GHz is the zero-field splitting and γe is
the electronic gyromagnetic ratio, as is depicted in Fig. 4(a).
We need to prepare the system in the ground state of the
interested Hamiltonian. The initialization procedure includes
the 532-nm green laser, which put the NV center in the ms = 0
state. Using an arbitrary wave-form generator can drive the
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FIG. 4. (a) Energy splitting first due to the zero-field splitting D
and then the external field B. (b) Demonstration of the protocol of
measuring QFI in NV center.

transition between levels |0〉 and |−1〉, and the Hamiltonian
of the laboratory frame is [9,47,48]

H = ω0

2
σz + V (t )σx, (23)

where V (t ) = A sin θ (t ) cos[ω0t − �(t ) + φ], A is the ampli-
tude incorporating an electron gyromagnetic ratio into itself,
and θ (or φ) is the estimated parameter. Here the phase control
function is set as �(t ) = A

∫ t
0 cos θ (τ )dτ . Under a rotation

operator eiR(t ) = ei 1
2 (ω0t−�(t ))σz , the effective Hamiltonian in

the rotating frame can take the form of [9,47]

Heff = eiR(t )He−iR(t ) + i
∂eiR(t )

∂t
e−iR(t )


 A

2
(sin θ cos φσx + sin θ sin φσy + cos θσz ), (24)

where we used the rotating wave approximation. The relations
between energy fluctuation in the original frame and that in
the rotating frame are illustrated in Appendix.

We list the whole procedures as follows, and Fig. 4(b)
shows these operations diagrammatically.

(1) Preparation of initial states. Applying a microwave
field can take the initial state from the ms = 0 state
to the ground state of the initial Heff , where the mi-
crowave field can serve as a rotation operator Ui(θ, φ) =
exp(−i σz

2 φi ) exp(−i σy

2 θi ), and the subscript i denotes the ini-
tial time quantities.

(2) Adiabatic modulation of parameters. We drive the adia-
batic ramp θ (t ) = v2t2/(2π ) with different fixed φ in different
runs of the experiment, and hence, �(t ) becomes a Fresnel
function generated by the arbitrary wave-form generator. This
kind of ramp has been implemented in Ref. [48].

(3) Final time quantum projective measurement. In the final
time t f , the SAH or energy fluctuation operator of the effective
Hamiltonian can be measured through fluorescence detection
during optical excitation [44,48,49]. For example, in order to
measure the energy fluctuation, we can get the population of
the final effective Hamiltonian in repeated experiments, from
which we can obtain the energy fluctuation. The final state af-
ter the adiabatic ramp is projected into either eigenstate of the
final time effective Hamiltonian, which can be realized via a
different rotation operator U †

f (θ, φ) = exp(i σy

2 θ f ) exp(i σz

2 φ f )

from U †
i (θ, φ) before the spin-selective fluorescence readout,

and the subscript f denotes the final time quantities. In more
complex scenarios, such as many-body situations, finding
some observables commuting with the final time Hamiltonian
is favorable to reconstruct the transition amplitude pn|0, which
denotes the probability of a state starting from the ground state
of initial Hamiltonian and ending up in the nth eigenstate of
the final Hamiltonian [50].

Compared with Refs. [9,47], we do not need to deter-
mine the resonant frequency during the process of parametric
modulation, which is equal to the energy gap between the
eigenstates of the effective Hamiltonian Eq. (24). Instead, we
only set the adiabatic ramp velocity without prior measure-
ment. Besides, the adiabatic ramp is not limited to periodically
small perturbation. Due to the importance of the energy fluc-
tuation in quantum physics, the measurement schemes con-
cerning energy fluctuation are widely discussed [44,50–56],
which provides our scheme with great potential.

The NV center has been the device for measuring the QFI
using the method in Ref. [7]. The experimental results have
been demonstrated in Refs. [9,47]. We utilize our measuring
protocol to carry out the numerical simulation with the practi-
cal parameters given in Refs. [9,47]. The system we make use
of is the NV electronic spin coupled by a 13C nuclear spin,
for which the interacting two-qubit effective Hamiltonian in a
rotating frame the same as eiR(t ) is given by Ref. [9]:

Heff (θ, φ) 
 �mw

2
× [cos θσz + sin θ (cos φσx + sin φσy)]

+
(

γnB||
2

− Az

4

)
τz − Ax

4
τx − Az

4
σz ⊗ τz

− Ax

4
σz ⊗ τx, (25)

where �mw is the amplitude including an electron gyro-
magnetic ratio, and Ax and Az are the hyperfine coupling
parameters. γn is the nuclear spin gyromagnetic ratio, and B||
is the external magnetic field. In Fig. 5 we give the QFIs Fθ

and Fφ of the ground state of the Hamiltonian Eq. (25) for
different values of θ when φ = 0 is set. The simulation result
coincides with that in Ref. [9] well.

IV. EXTENSIONS TO THE STATISTICAL MODELS

The QFI has been considered to be the key to studying
quantum phase transitions. Since our method gives a direct
measurement of the QFI, we will examine the result obtained
from the adiabatic perturbation theory and discuss whether the
signal of the quantum phase transition is still clear.
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FIG. 5. QFI of θ and φ in a rotating frame interacting two-qubit
model, which is experimentally measured in [9]. The result using
our method with the same parameters is exactly coincident with that
of [9]. We list the actual parameters here: Ax = 2.79 MHz, Az =
11.832 MHz, �mw = 2.13 MHz, γnB|| = 1.07×749.32 kHz, and φ =
0.

A. Transverse-field Ising model

The famous one-dimensional transverse-field Ising model
is always the first model to detect new physics under the
situation of phase transition. We study the following model
[38],

H (t ) = −J
N∑

i=1

σ x
i σ x

i+1 − B(t )
N∑

i=1

σ z
i , (26)

where J is the coupling strength between neighboring spins,
and B(t ) is the external magnetic field along the z direction.
We fix the coupling strength J = 10 and modify the field
B(t ) = 5 + v2t2

4h to obtain the QFI, where the field approaches
the artificial value (5 + h) at the final time t f = 2h

v
. We can

adjust the evolving speed v and the preset value h. Through
changing the value h, we can measure the QFI of the ground
state at arbitrary external magnetic field B(t ). The initial value
of the magnetic field is set to be B(0) = 5J to lift the possible
degeneracy of energy levels.

FIG. 6. QFI of the ground state of transverse-field Ising model
with respect to the field strength. The dot is the measured quantum
Fisher information using our method, while the line is the analytic
solution using Eq. (28). In our case, the positive parity is used since
the energy is lower in the situation of positive parity.

(a)

(b)

FIG. 7. (a) Level crossing of the ground state of the Heisenberg
spin chain. In the considered region of the coupling strength, level
crossing occurs twice at J = −0.5 and J = −0.25, respectively.
(b) QFI with respect to the field strength of the ground state of
the Heisenberg spin chain. We obtain the QFI using our method.
It is apparent that the QFI also shows two abrupt changes at the
corresponding values of J , which depicts the level crossing.

The ground state of the Hamiltonian is

|φ0〉 =
∏
k>0

(cos θk|0〉k|0〉−k + i sin θk|1〉k|1〉−k ), (27)

where |0〉k and |1〉k are the number states of the k-space
fermionic operator before the Bogoliubov transformation. The
quantum Fisher information with respect to the external field
is evaluated to be [57–60]

FB =
∑
k>0

J2 sin2 k

(J2 + B2 − 2JB cos k)2
. (28)

The peak value of the QFI with respect to the external field
should emerge at B = 10 when J = 10, corresponding to
the phase transition point. Limited by the dimension of the
Hilbert space, we give the QFI when the number of spins is
N = 4, 8, 10, 12. We can see from the Fig. 6 that the peak
value becomes gradually distinct when the magnetic field
B = 10, which coincides with the theoretical conclusion of
this model. It is obvious that the measured quantum Fisher
information using our method matches the analytic solution
Eq. (28) perfectly.

B. Heisenberg spin chain

Here we give another example of application of our
measured quantum Fisher information. For the generalized

012414-6
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Heisenberg spin chain, when we focus on the coupling
strength, the phase transition due to the energy level crossing
emerges under this situation. The Heisenberg spin chain in an
external magnetic field [14],

H = −J
N∑

i=1

σ i · σ i+1 −
N∑

i=1

h(t ) · σ i, (29)

reveals the contribution of level crossing, where h(t ) =
(sin θ (t ), 0, cos θ (t )) and θ = v2t2

2π
. The QFI corresponding to

the ground state with respect to θ at the final time t = π
v

is
obtained from our method, and we plot it as a function of the
coupling strength J in Fig. 7(b).

The final Hamiltonian is actually isotropic spin interaction
with an x-direction field. Figure 7(a) denotes the level crossing
of the ground state of the final Hamiltonian, and Fig. 7(b)
exhibits the step at the corresponding J . Without calculating
the exact form of the ground state, we can obtain the fact that
the QFI of the ground state with respect to the parameter θ

only changes when the coupling strength J causes the level
crossing. The extracted Berry curvature can exhibit such prop-
erties as in Ref. [14].

V. CONCLUSION AND DISCUSSION

In this article an alternate way is shown to derive the link
between SAH or energy fluctuation and the QFI or QFIM. The
adiabatic perturbation setup has been employed to measure
the Berry curvature via the measurement of the generalized
force both numerically and experimentally; hence the extrac-
tion of QFI or QFIM can also be applied to the same schemes
except the final measured quantity. However, few discussions
are carried out. This setup also enables the direct extraction of
the quantum geometric tensor. All we need to do is change
the estimating parameter relatively slowly with zero initial
velocity, followed by the measurement of the SAH or energy
fluctuation at the final interested moment.

We have adopted two-level systems to testify as to the
measurement of QFI and QFIM, and both of the extracted
values match the analytical results well. An NV center sim-
ulation is made using the practical parameters, and it fits the
experimental results exactly. The actual energy gap is so large
that the parameters’ change can be fast enough to fulfill the
procedure in the time of magnitude μs. As a result, the NV
center can truly exhibit our scheme. Also, the phase transition
and level crossing can also be depicted in this protocol like the
Berry curvature.

Besides the NV center implementation, extension of this
scheme to many-body cases is also promising. In fact, the
many-body states are often difficult to reconstruct completely.
Hence, the extraction of QFI of many-body states is impor-
tant in the absence of states’ full information. Our schemes
exhibit potential for this purpose, since we only need the

measurement of energy fluctuation rather than the states’ full
information. Also, it is worth noting that our schemes benefit
from the discussions of Hamiltonian identification [61–63],
since the Hamiltonian of systems should be determined prior
to the measurement. In summary, we believe our discussions
will facilitate the practical application of the adiabatic pertur-
bation theory in the direct extraction of Berry curvature and
QFI, or the full quantum geometric tensor.
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APPENDIX: ENERGY FLUCTUATION IN ORIGINAL
AND ROTATING FRAME

We now compare the energy fluctuation in the original
frame and that of the rotating frame. We denote the origi-
nal frame Hamiltonian and evolving state H (t ) and |ψ (t )〉,
respectively. Meanwhile, the rotating frame Hamiltonian and
evolving state are Heff (t ) and |φ(t )〉, respectively. Under the
rotation of eiR(t ), we then have

|ψ (t )〉 = e−iR(t )|φ(t )〉 (A1)

and

Heff = eiR(t )He−iR(t ) + i
∂eiR(t )

∂t
e−iR(t ). (A2)

As a result, the energy fluctuation in the original frame reads

〈�2H (t )〉 = 〈ψ (t )|H2(t )|ψ (t )〉 − 〈ψ (t )|H (t )|ψ (t )〉2, (A3)

while that of rotating frame becomes

〈�2Heff〉r = 〈φ(t )|H2
eff (t )|φ(t )〉 − 〈φ(t )|Heff (t )|φ(t )〉2, (A4)

where the subscript r represents the expectation in the rotating
frame evolving state |φ(t )〉.

When we substitute (A2) into (A4) and assume
[dR(t )/dt, R(t )] = 0, we find

〈�2Heff〉r = 〈ψ (t )|
[
�2H (t ) − 2Cov

(
H,

dR(t )

dt

)

+ �2

(
dR(t )

dt

)]
|ψ (t )〉 = 〈�2H ′〉,

(A5)

where H ′ = H − dR(t )/dt . In our case, H ′ = V (t f )σx at final
time t f , where cos θ (t f ) = 0. Hence, we measure σx in the
original frame, which can also lead to the result of energy
fluctuation in the rotating frame. The procedures in Sec. III
involve a rotation prior to the final measurement, which works
in wider situations such as θ (t f ) �= 0.
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