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Generation of long-lived W states via reservoir engineering in dissipatively coupled systems
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Very recently, dissipative coupling was discovered, which develops and broadens methods for controlling and
utilizing light-matter interactions. Here, we propose a scheme to generate the tripartite W state in a dissipatively
coupled system, where one qubit and two resonators simultaneously interact with a common reservoir. With
appropriate parameters, we find the W state is a dark state of the system. By driving the qubit, the dissipatively
coupled system will evolve from the ground state to the tripartite W state. Because the initial state is the ground
state of the system and no measurement is required, our scheme is easy to implement in experiments. Moreover,
the W state decouples from the common reservoir and thus has a very long lifetime. This scheme is applicable
to a wide class of dissipatively coupled systems and we specifically illustrate how to prepare the W state in a
hybrid qubit-photon-magnon system by using this scheme.
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I. INTRODUCTION

In the last decades, the coherent coupling between light and
matter (light and light, or matter and matter) has been widely
studied in various physical platforms due to its diverse appli-
cations in quantum communications [1], quantum computing
[2,3], quantum sensing [4], and so on. Not only that, the light-
matter coherent coupling is of fundamental importance. For
example, the coherent coupling has entered the ultrastrong-
coupling regime [5], where the counterrotating terms produce
unexpected physical phenomena, such as the virtual pho-
ton population in the ground state [6] and the Bloch-Siegert
shift [7,8]. Recently, another type of light-matter interaction,
namely, dissipative coupling, was discovered [9–12]. In con-
trast to the level repulsion of the eigenmodes in a coherently
coupled system, a dissipatively coupled system is featured by
the level attraction. As a new coupling mechanism, the dis-
covery of dissipative coupling develops and broadens various
methods for controlling and utilizing light-matter interac-
tions. With the interference between coherent coupling and
dissipative coupling, it becomes feasible to engineer nonrecip-
rocal magnonic devices in the classical and quantum regimes
[13,14]. In addition, dissipative coupling also has important
applications in, e.g., nonreciprocal photon transmission and
amplification [10], topological energy transfer [11], sensitive
detection [15], and lowering the threshold power of nonlinear
effects [16].

Coherent coupling makes it possible to generate en-
tanglement between two or more quantum systems [17].
Entanglement lies at the core of quantum mechanics and plays
a significant role in quantum information processing [18–22]
and quantum communication [23–26]. The typical entangled
states include the Bell state, the Greenberger-Horne-Zeilinger
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(GHZ) state, and the W state [17]. Compared with the GHZ
state, the W state is more robust with respect to particle losses
[27]. Due to their intrinsic interest and practical importance,
many efforts were devoted to generating the Bell state, the
GHZ state, and the W state in coherently coupled systems
(see, e.g., Refs. [28–37]). In previous studies, the entangle-
ment of mixed states was investigated in dissipatively coupled
systems [38–41]. Very recently, some schemes were proposed
to generate the Bell state via dissipative coupling, with the
help of continuous measurement or postselection [42–44].
However, how to prepare the GHZ state and the W state in
a dissipatively coupled system has not been studied yet.

In the present paper, we propose a scheme of generating the
tripartite W state via reservoir engineering in the absence of
any coherent coupling. The physical system considered here
consists of one qubit and two resonators, which are dissipa-
tively coupled through a common reservoir. The dissipative
coupling can be described using a Lindblad superoperator
with a cooperative jump operator, which is in the form of the
linear superposition of the qubit operator and the resonator
operators. By carefully designing the jump operator, we find
that the W state is a dark state of the dissipatively coupled
system. When pumping the qubit with an appropriate drive
pulse, the system will evolve from its ground state to the
tripartite W state (i.e., a dark state of the system). Note that the
above results are also valid if the two resonators are replaced
by two qubits because only both the ground states and the first
excited states of the two resonators are involved in preparing
the W state (cf. Secs. II B and III).

In our scheme, there is no need to perform measurements
and adjust the system parameters. Moreover, the prepared W
state decouples from the common reservoir and therefore has
a very long lifetime [41,45,46], i.e., the generated W state
is steady rather than transient. With the assistance of local
dissipations of subsystems, the pure entangled states, such as
the GHZ state, can be also prepared (see, e.g., Refs. [47,48]).
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Different from these works, the proposed scheme is based
on the nonlocal dissipation (i.e., the cooperative dissipation)
due to the common reservoir, which induces the dissipative
couplings among the qubit and the two resenators. Our work
provides a scheme for generating tripartite W states via reser-
voir engineering in dissipatively coupled systems, which is
applicable to a wide class of systems including waveguide
QED systems [3,42,43], dissipatively coupled spins mediated
by a magnetic environment [44], magnon-based hybrid sys-
tems [12,14], and so on.

Using this scheme, we further study how to generate
the W state in a magnon-based hybrid system. Magnons
are collective spin excitations in ferromagnetic crystals
[49,50]. The magnon-based hybrid systems have recently
become a promising platform for quantum technologies
[51–53]. Recently, there were some investigations on quan-
tum entanglement in magnon-based hybrid systems [54–57].
Specifically, a protocol for producing transient Bell states
and GHZ states in a hybrid qubit-photon-magnon system was
presented in Ref. [58], but how to generate the W state in
a magnon-based hybrid system is still an open question. On
the other hand, the exotic effects induced by dissipative cou-
pling were widely studied in magnon-based hybrid systems
both theoretically [14–16,59,60] and experimentally [13,61–
63]. Motivated by these works, we will apply our results to
generate a hybrid W state in a qubit-photon-magnon system,
where a superconducting transmon qubit, a superconducting
transmission-line resonator, and a yttrium iron garnet (YIG)
sphere are dissipatively coupled through a coplanar waveg-
uide. The presence of the intrinsic dissipations of the qubit,
the resonator, and the magnon mode in the YIG sphere lim-
its the lifetime of the hybrid W state. This underpins the
utility of our scheme for generating tripartite W states in
dissipatively coupled systems. In the versatile magnon-based
quantum information processing platform [51–53], super-
conducting qubits (superconducting resonators) can act as
quantum processor (quantum bus) [64], while magnon modes
can play the role of quantum memory [65,66]. Using the
qubit-photon-magnon W state, quantum processor, quantum
bus, and quantum memory can be connected. In addition,
we can also use the hybrid W state to transfer quantum
states among quantum processor, quantum bus, and quantum
memory [67].

Our paper is structured as follows. In Sec. II, we de-
scribe the dissipatively coupled ternary system and give the
corresponding Lindblad master equation. Using the master
equation, we investigate the dark states and the bright states of
the dissipatively coupled system. In Sec. III, we demonstrate
that the W state is exactly a dark state of the system. We
further show how to generate the W state by pumping the
qubit with an appropriate drive pulse. In Sec. IV, we apply our
results to create the W state in a hybrid qubit-photon-magnon
system. A brief summary is given in Sec. V.

II. MODEL

A. Master equation

As depicted in Fig. 1(a), we consider a general model for
a qubit and two resonators, which simultaneously couple to

FIG. 1. (a) A schematic showing a qubit and two resonators
(with annihilation operators σ , a, and b, respectively) simultaneously
interacting with a common reservoir. To generate the W state, a drive
pulse with Rabi frequency �d pumps the qubit. (b) Mediated by the
common reservoir in (a), the three subsystems are dissipatively cou-
pled together, which can be described using a Lindblad superoperator
L[o] in the master equation, cf. Eqs. (2) to (4). (c) Diagram of a
hybrid qubit-photon-magnon system. A superconducting transmon
qubit, a superconducting transmission-line resonator, and a ferrimag-
netic YIG sphere are dissipatively coupled via an open waveguide,
where the transmon qubit is driven by a microwave pulse with Rabi
frequency �d .

a common reservoir of many bosonic modes. In the absence
of the drive field on the qubit, the Hamiltonian of the ternary
system can be written as (setting h̄ = 1):

Hs = ωσσ †σ + ωaa†a + ωbb†b, (1)

where ωσ is the frequency of the qubit, σ = |g〉〈e| (σ † =
|e〉〈g|) is the lowering (raising) operator of the qubit with
ground state |g〉 and excited state |e〉, a and a† (b and b†)
are the annihilation and creation operators of resonator a
(resonator b) at frequency ωa (ωb). When the three subsystems
are nearly resonant, i.e., ωσ ≈ ωa ≈ ωb ≈ ω0, by tracing out
over the degrees of freedom of the reservoir, the master equa-
tion for the density operator ρ of the ternary system can be
derived as (see the Appendix)

ρ̇ = −i[Hs, ρ] + τL[o]ρ, (2)

where τ = ∑
k πλ2

kδ(ω0 − ωk ) is the decay rate of the ternary
system, and λk is the effective coupling strength between
the ternary system and the kth mode of the reservoir with
frequency ωk . Note that, in the derivations for the above
master equation, the Born-Markovian approximation and the
assumption of the reservoir at zero temperature were used.
The Lindblad superoperator L[o]ρ describes the dissipative
interactions among the three subsystems mediated by the
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common reservoir [cf. Fig. 1(b)], which is given by

L[o]ρ = 2oρo† − o†oρ − ρo†o, (3)

with the jump operator

o = ησσ + ηaa + ηbb, (4)

where ηα = (λkα/λk )e−iφα (α = σ, a, b), λkα is the coupling
strength between the subsystem α and the kth mode of the
reservoir and the corresponding phase is φα = (ω0/υ )xα with
the speed υ of light and the location xα of the subsystem α.
It should be emphasized that the cooperative dissipative term
τL[o]ρ in Eq. (2) results from the interaction of the entire
ternary system with a common reservoir. If two subsystems
(e.g., the two resonators) of the ternary system decouple from
the common reservoir (i.e., ηa = ηb = 0 but ησ �= 0), the dis-
sipative term τL[o]ρ will be reduced to (|ησ |2τ )L[σ ]ρ, which
presents the local dissipation of the qubit.

For clarity, we can expand the Lindblad superoperator in
Eq. (3) and obtain L[o]ρ = ∑

αα′ ηαη∗
α′ (2αρα′† − α′†αρ −

ρα′†α). The diagonal term (with α = α′) presents the local
dissipation of the subsystem α with the decay rate |ηα|2τ . In
general, ηαη∗

α′ = (λkαλkα′/λ2
k )e−i(φα−φα′ ) is a complex number

due to the phase φα − φα′ . Note that we assumed λkα and λk

are real. Therefore, the off-diagonal term (with α �= α′) de-
notes both the dissipative coupling with strength Re[ηαη∗

α′]τ
[10,12] and the coherent coupling with strength Im[ηαη∗

α′]τ
[38,68] between the two subsystems α and α′. In our paper,
we only study the case of φα − φα′ = ±nπ (n = 0, 1, 2, . . . ,)
by setting xα − xα′ = ±nπυ/ω0, i.e., there is not any co-
herent coupling among the three subsystems because of
Im[ηαη∗

α′ ]τ = 0.

B. Dark states of the system

For the dissipatively coupled system, there are some dark
states, which are decoupled from the common reservoir and
have long lifetimes [45,46]. To study the dark states of the
system, we rewrite the master equation (2) in the form [69,70]
ρ̇ = −i(Heffρ − ρH†

eff ) + 2τoρo†, where

Heff = ωσσ †σ + ωaa†a + ωbb†b − iτo†o (5)

is an effective non-Hermitian Hamiltonian. Obviously, the
Hamiltonian Heff preserves the total number N of excitations
in the system due to [Heff ,N] = 0, with

N = σ †σ + a†a + b†b. (6)

Thus, we can analyze the eigenvectors of the dissipa-
tively coupled system in the closed one-excitation sub-
space {|e00〉, |g10〉, |g01〉} with |e00〉 ≡ |e〉|0〉a|0〉b, |g10〉 ≡
|g〉|1〉a|0〉b and |g01〉 ≡ |g〉|0〉a|1〉b, where |n〉a (b) is the Fock
state of the resonator a (b), and n is the corresponding excita-
tion number in the resonator a (b). When the three subsystems
are resonant, i.e., ωσ = ωa = ωb = ω0, the non-Hermitian
Hamiltonian Heff in Eq. (5) has three orthonormal eigenvec-
tors in the one-excitation subspace, two degenerate dark states
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FIG. 2. Time evolution of the fidelity FX = Tr(ρ|X 〉〈X |) for the
initial states |X 〉 = |D1〉 (black solid curve), |X 〉 = |D2〉 (red dashed
curve), and |X 〉 = |B〉 (blue dotted curve), calculated using Eq. (2).
Here the parameters are set as ωσ /τ = ωa/τ = ωb/τ = 500 and
ησ = ηa = ηb = 1.

{|D1〉, |D2〉}, and one bright state |B〉, which are given by

|D1〉 = 1√
|ησ |2 + |ηb|2

(ηb|e00〉 − ησ |g01〉),

|D2〉 = 1√
|k1|2 + |k2|2 + |k3|2

(k1|e00〉 + k2|g10〉 + k3|g01〉),

|B〉 = 1√
|ησ |2 + |ηa|2 + |ηb|2

(η∗
σ |e00〉+ η∗

a|g10〉+ η∗
b|g01〉),

(7)

with

k1 = |ησ |2ηa

|ησ |2 + |ηb|2 , k2 = −ησ , k3 = ησηaη
∗
b

|ησ |2 + |ηb|2 . (8)

Note that in Eq. (7), the Gram-Schmidt orthogonal-
ization was applied. The corresponding eigenvalues
for {|D1〉, |D2〉, |B〉} are ED1 = ED2 = ω0 and EB =
ω0 − i(|ησ |2 + |ηa|2 + |ηb|2)τ , respectively. From these
eigenvectors and eigenvalues, we can know that the two dark
states {|D1〉, |D2〉} are stable because their decay rates are
zero, while the bright state |B〉 is a superradiant state with
decay rate (|ησ |2 + |ηa|2 + |ηb|2)τ .

By numerically solving the master equation in Eq. (2), we
study the stability of the eigenvectors {|D1〉, |D2〉, |B〉}. As
shown in Fig. 2, if the initial state of the system is the dark
state |D1〉 or |D2〉, the fidelity FD1 = Tr(ρ|D1〉〈D1|) or FD2 =
Tr(ρ|D2〉〈D2|) is independent of time t (i.e., FD1 = FD2 = 1,
see the black solid and red dashed curves), which indicates
that the two dark states |D1〉 and |D2〉 are stable. However,
when the system is in the bright state |B〉 at t = 0, the state of
the system will decay with time t to the vacuum state |g00〉,
and the corresponding fidelity FB = Tr(ρ|B〉〈B|) decreases
monotonically from 1 to 0 (see the blue dotted curve).

We would like to point out that the assumption of a one-
excitation subspace in Eq. (7) does not limit the generality of
our work. In Secs. III and IV, the numerical results related to
generating W states are obtained via solving the master equa-
tion of the system in a large-enough Hilbert space (rather than
the subspace {|g00〉, |e00〉, |g10〉, |g01〉}), which are almost
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TABLE I. The form of the dark state |D〉 given in Eq. (11) for
different values of the parameters (ησ , ηa, ηb).

(ησ , ηa, ηb) Dark state |D〉
(2, −1, −1) |W (1)

3 〉 = (|e00〉 + |g10〉 + |g01〉)/
√

3

(
√

2, −1, −1) |W (2)
3 〉 = (

√
2|e00〉 + |g10〉 + |g01〉)/2

(1, 1, 1) |W (3)
3 〉 = (2|e00〉 − |g10〉 − |g01〉)/

√
6

(1, 0, −1) |W (4)
3 〉 = (|e00〉 + |g01〉)/

√
2

consistent with the theoretical analyses in the one-excitation
subspace. The reason is that since the drive on the system is
weak and the bright state |B〉 decays fast, the higher-excitation
subspace is nearly not occupied in preparing W states. There-
fore, the assumption of the one-excitation subspace applied in
our theoretical model is reasonable.

III. GENERATING LONG-LIVED W STATES

In the dissipatively coupled system, any single-excitation
state can be expressed as a linear superposition of the three
orthonormal eigenvectors {|D1〉, |D2〉, |B〉} given in Eq. (7).
For example, the state |e00〉 can be expressed as

|e00〉 = c1|D1〉 + c2|D2〉 + c3|B〉, (9)

where the coefficients are c1 = 〈D1|e00〉, c2 = 〈D2|e00〉, and
c3 = 〈B|e00〉, i.e.,

c1 = η∗
b√

|ησ |2 + |ηb|2
,

c2 = k∗
1√

|k1|2 + |k2|2 + |k3|2
,

c3 = ησ√
|ησ |2 + |ηa|2 + |ηb|2

. (10)

If the ternary system is prepared in the state |e00〉 at t = 0, the
components of the dark states {|D1〉, |D2〉} are stable, while
the component of the bright mode |B〉 will decay with time t
to the vacuum state |g00〉. Finally, the system reaches a steady
mixed state of the vacuum state |g00〉 and the dark state

|D〉 = 1√
|c1|2 + |c2|2

(c1|D1〉 + c2|D2〉). (11)

With appropriate values of the parameters (ησ , ηa, ηb), the
dark state |D〉 can be an arbitrary W state with single ex-
citation (cf. Table I). For ησ = 2 and ηa = ηb = −1, the
corresponding dark state |D〉 is the prototype W state |W (1)

3 〉 =
(|e00〉 + |g10〉 + |g01〉)/

√
3. In addition, we can also obtain

the Agrawal W state |W (2)
3 〉 = (

√
2|e00〉 + |g10〉 + |g01〉)/2

in the case of ησ = √
2 and ηa = ηb = −1. The Agrawal W

state |W (2)
3 〉 was first proposed by Agrawal and Pati, which has

important applications in perfect teleportation and superdense
coding [71]. At initial time t = 0, the system is in the ground
state |g00〉. To produce the single-excitation W state (i.e., the
dark state |D〉), we can use a classical coherent drive pulse
with frequency ωd and duration t0 to pump the qubit. This
corresponds to adding the drive term �(t0 − t )�d (σ †e−iωd t +
σeiωd t ) to the system Hamiltonian Hs in Eq. (1), which is then

expressed as

H (d )
s = ωσσ †σ + ωaa†a + ωbb†b

+�(t0 − t )�d (σ †e−iωd t + σeiωd t ), (12)

where �d is the Rabi frequency and �(t0 − t ) is the Heaviside
function. Now the dynamics of the ternary system is also
governed by the master equation in Eq. (2), but Hs is replaced
by H (d )

s , where we neglect the effect of the drive field on
the dissipative term τL[o]ρ in Eq. (2). This approximation
is reasonable for a weak drive field, which is widely used
in quantum optics [72]. Correspondingly, the effective non-
Hermitian Hamiltonian Heff in Eq. (5) becomes H (d )

eff = Heff +
�(t0 − t )�d (σ †e−iωd t + σeiωd t ). Obviously, the presence of
the drive term spoils the preservation of the total number of
excitations of the system due to [H (d )

eff ,N] �= 0 when t < t0,
where the total numberN of excitations in the ternary system
is given in Eq. (6). As a result, the one-excitation subspace of
the system is not closed. Thus, it is difficult to exactly obtain
the eigenvectors of H (d )

eff . Fortunately, since the drive field is
very weak (i.e., �d 
 τ ) in our scheme, we can approxima-
tively assume that the three eigenvectors of Heff in Eq. (7) are
also the eigenvectors of H (d )

eff in the one-excitation subspace.
For t > t0, the drive pulse ends, and H (d )

eff = Heff .
With the system Hamiltonian H (d )

s in Eq. (12), we plot the
time evolution of the fidelityF of the prototype W state |W (1)

3 〉
in Fig. 3(a) via numerically solving the master equation in
Eq. (2) with Hs replaced by H (d )

s , where the fidelity F of the
target W state (i.e., the dark state |D〉) is defined as

F = Tr(ρ|D〉〈D|). (13)

Here we assume that the pulse length is infinite, i.e., t0 = +∞.
When τ t < τ tmax (with τ tmax = 273), the fidelity F increases
monotonically from F = 0 at t = 0 to its maximum value
F = Fmax (with Fmax = 0.985) at time τ t = τ tmax. The cor-
responding physical mechanisms are as follows. (i) When the
qubit is pumped by the drive pulse, the qubit is excited and the
state |g00〉 of the system transfers to |e00〉. (ii) Due to the dis-
sipative couplings, the state |e00〉 will evolve into the mixed
state of the dark state |D〉 (i.e., the prototype W state |W (1)

3 〉)
and the ground state |g00〉. (iii) For the component |g00〉 in
the mixed state, it will be pumped into the state |e00〉 again.
(iv) The processes (ii) and (iii) are repeated. Strictly speaking,
now the prototype W state |W (1)

3 〉 is not the dark state of the
system because the effective non-Hermitian Hamiltonian in
Eq. (5) does not include the drive term. This results in that
the maximum value Fmax of the fidelity F is smaller than the
ideal value 1 (i.e., Fmax < 1) and that the fidelity F versus
time t exhibits obvious oscillations [cf. Fig. 3(a)]. Using a
weaker drive pulse, we can obtain a higher fidelity Fmax at the
expense of a larger tmax for reaching Fmax [cf. Fig. 3(b)]. In the
weak-drive limit �d → 0, Fmax → 1 but tmax → +∞ (e.g.,
when �d/τ = 0.001, Fmax = 0.998, and τ tmax = 2720.7).

For generating a stable W state with fidelity F = Fmax, the
duration t0 of the pulse should be equal to tmax (i.e., t0 = tmax).
In Fig. 3(c), we present the time evolution of the fidelity F
of the prototype W state |W (1)

3 〉 for different values of Rabi
frequency �d , where the corresponding duration t0 = tmax of
the drive pulse can be found in Fig. 3(b). As we expected,
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FIG. 3. (a) Time evolution of the fidelity F of the prototype W
state |W (1)

3 〉 = (|e00〉 + |g10〉 + |g01〉)/
√

3, with �d/τ = 0.01 and
t0 = +∞, where the red dot denotes the maximum value Fmax =
0.985 of the fidelity F at time τ tmax = 273. (b) The maximal
fidelity Fmax of |W (1)

3 〉 versus the Rabi frequency �d/τ , where
the corresponding time τ tmax (for reaching Fmax) versus �d/τ is
shown in the inset. (c) Time evolution of the fidelity F of |W (1)

3 〉
for drive pulses with different shapes: �d/τ = 0.01, τ t0 = 273
(black solid curve); �d/τ = 0.05, τ t0 = 54.1 (red dashed curve);
and �d/τ = 0.1, τ t0 = 26.9 (green dotted curve). (d) Time evolu-
tion of the fidelity F for different W states: the Agrawal W state
|W (2)

3 〉 = (
√

2|e00〉 + |g10〉 + |g01〉)/2 with �d/τ = 0.001, τ t0 =
2211.1 (black solid curve); the common W state |W (3)

3 〉 = (2|e00〉 −
|g10〉 − |g01〉)/

√
6 with �d/τ = 0.001, τ t0 = 1934.7 (red dashed

curve); and the Bell state |W (4)
3 〉 = (|e00〉 + |g01〉)/

√
2 with �d/τ =

0.001, τ t0/ = 2211.1 (green dotted curve). These results in
(a)–(d) are obtained using the master equation in Eq. (2) with the
system Hamiltonian H (d )

s given in Eq. (12) and the initial state
|g00〉. For the four W states, |W (1)

3 〉, |W (2)
3 〉, |W (3)

3 〉, and |W (4)
3 〉, the

corresponding values of (ησ , ηa, ηb) can be found in Table I. Other
parameters are ωσ /τ = ωa/τ = ωb/τ = ωd/τ = 500.

the fidelity F becomes time independent after reaching the
maximum value Fmax at time t = t0, i.e., the lifetime of the
prototype W state |W (1)

3 〉 is infinite. When the drive pulse
becomes weaker, the fidelity of the prepared |W (1)

3 〉 is higher,
while the time for preparing stable |W (1)

3 〉 is longer. Moreover,
as shown in Fig. 3(d), we can also generate other types of
stable W states by selecting specific values of (ησ , ηa, ηb),
such as the Agrawal W state |W (2)

3 〉 = (
√

2|e00〉 + |g10〉 +
|g01〉)/2 (black solid curve), the common W state |W (3)

3 〉 =
(2|e00〉 − |g10〉 − |g01〉)/

√
6 (red dashed curve), and the Bell

state |W (4)
3 〉 = (|e00〉 + |g01〉)/

√
2 (green dotted curve).

IV. GENERATING W STATES VIA
DISSIPATIVE COUPLINGS IN A HYBRID

QUBIT-PHOTON-MAGNON SYSTEM

Our results provide a way to produce W states in
dissipatively coupled systems. Guided by the recent experi-
ments related to dissipative coupling in magnon-based hybrid

systems [13,61–63], we apply the proposed scheme in a hy-
brid qubit-photon-magnon system. As depicted in Fig. 1(c),
the hybrid system comprises a superconducting transmon
qubit, a superconducting transmission-line resonator, and
a YIG sphere, which are simultaneously coupled to an
open waveguide. Owing to the common reservoir (i.e., the
waveguide), there are dissipative couplings among the three
quantum subsystems. In addition, we use a microwave pulse
to drive the transmon qubit for generating the W states. Now
the total Hamiltonian of the qubit-photon-magnon system can
be cast exactly in the form of Eq. (12) and the dynamics of the
hybrid system is governed by the Lindblad master equation in
Eq. (2), where the microwave photon operator is a and the
magnon operator is b.

When the intrinsic dissipations from all constituents of the
hybrid system are included, the complete master equation can
be written as

ρ̇ = − i
[
H (d )

s , ρ
] + τL[o]ρ

+
∑

α=σ,a,b

γαL[α]ρ + γϕ (σzρσz − ρ), (14)

with σz = |e〉〈e| − |g〉〈g|, where γσ (γϕ) is the relaxation rate
(pure dephasing rate) of the qubit, and γa and γb are the
relaxation rates for the resonator and the magnon mode in
the YIG sphere, respectively. By numerically solving the mas-
ter equation in Eq. (14), we plot the maximal fidelity Fmax

and the corresponding tmax of the prototype W state |W (1)
3 〉

versus the Rabi frequency �d/τ in Figs. 4(a) and 4(b). Dif-
ferent from the ideal case without the intrinsic dissipations
of three subsystems [cf. Figs. 4(a) and 3(b)], there is a spe-
cific Rabi frequency �

(opt)
d (with �

(opt)
d /τ = 0.0221), where

the optimum fidelity F (opt)
max (with F (opt)

max = 0.936) is reached
and the corresponding time tmax is denoted as t (opt)

max (with
t (opt)
max = 0.976 µs), cf. Fig. 4(b). The underlying physics of this

difference is that when �d < �
(opt)
d , the intrinsic dissipation

rather than the drive pulse dominates the dynamical behaviors
of the hybrid system, which makes the state of the system
dissipate to the ground state. In the weak-drive limit �d → 0,
the maximal fidelity Fmax → 0. To produce the long-lived
target state |W (1)

3 〉 with fidelity F = F (opt)
max , the parameters of

the drive pulse should be set to be �d = �
(opt)
d and t0 = t (opt)

max .
With these optimum parameters �d = �

(opt)
d and t0 = t (opt)

max ,
we show the time evolution of the fidelity F of |W (1)

3 〉 for dif-
ferent relaxation times γ −1

b of the magnon mode in Fig. 4(c).
For γ −1

b = 1 µs (5 µs, 20 µs), the fidelity F increases mono-
tonically with time t when t < 0.478 µs (0.976 µs, 1.572 µs)
and then reaches the maximum value F (opt)

max = 0.882 (0.936,
0.955) at time t = 0.478 µs (0.976 µs, 1.572 µs). Clearly, for
a longer lifetime γ −1

b of magnons, the corresponding fidelity
F (opt)

max is higher, while the time t0 = t (opt)
max (for reaching F =

F (opt)
max ) is also longer. Due to the intrinsic dissipations, the

fidelity F decreases monotonically for t > t0, and the lifetime
of the target state |W (1)

3 〉 is limited by the lifetimes of the qubit,
the resonator, and the magnon mode. In addition, the other
types of W states with the fidelity F = F (opt)

max , such as |W (2)
3 〉,

|W (3)
3 〉 and |W (4)

3 〉, can also be generated via driving the qubit
by appropriate pulses [cf. Fig. 4(d)].
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FIG. 4. (a) The maximal fidelity Fmax of the prototype W state
|W (1)

3 〉 = (|e00〉 + |g10〉 + |g01〉)/
√

3 versus the Rabi frequency
�d/τ with γ −1

b = 5 µs, where the corresponding time tmax (for reach-
ing Fmax) versus �d/τ is shown in (b). (c) Time evolution of the
fidelity F of |W (1)

3 〉 for different relaxation times of the magnon
mode: γ −1

b = 1 µs (black solid curve); γ −1
b = 5 µs (red dashed

curve); and γ −1
b = 20 µs (green dotted curve). The shapes of the cor-

responding drive pulses are �d/τ = 0.0452, t0 = 0.478 µs; �d/τ =
0.0221, t0 = 0.976 µs; and �d/τ = 0.0137, t0 = 1.572 µs, respec-
tively. (d) Time evolution of the fidelity F for different W states in
the case of γ −1

b = 5 µs: the Agrawal W state |W (2)
3 〉 = (

√
2|e00〉 +

|g10〉 + |g01〉)/2 with �d/τ = 0.0221, t0 = 0.795 µs (black solid
curve); the common W state |W (3)

3 〉 = (2|e00〉 − |g10〉 − |g01〉)/
√

6
with �d/τ = 0.0281, t0 = 0.547 µs (red dashed curve); and the
Bell state |W (4)

3 〉 = (|e00〉 + |g01〉)/
√

2 with �d/τ = 0.0221, t0 =
0.795 µs (green dotted curve). These results in (a)–(d) are obtained
using the master equation in Eq. (14) with the system Hamiltonian
H (d )

s given in Eq. (12) and the initial state |g00〉. Other parameters are
γ −1

σ = γ −1
a = 60 µs, γ −1

ϕ = 25 µs, τ/2π = 20 MHz, and ωσ /2π =
ωa/2π = ωb/2π = ωd/2π = 5 GHz.

Furthermore, we find that the optimum fidelity F (opt)
max can

be also improved by increasing the cooperative decay rate
τ . As shown in Fig. 5(a), the optimum fidelity F (opt)

max of
the prototype W state |W (1)

3 〉 versus the cooperative decay
rate τ/2π increases monotonically for different relaxation
times γ −1

b of the magnon mode. In the case of γ −1
b = 1 µs

(5 µs, 20 µs), F (opt)
max is improved from 0.84 to 0.922 (0.911

to 0.959, 0.937 to 0.971) if the cooperative decay rate τ/2π

increases from 10 MHz to 50 MHz. Experimentally, the en-
gineered jump operator o for generating the target W state
may be not ideal because the dissipative rates of the qubit,
the resonator, and the mangon mode, induced by the waveg-
uide, are not tunable. Thus, it is necessary to investigate
the effects of the deviations of the jump operator o from
the ideal form. In Fig. 5(b), we plot the optimum fidelity
F (opt)

max of the prototype W state |W (1)
3 〉 versus the deviation

δ, where o = 2(1 + δ)σ − a − b is for the deviation from
the qubit (black square), o = 2σ − (1 + δ)a − b is for the
deviation from the resonator (red circle), and o = 2σ − a −
(1 + δ)b is for the deviation from the magnon mode (green
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FIG. 5. (a) The optimum fidelity F (opt)
max of the prototype W

state |W (1)
3 〉 = (|e00〉 + |g10〉 + |g01〉)/

√
3 versus the cooperative

decay rate τ/2π for different relaxation times of the magnon mode,
γ −1

b = 1 µs (black square), γ −1
b = 5 µs (red circle), and γ −1

b = 20 µs
(green triangle). (b) The optimum fidelity F (opt)

max of the prototype
W state |W (1)

3 〉 versus the deviation δ from different subsystems
with τ/2π = 20 MHz and γ −1

b = 5 µs. Here, o = 2(1 + δ)σ − a −
b (black square), o = 2σ − (1 + δ)a − b (red circle), and o = 2σ −
a − (1 + δ)b (green triangle). In (a,b), each data point is calculated
using the master equation in Eq. (14), where �d = �

(opt)
d and t0 =

t (opt)
max . Other parameters are the same as in Fig. 4.

triangle). Around the ideal value δ = 0, the optimum fidelity
F (opt)

max versus δ changes slowly. This robustness of F (opt)
max

against δ indicates that even if the jump operator o deviates
from the ideal form, but our scheme can also work well.

In the experiment, the typical frequencies for the trans-
mon qubit, the resonator and the magnon mode can be made
as 1 − 10 GHz [3,53]. In the numerical simulations, we set
ωσ/2π = ωa/2π = ωb/2π = ωd/2π = 5 GHz, which can be
easily reached because the frequencies of the transmon qubit
and the magnon mode are readily tunable by controlling the
bias magnetic fields. With the state-of-the-art technologies,
the relaxation time γ −1

σ (γ −1
a ) of the transmon qubit (the res-

onator) and the pure dephasing time γ −1
ϕ of the transmon qubit

can be made to be on the order of 10–100 µs [3]. In cavity
magnonics, the typical relaxation time γ −1

b of the magnon
mode is on the order of 1 µs [73,74], which can possibly go
up to several microseconds [75] and even beyond [76] by im-
proving the YIG sphere quality, e.g., in surface roughness and
densities of impurities and defects. Moreover, the decay rate
|ησ |2τ/2π = 99.5 MHz of the transmon qubit [77,78] and the
decay rate |ηa|2τ/2π = 169 MHz of the resonator [79] caused
by the coplanar transmission-line waveguide were reported in
experiments. Very recently, the dissipative coupling between
two magnon modes in two 0.25-mm-diameter YIG spheres
was engineered via a common waveguide, where the decay
rate |ηb|2τ/2π of each magnon mode induced by the waveg-
uide is 8.5 MHz [62]. If the diameter of the YIG sphere is
increased to 0.4 mm (0.6 mm), the decay rate of each magnon
mode due to the waveguide will be |ηb|2τ/2π = 34.8 MHz
(117.5 MHz) because the decay rate of magnons due to the
waveguide is proportional to the volume of the YIG sphere
[74]. Therefore, our scheme is experimentally feasible with
the currently available parameters.

V. DISCUSSIONS AND CONCLUSION

Usually, the common reservoir is artificial and can only
induce the cooperative relaxation in dissipatively coupled
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systems [3,12,14,42–44]. In our scheme (cf. Sec. IV), the
common reservoir is an open waveguide and no cooper-
ative pure dephasing of the system is induced (see the
Appendix). If the qubit and the two resonators are coupled
via a common pure dephasing reservoir, the corresponding
master equation of the system can be written as Eq. (2)
with the jump operator o = ησσ + ηaa + ηbb replaced by
O = ησσ †σ + ηaa†a + ηbb†b. Different from the cooperative
relaxation, the cooperative pure dephasing cannot induce the
energy exchange among the three quantum subsystems. Thus,
the proposed scheme does not work for a common pure de-
phasing reservoir.

In addition, it should be emphasized that the common
reservoir (i.e., the cooperative dissipation) plays a crucial role
in our scheme. Due to the drive pulse on the qubit, the ternary
system evolves from |g00〉 to |e00〉. Then the component of
the bright state |B〉 (i.e., the nontarget W state) in the state
|e00〉 decays to the vacuum state |g00〉 via radiating the en-
ergy into the common reservoir, while the component of the
dark state |D〉 (i.e., the target W state) in the state |e00〉 is
steady because it decouples from the common reservoir [cf.
Eqs. (9) and (11) and related discussions]. Without the com-
mon reservoir, the three eigenvalues of the closed system in
the one-excitation subspace will be real, which means that the
corresponding three eigenvectors are all dark states because
their decay rates are zero. As a result, both components of
target W state and nontarget W states in the state |e00〉 are
dark states. Thus, the target W state cannot be generated in
the closed system.

In summary, we presented a scheme to generate tripartite
W states in a ternary system consisting of one qubit and two
resonators, which are dissipatively coupled via a common
reservoir. With appropriate values of the system parameters,
the W state can be prepared by pumping the qubit with a drive
pulse. This scheme is easy to implement in experiments since
neither performing measurements nor adjusting the system
parameters is required. In addition, because the generated W
state is a dark state of the system, it is steady and has a very
long lifetime. To show the validity of the scheme, we apply
our scheme in a hybrid qubit-photon-magnon system. Due to
the intrinsic dissipations from all subsystems, the lifetime of
the generated qubit-photon-magnon W state is determined by
the lifetimes of the qubit, the resonator, and the magnon mode.
Besides magnon based hybrid systems, our scheme can be
also applicable to waveguide QED systems [3,42,43], dissi-
patively coupled spins mediated by a magnetic environment
[44], dissipatively coupled qubits through plasmons [38,68],
and so on.
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APPENDIX: DERIVATION OF THE MASTER EQUATION
IN EQ. (2)

As shown in Fig. 1(a), the qubit and the two resonators
simultaneously interact with a common reservoir. We assume
that the reservoir consists of many bosonic modes, where
the kth mode is described by the annihilation (and creation)
operator ck (and c†

k ) and frequency ωk . The quantum dynamics
of the ternary system and the reservoir is governed by the
following Hamiltonian:

Htot = H0 + Hint, H0 = Hs +
∑

k

ωkc†
kck,

Hint =
∑

k

∑
α=σ,a,b

λkα

(
c†

kαe−iφkα + ckα
†eiφkα

)
, (A1)

with the Hamiltonian Hs of the ternary system given in Eq. (1).
H0 includes the free energy of the ternary system and the
free energy of the reservoir, and Hint denotes the interaction
between the ternary system and the reservoir, where λkα is the
coupling strength of the subsystem α (α = σ, a, b) to the kth
mode of the reservoir, φkα = (ωk/υ )xα is the phase delay of
the kth mode at the location xα , and υ is the speed of light.

When the qubit and the two resonators are resonant, i.e.,
ωσ = ωa = ωb = ω0, in the interaction picture, the Hamilto-
nianV(t ) = eiH0t Hinte−iH0t is given by

V(t ) =
∑

k

λk
[
c†

koe−i(ω0−ωk )t + cko†ei(ω0−ωk )t
]
. (A2)

Here we defined a collective jump operator

o = ησσ + ηaa + ηbb, (A3)

with ηα = (λkα/λk )e−iφkα and introduced an effective cou-
pling strength λk between the ternary system and the kth
reservoir mode. Taking a trace over the reservoir coordinates
under the Born-Markov approximation, the density ρ̃(t ) of the
ternary system satisfies [72]

˙̃ρ(t ) = −i Trr[V(t), ρ̃(0) ⊗ ρr (0)]

− Trr

∫ t

0
dt ′[V(t ), [V(t ′), ρ̃(t ) ⊗ ρr (0)]], (A4)

where ρr (0) is the density matrix of the reservoir at t = 0. In
our paper, the considered reservoir is at zero temperature and
ρr (0) is the multimode extension of the thermal operator. It
can be easily shown that

〈ck〉 = 〈c†
k〉 = 0,

〈c†
kck′ 〉 = 0,

〈ckc†
k′ 〉 = δkk′ ,

〈ckck′ 〉 = 〈c†
kc†

k′ 〉 = 0. (A5)

Here 〈O〉 ≡ Tr[Oρr (0)] is the expectation value of any reser-
voir operator O. With the relations in Eq. (A5), we insert
the Hamiltonian V(t ) in Eq. (A2) into the equation (A4) of
motion and obtain

˙̃ρ(t ) =
∫ t

0
dt ′ ∑

k

λ2
kei(ω0−ωk )t ′

[oρ̃(t )o† − o†oρ̃(t )] + H.c.

(A6)
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Using the standard identity

lim
t→+∞

∫ t

0
dt ′ei(ω0−ωk )t ′ = πδ(ω0 − ωk ), (A7)

the master equation in Eq. (A6) becomes

˙̃ρ(t ) = τ [2oρ̃(t )o† − o†oρ̃(t ) − ρ̃(t )o†o], (A8)

with the decay rate τ = ∑
k πλ2

kδ(ω0 − ωk ) of the ternary
system.

Usually, the main contribution to the decay rate τ arises
from the modes of the reservoir with frequency ωk ≈ ω0.
Because the phase φkα = (ωk/υ )xα in the jump operator o
varies little around ωk = ω0, we can take the approximation
φkα = φα ≈ (ω0/υ )xα . It should be pointed out that ρ̃(t ) is
the density matrix of the system in the interaction picture,
which is related to the density matrix ρ of the system in
the Schrödinger picture via the relation ρ = e−iHst ρ̃(t )eiHst .
It follows from Eq. (A8) that the density matrix ρ

satisfies

ρ̇ = −i[Hs, ρ] + τ (2oρo† − o†oρ − ρo†o). (A9)

This is just Eq. (2) in the main text.

It should be noted that the master equation in Eq. (A9)
is valid only when the system parameters satisfy the follow-
ing three conditions. (i) The qubit and the two resonators
are nearly resonant, i.e., ωσ ≈ ωa ≈ ωb ≈ ω0. This condition
was used in the derivation of Eq. (A2). (ii) The value of
{|ησ |2τ, |ηa|2τ, |ηb|2τ }max cannot be too large. In Eq. (A1),
the Hamiltonian Hint is obtained under the rotating-wave
approximation by neglecting the fast-oscillating terms, and
the Born-Markov approximation is used in the derivation of
Eq. (A4) [72]. Both the approximations require that the cou-
pling between the system and the common reservoir cannot
be too strong (related to the values of {|ησ |2τ, |ηa|2τ, |ηb|2τ }).
In Ref. [13], the experimental results show that both the
rotating-wave approximation and the Born-Markov approx-
imation are still valid, even if the decay rate |ηb|2τ/2π of
the magnon mode induced by the common reservoir is up
to 880 MHz, where the frequency of the magnon mode is
ωb/2π ≈ 5 GHz. (iii) The drive pulse on the qubit should be
weak (i.e., �d 
 τ ). In our scheme, generating the W state
requires a drive pulse on the qubit (cf. Secs. III and IV).
However, the effect of the drive pulse on the dissipative term
in the master equation (A9) is neglected, which is reasonable
for a weak drive pulse. In quantum optics, this approximation
is widely used [72]. In the numerical simulations of this paper,
the three parameter conditions in (i) to (iii) are safely satisfied
(see the main text).
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