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Communication games are one of the widely used tools that are designed to demonstrate quantum supremacy
over classical resources in which two or more parties collaborate to perform an information processing task to
achieve the highest success probability of winning the game. We propose a specific two-party communication
game in the prepare-measure scenario that relies on an encoding-decoding task of specific information. We first
demonstrate that quantum theory outperforms the classical preparation noncontextual theory and the optimal
quantum success probability of such a communication game enables the semi-device-independent certification of
qubit states and measurements. Further, we consider the sequential sharing of quantum preparation contextuality
and show that, at most, two sequential observers can share the quantum advantage. The suboptimal quantum

advantages for two sequential observers form an optimal pair which certifies a unique value of the unsharpness
parameter of the first observer. Since the practical implementation inevitably introduces noise, we devised a
scheme to demonstrate the robust certification of the states and unsharp measurement instruments of both the

sequential observers.
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I. INTRODUCTION

Arguably, Bell’s theorem [1] has left the most prominent
mark on the history of quantum foundation research. It states
that all the quantum statistics cannot be predicted by a clas-
sical model that satisfies locality. This fundamental feature
is known as quantum nonlocality, demonstrated through the
quantum violation of Bell’s inequality [2]. The nonlocal corre-
lation that Bell’s theorem certifies is device independent, i.e.,
the internal functioning of the quantum instruments remains
unknown. This is the key reason why nonlocal correlations
are used as a resource in various information-theoretic tasks,
viz., secure quantum key distribution [3—6], randomness certi-
fication [7-10], witnessing Hilbert space dimension [11-18],
and communication complexity [19,20].

Another aspect of nonclassicality, the inconsistency be-
tween the noncontextual hidden-variable model and the
quantum theory, was introduced by Kochen and Specker
[21,22]. Unlike Bell’s theorem, which requires spatially sep-
arated entangled systems to demonstrate nonlocality, the
Kochen-Specker (KS) theorem can reveal the contextual-
ity even using a single system. However, the KS theorem
has a limited scope of applicability as it only captures the
measurement noncontextuality, is not applicable for unsharp
measurement, and is restricted to quantum theory. Later,
the notion of noncontextuality was generalized in [23] for
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arbitrary operational theories and extended the formulation to
preparation and transformation. More recently, the prepara-
tion contextuality has been studied extensively [24-33], and
it is this form of nonclassicality that plays a vital role in the
present work. In particular, we show how quantum prepara-
tion contextuality powers a sequential communication game
and enables the robust certification of states, observables, and
unsharpness parameters.

The strongest form of certification is device-independent
self-testing [34,35], whereby one can uniquely certify the
states and measurements solely from experimental statistics
regardless of any knowledge about the functioning of the
preparation and measurement instruments. Optimal quantum
violation of a Bell inequality enables such self-testing. For
instance, the optimal quantum violation of Clauser-Horne-
Shimony-Holt [36] inequality self-tests the maximally entan-
gled state and locally anticommuting observables. However,
in practice, the loophole-free Bell tests remain a challenging
and resource-consuming task. Instinctively, robust certifica-
tion of states and measurement instruments through the Bell
test would be even more challenging. Due to the practical dif-
ficulties in experimental testing, the semi-device-independent
(SDI) protocols in prepare-measure scenarios [37—45] became
appealing to the community. In the SDI certification scheme,
the preparation and measurement instruments remain black
boxes, but the dimension of the system is bounded from
above.

One of the well-studied approaches for showcasing
quantum supremacy in information processing tasks is in
terms of communication games [19,20,24,25,46]. A typical
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communication game involves two or more independent par-
ties collaborating to perform an information processing task
with the maximum probability of success. Apart from struc-
tural differences, such games are supplemented with different
constraints that have to be fulfilled by the parties. In this
work we consider a particular communication game con-
strained by parity-oblivious communication, which implies
that the communication between the parties must not reveal
the parity information of the input. The game is techni-
cally inspired by but not equivalent to the parity-oblivious
communication game [24]. Here we demonstrate that quan-
tum theory predicts the success probability that outperforms
the classical theory. Throughout this paper, by classical-
ity we refer to the preparation noncontextuality, as will be
introduced shortly.

Recently, the sequential sharing of quantum correlations
has attracted considerable attention. Based on the sequential
quantum violation of Clauser-Horne-Shimony-Holt inequal-
ity, Silva et al. [47] first demonstrated that the nonlocality
can be shared by a maximum of two sequential observers on
one side. Since then, numerous studies [29,38,45,47-52] have
been reported that explored how many independent observers
can share various forms of quantum correlations, such as
steering [48], entanglement [49], nonlocality [50], and prepa-
ration contextuality [29]. As long as a communication game is
capable of revealing some aspect of quantum supremacy, there
is a provision to extend the game to the sequential scenario.
We adopt a sequential scenario of the communication game
to present the main results, which are explicitly discussed
below.

Based on a specific parity-oblivious communication game
in the prepare-measure scenario, we first demonstrate the SDI
certifications of the prepared qubit states, measurement, and
unsharp parameter in an ideal scenario when there is no noise.
The sequential quantum advantages over the classical prepara-
tion noncontextual bound of the communication game enable
us to demonstrate such a certification. We show that, at most,
two independent sequential observers can share the quantum
advantage in such a game. Specifically, we argue how subop-
timal quantum advantages by two sequential observers form
an optimal pair which eventually certifies a unique value of
the unsharpness parameter of the first observer.

However, the practical implementation of the protocol
introduces inevitable losses due to imperfections in experi-
mental procedures. Hence the aforementioned optimal pair of
sequential success probabilities may not be achieved. Thus,
the exact states and measurements cannot be certified in an
actual experiment. On the other hand, in a sequential scenario
where more than one observer gets the quantum advantage,
the success probabilities must be suboptimal to ensure that the
measurements are unsharp. We provide a robust certification
of the preparations and measurements and certify a range of
the unsharpness parameter of the measurement instrument
when the sequential quantum success probabilities do not
form an optimal pair.

The paper is organized as follows. In Sec. II we briefly
summarize the notion of the ontological model and the as-
sumption of preparation noncontextuality. In Sec. III we
introduce the parity-oblivious communication game in the
prepare-measure scenario. In Sec. IV, using sequential un-

sharp measurements, we demonstrate the sharing of quantum
advantage by multiple independent observers. In Sec. IV A
we provide the certification of the unsharpness parameter,
which is necessary to violate the preparation noncontextual
bound of success probability, and in Sec. IVB we provide
a generalized certification statement for the preparations and
unsharp measurements in an ideal scenario. In Sec. V we
examine the possibility of sharing the sequential quantum
advantage with a third observer. In Sec. VI we present the
robust certification scheme which robustly certifies Alice’s
preparations and Bob’s and Charlie’s measurements of noise
for the choice of unsharpness parameter. We summarize our
results and in Sec. VII.

II. ONTOLOGICAL MODEL AND PREPARATION
NONCONTEXTUALITY

To begin with, we briefly recapitulate the ontological
model [53-55] of an operational theory and the assumption
of the preparation noncontextuality [23], the notion of clas-
sicality that we are considering here. An operational theory
essentially involves a set of preparation procedures {P} and
a set of measurement procedures {M}, which is designed to
predict the operational statistics by means of the probability
p(k|P, M) of obtaining a particular outcome k given the ex-
perimental arrangements. In operational quantum theory, the
preparation is represented by the density matrix p and the
measurement is in general represented by positive-operator-
valued measures (POVMs) {E;} satisfying ), Ex = I. The
quantum probability p(k|P, M)s is provided by the Born rule
as p(k|P, M) = Tr(pEy).

In general, the ontological model [53-55] of an opera-
tional theory provides an objective description of the physical
events compatible with the experimental statistics. A prepa-
ration procedure P in an ontological model corresponds to a
probability distribution w(XA|P) that satisfies fA WA |P)d) =
1V X € A. The variable A € A represents the ontic state of the
system. Given a POVM element E;, the ontic state variable A
assigns a response function & (k|A, Ey) with ), £(k|A, Ex) =
1V A. Any ontological model that is consistent with quantum
theory must reproduce the statistical prediction of the theory
given by the Born rule as

/AM()»I/J,P)S(kI?»,M)d/\ = Tr(pEx). (D

For our purposes here, to introduce the notion of prepara-
tion noncontextuality in an ontological model, we consider
the operationally equivalent experimental procedures. Two
different preparation procedures Py and P; are called opera-
tionally equivalent if no measurement can distinguish them.
Mathematically, it means that for any two operationally equiv-
alent procedures Py and P, we must have p(k|Py, M) =
pk|Pi, M)VM, k. In quantum theory, a density matrix p
prepared through two distinct procedures Py and P; cannot
be distinguished by any measurement and thus constitutes
such operationally equivalent preparations. As argued in [23],
if two operationally equivalent preparations Py and P; for
an operational theory are equivalently represented in the
corresponding ontological model by the same ontic state
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probability distributions, i.e.,
p(k|Py, M) = p(k|P1, M) = pp,(Alp) = pp (Ap)VM, (2)

then the model is called preparation noncontextual. This par-
ticular form of noncontextuality is taken as the notion of
classicality in this paper. To avoid clumsiness, we drop M
from the response function for the rest of this paper, as mea-
surement contextuality is not relevant here.

III. PARITY OBLIVIOUS COMMUNICATION GAME

We consider a specific communication game in the
prepare-measure scenario, which has a structural resemblance
to the games in [28,56]. The game involves two parties, Alice
and Bob, who own their respective instruments. Alice receives
input x € {1, 2, 3}, which is chosen at random from a uniform
probability distribution, i.e., p(x) = % V x, based on which her
instrument produces an output a € {0, 1}. Alice encodes the
information about her input x and output a and sends it to Bob.
Explicitly, the six different input combinations of Alice are
x' € (xa) = {10, 11, 20, 21, 30, 31}, withi = (1, 2,3, ..., 6).
On the other hand, Bob receives input y € {1, 2, 3}, which is
also chosen at random, i.e., p(y) = %V v, and produces an
output b. The winning condition of the game is that Bob’s
instrument has to produce the output b such that the condition

b=5., ® a 3)

is satisfied. The average success probability of the game is
then given by

3
1
A= ﬁ Z Z}P(bzﬁx,y @2 a|x’y)' (4)

x,y=1 a€{0,1

Such a game can obviously be won with the probability equal
to unity, if Alice is allowed to share an unbounded amount
of information with Bob. However, in the game, the parity-
oblivious constraint limits Alice’s communication such that
Alice is restricted from revealing the parity information to
Bob. To explain this explicitly, let us consider two subsets of
Alice’s input, the even-parity set P, = {x &, a = 0} and the
odd-parity set P, = {x &, a = 1}. Then for all y Bob cannot
know which parity set the input that belongs to him came
from. In an operational theory, the above parity-oblivious
restriction can be formally written as

Y plx,y) =Y pbl', )Yy, (5)

xielP, xieP,

We derive the maximum classical and quantum success prob-
abilities of the game with the constraints in Eq. (5). Generally,
classical strategies are described through the ontological
models [23,53-55] wherein the preparation procedures are
characterized by a probability distribution (A ) corresponding
to an ontic state variable A as discussed earlier. Following
[24], we argue that the parity obliviousness at the operational
level must also reflect as an equivalent restriction at the level
of ontic states if the underlying classical ontological model
of the operational theory is preparation noncontextual. Hence,
the classical strategy that entails parity obliviousness at the
level of ontic states is essentially a preparation noncontextual
strategy.

Let us now consider that in operational quantum theory,
Alice encodes her input x* € {x, a} into six qubit states {0..}.
Then the parity obliviousness implies that the following re-
striction has to be satisfied by Alice’s preparation:

Y o= Y e ©)

x:x@ra=0 xiix@ra=1

Explicitly, the parity-oblivious condition reads p1; + p20 +
P31 = P10 + p21 + p3o- Hence, if the underlying ontological
model of quantum theory is preparation noncontextual, then
we must have

A P11) + (Al Pao) + (A |Ps1)

= w(APro) + m(AlP21) + (A |Pso). @)
This parity-obliviousness condition at the ontological level
dictates that the classical strategy should be such that any
message containing information about the parity of the
preparation is forbidden from communication. Imposing the
above-mentioned constraint, the optimal success probability
of the game in a preparation noncontextual model is derived
as (A)pne = %. This is explicitly proved in the following.

In an ontological model the success probability in Eq. (4)
can be written as

3
1 R
ﬂ=1—8 E E E WA |Pea)§ (b = by,y @2 alh, My), (8)
x,y=1a€{0,1} AeA

where (t(A|Py,) is the probability distribution for the prepara-
tion of ontic state A given P, is prepared in the laboratory, and
&(b = b, @7 alA, My) is the response function corresponding
to the correct output of Bob’s measurement M,. By expanding
Eq. (8) and further simplifying it we get

1
A= T ;{[M(k|P10)+M()»|P21)+M(?»|P31)]5(19: 1My, 1)

+ [1(X|Pr1o) + 1(A|P21) + u(A|P3o)]§ (b = O|M>, )

+ [ (AP1o) + w(A|Pao) + u(A|P31)]6 (b = 0|M3, 1)

+ [(A|P11) + (A Pao) + (A P30)]E (b = O|M, A)

+ [A|P11) + (A Po) + w(A|P31)]E (b = 1|M>, 1)

+ [1(A|P11) + (A Po) + (A P3o)] (b = 1|M3, M)}
)

It has already been mentioned that the game is constrained
by the parity-oblivious restriction given by Eq. (7). Applying
this constraint relation in Eq. (9) and simplifying we get

1
A= 18 (9 + 22{[M()¥|P11) — w(AlP)IE(b = O|M, 1)
A

+ [(A|Py) — u(A|P21)]E(D = O|M3, &)
+ [ (A |Ps31) — n(A|Ps30)]€ (Db = O|M3, )»)}). (10)

To optimize the above expression we note that the opti-
mization condition requires that the terms having negative
signs must be zero, i.e., w(r|Po)=pn(A|Po1)=un(A|P3)=0.
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However, this immediately makes the positive terms zero,
which follows directly from parity-oblivious conditions (7)
and imposes a trivial bound to the success probability. Thus
we can at most set two of the negative terms to zero such that
the parity-oblivious condition now takes the form

WA Pyo) = (Al Pr1) + (X[ Pao) + w(A|Psp). (11
Combining Eq. (11) with Eq. (10), we can write

A= 18<9+22{u<u13n>s<b 0lM, 2)

+ w(AlPy)é (b = 0|M>, 1)
— (A Pyp) + (X Py))E (b = 0|M3, )»)})- (12)

It is now straightforward to see from Eq. (12) that a
strategy that gives the classical optimal value to the success
probability should include the ontic state variable A that
gives Do WAPDEMD =0IM, &) = )5 w(A|Py)é(b =
0[Mz,2) =1 and 2 (P + (AP )E (b =
0|M3, ) = 0. Thus the preparation noncontextual classical
bound to the success probability of the game becomes
(ﬂ)pnc = %

A simple strategy can saturate the above bound when Alice
makes a trit of communication ¢ to Bob. For example, suppose
Alice sends a trit of information ¢ € {1, 2, 3} in a particular
run of experiment that corresponds to preparations from the
set {10, 31}, {11, 21}, or {20, 30}, respectively. This corre-
spondence is already known to Bob before the game starts.
Now the predecided strategy is such that Bob will output
b=0,b=1, and b =0 if his inputs are y =1, y = 2, and
y = 3, respectively, when a trit of information ¢ =1 is sent.
Similarly, for a trit of information # = 2, Bob outputs b = 0,
b =1, and b = 1, respectively, and for a trit of information 3,
outputs b = 1, b = 0, and b = 0 in accordance with the inputs
y=1,y=2, and y = 3, respectively. Thus, in the first and
second cases, they will win four times among the six runs in
each of the cases, whereas in the third case they win five out
of six runs. Thus the success probability becomes A, = %,
as already derived analytically. It is important to note that the
discussed strategy ensures that no information about the parity
of the preparations is shared due to Alice’s communication of
the trit of information to Bob.

We use the terms “classical” and “preparation noncontex-
tual” interchangeably throughout the paper. Thus, the classical
bound to the success probability will always mean the prepa-
ration noncontextual bound derived here.

IV. SEQUENTIAL QUANTUM ADVANTAGE IN THE
COMMUNICATION GAME

The sequential sharing of quantum preparation contex-
tuality plays a crucial role in this work in certifying the
unsharpness of the measurement instruments. By unsharp
measurements we specifically mean the noisy variants of the
sharp measurements so that the number of POVMs is the same
as the number of projectors. Although the optimal quantum
violation of local or noncontextual bounds facilitates the certi-
fication of states and measurements, it does not account for the

certification of unsharp POVMs or postmeasurement states.
The certifications of postmeasurement states are inevitable to
certify unsharp measurements, which can only be done if a
joint sequential quantum violation of the classical bound can
be achieved. This in turn certifies the states, observables, and
unsharpness parameter of the instrument.

As already mentioned, Alice encodes the input x' € (xa)
into qubit states {0,,} and sends them to Bob through a unitary
channel. Upon receiving the state, Bob performs a measure-
ment {E},} depending upon his input y and obtains an output
b. Now, with the projective measurements, Bob can extract the
maximum information from a state, discarding all the infor-
mation about the initial state. In such circumstances, a second
observer (say, Charlie) will not be able to extract any infor-
mation about the initial state. In essence, a posterior observer
can obtain no quantum advantage if the prior observer em-
ploys a sharp measurement. Therefore, to extend the quantum
advantage to Charlie in Fig. 1, Bob must perform the unsharp
measurement [57—64] characterized by POVMs. In that case,
the system will be partially disturbed by keeping residual
coherence in the postmeasurement state. However, a particular
observer can only get the quantum advantage if its unsharp-
ness parameter surpasses a threshold value. This provides the
provision of minimal information from the system that is just
enough to get the quantum advantage. Hence, whether or not
the sequential observer gets the quantum advantage depends
on the degree of unsharpness of the preceding observer. Thus,
there exists a trade-off between the quantum advantages of
sequential observers.

Explicitly, the process runs as follows, as depicted in Fig. 1.
Alice prepares qubit state {p,,} and sends it to Bob. Sub-
sequently, Bob performs an unsharp measurement with his
input y € {1, 2,3} and produces an output b. Thereby, the
transformed states are relayed to Charlie and he performs an
unsharp measurement with his input z € {1, 2, 3} and pro-
duces an output c¢. This process goes on for a number m of
observers (m € {B, C, D, . ..}) as long as the mth observer gets
the quantum advantage. From the winning condition of the
game in Eq. (3) and the success probability in Eq. (4) we can
write the quantum success probability for Bob as

Z Z Tr(anEbb (13)

xv 1 a€{0,1}

where Ep, is the POVM corresponding to the outcome b of
measurement B,. Now let us take the prepared state to be

I[+7%,-0
Pxa = %v (14)

> . _ I4+(=1)’ngBy .
where Ty, is the Bloch vector and Epy = ———— is the
POVM corresponding to the output b of measurement of the
operator By = l;y -0 and np is the unsharpness parameter of
Bob’s measurement instrument, which quantifies the fuzzi-
ness in his measurement. The quantum success probability for
Bob can then be written as

w|~
ox|3

3
Z (8 iy - b (15)
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m€{1,2,3} y€{1=2)3}

z€{1,2,3}

w € {1,2,3}

a € {0,1} b e {0,1}

ce€{0,1}

FIG. 1. Sequential setting of the game.

where f)y is the unit vector in the direction of the operator B,
such that By = By -0, and 10y = || |[fi; (g is the unit vec-
tor) is the unnormalized Bloch vectors, which are explicitly
written as

n; = —(Fjo — F11) + (For — Fao) + (F30 — F31),
Ny = (Fio — F11) — (P21 — Too) + (F30 — F31),
n3 = (Fjo — Fj1) + (¥ — Fao) — (F30 — T31). (16)

If Bob’s measurement instrument is represented by the set
of Kraus operators {%p,}, then the reduced state after his
measurement can be written as

3
1
pfa ) Z Z Koy oxaKply am
}

y=1 bef0,1

where the Kraus operators satisfy qu(bw‘](;‘y =1, with

Koy = U,/Ep, for any unitary operator U. As our re-
sults are valid for any unitary transformation, for sim-
plicity, we set U = 1. The Kraus operators are written

as Kipy =/ SLI4yy + o/ T2, = apl + B, where

My, = I £ B,)/2 are the projectors corresponding to the
qubit observable B, such that

I [1—ng /PMB

013—2<\/ 5 + > >, (18)
1 1+7IB_\/1_UB

/33—2<\/ 5 5 ) (19)

with o} + B3 = 1 and 1 = 4apBp.

Using the above form and simplifying Eq. (17), we find
the reduced state after Bob’s measurement in its generalized
form as

Pl = L1+, o), (20)

where

is the Bloch vector of the reduced state. Therefore, from
Eq. (4) the quantum success probability for Charlie can be

written as
13
= _8 Z Z pxa C|Z
z=1a€{0,1
1 1 N
=+ —|2(c3 - 83) Z (Se.2Ti - &)
2 36 e’
ﬁ =2 Z (8 2Tk - by )(b, - c») (22)
k,y,z=1
where E, = ]H(*% is the POVM corresponding to the

result ¢ = 8, ; @, a of the measurement of C; = ¢, - 0. The
last line comes directly from Egs. (20) and (21). It is clear
from Eq. (22) that, through its dependence on «g and Bg, the
success probability Ac of Charlie is a function of 1. Hence,
there exists a trade off-between Ap and Ac. We optimize the
success probability of Charlie A as a function of Ap.

It is seen from Eq. (22) that as ap > Bp, for the opti-
mization of Ac we must have fi; to be in the direction of ¢,
whenever k = z. We further observe that the ¥,, have to be an-
tipodal pairs to maximize fi; in Eq. (16) such that ¥1g = —Fyy,
Fp| = —TIp, and T3y = —F3;. The overall optimization also
demands that the states {p,,} are pure, i.e., ||Fy|| = 1. From
this choice we can rewrite the iy as i, = 2(—¥;¢ + ¥y + F30),
Ny = 2(F19 — Fop + F30), and i3 = 2(Fj¢ + Fa9 — F30). We can

then write
A<t - B Zu I
-+ — n
<2713 B ¢
2 \ A A
=2 @by, &) ). (23)
k,y=1
Using concavity of the square root Zi:l T || <

/3 Zi:l |Iti ||> and the expressions of 1i;, we have

3
Sl <236 = 3+ Far +F0). (24)
k=1

Evidently, the maximum value of Eq. (24) is given by
max(Z,f:l Ifg|l) = 12 when the condition

Flo+Ty+T3=0 (25)
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in Eq. (24) is satisfied. Using Egs. (16) and (25), it is simple to
show that the value of each |1, || is 4 and hence the equality in
Eq. (24) holds. The condition in Eq. (25) implies the relations
are satisfied by the Bloch vectors as Fg - Fo9 + Fio - F30 = —1,
Fig - T + Ty - F30 = —1, and Fy - F30 + Fao - F30 = —1. The
set of equations in turn provides Fjg - Fp9 = Fyg - F39 = Fao -
I3 = —%. Inserting the above conditions into Eq. (16), we
immediately get N} = —Fo, iy = —Fy, and fi; = —F3.
Without any loss of generality we can then fix a set of

vectors that satisfies the above conditions as ¥y = X, Ty =
—%ﬁ + %gi, and 3 = —%f{ — éi Furthermore, to optimize
the quantum success probability of Charlie Ac of Eq. (22)
we also get Iy = €, for z = k. This implies that the maximum
value max(Ac) = Q¢ can be obtained when the unit vectors
of Charlie are & =b, =f;, & =b, =, and & = b; =
fi3. We then have

Ac

N

1 3ad— B2 ¢

-+ ———= Ty || 26

St e D il (26)
k=1

It can be easily seen that given the values of «p and S, the

maximization of A¢ provides the success probability of Bob

of the form

3
1 ns -

Ap ==+ — ng||. 27

5 2+36k2=1:” el @7
Note that both Ap and A¢ are simultaneously optimized when
the quantity Zi:l |Itig || is optimized. Let us denote max(Ag)
by Qp. Substituting max(zzzl It ||) = 12, we thus get the
optimal pair of success probabilities for Bob and Charlie as

1 2773
Qp=—-(1+—), 28
B 2( + 3 ) (28)
1 2nc(1+2,/1—n3)
Qc = 5 1+ 9 . 29)

To certify the unsharpness parameter np, we assume Charlie
performs a sharp measurement (with n¢ = 1). In such a case,
both Q5 and Q¢ become functions of a single parameter 7.

It is worth pointing out that the set of states which provides
the optimal pair of success probabilities 25 and ¢ must also
comply with the parity-oblivious restriction (6). In the current
scenario this means that the quantum states corresponding to
the set P, € {10, 20, 30} and the set P, € {11, 21, 31} must
produce statistics that are equivalent to Bob for all measure-
ments. Explicitly, Alice’s input states must satisfy the relation
P10 + P20 + P30 = p11 + P21 + p31.- One can easily verify that
the set of states that are self-tested through the optimal quan-
tum advantage follows the above relational constraint.

A. Certification of the unsharpness parameter

From Eq. (29) we note that Q¢ is a function of Qp. The
trade-off relation between the optimal pair (2, 2¢) of quan-
tum success probabilities for Bob and Charlie can then be

written as
1 14+/4-902Q5—1)
Qc(Qp) =3+ 5 5 . (30)

0.67

0.5

0.5 0.6 0.7 0.8
fo/:}

FIG. 2. Trade-off relation between the success probabilities
achieved by Bob Qp and Charlie Q2¢. The solid blue (dotted or-
ange) line indicates the variation in success probability of Charlie
with respect to Bob in classical (quantum) regimes. It is clear
that by classical means no trade-off exists as there is no vari-
ation in Charlie’s success probability with a change in Bob’s
success probability, whereas in quantum-mechanical prescriptions
there is a solid trade-off in success probabilities between Charlie
and Bob.

In Fig. 2 we plot the trade-off between the success probabili-
ties ¢ and Qp described by classical and quantum theories.
Classically, the measurement does not necessarily disturb a
system and there exists no trade-off between the success prob-
abilities, which is represented by the blue line as shown in
Fig. 2. On the other hand, due to the information disturbance
relations 25 and Q¢ follow a trade-off relation in the quantum
theory description as expressed in Eq. (30). Such a trade-
off between the quantum success probabilities is captured
in Fig. 2 by the red curve and each point on it certifies a
unique value of unsharpness parameter 1. For instance, when
Qp = Qc = 0.754 57, the value of ngp = 0.7637 is certified.
A similar argument holds for each point on the red curve in
Fig. 2.

It is quite interesting to check the extent to which the
value of the unsharpness parameter for observers can be
fine-tuned to find the maximum number of independent ob-
servers that can sequentially harness the quantum advantage.
The sequential observers mutually agree that each of them
gets an appropriate amount of quantum advantage in the
game by setting up the unsharpness parameters of their mea-
surement instruments. Bob’s measurement instrument should
have its unsharpness parameter above a certain threshold
value. Otherwise, he will not receive any quantum advan-
tage in such a game. By using Eq. (28) the minimum value
(n8)™™ of the unsharpness parameter required to get the
quantum advantage for Bob is determined as a function
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of Qp as
5> ()™ =3(Qp — ). 31)

Similarly, to upper bound the permissible value for ng, from
Eq. (29) we rewrite np in terms of Q¢ as

ms < (™ =1 - [1[2e0c— H—1]1% G2)

From Egs. (31) and (32), by substltutmg the classical bound
(Appe = }—g) for Qp and Q¢, we find the quantitative bound to
the unsharpness parameter ng of Bob’s measurement instru-
ment as

2 V3
SXXMBXY (-

3 2

Certainly, any value of np in the above range necessarily
provides the quantum advantage to both the observers.

B. SDI certification statements

The optimal pair (2g, 2¢) of success probabilities for Bob
and Charlie provides the following certification statements for
the ideal preparations of Alice and the ideal unsharp measure-
ments of Bob.

(i) Among the six states that Alice prepares, three are of a
specific type called the trine states and the rest are just their
antipodes. For an example, such states are represented by the
Bloch vectors Fig = X, Fyg = (%f( — %52), and F3) = (—%fc —

3 *=2) and their respective antipodal pairs.

(11) Bob performs unsharp measurements correspondlng
to the 1ncompat1ble observables such that b1 = —Fjo, b2 =
—Tyg, and b3 = —T3. Charlie’s measurement settings are the
same as Bob’s with n¢ instead of 1 and are taken to be unity
as Charlie performs a sharp measurement.

Furthermore, each point on the red curve in Fig. 2 is a
representative of the optimal pair (2p, Q¢) for a certain 7p.
The certification arguments are valid as long as for a certain
np the observers get optimal pairs. In other words, every point
on the red curve in Fig. 2 represents a certified value of np.
It can be easily seen from Fig. 2 that whether or not Charlie
gets the quantum advantage entirely depends upon how much
of the same is already extracted from the system by Bob’s
measurement. They can then agree on a common strategy
to achieve the required quantum advantage for a particular

purpose.

V. POSSIBLE EXTENSION OF QUANTUM ADVANTAGE TO
A THIRD OBSERVER

We have just demonstrated that in a sequential scenario, a
sustainable quantum advantage is achieved by Charlie if Bob
performs unsharp measurements for a range of values of 5. A
question may immediately arise whether for sufficiently lower
values of 7¢ it is possible to extend the quantum advantage to a
third observer (say, Debbie). To analyze this case, we find the
maximum success probability for Debbie, who receives input
w € {1, 2, 3} and returns output d € {0, 1}. By using Eq. (17)
we find the reduced states after Charlie’s measurement, re-
layed to Debbie as

oS = L1+, - 0), (33)

where

P = 405 — By) (e — ﬂé)fm

+ /33 ) Z(by Fr)by
y=1
+ ﬂC Z(Cz rxa)cz

16 B2 B2 < o R
+ % Z(by : an)(by : éz)éz-
y,z=1

Then the quantum success probability for Debbie is given by

1
Ap = 75 Tr(0Earw)

RN P
- +36< (e

3
Bz) D (by-fix)(by-d,)

k,y,w=1

3
Bi)ae — B2) Y Skuili - &

kaw,z=1

8
+ 3B -

+ IBC( IBB Z (C7 nk)(cz' w)

k,z,w=1

16 Lo
+ 5 BB ) (by~nk)(by-cz>(cz-dw)>, (34)

kaw,y,z=1

_ IL+(=1y'npD, ; :
where Eg),, = > is the POVM corresponding to the

outcome d = J, , P, a of measurement D,, = aw - 0. Using
the same optimization technique used in the preceding sec-
tion from Eq. (34), we obtain

1 1
ﬂ = +%( (Ollzg

+ﬂ3

3
— B2) Y Il
k=1
Znnkn
+ ﬂc - B3) Znnkn + ﬂBﬂcZ||nk||2>

(35)
Further by setting Y_;_, [[fi||> = 12, we finally get

1 2np
Qp = 2(1 + 7(1 +2,/1=n3)(1+2,/1 —ng)). (36)

Thus, the unsharpness parameter 1 of Debbie’s measure-
ment instrument takes the form

27 2Qp — 1

) (T4+2/1=n2)(1+2,/1—n2)

From this equation it is clear that, for Debbie to achieve
quantum advantage, the values of n¢ and np should be such
that np < 1. The range of ng was specified earlier. Let

(37
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the threshold value of the unsharpness parameter of Char-
lie’s measurement instrument be denoted by (n¢)™". From
Eq. (29) we write

9 2Qc — 1

2\i+2/1-92

To give a quantum advantage to Charlie, Bob performs his
measurement by setting the unsharpness parameter of his
instrument slightly above the lower critical value (ng)™n, We
denote the infinitesimal amount of np that is greater than
(ng)™n by ¢ € [0, 1] such that 0.66 < ng + ¢ < 0.866.

By setting ng = ng + ¢ in Eq. (38) and upon solving we
get (nc)™n = 0.803 + 0.577¢, with ¢ € [0, 0.341]. There-
fore, lowering the degree of unsharpness parameter of Charlie
may provide some advantage. To certify that Debbie can
harness the quantum advantage, from Eq. (37) we find the
minimum value of np to violate the noncontextual bound.
For that we set 7z = (73)™" and ne = (nc)™" in Eq. (36).
This gives np = 1.09, which is not a legitimate value of the
unsharpness parameter. This suggests that irrespective of how
small the first two observers impose the disturbances, no more
than two observers can get simultaneous quantum advantages.

)mln _

(nc (38)

VI. ROBUST CERTIFICATION OF PREPARATIONS AND
MEASUREMENTS

In Sec. IV B we discussed the certification of trine states,
measurements, and the unsharpness parameter in an ideal
scenario. The practical scenario, however, is bound to be
imperfect and hence demands a certification scheme tolerant
to noise. We now analyze the robustness of preparation and
measurement instruments in the presence of noise. For this
we adopt a scheme proposed in [35] and subsequently used in
the SDI scenario in [37]. In [35] the author derived an opera-
tor inequality for the device-independent self-testing bound
on the quantum value of the Clauser-Horne-Shimony-Holt
expression by analyzing the robustness of the instruments.
Following that approach, we construct such operator inequal-
ities to characterize the average fidelity. Relying on the value
of average fidelity, the closeness between the target states
(measurements) to ideal ones can be determined. Hence ob-
taining a lower bound to the average fidelity can provide
robust certification.

A. Robust certification of the preparations of Alice

Given a set of state preparations {p,,}, the average fidelity
for a given success probability Ap with respect to the set of
ideal states {p!%°} is quantified by

S(pra) = —maxZ Y F( Alp)), (39)

x=1 a€{0,1}

where A is a completely positive and trace preserving (CPTP)
map and fidelity takes the form

F (0, A(pra)) = (Alpra)) p257. (40)

There may exist multiple sets of states which are compatible
with a given success probability Ag. Thus, we estimate the

robustness of the preparations by finding the lower bound of
the average fidelity for all possible set of states that provides
the success probability Ap such that

F(A)= min S(:Oxa) (41)

Pra€R(

To ensure the robustness of Alice’s preparations, the fidelity
must be lower bounded by a function of Ap in order to
satisfy an appropriate operator inequality. By using Eq. (13)
we rewrite the success probability of Alice in the form

+Z > Tr(praWea), (42)

x=1 a€{0,1}

\) |

where

3
- L Z Z (—1)’®ap (43)
36

€{0,1}

If the preparations are pure then the fidelity can be writ-
ten as F (o, A(pra)) = (A(pxa)) P10, We can then write
F(p)lc(ieal, A(;Oxa)) = Tr(Kxupxa), where

K.(B1, By, B3) = AT(By, By, B3)(0i5) (44)

represents the action on the set of ideal states, with AT the
dual channel to A. For any positive quantity s we define an
operator in the form K, — sW,, and let 7, € R be its lower
bound. Then, in general the operator inequality takes the form

K.a(B1, By, B3) = sWy, + ta(B1, Bo, B3)I. (45)

Finding the trace over the inputs of this inequality and apply-
ing minimization over By, B;, and B3, the lower bound to the
average fidelity turns out to be

1

3

N

8 Z Z Tr(Kxapxa) > gTr(panxa + txa]I) (46)
x=1 ae{0,1}

s> 5[(-3)] +¢

We thus bound the average fidelity from below as

so that

Z D (47)

x—l ae{0,1}

F(Ap) > <ﬂ3 - %) +1, (48)

where

31 Bqu Z Z txa(Bl BQ,B3)

x=1 ae{0,1}

are subject to evaluation.

Here we propose a generalized scheme where robustness
can be certified for any choice of the unsharpness parameter
np in the defined range for Bob’s measurement instrument.
The detailed derivation is lengthy and hence deferred to Ap-
pendix A. We first set s = 9/np, which in turn gives ¢t = %
such that the lower bound of average fidelity can be deter-
mined from Eq. (48) for a given success probability Ap as

3 1 1
F(Ap) = %<ﬂ - -) e (49)

2 2
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I']B=0.76

e
©
=)

0.96

Average Fidelity ¥

0.94

0.72 0.73 0.74 0.75
Success Probability of Bob Ap

FIG. 3. Variation between the average fidelity ¥ for prepared
states of Alice and the success probability Ag for a fixed value of
the unsharpness parameter 7.

The trade-off relation between the average fidelity and the
success probability is plotted for Ay, < Ap < p in Fig. 3
for a particular value of ng = 0.76. Due to the dependence
of s on np, although the nature of the trade-off graph will be
the same for different values of 5, the fidelity for different
degrees of unsharpness will be different even for the same
value of success probabilities. The lower bound saturates with
F(ﬂB) =1 for 7{3 = QB.

B. Robust certification of measurements

Analogous to robust certification of preparations, we adopt
a similar treatment here. The expression of average fidelity,
given the set of ideal measurements, is given by

1 > .
S By} = gmax D Y 0 F((Epy) ™, AlEpy), (50)

y=1 be{0,1}

where A is a quantum channel. To estimate the lower bound
for the average fidelity, we write

F'(A) = min_ S{Ep)). (51)
E},‘VER(ﬂ)

Measurements are suitably chosen to be compatible with the
given value of A because the instruments are considered to
be black boxes. To determine the robustness, the operator
inequality is constructed of the form

Kyw({oyw)) 2 sZy, + 11, (52)
where Ky, = AT[(Ep),)''] and thus fidelity can be written as
F ((Epy )", A(Epy)) = (A(Eppy)) (Eppy)

= Tr[Kys(Eppy)]. (53)

From the definition of general success probability A =
Zi=1 Zbe{o,l} Tr(EpyZy»), where

3
Zy = % > Z}pxusz,b, (54)

x,y=1a€{0,1

with [ = §, , @ a. Subsequently, we find the expression which
quantifies the lower bound of the average fidelity to be

F'(A) > %3{ +1, (55)

ns=0.76

o
©
=)

0.96

Average Fidelity ¥

0.94

0.72 0.73 0.74 0.75
Success Probability of Bob Ap

FIG. 4. Variation in the average fidelity of measurements of Bob
with respect to success probability A for a fixed value of np.

where

3
1 . -
t= cming, s, , > > tw(Bi. By By). (56)

y=1b={0.1}

Furthermore, the states that Bob receives are the states sent by
Alice and the performed measurements are unsharp. On the
other hand, Charlie gets the nz-dependent reduced states after
Bob’s measurement and performs sharp measurements. As a
result, the robustness analyses for these two observers differ,
which are the following.

Bob performs unsharp measurements with unsharpness
parameter 7 in the certified range. Thus, essentially the pa-
rameter ¢ becomes a function of 7g, which finally end up
giving the np dependence of the fidelity equation. To lower
bound the average fidelity, we choose s =9, and by simple
calculation we find t = % — '77" From Eq. (55) we can then
write

3 1 np
! > - - — —. 57
F'(Ap) 2?{13‘1‘4 > (57)

For certain np we recover the ideal measurements that we
aimed to certify, when the success probability Ap reaches its
maximum value, i.e., ¥'(Ag) = 1 when Ag = Qp.

Even though Charlie’s measurement is sharp, still ¢ is
dependent on np due to the np dependence in the post-
measurement state by a factor y = (1 + /1 — n3)/2. Here
we set s =54/(7y — 1), and upon further simplification
the value for ¢ turns out to be t = (9 — 6y)/(2 — 14y).

Hence, the lower bound to the average fidelity is written
from Eq. (55) as

9 9— 6y
"(Ac) = A .
F(Ac) 7y —1 C+2_14V

(58)

For a certain value of np in the certified range, the fidelity
reaches its maximum value for Ar = Q.

The variation of fidelity with the success probability for
Bob and Charlie is plotted in Figs. 4 and 5, respectively, for
a particular choice of ng. Detailed calculations for robust cer-
tification of the measurement instrument for Bob and Charlie
are provided in Appendix B.
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1
n=0.76

o
©
©

Average Fidelity ¥
o
©
I3

0.72 0.73 0.74 0.75
Success Probability of Charlie A¢

FIG. 5. Variation in the average fidelity of measurement with the
variation of the success probability of Charlie.

VII. CONCLUSION

In summary, we have demonstrated robust certification
of states, measurements, and the unsharpness parameter
based on the sequential quantum advantage through a spe-
cific communication game in a semi-device-independent
prepare-measure scenario. We explicitly derived the classi-
cal preparation noncontextual bound of the proposed game
to quantitatively analyze the quantum supremacy in such a
task. The viable constraint relations among the states and
observable for the optimal quantum success probability were
derived. From these constraints, we further argued that the
optimal quantum value of the success probability uniquely
certifies that the states prepared by Alice are indeed the set
of trine states, and the measurement instrument that Bob uses
measures along the directions of the trine spin axes.

Next we crafted a scenario that allows multiple indepen-
dent observers to share sequential quantum advantage when
they are allowed to implement their respective measurements
with varying degrees of unsharpness. In particular, we have
explicitly shown that at most two observers can get the
quantum advantage if the degree of unsharpness of the first
observer’s measurement lies inside a specific range of values.
Therefore, when both observers get the quantum advantage
sequentially, we demonstrated how to certify the range of the
unsharpness parameter of the measurement instrument used
by the former observer. Most importantly, it was shown that,
even when the success probability does not reach the global
optimal value, for a given unsharpness parameter, the optimal
pair of success probabilities of the respective observers certi-
fies the prepared states and measurement instruments.

We further extended our investigation to the case when
the optimal value of the success probability for a particular
unsharpness parameter is not achieved. In such a scenario, we
derived the fidelity bounds of the prepared states and imple-
mented measurements to the ideal ones. This enabled us to
robustly certify the states and measurements that are subjected
to imperfections other than unsharp measurements. In the se-
quential scenario, as each optimal pair of success probability
certifies the states and measurement, the parameters that give
the bound to the fidelity possess different values for different
optimal pairs. We derived the exact forms of parameters as a
function of the degree of unsharpness. Thus, the derived trade-
off relation between the fidelity and the success probability

provides the robust certification of the states mentioned above
and measurements.

All the works to date considered the robust certification of
quantum instruments in a two-party scenario. Nevertheless,
as the situation may sometimes demand both the sustainable
quantum advantage and certification of the instruments, the
robustness analysis in the presence of an unsharp instru-
ment becomes crucial. Our work sheds light in this direction
by extending the conventional robustness analysis scheme
to the case where the measurements themselves are un-
sharp along with other experimental imperfections. We hope
that future research will find more general methods to han-
dle the unsharpness parameters alongside other experimental
imperfections while analyzing the robustness of different
certification schemes. Studies along this line would be an
interesting avenue for future research.
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APPENDIX A: ROBUST SELF-TESTING OF ALICE’S
PREPARATIONS

We provide a detailed derivation of the robustness of prepa-
rations of Alice. The average fidelity of the preparations with
the ideal states are quantified by

1 ’ <
Slpra) = gmaxy > F(oid™ Apw),  (AD

x=1 aef0,1}

where A is a CPTP map. The average fidelity is estimated
by considering all the possible channels. The lower bound
is derived by minimizing the average fidelity over the set of
preparations compatible with the given value of Ag, i.e.,

F(Ap) = min )S (Pxa)s (A2)

Pxa€R(A

where R(Ap) is the set of all preparations compatible with
the value of Ap. As explained in the main text, we write the
operator inequality

Kxa(BhBZa B3) < SWxa“’txa(BlaBZ’ B3)I[, (A3)
where
K.(B1, B2, B3) = AT(B1, By, B3)(pi),  (Ad)

with AT the dual to a quantum channel A, and
13
Wi = — > _(=1)y%B,. A5
36 v=1( ) y (AS)

Since W,, is a function of Bj, B;, and B3, the quantities K,,
and 1, are chosen to be dependent on By, B;, and B3 in order
to be in compliance with W,,. Taking the trace over inputs, we
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arrive at

Tr(IO)CaW)Ca + tXﬂH)

Z Y Tr(Kapea) >

x=1 ae{0,1}

e

x—l aef0,1}

(AO6)

Therefore, the lower bound of the average fidelity can be
determined by

(AT)
|

s 1
F(Ap) = 6(3{3—5) +t,

where t = minBl,Bz,Bsé Zi:l Zae[(),l} t.a(B1, By, B3). Thus,
the problem resolves to choose a particular value s, and sub-
sequently the values of ¢,, are minimized with respect to B,
B,, and B; for the choice of s.

We choose a dephasing channel of the form

L4c@®)  1—c®)
No(p) = Jo Cgply. (AB)
2 2
For 0€[0,%], T =¥0, — 1o for e (%,2], T'=

—‘/goz — 10.. The dephasing function c(9) € [0, 1] needs to

be specified. Therefore, using Eqs. (A4) and (AS8), we find the
action of channel in the intervals: For 6 € [0, % R

1 V3 —1) 14 3¢ 1 V3 —=1) 1+ 3¢
K10=§<H+ 7 o+ 7 ) K11=§ I - 7 Or =~ %
1 V3 1 1 V3 1
Kzo=§<ﬂ+7%—§0x>, K>, =§<H_70z+50x>5
1 V3(1+¢) 1 -3¢ 1 V31 +¢) 1 -3¢
Kyp=-|1- 2 v, Kn==|(1 |5 A9
30 2( 7 P 7 =3 + 7 o; 1 (A9)
similarly, for 6 € (%, 31,
1 3(1 — 1+3 1 3(1 — 143
K10——H+f( C)Uz +cx’ K11=—H—f( C)Uz— +CGX,
2 4 4 2 4 4
1 V3 +¢) 1—3c 1 V3(1 +¢) 1 -3¢
K20=§<]1+ 1 2 T %) K21=§ I— n e E
1 V3 1 1 V3 1
Ky==-|1——0,— -0,), K51 = I .+ =0 ). Al0
30 2( 1% 20> 31 2<+4G@+20) (A10)
Similarly, to find the expressions for W,, we consider that Bob’s measurements are projective and are represented by
By = —ngo,, By = np(cosbo, —sinbo;), Bz = ng(cosbo, + sinbo;,). (A11)
Hence, by Eq. (A5) the W,, can be written as
Wio = senp(0x + 2cos0oy), Wiy = 2enp(—0, — 2cosfay), Wi = 3enp(—ox + 2sin o),
Wai = zenp(ox — 2sinfo.), Wi = senp(—oy — 2sinflo.), Wi = senp(—o, — 2sinfoy). (A12)
Due to the apparent symmetries of K, and W,,, the number of inequalities can be further reduced. If we choose #;o = #;; =1,
o = 1 = b, and t39 = t31 = 13, in each interval only three inequalities need to be considered.
Now we write the inequalities in the interval 6 € [0, Z],
1 3(c—1 143
E<11+ */—(04 ). + : CUX) —%(UX—}—ZCOSGGX)—Q]I >0,
V3 1 nBs .
2<]I+ > o, EO’A — g(—ax+251n901)—t2]l >0
1 3(1 1(1-3
5(}1 _ ‘/_(4+ g, — X ; 2 %( o, — 25in60,) — 31 > 0, (A13)

and in the interval 6 € (%, 71,

1 -1 1
1 H_\/g(c )0z+ + 3¢
2 4 4

1(H+¢§<1+c>%_(1—3c>
2 4 4

Gx) - %(Gx +2cosfoy) — 1l >0,

— @( o, +25in60,) — 1] >0,
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—(1-X0. - -0,

2

1 V31
IR

— — (=0, —2sinfo,) — 31 >

nBS
Al4
36 (Al4)

Solving Eq. (A13), we find the values of 7, f,, and #3 for the interval 6 € [0, 2],

H = m1n|:36 18 \/81 +243¢% — 9snp — 27csnp + 35203 — 18snp cos @ — Sdcsng cos O + 4s2n3 cos O + 2s2n% cos 20)

1
—6(18 + \/81 + 243¢% — 9snp — 27csng + 35203 — 18snp cos O — Sdesng cos O + 4s2n% cos O + 25203 cos 29)i|,

th = mm[36 (18 — \/324 — 18smp + 35213 — 252n% c0s 26 — 36+/3s15 sin 9),

1
—6(18 + \/324 — 18515 + 35203 — 2523 cos 20 — 36+/3snp sin 9):|,

t = mm[36 18 — \/81 + 2432 + 9snp — 2Tcsnp + 5205

— 18+/3snp sin 6 — 18v/3csn sin 6 + 452y

2sin?6),

36

and for the interval 6 € (%, Z1,

—(18 + \/81 + 243¢2 4 9snp — 2Tesnp + 520k — 184/3snp sin @ — 18+/3csnp sin O + 4s2n% sin’ 9)},

(A15)

1
H = min[%(IS — \/81 +243¢% — 9snp — 2Tcsng + 35203 — 18sn5 cos @ — Sdcsng cos O + 4s2ng cos 6 + 2s2n% cos 29),

1
—6(18 + \/81 + 243¢? — 9snp — 27csnp + 35203 — 18snp cos O — Sdesng cos 6 + 4520k cos 6 + 2522 cos 29)],

1
th = min[%(IS — \/81 +243¢% + 9snp — 2Tcsnp + s2ng — 18+/3sng sin@ — 18+/3csng sin 6 + 45203 sin® 9),

1
—6(18 + \/81 + 243¢% + 9snp — 2Tesnp + 520 — 183/3snpsin 6 — 18+/3csn sin 6 + 452y sin? 9)},

= m1n|:36 18 - \/324 — 18snp + 35203 — 2520 cos 260 — 36x/_sr)3 sin 0)

1
—6(18 + \/324 — 18smp + 35213 — 25213 c0s 20 — 36+/3s1 sin 9)]

With the expressions of K,,, Wy,, and ¢, we have constructed
the operator inequalities for a given 6 in the form (A3). To find
lower bound of the average fidelity as given in Eq. (A7), we
set the value of s to be —. The dephasing function is assumed
to be c(f) = 1’1’1111(1 sm@) for the interval 6 € [0, Z] and
c(6) = min(1, COSG) for the interval 6 € (%, 2] It is ob-
vious that ¢(6) e [0, 1] and it is continuous at 0 = Z. By the
apparent symmetry three out of six inequalities are considered
and substituting the values of s and ¢, we find 7 to be

=3 +n+n)=7 (A17)

This completely generalizes the robustness analysis such that
the general equation for average fidelity will be

NN AU
" 2) Ty

Equation (A18) provides the relation between robustness and
(non)optimal success probability Ag. For a fixed value of
np, the lower bound 7 (Ap) = 1 is attained for the optimal
success probability Ap = Qp.

F(Ap) = (A18)

(A16)

(

APPENDIX B: ROBUST SELF-TESTING OF
MEASUREMENTS

Let us now derive the robustness of measurements for
the two sequential observers Bob and Charlie by invoking a
similar scheme developed for preparations. To begin with, the
average fidelity of measurements with respect to ideal ones
are quantified as

3
/ 1 ideal
SEw) = zmax 3 [F(Epy)™™, AEyy)], (BD)
y=1 be{0,1}
where maximization is taken for all possible channels. The
lower bound for the average fidelity can be written as

F'(A) = mlg )S ({Eppy})s (B2)
M»
where ¥ is minimized over measurements compatible with
the value of A. Now we write the operator inequality in the
form

K\'b(pyh) P SZyb + tyh]la (B3)
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where we find that

1. Robust certification of Bob’s measurement Bob

Ky = AT[( Eb‘y)ideal] (B4) As argued in the main text, Bob performs unsharp mea-
surements to extend the quantum advantage to Charlie. It
and was already derived in the main text that in order to produce
13 optimal success probability Alice’s preparation should be pure
Zyy = 8 X_: 20:1 Pxadi,bs (B5)  states. We rewrite the states as
~esdl I
where [ =6, , @ a. If we take the trace over the input states Pyo= "5 B7)
and minimize f,,, we get
The explicit form of Bloch vectors is
F'(A) = —ﬂ +t, (B6) = .
r10=(1701 0)1 Iy :(_17090)1
Where = %minBl,BZ,BS Zy:] Zb:{o,l} tyh(Bl’ Bz’ BS) We FZO = (_ cos 97 07 Sin 9)7 i:21 = (COSG, 07 - Sine)a
adopt the same dephasing channel as in Eq. (A8) and two _— . _— .
intervals of 6. For 6 € [0, 2] and 6 € (%, %], we recall that Ty = (—cos0,0,—sinf), T3 = (cost,0,sin6). (BY)
I'= —‘/Tgaz + %O'X and " = ‘/7§Uz + %ox, respectively. We write the ideal POVMs for Bob as
‘ [—(—1)’ngo : 1 1 V3
M, ldeal:—x, M, 1deal=— I _lh SO0x — )
(Mp1) > (Mpp) > +(=1)"ng > 5
A 1 1 V3
(M) = S| T+ (=1’ S00+ 0. | |-
2 2
Correspondingly, from Eq. (B4) Bob’s K|y, values in the interval 6 € [0, 3] can be written as
3(1 — 1+3 1 3(1 — 1+3
K= M1y Y30 —oms _(3oms o L V3 —oms (0 430ms )
2 4 4 2 4 4
1 Vg 1 1 Vans 1
K20=§<]1— 3 Gz+§nBUx , K21=§ I+ 5 0T 5MBox )
L, V30 +oms | Ge—1ng L V30 +oms G- Dng
Ko = E <]I + 4 o; + 4 ox], K= 5 I - 4 07 — 4 Ox (B9)
and for 6 € (3, 2]
1 V31— c)np (14 3¢)ns 1 \/_(1 — O)ng (14 3c)ns
KIOZ_]I_ o, — Oy |, Kll—_ z+ Ox |,
2 4 4 2 4 4
1 V31 +o)np (3¢ — Dnsg 1 V3 4 c)np (3¢ — Dng
Kzo:z(ﬂ— 4 0Z+ 4 Oy 1, Kz]:z ]I+ 4 O0; — 4 Ox |,
V3ng 1 1 YT
K3 = 2<]1+ 5 0: 5ok |, K3 =3 I- 5 0c T 780k |- (B10)
By using Eq. (B5) we derive Z,;, in the form
Zo 31 o+ 2cosbo, 7 3I[+ox+2coseox Z 3H+0x—25in002
0=15 ) , B 5 o 20 =5 5 )
31 —o,+2sinfo; 3 oy +2sinfo, 3 o, +2sinfo,
OHn=\m+—"—FF—"") Zo=\m57+—""7F—""): =l B11
21 (2 + > > 30 < > > 31 > > (BI1D)
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From the above expressions for K, and Z,;,, we write the inequalities for the respective intervals, i.e., for 6 € [0, %],

2 s\ 2 2

1 3 1 31 v — 2sinf
—(H—£U30z+—cﬂ30x)— : ( +a—smaz)_tzﬂ>0’

I — cngoy S (3]1 B ox—i—ZCosHax) _al>0,

2 2 2 18\ 2 2
%(H + ?ngoz 4 %m%) - %(% + w> —nl >0, (B12)
and for 6 € (_%, %],
I —;BUX B %(% B Ux+2200590’x> _al>0,
%(H — 5 Cso% + ;7]30;:) %(% S Zzsin QGZ) —nl >0,
%(H + ?cngaz n %ngax) - %(% n w> — 1l >0, (B13)

Solving the inequalities (B12) and (B13), we find the values of #;, t,, and 73 for the interval
6 [0, 2],

1
= min[%(w — 35— \/352 — 9sng — 27csnp + 8103 + 243¢2n% + 452 cos 0 — 18snp cos O — Sdesng cos O + 252 cos 20),

1

% (18 —3s+ \/3s2 — 9snp — 27csnp + 81n% + 243¢2n2 + 452 cos 6 — 18sng cos O — 54csng cos O + 252 cos 20)],

1
th = min[%(IS — 35— \/s2 — 18smp + 32413 — 36+7/3snp sin 6 + 452 sin? 9),

1
%(18 — 35+ /52 — 18515 4 32413 — 36+/3s7p sin 0 + 452 sin’ 9)},

1
ty = min[%(IS — 35— \/sz + 9snp — 27csng + 8103 + 243¢2n% — 18+/3snp sin 6 — 18v/3csnp sin 6 + 452 sin? 6),

1
%(18 — 35+ /52 4 9snp — 27csnp + 8103 + 243¢2n% — 18435 sin 6 — 18+/3csnp sin 6 4 452 sin’ 9)}, (B14)

and for the interval 6 € (%, 31,

1
= min[%(IS — 35— \/3s2 — 9sng — 2Tcsnp + 8103 + 243¢2n3 + 452 cos 0 — 18snz cos 6§ — S4csng cos 6 + 252 cos 26),

1
%(18 — 35+ \/3s2 — 9snp — 27csnp + 8105 + 243c2n2 + 452 cos 6 — 18snp cos O — 54csnp cos O + 252 cos 20)],

1
= min[%(w — 35— \/s2 + 9smp — 2Tesng + 813 + 243¢2n% — 18+/3snpsind — 18+v/3csnp sin@ + 4s? sin® §),

1
%(18 — 35+ /52 + 9snp — 2Tcsnp + 8103 + 243¢2n% — 184/3snp sin O — 18+/3csnp sin 6 + 452 sin 9):|,

1
ty = min[%(IS — 35— \/s2 — 18smp + 324n3 — 36+/3snp sin 6 + 452 sin? 6),

1
%(18 — 35+ /52 — 18smp + 32413 — 36+/3snp sin 6 + 452 sin? 9)} (B15)

Now, for a given value of 6, with expressions for ¢, Ky, and Z,,;,, we have constructed the operator inequalities of the form (B3).
To get the lower bound on ¥ as given in Eq. (B6) we choose s = 9 and minimize ¢ with respect to By, B, and B3, by the apparent
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symmetry t = % Simple calculation gives t — i — . Thus, we write the average fidelity of measurements for Bob as
3 1
F'(Ag) = A+ 7 - n—ZB (B16)

which is almost the same as Eq. (57). The robustness of Bob’s measurement is generalized for the (non)optimal success
probability and the choice 7g, quantified in terms of average fidelity. The lower bound of the average fidelity is achieved when

Ap = Qp.

2. Robust certification of measurements for Charlie

In the same way, we devised the calculations for robustness for Bob by the same approach; here we derive the same for
Charlie as well. We find the values of K,;, for Charlie in the interval
0 € [0, l]; the values of K, can be written as

1— 1+3 1 3 1
1(10—2<]1 V30 =) * cUx>, K20:_<H_£G"+_Gx)v Ko =

( V31 + 7+3c_lax),

4 T g 2 2 2 2 4 ‘ 4
1 V31 =¢) 1+ 3¢ 1 V3 1 1 V31 +¢) 3¢ —1
K11=§<H— T =t Ux>, K21=§<H+70z—§0x>, K31=§<]I— 1 T T %)

(B17)

Similarly, for 6 € (7; , ] the values of Ky; can be written as

1 V3 —c¢ 1+ 3¢ 1 3(1+4c¢ 3c—1 1 V3 1
KIOZ_(]I_ ( ) - Gx)v K20=§<H_\/—( )6 + Ux>v K3()=_(]I+ -0+ Gx>a

0z I4
2 4 4 4 4 2 2 2
1 V3(1—c¢) 1+3c V31 + 3c—1 1 NE] 1
K11=§(I[+ 1 o+ 1 Gx), 1(21—2<H 1 Uz— 7 %) K31=§ H—TGZ 0%
(B18)
To find the expression of Z,;, the states provided by Bob are simplified to the form
I Fyp -0
AU (B19)

Pyb = ) s
f1_2
where y = It 2] % and Iy, is as defined in Eq. (B8). We find the expressions for Zy;, in terms of py, as

1 /31 1 /31
Zm:—(——zox—ycos&rx), Z = yax+yc0590x), Z20=§<7+%ox—ysineoz>,

1
18\2 2 ﬁ(? 2
Zn= (LYo 4y ing Zao = Hy+'9 z 3Hy in6 (B20)
=—|—— >0, sinfo, |, = — Oy sinfo, |, ~o0, — ysinfo, ).
21 13\ 2 5 Y z 30 18 ) Y z 31 = 18 ) Y z
The operator inequalities for the interval 6 € [0, 5] a
V3 —¢) 1 + 3c s
2( 4 07 — BT ——%Ox—yCOSQOx)—ﬁHZO,
1 V3 1 s (31 vy .
E(H_ > a,+20x)—1—8(?+50X—y51n902>—t2}120,
1 V31 +¢) 3¢—1 s (31 .
5(}1 + e ax) - E(? n gax ty smeaz> — 51 >0. (B21)
For the interval 6 € (%’, %],

4 ‘ 4 2 2

1 3(1 3c—1 31
<]I—\/_( +C)6+ ¢ ox)_i(_+zax—ysin902)—tzﬂ>0,

1 3(1 — 1+3 31
E(H—f( C)o— + C@)—i<——zox—ycos90x>—tlﬂ20,

4 ¢ 4
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1 V3 1
A\t et e

18

3y .
— + =0, + ysinfo, | — 31 > 0. (B22)

2 2

Solving the inequalities, the results for 7 in the interval 6 € [0, Z] will be

1
t = min[%(lig — 35 — /81 +243¢2 — 9sy — 27csy + 352y2 — 18sy cos — 5dcsy cos6 + 4s2y2 cos O + 2522 cos 20),

1
%(18 — 35+ /81 4 243¢2 — 9sy — 27csy + 352y2 — 18sy cos 6 — 54csy cos b + 4s2y2 cos O + 2522 cos 29)],

1
th = min[%(IS — 35— \/324 — 185y + 522 — 363/3sy sin 0 + 4522 sin 9),

1
21835+ \/324 — 185y 4 522 — 363/3sy sin 6 + 4522 sin® 9)},

1
t = min[%(m — 35— \/81 +243¢% 4 95y — 2Tcsy + s2y2 — 183/3sy sin@ — 18+v/3csy sin 6 + 4s2y2 sin?6),

1
3c(18 35+ \/81 + 243¢2 4 95y — 2Tcsy + s2y2 — 183/3sy sinf — 18+/3csy sin 6 + 4s2y2 sin’ 9)}.

Solving the inequalities, the results for 6 € (5, 7] will be

(B23)

1
= min[%(IS — 35 — /81 + 243¢2 — 9sy — 2Tcsy + 352y2 — 18sy cos 6 — 54csy cos b + 4s2y2 cos 6 + 2522 cos 260),

1
%(18 — 35+ /81 + 243¢2 — 95y — 2Tcsy + 3s2y2 — 18sy cost — 54csy cos O + 4s2y2 cos 6 + 2522 cos 29)],

1
= minl:%(IS — 35 — \/81 +243¢2 4+ 9sy — 2Tcsy + s2y? — 18x/§sy sinf — 18\/§CS)/ sin @ + 4s2y2sin” 0),

1
%(18 —3s+ \/81 +243¢% 4 95y — 2Tcsy + s2y2 — 183/3sy sin@ — 18+/3csy sin 6 + 4s2y2 sinZQ):|,

1
5 = min[%(IS — 35— \/324 — 185y + 522 — 363/3sy sin 6 + 452y2 sin 9),

1
%(18 —3s+ \/324 — 185y + 522 — 36+/3sy sin 0 + 452> sin29)i|.

(B24)

Now we have constructed the operator inequality for a given value of 6. To get the lower bound on the average fidelity of

54

the measurement ¥ as given in Eq. (B6), we set s = 2= and the subsequent minimization gives ¢ = 0

y—1

2-14y°

which provides

a complete generalized analysis of robustness based on A¢. Therefore, the average fidelity of measurements for Charlie is the
same as Eq. (58) and describes the variation of the average fidelity with success probability A¢ of Charlie for a particular choice
of ng. The lower bound of the average fidelity '(A) = 1 is attained only when Ac = Q.
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