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The quantum approximate optimization algorithm (QAOA) requires that circuit parameters are determined that
allow one to sample from high-quality solutions to combinatorial optimization problems. Such parameters can
be obtained using either costly outer-loop optimization procedures and repeated calls to a quantum computer or,
alternatively, via analytical means. In this work, we consider a context in which one knows a probability density
function describing how the objective function of a combinatorial optimization problem is distributed. We show
that, if one knows this distribution, then the expected value of strings, sampled by measuring a Grover-driven,
QAOA-prepared state, can be calculated independently of the size of the problem in question. By optimizing this
quantity, optimal circuit parameters for average-case problems can be obtained on a classical computer. Such
calculations can help deliver insights into the performance of and predictability of angles in QAOA in the limit
of large problem sizes, in particular, for the number partitioning problem.
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I. INTRODUCTION

Variational quantum algorithms aim to exploit the power
of noisy, intermediate-scale quantum (NISQ) computers [1]
through the use of parametrized quantum circuits. The
quantum approximate optimization algorithm (QAOA) [2]
provides a universal [3,4] Ansatz state, efficiently preparable
on a quantum computer, measurements from which might
provide a useful heuristic method for the approximate solution
of problems in combinatorial optimization.

QAOA circuits utilizing standard—single-qubit-X—
drivers applied to Grover-like marked-state problems,
recover the asymptotic scaling of Grover’s algorithm [5].
Furthermore, it has been shown in the same unstructured
search problem context that parameters in QAOA concentrate
[6]. That is, for increasing problem size, the variance in the
optimal angles for QAOA circuits tends to zero and optimal
angles concentrate at terminal values [7]. When considering
QAOA in its original incarnation of single-qubit-X drivers and
problem Hamiltonians encoding combinatorial optimization
problems such as Max-Cut, Max-3-Lin-2, Max-k-SAT,
numerical studies have provided evidence that parameters
also tend to concentrate, and, as such, can be determined
for classes of similar problems without access to a quantum
processing unit using classically tractable tensor network
approaches [8].

That optimal angles in QAOA concentrate, for certain
classes of problem, is useful due to the exponential cost of
using classical optimizers in the number of parameters over
which they operate. Should QAOA provide a good heuristic
method for a number of layers greater than ≈10, it is likely
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that naive global classical optimization with repeated calls to
the quantum computer to estimate and extremize the expecta-
tion value of the problem Hamiltonian is not the method used,
due to the excessively large number of calls to the quantum
computer required. Alternative methods to calculate optimal
angles might use numerical methods on smaller or simplified
problem sizes, as aforementioned, or use the averaged behav-
ior of problems at limiting size. Using this second approach,
Farhi et al. demonstrated that for Sherrington Kirkpatrick type
spin glasses and similar models, using single-qubit-X drivers,
one can average over model instances to find optimal angles
in a calculation that is independent of the number of spins in a
model [9]. This provides a formula that has been numerically
optimized to a depth of p = 10, a result later generalized [10]
to show that the same technique extends to problems involving
clauses incorporating more than two variables, providing an
expression numerically tractable up to a depth p = 20 with
the specific hardware used. This work was later widened to
the context of Max-Cut problems on varying random graph
families [11], with Claes et al. considering QAOA on infinite
size mixed-spin SK models [12] and showing that the ex-
pected performance of QAOA also concentrates in this context
at depth 1.

This paper takes an alternative approach to finding angles
in the large problem-size limit. By using a Grover-style driver
that bestows maximal permutation symmetry to the expecta-
tion value of a problem Hamiltonian under the QAOA state
produced, we simplify the calculation of optimal angles at
large n. This procedure requires that the probability density
function (pdf) or density of states of the problem to be solved
is known. In particular, we provide a method to find optimal
angles and their corresponding expectation values on a classi-
cal computer, such that high-quality solutions can be sampled
from a quantum computer without the need for outer-loop
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optimization of the on-device QAOA state. We find that this
method can be applied to the number partitioning problem
(NPP) and other problems where the probability density func-
tion is known or can be approximated.

The Ansätze used in variational quantum algorithms, in
general, must have problem specificity to avoid the fate of
barren plateaus [13,14]. In QAOA, this problem specificity
enters into the Ansatz twice. First, the problem Hamiltonian
takes its eigenvalues directly from the objective function of
the problem to be solved. Second, and more subtly, the driver
Hamiltonian biases certain transitions between computational
basis states over others. While this does not mean that a
driver Hamiltonian is, in general, taken to be dependent on
the problem solved, the driver induces a distance metric on
the solution space of the problem, with respect to which the
problem might exhibit structure that the algorithm can utilize.
In the case of the single-qubit-X driver, this induced metric
is that of the Hamming distance between two strings. The
use of Grover drivers removes the second of these problem
dependencies—inducing a metric under which any pair of
nonidentical states can be considered as equidistant—and
allows one to quantify where the performance in QAOA
lies between that of algorithms that use amplitude ampli-
ficationlike structure agnostic speedups to solve problems
and those which derive performance from classically ex-
ploitable problem structure with respect to the single-qubit
basis.

Other works have used Grover drivers in the context of
QAOA. It has been shown that combinatorial optimization
problems can be approximately solved using Grover’s algo-
rithm via the compilation of their objective function to a
threshold function. Grover’s algorithm is asymptotically op-
timal for the Grover problem [15], with the performance of
the threshold-based algorithm numerically observed to out-
perform the nonthreshold version, while, however, incurring
additional compilation overhead [16–18]. Though one might
not a priori know which threshold to use for such a compiled
version, knowledge of the pdf of the problem, as used in
this work, would certainly be sufficient knowledge for the
selection thereof.

While it is not expected that Grover-driven QAOA should
provide superior performance to that of well-suited problem-
specific drivers, it is expected that Grover-driven QAOA
will not suffer from the issue of exponentially diminishing
gradients—barren plateaus—in the case that the drivers are
not well suited to the problem. As such, Grover-driven QAOA
provides a point of reference to the performance of a QAOA-
type algorithm in the very average case of driver-problem
synergy.

II. THEORY

QAOA is performed via p applications of driver and
problem Hamiltonians applied for parametrized times �β, �γ .
Applying such Hamiltonians to a state prepared in an equal
superposition of computational basis states, one produces

|�β, �γ 〉 =
p∏

p′=1

eiβp′ ĤD eiγp′ ĤP |+〉⊗n, (1)

which is the problem-dependent QAOA Ansatz state, depend-
ing on 2p free parameters. One is then required to find angles
such that when sampling from the computational basis mea-
surement outcome distribution of the Ansatz state, one finds
configurations corresponding to small or large eigenvalues of
HP depending on whether a problem is one of maximization
or minimization. To this end, the expectation,

Ep(�β, �γ ) = 〈ĤP〉�β,�γ = 〈�β, �γ |ĤP|�β, �γ 〉, (2)

should be extremized with respect to the variational pa-
rameters. Measurements of the optimized Ansatz state then
correspond to high-quality solutions to a binary-variable
combinatorial optimization problem specifying ĤP. A com-
binatorial optimization problem on n binary variables has
objective function C(z) with z ∈ {0, 2n − 1} from which the
problem Hamiltonian is defined as

ĤP =
∑

z

C(z)|z〉〈z|, (3)

but more typically written in a Hadamard-transformed clause
representation as

ĤP =
2n−1∑
k=0

g(k)Zk1 Zk2 . . . Zkn , (4)

where ki is the ith bit of the binary representation of k. Typical
problems for QAOA utilize low-weight interactions such that
compilation to near-term quantum computers allows for state
preparation within the coherence time of a device. Such prob-
lems include Erdős Rényi random Max-Cut problems [19] in
which one takes

g(k) ∼
{

Bernouli( f ), if weight(k) = 2,

0, otherwise (5)

for filling factor f and weight(k) denoting the bit-weight of
the label k. SK models are defined similarly with weights
being sampled from a Gaussian distribution rather than the
Bernoulli distribution of Max-Cut [20]. Also of interest are
max-k-SAT type problems [21] in which terms up to weight k
are present, taking integer values. Number partitioning prob-
lems, considered in Sec. VI B, consist of all-to-all coupled
Mattis type Ising spin glasses in which the weights of ZZ
interactions take the product of random variables associated
with the two constituent bits. The descriptions g(k) and C(z)
are related via an n-dimensional binary-variable Fourier trans-
form, otherwise known as the Walsh-Hadamard transform
[22].

A. Properties of Grover drivers

The driver Hamiltonian ĤD typically consists of single-
qubit X operations,

ĤD =
n∑

i=1

Xi. (6)

Various works have investigated the use of drivers that differ
from this standard single-qubit driver. For example, a version
of QAOA that samples from a differing selection of higher-
order drivers for each layer has been shown to improve QAOA
convergence [23,24]. Drivers can be used to shift complexity
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from problem to driver Hamiltonian in the case of problems
of hard and soft constraints [25].

In this work, an alternate driver—that which generates the
Grover mixing operator—is used. The Grover driver can be
written as a projector onto a Hadamard basis product state
|+〉⊗n:

ĤG = |+〉⊗n〈+|⊗n =
⎡
⎣ 1√

2n

2n−1∑
z=0

|z〉
⎤
⎦

⎡
⎣ 1√

2n

2n−1∑
z=0

〈z|
⎤
⎦. (7)

Importantly, this Hamiltonian is invariant under the re-
labeling of any pair of states, i.e., under the permutation
operator Ûj↔k with

Ûj↔k = I − | j〉〈 j| − |k〉〈k| + |k〉〈 j| + |k〉〈 j|, (8)

and so it holds that

ĤG = Ûj↔kĤGÛj↔k (9)

for any permutation. Moreover, the initial state of QAOA
bears the same property; as an eigenstate of any permutation
operator one can write

|+〉⊗n = Ûj↔k|+〉⊗n. (10)

Of course, a problem Hamiltonian is, in general, not invariant
under any permutation. However, alongside a Grover-QAOA
state [defined as in Eq. (1) using with HD = HG] its expec-
tation is, since permutation operators may commute through
the driver to annihilate or act as the identity on the initial state.
So, for any permutation of a problem Hamiltonian ĤP, given
by P̂†ĤPP̂ where

P̂ = Ûjm↔km . . . Ûj2↔k2Ûj1↔k1 (11)

is a sequence of permutations, the QAOA problem expectation
produced by such a permuted problem Hamiltonian can be
shown to be equivalent to that of the unpermuted Hamiltonian,

〈P̂†ĤPP̂〉�β,�γ = 〈ĤP〉�β,�γ , (12)

as shown in Appendix A. The consequence of this symmetry
is that any two problems which have the same distribution
of energy levels will have identical expectation values under
Grover-driven QAOA states.

B. Problem objective functions as random variables

The only property of the problem Hamiltonian that there-
fore affects the expectation is its spectrum. The spectrum of
a problem Hamiltonian can be seen as sampling from some
random distribution with probability density function f (c)—
describing the relative likelihood that the random variable
C, modeling a problem objective function, takes real value
c—analogous to the density of states’ function of solid state
physics. Our key result is that as this pdf can be, in general,
independent of the size of a problem, angles can be calculated
directly from the pdf, rather than for any model instance
with a given size. By computing angles for the large-n limit
of Grover driven QAOA, one can determine the asymptotic
performance of the algorithm for large system sizes without
suffering from unfavorable scaling in the number of qubits.
The computed angles are for “typical” instances. However, as

the problem size increases, the law of large numbers rapidly
reduces the sample-to-sample fluctuations.

Consider a problem’s objective function that has been
sorted from low to high, denoted by Csort (z), such that

Csort (x) � Csort (y) if x > y. (13)

To this quantity, we can associate a quantile distribution func-
tion (qdf)

F−1(p) = Csort (z) for p = z

N
(14)

denoting the value of C at its pth quantile. The inverse of
the quantile distribution function is the cumulative distribu-
tion function (cdf) F (c) with an associated pdf f (c) in the
continuum limit of large n:

F (c) = P(C < c) =
c∑

c′=−∞
P(C = c′) ≈

∫ c

−∞
f (c′) dc′.

(15)
The quantity on which the Grover-driven QAOA expectation
value depends is the Fourier transform of this pdf, known as
the characteristic function � which for a random variable X is
defined as the expected value of eiγ X and so for the random
variable C modeling an ensemble of objective functions for a
given problem:

�(γ ) = E[eiγC]. (16)

This quantity, associated with the random variable C, can be
expressed in terms of the pdf f (c), the cdf F (c), and the qdf
F−1(p) as

�(γ ) =
∫ ∞

−∞
f (c)eiγ c dc

=
∫ ∞

−∞
eiγ c dF (c) =

∫ 1

0
eiγ F−1(p)d p (17)

and is related via a Wick rotation and scaling factor of the
system size to the partition function of the model.

A finite-size, n-qubit problem considered for QAOA is
modeled here as taking 2n = N samples from the ensemble
random variable C, and as such the approximation made in
this work is that the mean exponentiated objective function
value can be replaced by the ensemble characteristic function
�. That is, that

�(γ ) ≈
∑

z

eiγC(z)

N
(18)

with equality in the infinite N limit. Due to the exponential
growth of N with the number of qubits, such an approximation
rapidly improves with increasing system sizes. As such, it suf-
fices to replace the finite sum in Eq. (18) by the characteristic
function of the continuous pdf—from which the problem is
modeled to sample from—in calculations.

III. DEPTH 1

In this section, we wish to obtain an expression for the
expectation value of the depth p = 1 Grover-QAOA problem
Hamiltonian E1(γ , β ) in which the problem is expressed only
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via a characteristic function �. We denote the mean value of a
random variable C as

C̄ =
∫ ∞

−∞
c f (c) dc

n→∞= 1

N

∑
z

C(z) = −i�′(0), (19)

which can in general be set to zero by adding a constant to the
objective function. Such a shift corresponds only to a global
phase of the effected problem Hamiltonian unitary e−iC̄γI.
The expression derived in full detail in Appendix B consists
of factors for which Eq. (18) can immediately be substituted,
with, however, one instance of C(z) as a multiplicative factor
rather than in an exponent. To substitute this factor, one may
differentiate under the sum or integral in the characteristic
function as

1

N

∑
z

C(z)eiγC(z) = − i

N

d

dγ

∑
z

C(z)e−iγC(z)

= −i
d

dγ ′ �(γ ′)
∣∣∣∣
γ

= −i�′(γ ). (20)

Substituting the characteristic function � and its derivative
above, one obtains the expression

E1(γ , β ) = C̄(1 + BB∗��∗) + 2 Im(B∗�∗�′), (21)

in which the first term can be set to zero by zeroing the mean
value of the problem.

IV. DEPTH 2

The expectation value of the problem Hamiltonian for a
p = 2 Grover-driven QAOA state depends on four parameters
and can be expressed as

E2(γ1, γ2, β1, β2) = 〈γ1, γ2, β1, β2|ĤP|γ1, γ2, β1, β2〉, (22)

which, if one assumes that the mean of the distribution is zero,
can be expanded in 10 terms seen in Sec. V with the help of
computer algebra [26]. Further simplification and substitution
of the depth 1 expression yields

E2(γ1, γ2, β1, β2)

= E1(γ1, β1) + E1(γ1 + γ2, β2)

+ |B(β1)|2|�(γ1)|2E1(γ2, β2)

+ 2 ImB(β1)∗B(β2)∗�(γ1)∗�(γ2)∗�′(γ1 + γ2)

+ 2 ImB(β1)B(β2)∗�(γ1)�′(γ2)�(γ1 + γ2)∗, (23)

which can be numerically extremized on a classical computer
to find optimal parameters given a characteristic function �.

V. DEPTH p

For arbitrary depth p, we have the problem Hamiltonian
expectation value of

Ep(�γ , �β ) = 〈+|
−p∏

j=−1

ÛP(γ j )ÛD(β j )ĤP

p∏
i=1

ÛD(βi )ÛP(γi)|+〉,

(24)

where we have introduced the convention that negative indices
simply add a negative sign to the value, as

γ−i = −γi, β−i = −βi. (25)

This can be expanded and expressed as a formula summing
over 22p terms expressed in factors of the characteristic func-
tion � and the driver-dependent function B. The full derivation
and explanation of the notation used can be found in Ap-
pendix D with the expression for the arbitrary depth expected
value of the problem Hamiltonian taking the form

Ep(�γ , �β ) =
2p−1∑

kbra<kket=0

2 Im
∏

P∈Pbra

�

(∑
i∈P

γi

)
�′

⎛
⎝ ∑

i∈Pcentral

γi

⎞
⎠

×
∏

P∈Pket

�

(∑
i∈P

γi

) ∏
− j|k j

bra=1 or j|k j
ket=1

Bj . (26)

VI. PROBLEM DISTRIBUTIONS

To find suitable problems for this algorithm, one requires
problems for which the probability density function is known,
but for which no efficient classical algorithms for finding
states of extreme energy exist. The standard QAOA prob-
lems such Max-Cut, k-SAT, and SK models approximately
follow binomial and Gaussian distributions, but the presence
of frustration in these problems results in distributions that,
to the knowledge of the authors, do not have simple analyt-
ical forms. The random cost model and number partitioning
problem do not feature the same frustration, with the random
variables by which they are defined entering into the problem
via single-qubit terms, with the number partitioning problem
made nontrivial via a global constraint enforcing positivity
of the cost function. As such, the distributions for the latter
problems are known.

A. Random cost model

The random cost model (RCM) is a toy model used as
a testing ground for techniques in the study of disordered
systems as is the simplest model exhibiting a phase transition
[20]. The model is not a description of any physical system,
nor does it describe a hard problem. However, it does provide
an example for which our procedure generates a concise ana-
lytical expression at low depth. The RCM is defined as one in
which each energy level or objective function value samples
from a normal distribution, so

C ∼ normal(μ = 0, σ 2 = 1), f (c) = 1√
2π

e− c2

2 . (27)

When using the Grover driver, a problem with this pdf can
also be obtained via n independent spins with Hamiltonian∑

i

giZi =
∑

z

∑
i

(−1)zi gi|z〉〈z|, (28)

in which each Pauli spin weight is set as gi ∼ normal(μ =
0, σ 2 = 1/n) such that the resulting angles and energy expec-
tations are independent of problem size. This Hamiltonian is,
of course, structured and for another choice of driver could
not be usefully modeled as a Gaussian pdf alone; the Grover
driver, however, does not see this additional structure. This
problem yields the desired pdf as a normalized Gaussian
with which is associated a characteristic function via Fourier
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FIG. 1. Angles for the optimized infinite-size RCM are seen for
QAOA depths 1 to 8. As the depth p increases, a similar pattern of
optimal parameters for the limiting distribution of the random cost
model emerges with the problem Hamiltonian’s angles monotoni-
cally increasing and the driver Hamiltonian angles monotonically
decreasing. Such behavior invites comparison to adiabatic quantum
computation, overlooking the nonzero start point of γ and end point
of β

transform with

�(γ ) = e− γ 2

2 . (29)

When substituted into Eq. (21), this characteristic function
produces a p = 1 Grover-QAOA problem expectation value
of

E1(γ , β ) = 2γ e−γ 2
sin (β ) (30)

for which minimization yields optimal angles of

γ =
√

2

2
, β = π

2
. (31)

Angles for higher depth QAOA states can be found in Fig. 1
and the associated expectation values in Fig. 2. The best-
known angles are determined via numerical optimization with
BFGS [27] on a wide range of start points, in which the consis-
tent behavior of the angles with increasing depth implies that
with increasing depth one tends towards a continuous terminal
schedule.

B. Number partitioning problem

The number partitioning problem (NPP) is that of finding a
partition z ∈ {0 . . . N − 1} of a set of n positive real numbers
{x0, . . . , xn−1} indexed by the set {0, . . . , n − 1} into two sub-
sets with indices {i|zi = 0} and {i|zi = 1} such that the sum of
the numbers indexed by each subset is equal. NPP has applica-
tions ranging from task scheduling in multicore processing to
choosing equally matched teams from a selection of players.
It is an example of a problem for which classical heuristics
such as simulated annealing do not perform well, notably, due
to the similarity of the problem to totally unstructured cost

FIG. 2. Expectation value of the QAOA state for the random cost
model at optimal angles exhibits an increasing solution quality at a
decreasing rate.

problems [28]. The problem has seen study in the context of
adiabatic quantum computing [29] due to the relative ease of
computing-related properties in the large problem size limit,
thus allowing the calculation of the minimum energy gap
and asymptotic time complexity in this context. In the large
problem-size limit, adiabatic quantum computing returns a
Grover-like quadratic speedup in run time over random guess-
ing for this problem.

One may define the decision version of the NPP as to
satisfy the equality: ∑

i|zi=0

xi =
∑

i|zi=1

xi, (32)

which, for an approximate minimization version of the prob-
lem, is characterized by an objective function:

C(z) =
∣∣∣∣∣∣
∑

i|zi=0

xi −
∑

i|zi=1

xi

∣∣∣∣∣∣ =
∣∣∣∣∣
∑

i

(−1)zi xi

∣∣∣∣∣. (33)

When considering this problem in the context of QAOA, or
other quantum optimization contexts in which many-body
interactions are nontrivial to implement, one can consider
an equivalent minimization problem defined by the squared
problem C2(z). To express this as an Ising spin glass Hamil-
tonian, one can first consider the signed single qubit problem
Hamiltonian,

∑
i

xiZi =
∑

z

(∑
i

(−1)zi xi

)
|z〉〈z|, (34)

of which the square results in the problem Hamiltonian∑
i

xiZi

∑
j

x jZ j

=
∑

i

x2
i I + 2

∑
i< j

xix jZiZ j
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FIG. 3. For p = 1, optimal parameters of the NPP converge to
the infinite size angle for increasing n. QAOA states for 30 problem
instances are optimized and angles averaged for each point.

=
∑
z,z′

(∑
i

(−1)zi xi

)
|z〉〈z|

(∑
i

(−1)z′
i xi

)
|z′〉〈z′|

=
∑

z

∑
i, j

(−1)zi+z j xix j |z〉〈z|

=
∑

z

C2(z)|z〉〈z|, (35)

which is a problem Hamiltonian encoding for the squared
residue of the number partitioning problem, as

C2(z) =
∣∣∣∣∣
∑

i

(−1)zi xi

∣∣∣∣∣
∣∣∣∣∣
∑

j

(−1)z j x j

∣∣∣∣∣
=

∑
i, j

(−1)zi+z j xix j . (36)

Consequently, the NPP Hamiltonian is an all-to-all coupled
Mattis-type Ising spin glass in which couplings consist of the
products of random variables. Now we must determine the pdf
f (c) and the associated partition function � for this problem.
For convenience, we consider the numbers to be partitioned
to be sampled from distributions such that the resulting cost
function distribution has a unit mean. As such the numbers xi

are allowed to take values between 0 and xmax = 1/
√

3n uni-
formly, i.e., xi ∼ U (0, xmax) ∀ i ∈ [1 . . . n]. The probability
density function for the individual variables is then defined as

f (c) = 1

xmax
[�(c) − �(c − xmax)], (37)

where � is the Heaviside step function. As such, the pdf for
the distribution of residues defined as CSQ, prior to squaring
the cost function, is distributed as

CSQ ∼
∑

i

(−1)zi xi =
∑

i

(−1)ziU (0, xmax)

=
∑

i

U (−xmax, xmax), (38)

FIG. 4. Angles for the optimized infinite-size number partition-
ing problem are seen for QAOA depths 1 to 8. Optimal parameters
follow annealing-reminiscent schedules and vary smoothly. Values
are obtained here through the optimization of the formula derived
in Appendix D via the BFGS optimizer and a random start point
strategy.

where the factor (−1)zi imparts a minus sign with probability
1
2 and results in a sum over uniform distributions over the
symmetric interval [−xmax, xmax]. This sum of independent,
identically distributed random variables, by the central limit
theorem, approaches a Gaussian distribution in the large n
limit. So, in the large n limit

CSQ ∼ normal

(∑
i

E[U (−xmax, xmax)],

∑
i

Var[U (−xmax, xmax)]

)

= normal(μ = 0, σ 2 = 1). (39)

For the squared single-qubit cost function C2
sq(z) = C2(z),

one can use the standard result that the square of a Gaussian
distributed random variable is the χ2 distribution with a single
degree of freedom with pdf:

f (c) =
{

(2πc ec)−
1
2 , c > 0,

0, otherwise.
(40)

The characteristic function of this pdf can readily be
calculated as

�(γ ) =
√

1

1 − 2iγ
. (41)

For p = 1, one can numerically optimize the expectation
value E1(γ , β ) to find minimizing angles of

γ ∗ = 0.241, β∗ = 5.162 (42)

to three decimal places. These angles can be seen in Fig. 3 in
which the value of β has been shifted by 2π for convenience.
Such angles yield an expected value of E1(�γ ∗, �β∗) = 0.557.
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FIG. 5. Optimizing the Grover-QAOA state for the number par-
titioning problem at increasing depth p results in monotonically
decreasing residue. The depth 0 value of 1 is added as a reference
point attained by random sampling from the computational basis.

The expectation value of the problem Hamiltonian for this
characteristic function can be minimized to obtain angles that
are thought to be optimal; the best known angles can be seen
in Fig. 4. The associated qualities of the solutions attained by
these angles can be seen in Fig. 5. To demonstrate that these
angles are appropriate for finite-size instances of the number
partitioning problem, we plot in Figs. 3 and 6 the average
result when optimizing finite-size instances at increasing size
for depths 1 and 2, respectively. This demonstrates that with
increasing problem size, the optimal angles for finite-size
instances rapidly approach those of the analytically derived,
ensemble average optimal angles. Finally, Fig. 7 demonstrates
the convergence of the landscape defined by the problem

FIG. 6. For p = 2, optimal parameters of the NPP converge to
the infinite size angle for increasing n. QAOA states for 30 problem
instances are optimized and angles averaged for each point.

Hamiltonian expectation value of the QAOA state at a given
point in the QAOA parameter space. As the number of qubits
in the problem becomes larger, the QAOA solution quality
landscape becomes indistinguishable from the analytically de-
rived version.

VII. COMPILING THE GROVER DRIVER

Compilation of the Grover mixing oracle can be attained
with or without ancillary qubits. Without ancillary qubits,
the operation can be performed using an (n − 1)-controlled-Z
rotation. Such a gate can be compiled into two n-qubit Toffoli
gates alongside three two-qubit gates [30]. These Toffoli gates
can in turn be compiled using a number of two-qubit gates
and depth quadratic and linear, respectively, in the number of
qubits [31,32].

VIII. CONCLUSION

The power of QAOA as a heuristic for solving problems
in combinatorial optimization is not yet certain and derives
from some combination of Grover-like speedup alongside
performance attributable to the synergy of the problem and
driver used. In this work, we demonstrate a method to de-
termine likely optimal QAOA angles in the case of a driver
with average-case synergy, in which the problem structure
cannot be exploited. For such problem-driver combinations,
concentrations of optimal angles occur for increasing problem
sizes and tend to a limit calculable via the pdf of the prob-
lem. It is expected that barren plateaus, limiting the ability
of an optimizer to find good angles for QAOA, will affect
problem driver combinations in which synergy is not present
(for example, problems with high-order terms and single-
qubit drivers). The problem of barren plateaus—in essence,
the No Free Lunch Theorem of quantum optimization [33]—
necessitates that one finds heuristics for which drivers, and
angles to use for a given problem instance. For this, the per-
formance of a driver in comparison to the Grover version is
instructive as to whether a strategy exploits problem structure
and to what degree. The strategy of optimizing QAOA angles
for statistically defined ensembles of problems, rather than in-
stances thereof, comes with the added advantage of smoother
QAOA objective function landscapes with fewer local extrema
being the average over instance landscapes, as evidenced by
Fig. 7.

This work originated from asking the question as to
whether a single-qubit-X driver should outperform the Grover
driver as an Ansatz for the infinite range models in the work
of Farhi et al. [9]. While this work has not directly com-
pared the performance of Grover QAOA on the SK model,
a future direction could compare this, via the application of
methods applied to infinite-range SK models, to the number
partitioning problem, or by finding or approximating an ex-
pression for the limiting-size pdf of an SK-type model. Future
work could also investigate the performance of subspace-type
drivers, e.g., XY type in problems of hard and soft constraints
of limiting size [25], in which the form of the drivers on the
valid-solution subspace differs from that of Grover drivers
or standard single-qubit mixers. Work could also determine
the dependence of QAOA performance on the shape of the
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FIG. 7. For p = 1 the number partitioning problem landscape can be seen to converge to that of the large-n limit for n = 5, 7, 12.
Periodicity is always observed in β, but as n increases, for low n, local maxima and minima resurge in γ due to common multiples in
problem energy eigenvalues. For large n, increasing γ past a region near zero results in the expectation monotonically returning to the mean
value of 1.

distribution of the unstructured random variable on which it
acts, as has been considered in the context of nonadiabatic
annealing [34]. Various works have provided analytical results
for the use of Grover-type problems or mixing operators to
solve search problems in the context of QAOA, quantum
random walks, and adiabatic quantum computing [5,6,35,36],
with this work demonstrating that similar analytical proce-
dures can be applied to find optimal angles for Grover-driven
QAOA with nonoracle problems. The work in this paper could
also be applied to other contexts, such as that of quantum
random walks, in which fully connected graphs have been
previously considered for numerical studies on finding ground
states of spin glasses [37].
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APPENDIX A: PERMUTATION SYMMETRY OF PROBLEM
HAMILTONIAN UNDER GROVER-QAOA STATE

The invariance of a QAOA problem Hamiltonian under
permutation operator

P̂ = Ûjm↔km . . . Ûj2↔k2Ûj1↔k1 (A1)

can be demonstrated using the identities

P̂P̂† = Î, eP̂†ÔP̂ = P̂†eÔP̂, (A2)

and therefore

〈P̂†ĤPP̂〉�β,�γ = 〈+|⊗n
p∏

p′=1

[eiγp′ P̂†ĤPP̂ êiβp′ ĤD ]P†ĤPP̂
p∏

p′=1

[eiβp′ ĤD eiγp′ P̂†ĤPP̂]|+〉⊗n

= 〈+|⊗n
p∏

p′=1

[P̂†eiγp′ ĤP P̂êiβp′ ĤD ]P†ĤPP̂
p∏

p′=1

[eiβp′ ĤD P̂†eiγp′ ĤP P̂]|+〉⊗n

= 〈+|⊗nP†
p∏

p′=1

[êiγp′ ĤP P̂eiβp′ ĤD P̂†]ĤP

p∏
p′=1

[P̂eiβp′ ĤD P̂†eiγp′ ĤP ]P̂|+〉⊗n

= 〈+|⊗nP†
p∏

p′=1

[êiγp′ ĤP eiβp′ P̂ĤDP̂†
]ĤP

p∏
p′=1

[eiβp′ P̂ĤDP̂†
eiγp′ ĤP ]P̂|+〉⊗n

= 〈ĤP〉�β,�γ , (A3)

demonstrating that the expectation value is invariant under any permutation.
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APPENDIX B: CALCULATION OF DEPTH 1 EXPECTATION VALUE

We can write down the unitaries for the problem Hamiltonian,

ÛP(γ ) =
∑

z

eiγC(z)|z〉〈z|, (B1)

and driver Hamiltonian,

ÛD(β ) = eiβ|+〉〈+| = I + iβ|+〉〈+| + (iβ )2

2
|+〉〈+| · · · = I + (eiβ − 1)|+〉〈+| = I + B(β )|+〉〈+|, (B2)

with B(β ) = eiβ − 1. For p = 1 the problem expectation can be written as

〈ĤP〉γ ,β = 〈+|Û †
P (γ )Û †

D(β )ĤPÛD(β )ÛP(γ )|+〉
=

∑
z−1,z0,z1

〈+|e−iγC(z−1 )|z−1〉〈z−1|[I + B∗|+〉〈+|]C(z0)|z0〉〈z0|[I + B|+〉〈+|]eiγC(z1 )|z1〉〈z1|)|+〉

= 1

N

∑
z−1,z0,z1

e−iγC(z−1 )〈z−1|[I + B∗|+〉〈+|]C(z0)|z0〉〈z0|[I + B|+〉〈+|]eiγC(z1 )|z1〉, (B3)

which yields four terms as follows:

C̄ + 1

N2
BB∗C̄

∑
z

eiγC(z)
∑

z

e−iγC(z) + 1

N2
B

∑
z

eiγC(z)
∑

z

C(z)e−iγC(z) + 1

N2
B∗ ∑

z

e−iγC(z)
∑

z

C(z)eiγC(z). (B4)

One then can substitute the characteristic function of the ensemble to obtain an expression for the expectation value of the QAOA
state, with

1

N

∑
z

C(z) → C̄,
∑

z

eiγC(z)

N
→ �(γ ). (B5)

To express the term containing C(z) not in the exponent, one may differentiate under the sum or integral as

∑
z

C(z)eiγC(z) = −i
d

dγ

∑
z

C(z)e−iγC(z) → −i
d

dγ ′ �(γ ′)
∣∣∣∣
γ

= −i�′(γ ). (B6)

Resulting in the expression

〈ĤP〉γ ,β = C̄(1 + BB∗��∗) + 2 Im(B∗�∗�′). (B7)

APPENDIX C: CALCULATION OF DEPTH 2 EXPECTATION VALUE

The p = 2 expression can be calculated similarly to the p = 1 expression, however, with more terms and thus requiring the
use of a computer algebra package [26]. The result of expanding the expression for the expectation value, setting the mean C̄ to
zero, and substituting the characteristic function and its derivative is the following expression of 10 terms:

E2(�γ , �β ) = iB(β1)B(β2)�(γ1)�(γ2)B(β1)∗�(γ1)∗�′(γ2)∗ − iB(β1)�(γ1)B(β1)∗B(β2)∗�(γ1)∗�(γ2)∗�′(γ2)

− iB(β1)∗�(γ1)∗�′(γ1) + iB(β1)�(γ1)�′(γ1)∗ + iB(β1)B(β2)�(γ1)�(γ2)�′(γ1 + γ2)∗

− iB(β1)∗B(β2)∗�(γ1)∗�(γ2)∗�′(γ1 + γ2)

− iB(β1)�(γ1)B(β2)∗�′(γ2)�(γ1 + γ2)∗ + iB(β2)B(β1)∗�(γ1)∗�′(γ2)∗�(γ1 + γ2)

− iB(β2)∗�(γ1 + γ2)∗�′(γ1 + γ2) + iB(β2)�(γ1 + γ2)�′(γ1 + γ2)∗. (C1)

This expression can be further simplified via the substitution of the p = 1 expectation resulting in the final expression in Eq. (23).

APPENDIX D: CALCULATION OF ARBITRARY DEPTH EXPECTATION VALUE

Using the intuition from the p = 1 and p = 2 cases, we can write down the expression for any term in the arbitrary depth
expectation value of the problem Hamiltonian. We can write the full expectation Ep(�γ , �β ) as

〈�γ , �β|ĤP|�γ , �β〉 = 〈+|
−1∏

j=−p

ÛP(γ j )ÛD(β j )ĤP

p∏
i=1

ÛD(βi )ÛP(γi)|+〉, (D1)
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where we have introduced the convention that negative indices simply add a negative sign to the value, as

γ−i = −γi, β−i = −βi. (D2)

The expectation value can be expanded, substituting the expressions for the driver and problem Hamiltonians as

∑
�z

〈+|
−p∏

j=−1

[eiγ jC(z j )|z j〉〈z j |(I + Bj |+〉〈+|)]C(z0)|z0〉〈z0|
p∏

i=1

[(I + Bi|+〉〈+|)eiγiC(zi )|zi〉〈zi|]|+〉, (D3)

where the sum over 2p + 1 indices �z = (z−p, . . . , z0, . . . , zp) runs over the set {0, N − 1} for each index. Expanding the products
in this expression will yield 22p terms that can be sorted in the number of occurrences of a B variable in the bra or ket.

For the one term with zero B incidences, one finds, for example,

1

N

∑
�z

e
∑−p

j=−1 iγ jC(z j )C(z0)e
∑p

i iγiC(zi )〈z−1| |z−2〉〈z−2| . . . |z−p〉〈z−p||z0〉〈z0||zp〉〈zp| . . . |z2〉〈z2| |z1〉, (D4)

in which the orthogonal bra-kets evaluate to zero leaving only one index yielding a nonzero term evaluating to the mean of the
objective function C̄. For weight-1 terms one has B in a position l

∑
�z

〈+|
−p∏

j=−1

[e−iγC(z j )|z j〉〈z j |]C(z)|z0〉〈z0|
p∏

i=l

[|+〉〈+|eiγC(zi )|zi〉〈zi|]Bl

l−1∏
i=1

[|+〉〈+|eiγC(zi )|zi〉〈zi|]|+〉, (D5)

for which the orthogonal bra-kets can be evaluated as

1

N2

∑
�z

e
∑−p

j=−1 iγ jC(z j )C(z0)e
∑p

i −iγiC(zi )Bkδz−1,z−2 . . . δz−p,z0δz0,zp . . . δzk+2,zk+1δzk ,zk−1 . . . δz2,z1 , (D6)

in which the sum is eliminated for all but two partitions giving

1

N2

∑
z

e
∑−p

j=−1 iγ jC(z)C(z)e
∑p

i=k+1 iγiC(z)
∑

z

e
∑k

i=1 iγiC(z)Bk (D7)

and leaving two variables over which we sum and leaving the nonexponentiated C(z) and therefore the differentiated character-
istic function �′ in the factor corresponding to the partition containing the central variable z0:

−iBk�
′

⎛
⎝ −p∑

i=−1

γi +
p∑

i=k+1

γi

⎞
⎠�

(
k∑

i=1

γi

)
. (D8)

To expand the expression more generally, we can introduce indices kbra ∈ {0 . . . 2p − 1} and kket ∈ {0 . . . 2p − 1} that are each
p-bit numbers such that the presence of a 1 in the binary representation of the index implies a factor of Bi|+〉〈+| at the bit
position in the bra or ket for the relevant term. The formula can be rewritten as

2p−1∑
kbra, kket=0

∑
�z

〈+|
−1∏

j=−p

[eiγ jC(z j )|z j〉〈z j |(Bj |+〉〈+|)k j
bra ]C(z0)|z0〉〈z0|

p∏
i=1

[(Bi|+〉〈+|)ki
ket eiγiC(zi )|zi〉〈zi|]|+〉. (D9)

When the index kket,bra is zero, this expression Bi|+〉〈+| is the identity and adjacent nonidentical z indices result in a Kronecker
delta, with 〈z j | |zk〉 = δz j ,zk collapsing a sum over one of the z indices. As such, these terms are collected into a single sum.
When a bit in the index kket,bra is one, the projector |+〉〈+| annihilates with a basis state vector 〈zi| and simply produces a factor
of 1/N , with 〈+| |z〉 = 1/

√
N ∀z, leaving the sums over z intact.

To substitute the characteristic function, we note that unbroken chains of 0’s of length n∗ in the indices kket,bra will result in
factors of the form∑

z1,z2,...,zn∗

eiγ1C(z1 )|z1〉〈z1|eiγ2C(z2 )|z2〉〈z2| . . . eiγn∗C(zn∗ )|zn∗ 〉〈zn∗ | =
∑

z1,z2,...,zn∗

δz1,z2δz2,z3 . . . δzn∗−1,zn∗ eiγ1C(z1 )eiγ2C(z2 ) . . . eiγn∗C(zn∗ )

=
∑

z

eiC(z)
∑

i∈[1...n∗] γi = �

⎛
⎝ ∑

i∈[1...n∗]

γi

⎞
⎠. (D10)

To substitute the characteristic function for all incidences of the objective function C(z), it is convenient to define a set of
boundary indices between those that are grouped as above. We can define these as

Sbra = {0} + {
i|ki

bra = 1
}
, Sket = {0} + {

i|ki
ket = 1

}
, (D11)
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defined by the locations of 1’s in the binary representation of kbra, kket. The additional boundary at 0 represents the boundary
imposed by the initial state of QAOA. In the partitions formed by these boundaries, we collect the indices contained in the ith
partition of the bra or ket as Pi

bra, Pi
ket with

Pi
bra = { − j| j > ki

bra, j � ki+1
bra

}
, Pi

ket = {
j| j > ki

ket, j � ki+1
ket

}
(D12)

and collect these into a set of sets:

Pbra = {
Pi

bra|i ∈ [0, weight(kbra )]
}
, Pket = {

Pi
ket|i ∈ [0, weight(kket )]

}
. (D13)

Finally, one defines a central partition spanning the indices between the last occurrence of 1 in the binary representation of kbra,
kket and containing the nonexponentiated factor of the objective function

Pcentral = {− j| j > max Sbra} + { j| j > max Sket}. (D14)

The expectation value after the substitution of the characteristic function and its derivative can then be expressed as

Ep(�γ , �β ) =
2p−1∑

kbra,kket=0

−i
∏

P∈Pbra

�

(∑
i∈P

γi

)
�′

⎛
⎝ ∑

i∈Pcentral

γi

⎞
⎠ ∏

P∈Pket

�

(∑
i∈P

γi

) ∏
− j|k j

bra=1

Bj

∏
j|k j

ket=1

Bj, (D15)

for which exchanging kbra, kket conjugates the term, allowing the expression to be split into two parts—one in which kbra = kket

and one otherwise, so that

Ep(�γ , �β ) =
2p−1∑
k=0

−i
∏

P∈Pbra

�

(∑
i∈P

γi

)
�

(∑
i∈P

γi

)∗
�′(0)

∏
j|k j=1

BjB
∗
j

+
2p−1∑

kbra<kket=0

−i
∏

P∈Pbra

�

(∑
i∈P

γi

)
�′

⎛
⎝ ∑

i∈Pcentral

γi

⎞
⎠ ∏

P∈Pket

�

(∑
i∈P

γi

) ∏
− j|k j

bra=1

Bj

∏
j|k j

ket=1

Bj + conjugate. (D16)

If the problem mean is zeroed by global phase, �′(0) = 0 and the first sum disappears, leaving

Ep(�γ , �β ) =
2p−1∑

kbra<kket=0

2 Im
∏

P∈Pbra

�

(∑
i∈P

γi

)
�′

⎛
⎝ ∑

i∈Pcentral

γi

⎞
⎠ ∏

P∈Pket

�

(∑
i∈P

γi

) ∏
− j|k j

bra=1 or j|k j
ket=1

Bj . (D17)

A Python script to evaluate the Grover-QAOA objective function Ep(�γ , �β ) for a given characteristic function is available upon
request to the author.
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