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Quantum state tomography (QST) aims at estimating a quantum state from averaged quantum measurements
made on copies of that state. Most quantum algorithms rely on QST at some point and it is a well-explored topic
in the literature, mostly for mixed states. In this paper we focus on the QST of a pure quantum state using parallel
unentangled measurements. Pure states are a small but useful subset of all quantum states, and their tomography
requires fewer measurements and is essentially a phase recovery problem. Parallel unentangled measurements
are easy to implement in practice because they allow the user to measure each qubit individually, e.g., using
one-qubit Pauli measurements. We propose two sets of quantum measurements that one can make on a pure state
as well as the algorithms that use the measurement outcomes in order to identify the state. We also discuss how
those estimates can be fine tuned by finding the state that maximizes the likelihood of the measurements with
different variants of the likelihood. The performances of the proposed three types of QST methods are validated
by means of detailed numerical tests, including for mixed states that are close to being pure.
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I. PRIOR WORK AND PROBLEM STATEMENT

Quantum state tomography (QST) aims to estimate a quan-
tum state from averaged quantum measurements made on
copies of that state. It is often necessary for quantum compu-
tation [1] and has been extensively studied for mixed states.
The most basic version is detailed in [1] at the beginning
of Sec. 8.4.2. It uses measurements defined by Pauli opera-
tors, often called Pauli measurements [2–7]. This version is
simple and very robust but requires computing the averages
of 4nqb − 1 different types of multiqubit Pauli measurements
where nqb is the number of qubits of the state. This method
suffers from poor scalability, as a consequence of the large
number of measurements required, increasing exponentially
with the number of qubits. That is, considering that an arbi-
trary state is represented by a d × d Hermitian density matrix
with 4nqb real parameters (where d = 2nqb is the dimension of
the Hilbert space in which the considered state evolves), the
required number of measurements is on the order of d2 = 4nqb .
In order to perform QST with fewer types of measurements,
one can focus on a subset of all mixed states. The most pop-
ular assumption is that the density matrix ρ representing the
state has a low rank. Reference [4] introduced a compressed
sensing approach that requires the averages of O[rd log(d )2]
types of two-outcome measurements [8] to estimate the state
where r is the rank of ρ. References [2,3] later built upon this
idea of QST via compressed sensing. More recently, bounded
rank QST was introduced [9]. It assumes that the rank r is
known and allows the explicit reconstruction of ρ using prede-
termined measurements (contrary to the compressed sensing
approach of [4] that does not specify the measurements to be
used and finds ρ by minimizing the nuclear norm of ρ under
constraints).

Other approaches do not make any assumption on ρ.
In 2014, self-guided quantum tomography (SGQT) was

introduced [10] and further studied in [11,12]. It makes no
assumption on ρ, and the number of measurements scales
reasonably with the number of qubits. The drawback of SGQT
is that the measurements that need to be performed on the state
are not known beforehand and are generally entangled mea-
surements. Entangled measurements correspond to multiqubit
measurements that cannot be expressed as a tensor product
of single-qubit measurement operators, i.e., they cannot be
performed by measuring each qubit independently. In 2020
[13] introduced a method to partially identify large quantum
systems (more than 100 qubits) with entangled states, for
which the total state cannot even be stored on a classical
computer. It relies on unentangled measurements which are
easier to perform than entangled measurements in practice.

The present paper focuses on the tomography of pure states
using unentangled measurements. This has been studied in [5]
which tried to find the minimal number of Pauli measurements
for two and three qubits (Pauli measurements are unentan-
gled). Our addition to that paper is that we will address the
generic case with any nqb. Furthermore, we will use parallel
measurements like in [13] where it is shown that all 4nqb

averaged Pauli measurements can be computed from the av-
erages of 3nqb parallel unentangled measurements. A parallel
measurement has d outcomes and provides more information
on the system than a Pauli measurement, that only has two
outcomes.

In [14] Finkelstein describes a setup able to distinguish
almost all pure states, with only nprob = 2d probabilities. nprob

is the number of empirical probabilities that are measured.
For example, if we use d two-outcome measurements and
average them (i.e., compute the empirical probabilities of all
measurement outcomes), we get 2d empirical probabilities.
There is a negligible (zero measure) set of pure states that
the setup of [14] cannot recover up to a global phase. It is
called the failure set. In addition to the failure set, the main
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problem of [14] is that the measurements are not practical:
They are entangled and cannot be performed in parallel (as the
matrix A associated with the measurements cannot be written
as the vertical concatenation of unitary matrices). In [15]
Goyeneche et al. introduced a set of nprob = 4d probabilities
that also has a negligible failure set. Technically [15] intro-
duces five measurements that yield 5d probabilities (obtained
from averaging the results of five different kinds of d-outcome
measurements), but only the four measurements defined by
its Eq. (2) are needed to achieve QST. The measurements of
[15] are more realistic as they are performed on four orthonor-
mal bases. Two of them are unentangled but the other two
are entangled. Goyeneche et al. acknowledge that this is a
problem and point out the fact that the two entangled bases
can be mapped onto the two unentangled ones by applying
the quantum Fourier transform twice. In practice this would
introduce additional errors, as there are no error-free circuits
able to perform the quantum Fourier transform, and one would
need to perform quantum process tomography (which gener-
ally relies on QST) in order to quantify the errors and improve
the Fourier-transform circuit. This is a common issue with
entangled measurements. The easiest way to perform them
with the current version of quantum computers is to transform
them into measurements in an unentangled basis, by means of
a corresponding quantum gate.

The applied mathematics community also dealt with an
equivalent version of the QST problem for pure states: the
phase retrieval problem (see [14,16–19]). A pure state |ϕ〉 of
an nqb-qubit system is represented by a complex unit-norm
vector v with d elements. Pure-state tomography aims at es-
timating v from measurements. The theoretical probabilities
of all outcomes of the considered types of measurements are
contained in the vector |Av|2 where A is an nprob × d matrix
determined by the types of measurements performed and |.|2
stands for a componentwise squared modulus. Recovering v

(up to a global phase) from |Av|2 (generally it is |Av| instead
of |Av|2 but both problems are essentially the same) is called
phase retrieval. The first question asked in phase recovery
concerns injectivity: how can one choose A in order to make
sure that |Av|2 contains enough information to recover v up to
a global phase? Proving that a given A guarantees injectivity
is a difficult question. Reference [16] gave a minimal number
of measurements below which injectivity is impossible. In
our case this condition is nprob > 4d − 3 − c(d )nqb rows for
some c(d ) ∈ [1, 2]. Reference [17] showed that for a generic
A, having 4d − 2 rows or more is a sufficient condition for
injectivity. Reference [14] does not beat the bound of [16] as
it has a non-null failure set (even though it is of zero measure),
which means that the measurements are not injective.

Beyond injectivity, finding a solution to the phase re-
covery problem (whether it is unique up to a global phase
or not) is the main difficulty of pure-state tomography.
Both [14,15] give their own closed-form algorithms to re-
cover the phases which are adapted to their versions of A.
Reference [18] focuses on this particular problem with a
generic A.

Our contributions in the present paper are as follows. Sec-
tion II describes the quantum state to be identified and the
measurements made. In particular, we formalize the definition
of a parallel unentangled measurement.

Section III describes a method to achieve QST with nprob =
4d using an optimization algorithm of [18] with a number
of probabilities consistent with the lower bound of [16]. The
probabilities can be obtained by averaging the results of four
types of parallel unentangled measurements.

Section IV describes a method with nprob = (2nqb + 1)d
probabilities for which phase recovery can be achieved with
a closed-form recursive algorithm. Those probabilities are
obtained by averaging the results of 2nqb + 1 different kinds
of measurements.

Section V describes a more precise fine tuning method that
works with all types of measurements. It requires an initial
estimate from one of the algorithms of Secs. III or IV which it
uses in order to maximize the likelihood of the measurements.

Finally, in Sec. VI we evaluate the performance of the
proposed algorithms with simulated data.

II. STATE AND MEASUREMENTS

A. Considered state

An nqb-qubit pure state |ϕ〉 can be decomposed in the
canonical basis |0 . . . 0〉,..., |1 . . . 1〉. The components of |ϕ〉
in the basis can be stored in a d-element vector (d = 2nqb)
v = [v1 . . . vd ]T where T stands for transpose. The com-
ponents v j are complex and

∑d
j=1 |v j |2 = 1. The global phase

of |ϕ〉 has no physical meaning, so we can assume that v1 is a
real non-negative number.

B. d-outcome measurement

A quantum measurement on a state in a d-dimensional
Hilbert space has at most d outcomes. It is possible to
define measurements with fewer than d outcomes but we
consider them to be suboptimal, as will be explained in
Sec. II E.

The actual values of the d outcomes are of no interest to
us: we are only interested in the theoretical probabilities of
each outcome when performing a measurement for a given
state v. For a given measurement M, we call pM the d-
dimensional vector that contains those probabilities. There
exists a unitary matrix EM such that pM = |E∗

Mv|2 (Born
rule) where .∗ is the transconjugate. In practice EM is the
matrix the columns of which are unit-norm eigenvectors of
the Hermitian matrix that characterizes the measurements (see
Sec. 2.2.5 in [1]). We call EM the eigenvector matrix of the
measurement M.

By performing several measurements on copies of the state
represented by v, we compute the frequencies of occurrence
of each outcome, and we get p̂M, which we use as an approxi-
mation of |E∗

Mv|2. We call p̂M the averaged measurements or
sample probabilities. The sum of the elements of pM(v) is 1
(it is the sum of the probabilities of all possible outcomes), so
no information is lost by removing one element. We define
EM the nonredundant eigenvector matrix as composed of
the first d − 1 columns of EM. Then pM(v) = |E∗

Mv|2 is
redundant but pM(v) = |E∗

Mv|2 is not.
E∗
M, E∗

M, pM(v), and pM(v) will all be used at different
points of this paper with M replaced by the actual measure-
ments we will perform.
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C. Parallel unentangled measurement

We define a parallel unentangled measurement as a
d-outcome measurement that can be performed with simulta-
neous one-qubit measurements on each one of the nqb qubits:

...

M1

M2

Mnqb

q1

q2

qnqb

2 outcomes

2 outcomes
...

2 outcomes

d outcomes

It can be shown that the resulting eigenvector matrix EM can
be written as the tensor product of the nqb 2 × 2 eigenvector
matrices of the one-qubit measurements: EM = EM1 ⊗ . . . ⊗
EMnqb

.

D. Considered types of measurements

We perform measurements for all qubits in parallel, with
one measurement direction per qubit. For one qubit, we
choose to perform measurements that are equivalent to the
three nontrivial Pauli measurements. The Hermitian measure-
ment matrices associated with the directions X , Y , and Z
are the last three Pauli matrices defined in Sec. 2.1.3 of [1]:
σx = (

0 1
1 0), σy = (

0 −i
i 0 ), and σz = (

1 0
0 −1) and the corresponding

eigenvector matrices may be shown to read

EX = 1√
2

(
1 1
1 −1

)
EY = 1√

2

(
1 1
i −i

)
EZ =

(
1 0
0 1

)
.

(1)
If the qubit represents the spin of an electron, those eigenvec-
tor matrices represent the measurement of the spin component
along three orthogonal directions. There is a factor 1/2 be-
tween the outcome of the spin measurements and the Pauli
measurements but it does not affect the eigenvectors.

For two or more qubits, the different qubits can be mea-
sured along X , Y , or Z . The resulting eigenvector matrix is
the tensor product of the two-dimensional matrices of (5). For
example for two qubits, measuring the first one along Z and
the second one along X has the following eigenvector matrix:

EZX = EZ ⊗ EX = 1√
2

⎛
⎜⎜⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞
⎟⎟⎠.

This measurement is not equivalent to a two-qubit Pauli
measurement: A two-qubit Pauli measurement only has two
outcomes, as the considered observable is the product of the
two observables associated with two one-qubit Pauli mea-
surements. Instead we consider the “concatenation” of two
one-qubit Pauli measurements, so that our measurement has
d (in the example d = 4) outcomes and does not waste half
of the information. For nqb qubits there are 3nqb different mea-
surements of this type. Both of the QST methods of Sec. III

and IV as well as the fine tuning algorithms of Sec. V use a
specific subset of all possible measurements.

E. Justification

We think that performing QST using a kind of measure-
ment that is not parallel unentangled (i.e., that has fewer than
d outcomes or is entangled) should not be recommended in
practice with the current state of quantum computers for the
following reasons.

(1) Performing a quantum measurement that has fewer
than d outcomes is suboptimal. Indeed, instead of consid-
ering a j-outcome measurement M j ( j < d) we can use a
d-outcome measurement Md that has the same eigenvectors
and d distinct eigenvalues. With this definition it is strictly
better to use Md than M j in all situations, as the outcomes of
Md can be mapped injectively onto the outcomes of M j but
the reverse is not true. Therefore Md brings us strictly more
information on the system than M j and performing either of
them should be as difficult (a copy of the state is used up).

(2) Performing an entangled measurement requires the use
of a quantum gate. This gate itself is never going to act exactly
as expected and will introduce errors. In order to see if the
gate works as expected, we would need to perform quantum
process tomography which generally relies on QST.

But the literature on QST is full of theoretical papers that
consider measurements that fall within the two types that we
do not recommend. Here are some examples.

(1) Reference [10] uses successive two-outcome projec-
tive measurements on nonorthogonal entangled eigenstates.
And each iteration of the algorithm requires a new type of
measurement (that depends on what has been measured before
and is most likely going to be entangled) and therefore a new
quantum gate has to be built on the fly.

(2) Reference [14] considers projective two-outcome mea-
surements on one-dimensional spaces. Half of those measure-
ments can be performed using a single parallel unentangled
measurement (with the identity matrix as the eigenvector ma-
trix), but the other half cannot.

(3) Reference [15] considers two parallel unentangled
measurements (called local measurements in [15]) and two
d-outcome entangled measurements that can be mapped onto
the other two using a gate that performs the Fourier transform.
This setup is far more reasonable than the others as it requires
a single known standard gate.

(4) References [2–7] all use multiqubit Pauli measure-
ments. Multiqubit Pauli measurements have the advantage
of being unentangled and also simplify the calculation for
the QST of mixed states (see the beginning of Sec. 8.4.2
in [1]; (8.149) only works for orthogonal sets of matrices
with respect to the Hilbert-Schmidt inner product, like Pauli
matrices). They have the disadvantage of being two-outcome
measurements returning either +1 or −1. There are sets of
Pauli measurements the expected values of which can be
deduced from the outcomes of parallel unentangled measure-
ments without loss of information ([13] explains how it can
be done for two qubits). But that is not the case for any set of
Pauli measurements.

In contrast to those papers we here make a point to only use
unentangled parallel measurements. We could have chosen
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other matrices than (5). We chose those matrices in order to be
closer to the Pauli measurements widely used in the literature.

III. TOMOGRAPHY WITH MINIMAL NUMBER
OF MEASUREMENT TYPES

The current section describes our first QST setup, Sec. III A
describes the four types of parallel unentangled measurements
that are performed, Sec. III B explains why it is reasonable to
think that they are injective up to a global phase, and Sec. III C
describes a first algorithm to recover the phases.

A. Types of measurements

In the QST method described here, we perform four
types of measurements on the considered d-dimensional state:
The first measurement measures all the qubits along Z; its
eigenvector matrix, EZ...Z , is the identity matrix; the second
measurement measures all the qubits along Y ; the third mea-
sures all the qubits along X ; and the fourth measures every
odd-numbered qubit along X and every even-numbered qubit
along Y . After performing the measurements several times on
copies of the state, we compute the sample probabilities p̂M
for M spanning the four types of measurements. We then have
an ns = 4d dimensional vector with ns = 4(d − 1) degrees of
freedom. We call it p̂s. The associated theoretical probability
vector is ps = |Asv|2, where s stands for “small” because the
corresponding matrix in Sec. IV has more rows. As is the con-
catenation of the transconjugates of the eigenvector matrices
of the measurements we perform; As is defined similarly:

As =

⎡
⎢⎢⎣

E∗
Z...Z

E∗
Y ...Y

E∗
X ...X

E∗
XY XY ...

⎤
⎥⎥⎦ and As =

⎡
⎢⎢⎣

E∗
Z...Z

E∗
Y ...Y

E∗
X ...X

E∗
XY XY ...

⎤
⎥⎥⎦ (2)

with the nonredundant eigenvector matrices E. defined in
Sec. II D. Let us define the nonredundant probabilities ps =
|Asv|2. Since the norm of v is 1, ps and ps contain the same
information (see Sec. II B). In Sec. III B we will consider As,
ns, and ps in order to see if the measurements are injective
because we do not want to introduce redundancy when count-
ing the measurements. But, for the sake of simplicity, we will
consider As, ns, and ps in Sec. III C in order to recover the state
from the measurements. We want to use all the measurements
from p̂s whether they are redundant or not.

B. Injectivity

As is an ns × d matrix and v has unit norm. We want to
know whether the measurements we chose are sufficient to
recover any v from |Asv|2 up to a global phase. In the rest of
the paper this property will be called injectivity. It is a bit of
an exaggeration because v → |Asv|2 is never truly injective
as changing the global phase of v will not change |Asv|2.
This issue of injectivity was studied before in [16,17,19] in
a slightly different setup: the considered measurements are
|Asv| instead of |Asv|2, but this does not change anything
for the injectivity. Also v is not assumed to have unit norm,
and this is important. In order to reconcile the two setups
we can relax the unit-norm hypothesis for v and insert the
row [0, . . . , 0, 1] between the (d − 1)th row and the dth row

of As. This ensures that the norm of v is constrained: its
square is the sum of the first d constrained measurements,
because the first d rows of As are the identity matrix. With this
change As has 4d − 3 rows. According to [16] the minimal
number of rows for As below which injectivity is impossible is
4d − 3 − c(d )nqb rows for some c(d ) ∈ [1, 2]. Since we have
4d − 3 rows, this necessary condition is satisfied. However
there is no simple sufficient condition on As that ensures
injectivity, and proving it for a given As is a known hard
problem. The closest result we found to a sufficient condition
is in [17] where it is shown that for a generic As, having
4d − 2 or more rows ensures injectivity. As must be generic
in the sense that it is part of a specific open dense set with
full measure. We cannot identify this set and check that As

would be in it (although it probably would because the set
is of full measure), but this is a moot point because we are
one row short of satisfying the 4d − 2 condition anyway.
However, [19] explained why it is natural to think that 4d − 4
is the actual lower bound. It remains a conjecture though.
We can be sure that three measurement types would not be
enough to achieve injectivity with nqb > 2 as the bound of [16]
would not be fulfilled: we would have 3d − 2 independent
rows (3d − 3 plus the unit-norm constraint). This is always
strictly smaller than 4d − 3 − 2nqb for nqb > 2. Four is the
lowest number of measurement types for which we can hope
to always achieve injectivity. In summary, we are unable to
prove injectivity for the measurements defined by (2), and the
validity of an associated QST algorithm will only be tested
with the simulations of Sec. VI. We chose to use four measure-
ments so that injectivity is technically possible (and likely).
The types of measurements we chose are arbitrary (though we
were mindful to select diverse eigenvector matrices to avoid
poor conditioning issues).

C. A first quantum pure-state tomography method

In the current section, we show how the method proposed
in [18] can be used in our framework to recover v from the
sample probabilities p̂s, an estimate of ps = |Asv|2 (we only
consider As from now on; As was only useful to discuss the
injectivity). The optimization problem considered in [18] is
the following:

min
v

‖|Asv| − √
p̂s‖ (3)

where
√

p̂s is the elementwise square root of p̂s and ||.|| is
the L2 norm. Reference [18] does not include the unit-norm
constraint on v but, since we use As, this constraint is implicit
in the criterion to be minimized. In fact, the sum of the first
d elements of |Asv|2 is the squared norm of v and the sum
of the first d elements of p̂s is 1, therefore if |Asv| is close
to

√
p̂s, their squared norms will also be close, and therefore

the squared norm of v will be close to 1. In [18], it is shown
that (3) is equivalent to the following optimization problem
(originally it came from [20]):

min
U s.t. C

tr(UM) (4)

where M = diag(
√

p̂s)(I − AsA†
s )diag(

√
p̂s), † is the pseu-

doinverse, diag(
√

p̂s) is the diagonal matrix the diagonal of
which is

√
p̂s, and C represents the following condition on the
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ns × ns matrix U:

∃u ∈ Cns such that |u| = [1, . . . , 1]T and U = uu∗. (5)

Reference [18] shows that if U is a solution of (4), then the
associated u of (5) is an approximation of the phase of Asv,
and the resulting estimate of v defined as

v̂0 = A†
s (u ∗ √

p̂s) (6)

(∗ is the elementwise product) is the solution of (3) proposed
in [18]. We do not detail the proof here but the intuition
behind the formulation of (4) is fairly simple: the criterion
of (4) can be rewritten as (u ∗ √

p̂s)∗(I − AsA†
s )(u ∗ √

p̂s).
u ∗ √

p̂s is our estimate of Av and I − AsA†
s is the projection

on the complement of the image of A (the kernel of A∗).
Therefore, we are looking for the phases (u) that bring our
estimate of Av as close as possible to the image of A (more
precisely they minimize the norm of the projection on the
kernel of A∗). Equation (4) is almost a convex optimization
problem. In fact if C is reformulated in an equivalent way—
Ui,i = 1 ∀i ∈ [1, ns], U � 0, rank(U) = 1 (U � 0 means that
U is both Hermitian and non-negative definite)—according to
[18] the criterion tr(UM) is convex and the only constraint
that makes the problem nonconvex in C is rank(U) = 1. By
relaxing it we have a convex problem that can be solved
without the need for a good initialization:

min
U s.t. Ui,i=1∀i,U�0

tr(UM). (7)

In the absence of noise, the solution that we are looking for,
U0 = u0u∗

0 where u0 is the phase of Av, is a solution of both
the relaxed problem (7) and the original problem (4), because
the criteria of both of those problems are positive (as M is
a positive matrix) and it is easy to check that (in the absence
of noise) tr(U0M) = 0. This does not guarantee that the relax-
ation does not change anything though, as the minimum might
not be unique. Like in most of [18] we choose to ignore this
issue because, as we will see further in this paper, the relaxed
problem will only be used to initialize a nonconvex faster and
more precise optimization algorithm, so we can tolerate small
errors. Once (7) is solved using the PhaseCut algorithm of [18]
(rewritten in Appendix B), the eigenvectors and eigenvalues
of the solution U are computed. In order to get an estimate of
u, [18] then computes û, the eigenvector associated with the
largest eigenvalue. From û, we get the estimate of v defined
in (6):

v̂pc = A†
s (̂u ∗ √

p̂s). (8)

In [18] this method is tested with A matrices which represent
usual use cases in the signal or image processing community
(oversampled Fourier transform, multiple random illumina-
tion filters, and wavelet transform) for which PhaseCut works
well. However, for A = As, PhaseCut is a good initial point
but needs the fine tuning that we will detail in Sec. V.

D. Comparison with the literature

Let us sum up the main features of our first QST algorithm.
(1) It uses 4d probabilities that can be obtained by averaging
the results of four parallel unentangled measurements. (2)
It is reasonable to think that the chosen measurements are

injective (the failure set is most likely empty). (3) The algo-
rithm that reconstructs the state is not explicit (optimization).
Goyeneche et al. [15] use the same number of measure-
ment types, have a known failure space of zero measure,
and provide an explicit reconstruction algorithm. The main
advantage of our approach based on PhaseCut as compared to
[15] is that we do not use unentangled measurements. The
more general compressed sensing approach of [4] requires
O[rd log(d )2] probabilities to estimate the state where r, the
rank of the density matrix, is 1 in the case of a pure state.
Those probabilities could be obtained by averaging the re-
sults of O[log(d )2] different unentangled measurements. Our
method is more efficient since we use 4 = O(1) different
unentangled measurements. Both methods have no theoretical
guarantee of injectivity or closed-form solution. The validity
of the solution can only be shown in simulations.

IV. CLOSED-FORM STATE TOMOGRAPHY ALGORITHM

A. Alternative types of measurements

In the alternative QST method described here, we perform
the following measurements:{

Z . . . Z︸ ︷︷ ︸
nqb times

,
{

Z . . . Z︸ ︷︷ ︸
nqb−i times

S X . . . X︸ ︷︷ ︸
i−1 times

,
1 � i � nqb

S ∈ {X,Y }
}}

. The number of types of measurements is 2nqb + 1. The
resulting At (t stands for “tall”) matrix has nr = d (2nqb + 1)
rows:

At =

⎡
⎢⎢⎢⎢⎢⎢⎣

E∗
Z...Z

E∗
Z...ZX

E∗
Z...ZY
...

E∗
X ...X

E∗
Y X ...X

⎤
⎥⎥⎥⎥⎥⎥⎦

. (9)

Each measurement is performed several times and we com-
pute the sample probabilities p̂t which are estimates of
the theoretical probabilities pt = |Atv|2. The value 2nqb + 1
sounds like a lot compared to the four measurement types of
Sec. III but it is a small fraction of the 3nqb possible types of
measurements defined in Sec. II D. This setup also has the ad-
vantage of coming with an attractive way to recover the state
from the measurements, as will be explained in Sec. IV B.

B. A recursive pure quantum state tomography method

Let us show how a vector v can be recovered up to a global
phase from |Atv|2 by induction on the number of qubits. At

depends on nqb; in the rest of the current section this depen-
dence will not be omitted and At will be called At (nqb). We
first show how to solve the problem (recover v from |Atv|2)
with nqb = 1. We then explain how solving the problem for
nqb − 1 qubits yields the solution for nqb qubits. From there a
recursive algorithm can be implemented:

nqb = 1 : At (1) =
⎡
⎣E∗

Z
E∗

X
E∗

Y

⎤
⎦, with the EZ , EX , EY
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of (5). The state vector is v = (
|v1|

|v2|eiθ ). Basic calculations show

that

|At (1)v|2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

|v1|2
|v2|2

1
2 [|v1|2 + |v2|2 + 2|v1||v2| cos(θ )]
1
2 [|v1|2 + |v2|2 − 2|v1||v2| cos(θ )]
1
2 [|v1|2 + |v2|2 + 2|v1||v2| sin(θ )]
1
2 [|v1|2 + |v2|2 − 2|v1||v2| sin(θ )]

⎞
⎟⎟⎟⎟⎟⎟⎠

. (10)

Therefore, |At (1)v|2 gives |v1|2, |v2|2, |v1||v2| cos(θ ), and
|v1||v2| sin(θ ). From there, we have two cases. (1) If |v1| = 0
or |v2| = 0, then knowing |v1| and |v2| is enough because

(
|v1|
|v2|) is the same as v up to a global phase. Thus, there is

no need to compute θ . (2) If |v1||v2| > 0 then we can derive
cos(θ ) and sin(θ ) from the above-defined quantities and get
θ . Thus we know all parameters of v. Let us now assume that
the state recovery is possible for nqb − 1 qubits, i.e., there is a
function fnqb−1 such that for a vector w with 2nqb−1 elements
fnqb−1(|At (nqb − 1)w|2) is equal to w up to a global phase.
Let v be a d = 2nqb element vector (it does not have to be unit
norm). We split v into two 2nqb−1 element vectors w1 and w2:

v = [
w1

w2
]. Let us show how v can be recovered up to a global

phase from |At (nqb)v|2 using the fact that w1 and w2 can be
recovered from |At (nqb − 1)w1|2 and |At (nqb − 1)w2|2 up to
global phases using fnqb−1. We start by comparing At (nqb − 1)

to At (nqb): At (nqb − 1) = [
E∗

s1
...

E∗
s2nqb−1

] with (9) giving the values

of the strings s1, . . . , s2nqb−1. We can also notice that

At (nqb) =

⎡
⎢⎢⎢⎢⎢⎣

E∗
Zs1
...

E∗
Zs2nqb−1

E∗
X ...X

E∗
Y X ...X

⎤
⎥⎥⎥⎥⎥⎦ (11)

where Zsk is the string made up of Z followed by s1. Using
the definition of E in Sec. II D, we have

E∗
Zsk

= E∗
Z ⊗ E∗

sk
=

[
E∗

sk
0

0 E∗
sk

]
∀k. (12)

Let k be an integer ranging from 1 to 2nqb − 1. From (11) and
(12), we have

|At (nqb)v|2ik =
∣∣∣∣
[

E∗
sk

0
0 E∗

sk

][
w1

w2

]∣∣∣∣2

=
[|E∗

sk
w1|2

|E∗
sk
w2|2

]
(13)

where |At (nqb)v|2ik is the vector that contains the elements of
|At (nqb)v|2 indexed between (k − 1)d + 1 and kd . And using
the same notation for |At (nqb − 1)wl |2 with l being either 1
or 2, we have

|At (nqb − 1)wl |2ik = |E∗
sk
wl |2. (14)

From (14) and (13), we see that all the elements of
|At (nqb − 1)wl |2ik are in |At (nqb)v|2ik ∀k ∈ {1, . . . , 2nqb − 1}.
Since |At (nqb − 1)wl |2ik ∀k ∈ {1, . . . , 2nqb − 1} spans all the
vector |At (nqb − 1)wl |2 we have shown that |At (nqb − 1)wl |2

is known from part of the measurements (|At (nqb)v|2) for
l = 1 and 2. Using the induction hypothesis we can apply
fnqb−1 to the known quantities |At (nqb − 1)w1|2 and |At (nqb −
1)w2|2 in order to get w1 and w2 up to global phases. Let us
call our estimates ŵ1 and ŵ2, w1 = eiθ1ŵ1 and w2 = eiθ2ŵ2.
We now only need to know θ2 − θ1 in order to know v up to
a global phase. Let us get θ2 − θ1 from the last 2d elements
of |At (nqb)v|2. We define Lm as the column vector containing
those last 2d elements:

Lm =
∣∣∣∣
[

E∗
XX ...X

E∗
Y X ...X

][
w1

w2

]∣∣∣∣2

=
∣∣∣∣
[

E∗
X ⊗ E∗

X ...X
E∗

Y ⊗ E∗
X ...X

][
w1

w2

]∣∣∣∣2

where on the left-hand side the strings XX . . . X and Y X . . . X
have nqb characters and on the right-hand side X . . . X have
nqb − 1 characters. By replacing EX and EY by their values of
Sec. II D and calculating the tensor products, we get

Lm =
∣∣∣∣∣ 1√

2

⎡
⎢⎢⎣

E∗
X ...X w1 + E∗

X ...X w2

E∗
X ...X w1 − E∗

X ...X w2

E∗
X ...X w1 − iE∗

X ...X w2

E∗
X ...X w1 + iE∗

X ...X w2

⎤
⎥⎥⎦
∣∣∣∣∣
2

= 1
2

∣∣∣∣∣
⎡
⎢⎢⎣

E∗
X ...X ŵ1eiθ1 + E∗

X ...X ŵ2eiθ2

E∗
X ...X ŵ1eiθ1 − E∗

X ...X ŵ2eiθ2

E∗
X ...X ŵ1eiθ1 − iE∗

X ...X ŵ2eiθ2

E∗
X ...X ŵ1eiθ1 + iE∗

X ...X ŵ2eiθ2

⎤
⎥⎥⎦
∣∣∣∣∣
2

.

Let us introduce the following notations:

m = 1
2 |E∗

X ...X ŵ1|2 + 1
2 |E∗

X ...X ŵ2|2,
dc = E∗

X ...X ŵ1 ∗ E∗
X ...X ŵ2,

d(θ ) = cos(θ )Re(dc) − sin(θ )Im(dc)

(15)

where ∗ again represents the elementwise product between
two vectors and .̄ is the conjugate. ŵ1 and ŵ2 are known
quantities [from |At (nqb)v|2] so m and dc are known and d(θ )
can be computed for any θ ∈ [0, 2π ]. Let us rewrite Lm as a
function of (θ2 − θ1) using those quantities:

Lm(θ2 − θ1) =

⎡
⎢⎢⎣

m + d(θ2 − θ1)
m − d(θ2 − θ1)

m + d(θ2 − θ1 − π/2)
m − d(θ2 − θ1 − π/2)

⎤
⎥⎥⎦. (16)

We aim at deriving θ2 − θ1 from Lm (which is known from
the measurements). We first notice from the definition of d(θ )
in (15) that if dc is zero on every component then d(θ2 − θ1)
is also zero on every component (which means it does not
depend on θ2 − θ1) and Lm is simply m repeated four times
[see (16)]. Therefore recovering θ2 − θ1 (and v) from Lm is
impossible. However, we hereafter show that this is the only
case when θ2 − θ1 cannot be recovered from Lm. And the
ensemble of v which makes this occur has zero measure. Let
us assume that at least a single element of dc is not zero. Let
us call k its index, dk the corresponding nonzero element (we
take the element which has the highest modulus), and dk (θ2 −
θ1) and mk the kth elements of d(θ2 − θ1) and m, respec-
tively. Then all we need is the kth and (k + d )th elements of
Lm the expressions of which are mk + cos(θ2 − θ1)Re(dk ) −
sin(θ2 − θ1)Im(dk ) and mk + sin(θ2 − θ1)Re(dk ) + cos(θ2 −
θ1)Im(dk ). Those known elements can be put in a column
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vector and rewritten as(
Re(dk ) −Im(dk )
Im(dk ) Re(dk )

)(
cos(θ2 − θ1)
sin(θ2 − θ1)

)
. (17)

The 2 × 2 matrix on the left-hand side is known (since dk

is known) and invertible (since its determinant is |dk|2 > 0).
Therefore θ2 − θ1 can be recovered (because we have its sine
and cosine) from two elements of Lm (so two probabilities).
We could stop there and get an estimate θd of θ2 − θ1 that
is computed using two elements of Lm. But, in practice the
sample probabilities give an imperfect estimate of Lm which
we call L̂m. In order to be robust to the errors, we aim to find
the angle ̂θ2 − θ1 that minimizes ||Lm(θ2 − θ1) − L̂m||; this
way we use all sample probabilities and not just two. We use
a quasi-Newton BFGS (Broyden–Fletcher–Goldfarb–Shanno)
algorithm [21] (implemented with fminunc in the MATLAB

numerical software [22]) initialized at θd . The optimization
stops when the step is smaller than 10−30. Technically with
this optimization, the algorithm is no longer closed form but,
since it involves a single parameter, it is really fast, and
improves the performances quite significantly, so we choose
to perform it anyway. If the readers want a real closed-form
algorithm, they can use θd instead of computing ̂θ2 − θ1, or
use a closed-form optimization algorithm with a fixed number
of steps to compute ̂θ2 − θ1.

Let us now take a step back and summarize what we have
proved in this section.

(1) Recovering the state (up to a global phase) from the
measurements is possible for nqb = 1.

(2) Assuming it is possible for nqb − 1 we showed it is
also possible for nqb unless the state is in an ensemble of zero
measure.

Using those previous two results, we can construct a recur-
sive algorithm that recovers v from the measurements. It will
work except on the union of a finite number of failure sets
of zero measure which would also be of zero measure. The
estimate given by this recursive algorithm will be called v̂rec.

C. Discussion about the number of probabilities used

The recursive algorithm of the previous section calls itself
twice for each reduction of the number of qubits by one.
This means that for nqb, it is called once with nqb qubits,
twice with nqb − 1 qubits,..., 2nqb−1 times with one qubit. For
one qubit, the state is recovered using (10) which involves
six probabilities, among which only four are required [we
could obtain the same result without using the fourth and
sixth elements of |At(1)v|2]. For q > 1 qubit, before calling
the recursive function with one fewer qubit, we compute
θ2 − θ1 using (16). This involves 2 × 2q probabilities among
which only two are strictly required for the first estimate θd .
The minimum number of needed probabilities is 4 × 2nqb−1 +
2
∑nqb

q=2 2nqb−q = 2d + 2(2nqb−1 − 1) = 3d − 2. Furthermore,
if we take into account the fact that v has unit norm, then
one of the probabilities along the Z axis (which are all used)
becomes redundant, and this number becomes 3(d − 1). In
practice all probabilities are used in order to minimize the
impact of the statistical errors on the probabilities. But if we
wanted to remove rows from At in (9) and only keep 3(d − 1)
of them, we could still achieve QST. However, this is a bad

idea because we would no longer have a concatenation of
d-outcome parallel measurements. And in practice the final
estimate of the state would be less robust to the errors on
the sample probabilities and the quantum setup would not be
any easier to put in place, as the estimation of the 3(d − 1)
probabilities to be kept requires all 2nqb + 1 measurements to
be performed anyway.

D. Comparison with the literature

Let us sum up the main features of our second QST algo-
rithm.

(1) It uses (2nqb + 1)d probabilities that can be obtained
by averaging the results of 2nqb + 1 parallel unentangled mea-
surements.

(2) The measurements are injective outside a known fail-
ure set with zero measure.

(3) The algorithm that reconstructs the state is
explicit.

Those features are very similar to those of Goyeneche et al.
[15]. The advantage of our method is that the measurements it
uses are unentangled. Its drawback is that it requires 2nqb + 1
measurements which is more than 4 (except for the trivial
case nqb = 1). That is the price to pay for using only unentan-
gled measurements. We could not find a simple closed-form
algorithm that works with fewer types of unentangled mea-
surements. The more general compressed sensing approach
of [4] requires O[rd log(d )2] probabilities to estimate the state
where r, the rank of the density matrix, is 1 in the case of a
pure state. Those probabilities could be obtained by averaging
the results of O[log(d )2] different unentangled measurements.
We do better here since we only use 2nqb + 1 = O[log(d )]
measurements. We also have the advantage of providing a
closed-form algorithm contrary to the method of [4] which is
very general (it works for mixed states and any kind of mea-
surement), but uses an optimization algorithm and provides no
proof of injectivity.

V. LIKELIHOOD MAXIMIZATION

A. Main idea

Sections III and IV give us estimates of the state v, denoted
as v̂pc and v̂rec, respectively. v̂pc is the solution of the QST
problem with one constraint [rank(U) = 1] relaxed, so it can
be inaccurate even in the absence of errors in the sample
probabilities. The algorithm of Sec. IV B that computes v̂rec

is also imperfect. It relies heavily on the measurements along
Z . . . Z , Z . . . ZX and Z . . . ZY (used 2nqb−1 times for one qubit
at the end of the recursive tree to compute all the moduli and
half the phases differences) and it almost does not use the
measurements along X . . . X and Y X . . . X [used only once
to compute one phase difference (θ2 − θ1) with (16)]. Each of
those last two measurements contains as much information on
v as the measurements along Z . . . Z , but the former are barely
used. Therefore the estimation methods of Secs. III and IV are
hereafter supplemented by a final tuning to make them more
precise. To this end, we take a maximum likelihood (ML)
approach:

(̂x, ŷ) = arg min
x,y s.t. ||x||2+||y||2<1

L(x,y) (̂p) (18)
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where p̂ is the vector that contains sample probabilities and
L(x,y) (̂p) is to be understood as the negative log likelihood of
measuring the sample probabilities p̂ if the true state is v(x, y),
with x and y defined hereafter. In the whole paper, whenever
we write “negative log likelihood” (or L ) we mean “opposite
of the log likelihood up to additive and positive multiplicative
constants.” These constants will not matter as the negative log
likelihood will be minimized. The vector v(x, y) with respect
to which L will be minimized is defined as [0.9]v(x, y) =
[
√

1 − ||x||22 − ||y||22, x1 + iy1, . . . , xd−1 + iyd−1]T . x and y
are d − 1 element vectors representing the real and imagi-
nary parts of the last elements of v. The constraint in (18)
is r2 < 1 (with r =

√
||x||22 + ||y||22) and not r2 � 1 because

optimization is easier on an open set. We mitigate the effect
of this imperfect constraint by permuting the first component
of v and the component of v with the highest modulus at the
initial point of the optimization. Thus, we ensure that r2 is not
going to be close to 1 unless the initial point was way off. The
sample probabilities and the columns of A are permuted in
the same way. Those changes are limited to the optimization
algorithm.

Since the optimization set is open we can change the vari-
ables in order to remove the constraint altogether:

x′ = tan
(

π
2 r

)
r

x and x =
2
π

atan(r′)
r′ x′,

y′ = tan
(

π
2 r

)
r

y and y =
2
π

atan(r′)
r′ y′

(with r′ =
√

||x′||22 + ||y′||22). The new optimization problem

on x′and y′ does not have any constraint, as when r′ spans the
whole space r remains strictly lower than 1. Equation (18) is
therefore replaced by

(x̂′, ŷ′) = arg min
x′,y′

L(x′,y′ ) (̂p). (19)

In order to solve (19) we again use the BFGS [21] algorithm
where the analytical expressions of the gradients are provided.
The algorithm stops when the norm of the optimization step
is smaller than 10−30. Like in most nonconvex optimization
methods, we need a good initialization point, and we use
either v̂pc or v̂rec. The most likely v is v̂ML = v(x̂′, ŷ′), with
x̂′, ŷ′ defined in (19). All that remains now is to define the
expression of the negative log likelihood L with respect to v.
In the following two subsections we will give two expressions
for the normalized log likelihood: L exact

(x′,y′ ) (̂p) and L Gauss
(x′,y′ ) (̂p).

B. Exact likelihood

In [23] the formula for the likelihood of a multioutput
quantum measurement is given (albeit for a mixed state repre-
sented by ρ which we would have to replace by vv∗). It boils
down to

L exact
(x′,y′ ) (̂p) = −

nprob∑
k=1

nkln{[|Av(x′, y′)|2]k}. (20)

[|Av(x′, y′)|2]k is the kth element of |Av(x′, y′)|2, A is the
measurement matrix, either As or At ; nk is the number of times
the kth outcome occurred, i.e., the kth element of p̂ (either p̂s

or p̂t ) multiplied by the number of times the measurement is
repeated; and nprob is the number of rows of A. In order to get
to this result we must consider the measurement counts as the
realizations of a multinomial random variable. This is not an
approximation; this is why we call this likelihood “exact.”

C. Gaussian approximation

In this subsection, we use the central limit theorem to
approximate the scaled sample probabilities as the realiza-
tion of a multivariate normal distribution. It is appropriate
as the vector p̂ the likelihood of which we want to compute
is the average of independent realizations of the same ran-
dom variable. Its expected value is the vector of theoretical
probabilities p(x′, y′) that depends on the state. Let us define
ε(̂p, x′, y′) = p̂ − p(x′, y′) and ε(̂p, x′, y′) is ε(̂p, x′, y′) with
the last element removed [no information is lost as the sum
of the elements of ε(̂p, x′, y′) is zero]. In Appendix A, we
show that if N is the number of times the measurements
have been averaged, then

√
Nε(̂p, x′, y′) asymptotically (N →

+∞) follows a zero-mean multivariate normal distribution. Its
covariance matrix � is computed in Appendix A. � depends
on the theoretical probabilities, and we need to remove this
dependency. With that in mind, we get to the following ap-
proximation for the negative log likelihood:

L Gauss
(x′,y′ ) (̂p) = Nε(̂p, x′, y′)T �̃−1ε(̂p, x′, y′) (21)

where �̃−1 is an approximation of the covariance matrix that

uses p̃ = p̂+ 5
N

1+ 5d
N

as a regularized approximation of p; this is

justified in Appendix A. Appendix A also shows that this
equation boils down to

L Gauss
(x′,y′ ) (̂p) = N

d∑
k=1

εk (̂p, x′, y′)2

p̃k
. (22)

This log likelihood is the result of two approximations that
are true only when N → +∞: we approximated ε(̂p, x′, y′)
as the realization of a Gaussian random vector and we used an
approximation for �. In practice, the resulting approximation
is smoother and easier to minimize than L exact

(x′,y′ ) (̂p) if the
initialization point is not good enough (as will be shown in
Sec. VI C). However, with a good initialization, the state that
minimizes L exact

(x′,y′ ) (̂p) should be closer to the true state than the
one that minimizes L Gauss

(x′,y′ ) (̂p). The smaller N , the starker the
difference. This will be shown in Sec. VI B.

D. Mixed minimization

As stated above L Gauss
(x′,y′ ) is supposed to be easier to mini-

mize but the minimum of L exact
(x′,y′ ) is supposed to be a better

estimate. A good way to combine the two advantages is to start
the optimization process by minimizing L Gauss

(x′,y′ ) and finish
it by minimizing L exact

(x′,y′ ). In practice, we here again run the
BFGS algorithm [21] on L Gauss

(x′,y′ ) for 100 iterations starting
from the initialization point of Secs. III or IV; this yields
v̂inter. And then we run the BFGS algorithm on L exact

(x′,y′ ) starting
from v̂inter and stopping only once a local (hopefully global)
minimum has been found.
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VI. NUMERICAL RESULTS

A. Performances of the two initialization algorithms

Sections III and IV detail two methods to perform QST
which are used for initialization of ML algorithms. The cur-
rent section aims at estimating the precision of those methods
and comparing them whenever possible. The recursive algo-
rithm of Sec. IV only works for a specific set of measurement
types but is explicit and does not require an undefined number
of iterations to converge, contrary to PhaseCut defined in
Sec. III. We only explained PhaseCut for the setup with four
different measurement types described in Sec. III A, but it can
be applied to any types of measurements. In particular we
could apply it to the setup with 2nqb + 1 measurement types
of Sec. IV A. In the current section, we test both PhaseCut and
the recursive algorithm on 50 randomly generated seven-qubit
pure states. Each real and imaginary part of each compo-
nent of the state vector is set to a Gaussian pseudorandom
number before the vector gets normalized. The two sets of
measurement types of Secs. III A and IV A are considered.
They contain, respectively, 4 and 2 × 7 + 1 = 15 measure-
ment types. We test those algorithms with two different fixed
numbers of total measurements NC : 5000 and 500 000. Thus
each one of the four measurement types of the setup of
Sec. III A is performed either NC = 1250 or 125 000 times
and each one of the 15 measurement types of the setup of
Sec. III A is performed either NC = 333 or 33 333 times. The
metric used in order to quantify the proximity of v̂ to the actual
vector v up to a phase factor is

μ = ||v − v̂ · e−iξ ||2 (23)

with ξ the angle that minimizes our metric: eiξ = v∗v̂
|v∗v̂| . We call

μ this error in the rest of the paper. μ is maximal for orthogo-
nal states (it is then

√
2), and minimal for states that differ by

a global phase (it is then zero). A more widely used metric in
the literature is the fidelity (see Sec. 9.2.2 in [1]) f = |v∗̂v|. It
can be shown that f = (1 − μ2

2 ). We do not use the fidelity be-
cause the small errors are pushed too close to 1. We also think
our metric is more intuitive, because μ is the norm of the error
between two unit-norm vectors, and the meaning of μ = 0.10
is clearer than f = 0.995. Figure 1 shows the error of v̂pc

obtained by using PhaseCut with 100 to 100 000 iterations for
the two setups (4 and 15 measurement types). With 15 (and
not with four) measurement types, the recursive algorithm can
be implemented. We display the biggest and smallest errors
of v̂rec obtained with the recursive algorithm with horizontal
bold red (upper) and green (lower) lines, respectively. The
recursive algorithm is performed with a fixed number of steps;
this is why we plot its errors as horizontal lines and not as
curves with respect to a number of iterations. The aim of
this simulation is to see how many iterations of PhaseCut are
required to get a good estimate of the state and to compare
the performances of the recursive algorithm with those of the
more versatile PhaseCut. With enough iterations (≈104 for
Nc = 5000 and ≈105 for Nc = 500 000) PhaseCut is more
precise than the recursive algorithm in the setups for which
they can both be implemented, but, as will now be shown, it
is much slower. Each iteration of PhaseCut is costly, because
we are working on an nprob × nprob matrix. With MATLAB, on
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FIG. 1. Estimation errors [defined in (23)] of the initialization
algorithms. The bold red (upper) and green (lower) horizontal lines
are the worst and best errors for the recursive algorithm (only avail-
able with 15 measurement types) on the 50 randomly generated pure
states. The other curves represent the evolution of the error on the
PhaseCut estimates with the 50 states. Each iteration of PhaseCut is
costly. In Sec. VI C, we set its number of iterations to 5000; we also
decide to use the recursive algorithm whenever possible.

a 2.11-GHz four-core processor with a 32-GB RAM, each
iteration of PhaseCut takes around 4 ms for the setup with four
types of measurements and around 45 ms for the setup with
15 types of measurements. In that same 15 measurement type
of setup, the recursive algorithm takes 200 ms. This is much
faster than PhaseCut, which runs in minutes, as it requires
thousands of iterations.

B. Likelihood estimator comparison

In Sec. V we defined two likelihood estimators, based
on the likelihood maximization. The first one minimizes the
true negative log likelihood L exact

(x′,y′ ) and the other minimizes
a version of the negative log likelihood that is supposed to be
smoother, namely, L Gauss

(x′,y′ ) . We know that L Gauss
(x′,y′ ) is an approx-

imation of the likelihood that is accurate only if the number of
measurements per measurement type is high enough. There-
fore we expect the global minimum of L Gauss

(x′,y′ ) to be a worse
estimator than the global minimum of L exact

(x′,y′ ) for a limited
number of measurements. In order to check whether this is
true and quantify the difference, we compute the errors of both
estimators when they are initialized at the true state v. Doing
this ignores the error on the initialization point (to which the
regularized Gaussian estimate is supposed to be robust). We
also compute the error for the mixed algorithm which starts by
minimizing L Gauss

(x′,y′ ) and then minimizes L exact
(x′,y′ ). These three

types of errors are computed with 1000 randomly generated
initial states for the four setups described in Sec. VI A with 4
or 15 measurement types and 5000 or 500 000 total measure-
ments. For each of the four setups, the empirical cumulative
density function (empirical cdf) is derived from the 1000
errors associated with the initial states; those cdf are shown
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FIG. 2. Empirical cdf of the errors of the three maximum likeli-
hood estimators.

in Fig. 2. As predicted, the error is larger with the Gaussian
estimate of the likelihood, and the difference decreases when
the number of measurements per measurement type increases.
The performance of the mixed minimization algorithm is
very close to that of the estimator that minimizes L exact

(x′,y′ ).
There can be small differences however. Its turns out that
they sometimes converge toward close but different minima.
This is due to the fact that the small error made by the first
100 iterations of the mixed algorithm (during which L Gauss

(x′,y′ )
is minimized) can be enough to affect the final result. The
differences between the three estimators are only noticeable
for Nc = 5000 with 15 and 4 different measurements (so 333
or 1250 measurements per measurement type).

C. Convergence of the likelihood estimators

In the current section, we intend to see what precision on
the initial state is required to make sure that the likelihood op-
timization algorithm converges towards a reasonable solution,
and we compare the robustness of the three ML estimates.
We compare the rates of divergence (denoted as δ and defined
below) of the algorithms that minimize L exact

(x′,y′ ) and L Gauss
(x′,y′ )

as well as the mixed algorithm. We randomly generate 1000
states v to be estimated (with the same method as the one used
to generate the 50 initial states of Sec. VI A). They are con-
sidered with 1000 associated initial states of ML algorithms
that have an initialization error μ linearly varied from 0 to√

2 (as stated above
√

2 is the highest possible value for μ; it
is reached if the two states are orthogonal). Let us denote as
{μi}i∈{1,...,1000} the 1000 values of this initial error on states
v and define {balgo

i , i � 1000, algo ∈ {exact, Gauss, mixed}}
where balgo

i is −1 if the algo algorithm converges towards the
same minimum with the μi initialization error and with no
error and +1 if it converges toward a different minimum. We
say that those two minima are the same if the error μ between
them is smaller than 1% of the error between the first one
(initialized without error) and the true state vector. For each
of the three algorithms, we then define the rate of divergence

0 0.25 0.5 0.75 1 1.5
10-4

10-3

10-2

10-1

100

0 0.25 0.5 0.75 1 1.5
10-4

10-3

10-2

10-1

100

0 0.25 0.5 0.75 1 1.5
10-4

10-3

10-2

10-1

100

0 0.25 0.5 0.75 1 1.5
10-4

10-3

10-2

10-1

100

FIG. 3. Convergence of the different likelihood algorithms in the
presence of initialization errors.

δalgo(μ) associated with a given error μ. It takes all the balgo
i

into account but gives more weight to those for which the
associated μi is close to μ:

δalgo(μ) = 1

2

⎛
⎜⎝1 +

∑1000
i=1 balgo

i e−
(

μ−μi
α

)2

∑1000
i=1 e−

(
μ−μi

α

)2

⎞
⎟⎠.

Simply put, if the majority of μi in the vicinity of μ are
associated with balgo

i equal to −1 (i.e., the algorithm converges
towards the proper minimum with initialization errors around
μ) then δalgo(μ) will be close to zero. If the associated balgo

i
are 1 (i.e., the algorithm does not converge towards the proper
minimum) then δalgo(μ) will be close to 1. The parameter
α quantifies how far away from μ we look for results; we
selected α = 0.1. Figure 3 shows the rates of divergence of
the three algorithms in the four setups described in Sec. VI A
with 4 or 15 measurement types and 5000 or 500 000 total
measurements. The two plots on the right are of limited inter-
est to us as the rate of divergence is always very low (� 10−4)
for errors lower than 0.75. We are mostly interested in the
rates of divergence for initialization errors μ smaller than 0.75
because, according to Fig. 1, the recursive algorithm always
yields an estimate that corresponds to an error lower than 0.75
and PhaseCut also does so quite quickly (for more than 5000
iterations) for every setup. For those errors (in the two plots
on the left), the best algorithm seems to be the minimization
of L Gauss

(x′,y′ ) . Indeed increased robustness to the initialization
error is the whole reason why we introduced L Gauss

(x′,y′ ) . The
mixed algorithm does not quite reach the same robustness
but it is certainly an improvement over the algorithm that
minimizes L exact

(x′,y′ ) which has the worst performances for the
relevant initialization errors. We should note that the name
given to δ, “rate of divergence”, is a bit severe as the likelihood
algorithms never diverge in practice; they simply converge
toward a false local minimum that is sometimes close to the
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FIG. 4. Empirical cdf of the QST error. In the four plots of the top row, L exact
(x′,y′ ) is minimized. For the middle row, it is L Gauss

(x′,y′ ) . The lowest
row corresponds to the mixed algorithm. The blue solid curve (the one on the right in every plot) is the cdf of the error of the initialization
algorithm (PhaseCut for four measurement types and the recursive algorithm for 15 measurement types); it does not depend on the likelihood
maximization algorithm and is the same in every row. The legends of the second and fourth columns are not displayed in order to keep the
curves visible; they would be the same as the legends of the first and third columns, respectively.

real global minimum. The rate of divergence δ is not useless
however, and Fig. 3 shows us that, generally, with either the
mixed algorithm or the algorithm that minimizes L Gauss

(x′,y′ ) , an
initialization error lower than 0.75 leads to proper conver-
gence towards the real minimum. According to Fig. 1, 5000
iterations of PhaseCut as well as the recursive algorithm gen-
erally yield an error smaller than 0.75. Therefore we choose
to use the recursive algorithm when it is possible, i.e., with
the setup of Sec. IV with 15 types of measurements for seven
qubits (because it is faster than PhaseCut) and when PhaseCut
has to be used (so with four measurement types) we only
perform 5000 iterations. We could let PhaseCut run longer but
our implementation of the ML algorithm is faster.

D. Global performances

This section aims to test the algorithms of Secs. III and
IV, fine tuned with the three algorithms of Sec. V on nqb = 7
qubits, with the four setups described in Sec. VI A. For each
setup, and for each version of the ML algorithm, four esti-
mates of v are computed.

(1) The initial estimate has v̂pc for the setup with four
measurement types or v̂rec for the setup with 15 measurement
types. It does not depend on the choice of the ML algorithm.

(2) v̂ML is the result of the likelihood optimization
(minimizing either L exact

(x′,y′ ) or L Gauss
(x′,y′ ) or both successively)

initialized at the initial estimate.
(3) v̂ref is the result of the likelihood optimization ini-

tialized at the true v (not available in practice; it should be
the global maximum likelihood; if v̂ML = v̂ref then the initial

estimate was good enough). We call v̂ref the reference; it
has already been defined (but not named) in Sec. VI B and
represented in Fig. 2.

(4) Finally, v̂rnd is the result of the likelihood optimization
initialized at a randomly generated normalized vector (if v̂rnd

is not worse than v̂ML, then the initial estimate was unneces-
sary and one can only use the maximum likelihood algorithm
initialized randomly).

For each setup, 1000 states v to be estimated are randomly
generated (with the same method as the one used to generate
the 50 initial states of Sec. VI A). We compute the estimates of
each v with the different algorithms and display the empirical
cdf of the errors in Fig. 4 (each row of plots corresponds
to a different ML algorithm). The performances of the three
ML algorithms are quite similar (when excluding the random
initialization), but some differences can be noted.

(1) The algorithm that minimizes L exact
(x′,y′ ) is supposed to

be less robust to the initialization error than the others. It is
only apparent for the setup with four measurements and Nc =
5000. v̂ML is not quite as precise as v̂ref .

(2) The algorithm that minimizes L Gauss
(x′,y′ ) does not have

that problem; v̂ML and v̂ref are always indistinguishable. How-
ever, the version of v̂ref computed by minimizing L Gauss

(x′,y′ ) is
not as precise as the version that minimizes L exact

(x′,y′ ). This can
be seen by comparing Figs. 4 and 5 but it is more visible in
Fig. 2 that represents the performances of the three references
in a single graph.

(3) The mixed algorithm seems to combine the advantages
of those based on L Gauss

(x′,y′ ) and L exact
(x′,y′ ). v̂ML is almost equal to

v̂ref , and v̂ref is almost as good with this mixed algorithm as
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FIG. 5. Empirical cdf of the error of v̂ML computed with the
mixed algorithm. The input states are mixed states. The curves with
the smaller p0 are on the left; those with the highest p0 are on the
right.

with L exact
(x′,y′ ) (see Fig. 2 for a clearer comparison of the two

values of v̂ref ).
The performances of v̂rnd, the maximum likelihood estima-

tors initialized at a random point, are interesting. For the setup
with four measurement types, it is always a much worse esti-
mate than v̂ML. But with 15 measurement types it is (almost)
as good as the maximum likelihood estimators initialized at
v̂rec (unless we use the L Gauss

(x′,y′ ) minimization). This could make
us question the relevance of the recursive algorithm defined in
Sec. IV. It would seem that the structure of the measurement
matrix At is such that the gradient descent algorithm naturally
converges towards the global minimum from any initial point.
However, the recursive algorithm is still useful because it
is very fast and speeds up the likelihood maximization (see
Table II). We can also compare the performances of the two
initialization algorithms v̂pc or v̂rec (blue solid curve) with v̂ML

(red dashed curve). The error on v̂ML is at least three times
smaller (or a lot less for v̂pc and Nc = 500 000) than that of
the initialization algorithms. This shows that the fine tuning
with ML is very useful to reduce the error. Comparing the

TABLE I. Execution time for the setups with four measurement
types.

Nc = 5000 (s) Nc = 500 000 (s)

PhaseCut 16.9 17.4
L exact

(x′,y′ ) min. from v̂pc 11.4 8.3
L exact

(x′,y′ ) min., random init. 22 24.7
L Gauss

(x′,y′ ) min. from v̂pc 8.1 5.2
L Gauss

(x′,y′ ) min., random init. 16.6 21.3
Mixed algo. from v̂pc 6.8 4.7
Mixed algo., random init. 10.6 12.8

precision of the initialization algorithm with v̂rnd is unwise
because v̂pc and v̂rec can be improved with the ML algorithm
whereas v̂rnd cannot as it is a local minimum of the likelihood.
Furthermore, with Nc = 5000, v̂pc and v̂rec have a similar
accuracy (respectively for 4 and 15 measurement types). And
with Nc = 500 000, v̂rec is a much better estimate than v̂pc

because the PhaseCut algorithm is limited to 5000 iterations
(allowing it enough iterations to converge properly would be
much slower and less accurate than the likelihood maximiza-
tion). After likelihood optimization the performances of v̂ML

with 15 and 4 measurement types are comparable (with the
mixed algorithm, the 15 measurement setup is slightly better).
Also the final error is roughly ten times smaller when the
number of measurements is multiplied by 100. This means
that for more than 5000 measurements one can extrapolate
the error (and therefore its cdf), as the error is proportional to
N−1/2

c . The fact that the recursive algorithm used to compute
v̂rec has a zero measure failure set on which phase recovery is
impossible (see Sec. IV) turns out to be a nonissue. We could
have expected to see some outliers in the error of v̂rec, and
the v̂ML computed from it, if the randomly generated v was
close enough to the failure set. It is not the case: Each one of
the 1000 initial states has been successfully recovered with a
reasonable error. The same is true when using PhaseCut with
the setup with four measurement types. Even though we were
not able to prove the injectivity, the QST goes well in practice
and there are no outliers in the error if the proper algorithms
are used. Tables I and II give the median execution time of
all the algorithms on an Intel Xeon Gold 6226R 2.9-GHz
core. All the scripts ran on one thread on MATLAB. There
are no significant differences between the three ML algo-
rithms when they are not initialized at random. The random
initialization is never relevant, as for the four measurement

TABLE II. Execution time for the setups with 15 measurement
types.

Nc = 5000 (s) Nc = 500 000 (s)

Recursive algorithm 0.17 0.17
L exact

(x′,y′ ) min. from v̂rec 44.4 10.9
L exact

(x′,y′ ) min., random init. 272 94.4
L Gauss

(x′,y′ ) min. from v̂rec 38.8 16.7
L Gauss

(x′,y′ ) min., random init. 84.9 126.7
Mixed algo. from v̂rec 47.8 26.1
Mixed algo., random init. 62 38.4
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type of setup it is relatively fast (as it spares us the initial-
ization step with PhaseCut) but inaccurate, and for the setup
with 15 measurement types it is always slower (sometimes
much slower) than the likelihood maximization with proper
initialization. In conclusion, we recommend using the mixed
algorithm for the likelihood, since it is a good compromise be-
tween the L Gauss

(x′,y′ ) minimization and the L exact
(x′,y′ ) minimization.

The choice between the setup with four types of measure-
ments and the setup with 2nqb + 1 types of measurements
is less obvious. The first one is obviously simpler for the
operator and the likelihood optimization is faster (see Tables I
and II) but the following are true. (1) It yields a slightly less
precise result. The median error with the mixed algorithm and
Nc = 5000 is 0.22 versus 0.19 with 15 measurement types.
(2) We have no closed-form algorithm that retrieves the state
from the measurements. We must rely on PhaseCut which is
unprecise. PhaseCut is also slow but the time gained during
the mixed ML algorithm more than makes up for it (see
Tables I and II). (3) We explained (in Sec. III B) why we
think the measurements are injective, and in practice all 1000
tested states were recovered, but we were unable to prove the
injectivity so far.

E. Mixed states

In the current section, we test our algorithms on mixed
states. All the algorithms are designed for pure states and
return pure states as estimates. We will not change that but
we will use mixed states that are close to pure to generate the
measurements. The generated states are of rank 5 (arbitrary);
the Hermitian matrix that represents the mixed state is

ρ = p0v0v
∗
0 +

4∑
k=1

pkvkv
∗
k (24)

where p0 is the highest eigenvalue of ρ. The higher p0 is, the
closer ρ is from being pure. v0 is the associated state, and
v1,..., v4 are chosen so that v0,..., v4 are all orthogonal to one
another. If we wanted to approximate ρ with a pure state,
v0 would be the best (highest fidelity) approximation. We
will judge the performances of our estimators by how close
they are to v0. The error is μ = ||v0 − v̂.e−iξ ||2 with ξ that
minimizes the metric, like with (23). With this definition, the
link between μ and the fidelity f established in Sec. VI A no
longer holds ( f �= 1 − μ2

2 ). We perform simulations with ten
different values of p0: {1 − 0.325 × ( 2

3 )k}k∈{0,...,9} (see these
values in Fig. 5). Those values are chosen in order to see to
what extent the error varies linearly with respect to 1 − p0:
Fig. 5 displays the cdf of the error with a logarithmic scale on
the x axis, and if the cdf is shifted by a constant interval (in
log scale) when 1 − p0 is multiplied by 2

3 , this means that the
relationship between the error and 1 − p0 is linear. For each
value of p0, 100 vectors v0, . . . , v4 are randomly generated
by applying the Gram-Schmidt transformation to five random
(the real and imaginary parts of each component are indepen-
dent centered unit-variance Gaussian) complex d-dimensional
vectors. The values of p1, . . . , p4 are chosen randomly (uni-
form distribution between 0 and 1) and then normalized so that
ρ has a unit trace. We continue to simulate a finite number of
measurements, which create an error, but we choose the higher

value of Nc, Nc = 500 000. We only use the mixed algorithm
(with such a high Nc, all three likelihood algorithms yield
similar performances anyway). Figure 5 displays the cdf of
the error for the two setups with the ten different values of p0.

The approach based on our original method introduced in
Sec. IV, that uses 15 measurement types, is a lot more resilient
to mixed states than the approach based on the PhaseCut
algorithm proposed in the literature (see Sec. III), that uses
four measurement types: For p0 = 0.9506, for example, the
median of the error is 0.042 with 15 measurement types and
0.072 with four measurements. The error seems to vary fairly
linearly with respect to 1 − p0 except for p0 close to 1 because
for those values, the “regular” error due to the finite number of
measurements becomes more important. We also see nonlin-
earity for the setup with four measurement types: It starts with
the green curve (p0 = 0.8889) which has a slightly heavier tail
than the other cdf (associated with smaller p0). It gets more
noticeable with the yellow curve (p0 = 0.8333). The orange
and red curves (rightmost two curves) have different shapes
and slopes as compared to the curves on the left. We do not
see any of these nonlinearities with the 15 measurement type
of setup, but we would see them with smaller p0.

VII. CONCLUSION AND FUTURE WORK

In this paper we first showed how some of the work made
in the applied mathematics community in the field of phase
recovery can be used to define a set of four types of d-outcome
measurements that should be enough to achieve QST for
any pure state using the PhaseCut optimization algorithm.
We also proposed a set of (2nqb + 1) types of d-outcome
measurements as well as a recursive algorithm which allows
explicit reconstruction of the state (nqb is the number of qubits,
d = 2nqb). Experimentally, they both give similar perfor-
mances with pure states when the total number of measure-
ments is the same (slight advantage for the second set of
measurements). The first set is easier to set up and the second
set is more theoretically sound and works better with states
that are not quite pure. The initial estimates of the consid-
ered state are then fined tuned with the maximum likelihood
approach that is widely used in the quantum information
processing literature. We introduced some refinements which
make it more robust by considering a smooth and easy way
to maximize an approximation of the likelihood. We intend to
use those QST methods to perform QPT like in [24]. In [24]
we introduced a QPT method that relies on measuring the state
of the system after different time delays. At each time delay,
we have to perform QST.

APPENDIX A: COVARIANCE MATRIX AND LIKELIHOOD
OF THE ERROR ON THE SAMPLE PROBABILITIES

1. Covariance matrix

Appendix A aims at computing the asymptotic law of√
Nε = √

N (̂p − p) defined in Sec. V C and at simplify-
ing the expression of the likelihood of ε. We consider that
p contains the probabilities of a single type of d-outcome
measurement. The generalization is straightforward as the
errors on different measurements are independent (see Ap-
pendix A 3). The only random vector in ε is p̂ defined as the
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vector that contains the sample probabilities of each of the d
outcomes. So p̂ = 1

N n where each component ni of n contains
the number of times the ith outcome occurred. By defini-
tion n follows a multinomial distribution characterized by the
number of trials N and the theoretical probabilities of each
outcome contained in p. The expected value and covariance
matrix of the multinomial distribution are known: E (n) = N p
and Cov(n) = N[diag(p) − ppT ]. We want to use the central
limit theorem so let us write n as a sum: n = ∑N

k=1 δk where
the {δk}k are independent and have the same distribution for
different k. δk contains d − 1 zeros and one 1 at a random in-
dex ik ∈ {1, . . . , N} the density function of which is j −→ pj

(i.e., the probability that ik takes the value j ∈ {1, . . . , N} is
p j , the jth element of p). δk follows a multinomial distribution
with a N = 1 trial. Its expected value is therefore p and its
covariance matrix is diag(p) − ppT . Therefore ε is the differ-
ence between the empirical average of δk with N realizations
and its expected value. According to the central limit theorem,
when N → +∞, the distribution of

√
Nε tends to a centered

multivariate normal distribution, and its covariance matrix is
�full = diag(p) − ppT . �̂full is an estimate of �full; it uses
p̂ as we do not want to depend on the unknown vector p:
�̂full = diag(̂p) − p̂̂pT .

2. Likelihood

The easiest way to compute the likelihood of a vector that
follows a multivariate normal distribution requires us to invert
the covariance matrix [25]. If the covariance matrix is not
invertible, then it is not of full rank; this means that at least one
component of the random vector is linearly dependent on the
others and therefore it is not needed to compute the likelihood.
Those components can be removed and the likelihood of the
smaller vector is the same as the likelihood of the original vec-
tor. In our case, the components of

√
Nε sum to zero, therefore

its covariance matrix is not invertible and any component
can be removed without losing any information that could be
used to compute the likelihood. Let us consider

√
Nε; it is

the same vector as
√

Nε with the last component removed,
and thus its covariance matrix is the same with the last row
and column removed: � = diag(p) − ppT (p is p with the
last element removed). It can be estimated with the sample

probabilities p̂ = (
p̂1
...

p̂d−1

) instead of p. The resulting matrix is

�̂ = diag(̂p) − p̂̂pT . Straightforward calculations show that if

no element of p̂ = (
p̂1
...

p̂d

) (with p̂d = 1 − ∑d−1
k=1 p̂k) is zero, then

�̂ is invertible and

�̂−1 = 1

p̂d
1 + diag(1/̂p) (A1)

is its inverse. We have 1/̂p as the elementwise inverse of p̂
and 1 is the d − 1 × d − 1 matrix with only ones. In practice,
elements of p̂ can be zeros, which would make the matrix
singular. In order to overcome this difficulty and avoid giving
too much importance to the errors on the scarcely observed
outcomes, we modify the sample probability and create a new

vector p̃:

p̃ = p̂ + 5
N

1 + 5d
N

. (A2)

This means that we consider that each outcome has been
observed five more times than it actually was, and the total
number of observations changes from N to N + 5d (the choice
of 5 is arbitrary). This is a standard method to make a criterion
smoother (see [26]). The resulting estimate of the inverse of
the covariance matrix is

�̃−1 = 1

p̃d
1 + diag(1/̃p). (A3)

With the inverse of �̃ and knowing that the distribution is nor-
mal and centered, we can compute the negative log likelihood
of the vector (see [25]):

L Gauss
(x′,y′ ) (̂p) = Nε(̂p, x′, y′)T �̃−1ε(̂p, x′, y′). (A4)

We use p̂ and not p̃ to compute ε, otherwise the estimator that
minimizes the criterion would become biased (as the mini-
mum of L Gauss

(x′,y′ ) would fit p̃ which does not contain the actual
sample probabilities) and the criterion would not be smoother.
Let us simplify this expression using (A3) and the fact that∑

k εk = 0 ⇒ εd = −∑d−1
k=1 εk:

NεT �̃−1ε = NεT

⎛
⎜⎜⎝

1
p̃d

∑d−1
k=1 εk + ε1

p̃1
...

1
p̃d

∑d−1
k=1 εk + εd−1

p̃d−1

⎞
⎟⎟⎠

= NεT

⎛
⎜⎝

ε1
p̃1

− εd
p̃d

...
εd−1

p̃d−1
− εd

p̃d

⎞
⎟⎠

= N
(∑d−1

k=1
ε2

k
p̃k

− εd
p̃d

∑d−1
k=1 εk

)
= N

∑d
k=1

ε2
k

p̃k
.

Therefore, the expression of the negative log likelihood is

L Gauss
(x′,y′ ) (̂p) = N

d∑
k=1

εk (̂p, x′, y′)2

p̃k
. (A5)

3. Extension to several d-outcome measurements

Since the beginning of the Appendix we assumed that
only one type of measurement with d outcomes was per-
formed. In practice the methods we describe require either
four (in Sec. III) or 2nqb + 1 (in Sec. IV) types of mea-
surements. The errors between the empirical and theoretical
probabilities of different measurements are independent.
Therefore if ε(̂p, x′, y′) contains nt > 1 types of measure-
ments and dnt real components, then its covariance matrix is
a block-diagonal matrix with the covariance matrix of each
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measurement type on the diagonal (because the measurement
errors on two different measurement types are independent).
And the same goes for the inverse of its regularized covariance
matrix:

�̃−1 =

⎡
⎢⎣�̃−1

1
. . .

�̃−1
nt

⎤
⎥⎦. (A6)

Each �̃−1
k is the regularized inverse of the covariance matrix

for one measurement type defined in (A3). The negative log
likelihood of ε(̂p, x′, y′) containing nprob = nt d measurements
errors on nt types of measurements is the sum of the nt nega-
tive log likelihoods of the error vectors of each measurement
type:

L Gauss
(x′,y′ ) (̂p) = N

nprob∑
k=1

εk (̂p, x′, y′)2

p̃k
. (A7)

APPENDIX B: PHASECUT ALGORITHM

Input: Matrix M of Sec. III C

1: U0 = Id , Nrun = 5000
2: for j = 1, . . . , Nrun

3: Uk = Uk−1

4: pick k ∈ {1, . . . , d} (random uniform).
kc = [1, . . . , k − 1, k + 1, d]T

5: compute u = U j
kc,kc

mkc,k and γ = u∗mkc,k

where mkc,k is the kth column of M with the
kth element removed. U j

kc,kc
is U j with the

kth row and column removed.

6: if γ > 0 set uk+1
kc,k

= uk+1
k,kc

∗ = −
√

1
γ

u

else uk+1
kc,k

= uk+1
k,kc

∗ = 0
where uk+1

kc,k
and uk+1

k,kc
refer to parts of Uk

(kth column without the kth element and kth
row without the kth element respectively)

7: end for
Output: The matrix UNrun which is Hermitian
positive and contains only ones on the diagonal
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