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Incoherent Gaussian equivalence of m-mode Gaussian states
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Necessary and sufficient conditions for arbitrary multimode (pure or mixed) Gaussian states to be equivalent
under incoherent Gaussian operations are derived. We show that two Gaussian states are incoherent equivalence
if and only if they are related by incoherent unitaries. This builds the counterpart of the celebrated result that two
pure entangled states are equivalent under local operations and classical communication (LOCC) if and only if
they are related by local unitaries. Furthermore, incoherent equivalence of Gaussian states is equivalent to frozen
coherence [Phys. Rev. Lett. 114, 210401 (2015)]. Basing this as foundation, we find all measures of coherence
are frozen for an initial Gaussian state under strongly incoherent Gaussian operations if and only if the relative
entropy measure of coherence is frozen for the state. This gives an entropy-based dynamical condition in which
the coherence of an open quantum system is totally unaffected by noise.
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I. INTRODUCTION

Quantum coherence, being at the heart of interference
phenomena, stands as one of intrinsic features of quantum
mechanics that induces a number of intriguing phenomena
in quantum optics [1–4] and quantum information [5]. It
constitutes a powerful resource for quantum computing [6],
cryptography [7], information processing [8–10], thermody-
namics [11], metrology [12], and quantum biology [13].

The first framework for understanding quantum coher-
ence is quantum optics, which requires quantum states in
a continuous-variable system. Gaussian states that are pro-
cessed in most optical experiments have arisen to a privileged
position in the context of quantum computation [14–16] over
different physical platforms such as optical [17], trapped ions
[18,19], atomic ensembles [20,21], and hybrid systems [22].
Recently, there is a growing interest in building the resource
theory of coherence of Gaussian states [23–27]. Coherence
effects of Gaussian states have been addressed in differ-
ent branches of quantum information, for example, unitary
process in quantum thermodynamics [28], coherence as a
resource in charging quantum batteries [29], and dynami-
cal behavior of quantum coherence of a displaced squeezed
thermal state [30]. In view of resource theory [31–33], one
fundamental issue is the classification of coherent Gaussian
states. A natural way of defining equivalence relations in
the set of coherent Gaussian states is that equivalent states
contain the same amount of coherence. Since the primary tool
for analyzing coherent Gaussian states is incoherent Gaus-
sian operations, which are powerful to describe noise and
decoherence of optical systems [23,34–36], the monotonicity
of coherence under incoherent Gaussian operations allows
us to identify any two states that can be transformed from
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each other with certainty by incoherent Gaussian operations.
Clearly, this criterion is interesting in quantum information
theory, since equivalent states are indistinguishable for exactly
the same tasks. The aim of this article is to characterize
the equivalence of coherent Gaussian states under incoherent
Gaussian operations.

For entangled states, a beautiful result is that two pure
states can be transformed from each other with certainty
by local operations and classical communication (LOCC) if
and only if they are related by local unitaries [31,32]. The
equivalence of entangled Gaussian states under local unitaries
is discussed for bipartite settings [33] and for more parties
[37–41]. In [39,40], standard forms of generic m-mode pure
and mixed states are introduced. For generic pure Gaussian
states, it is shown that Gaussian local unitaries equivalence
classes are classified by three positive numbers related to local
purities. The case of pure 3-mode states has been discussed
in detail in [42]. We will classify coherent Gaussian states in
terms of incoherent unitaries and the relative entropy measure
of coherence.

The paper is organized as follows. In Sec. II we present an
explicit description of coherent Gaussian states and incoherent
Gaussian operation. In Sec. III we present the results for in-
coherent Gaussian equivalence of the m-mode Gaussian states
that we addressed. Section IV is a summary of our findings.
The Appendix gives the proof of our results.

II. BACKGROUND AND NOTATION

Here we provide some background on bosonic Gaussian
states and Gaussian operations (see [14] for a review). Let H
be an infinite-dimensional Hilbert space with fixed Fock basis
{|n〉}+∞

n=0. When we consider the m-mode continuous-variable
systems H⊗m, we adopt ({|n〉}+∞

n=0)⊗m as its reference basis.
For a quantum state ρ ∈ H⊗m, the characteristic function of ρ
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is defined as

Xρ (λ) = tr(ρD(λ))

]D(λ) = ⊗m
i=1D(λi )

D(λi ) = e(λi âi
†−λi âi ),

where âi and âi
† are the annihilation operator and the creation

operator in mode i, λ = (λ1, . . . , λm)t , λi denotes the
complex conjugate of λi. Gaussian states are those states for
which Xρ (λ) is a Gaussian function of the phase space, i.e.,

Xρ (λ) = exp− 1
4
−→r �V �t −→r t −i(�d )t −→r t

,

where −→r = (λ1x, λ1y, . . . , λmx, λmy), λ jx, λ jy are the real part
and imaginary part of λ j ( j = 1, 2, . . . , m), V is a 2m × 2m
real Hermitian matrix, which is called the covariance matrix,
satisfying the uncertainty relation V + i� � 0, and d ∈ R2m

is called the mean value, � = ⊕m
k=1( 0 1

−1 0) [14]. Note that
det V � 1 and det V = 1 if and only if ρ is pure. It is clear
that (V, d ) can describe the Gaussian state ρ completely. So
ρ can be usually written in ρ(V, d ). Every Gaussian operation
is a completely positive trace-preserving mapping that takes
Gaussian states to Gaussian states. It is described by (T, N, d ),
it performs on ρ(V, d ), and obtains the Gaussian state with
mean value and covariance matrix as follows:

d �→ T d + d, V �→ TV T t + N,

where d ∈ R2m, T, N are 2m × 2m real matrices with N +
i� − iT �T t � 0 (complete positivity condition) [14,43].

Inspired by the idea of discrete-variable systems [44], the
framework for quantifying coherence of Gaussian states has
been built in [23,34]. The incoherent Gaussian states are
defined as diagonal Gaussian states in the Fock basis. Ev-
ery incoherent Gaussian state has the form ⊗m

i=1ρ
Ai
th (ni ); here

ρ
Ai
th (ni ) = ∑+∞

n=0
ni

n

(ni+1)n+1 |n〉〈n| is the incoherent state of the
ith-mode Ai. The set of incoherent Gaussian states will be
labeled by I. A Gaussian operation is incoherent if it maps
incoherent Gaussian states into incoherent Gaussian states. In
fact, a Gaussian operation �(T, N, d ) is incoherent if and only
if

d = 0,

T = {t jO j}m
j=1 ∈ T2m,

N = ⊕m
j=1ω j I2,

ω j � |1 −
∑

k,r(k)= j

t2
k det Ok|, ∀ j,

where t j, ω j ∈ R, Oj is a 2 × 2 real orthogonal matrix
(OjOt

j = I2), T2m denotes the set of 2m × 2m real matrices
such that, for any T ∈ T2m, the (2 j − 1, 2 j) two columns of
T have just one 2 × 2 real matrix t jO j located in [2r( j) −
1, 2r( j)] rows for ∀ j, r( j) ∈ {k}m

k=1, and other elements are
all zero. For Gaussian state ρ(V, d ), it performs on ρ(V, d )
and obtains a Gaussian state with mean value and covariance
matrix as follows:

d �→ T d, V �→ TV T t + N.

Specifically, unitary operators of T2m are called incoherent
unitaries in this paper.

Based on the definition of incoherent Gaussian states and
incoherent Gaussian operations (IGOs), any proper coherence
measure C is a non-negative function and must satisfy the
following conditions [23]:

(C1) C(ρ) = 0 for all ρ ∈ I,
(C2) Monotonicity under all incoherent Gaussian opera-

tions (IGOs) �:

C(�(ρ)) � C(ρ),

(C3) Nonincreasing under mixing of Gaussian states:

C

(∑
j

p jρ j

)
�

∑
j

p jC(ρ j ),

for any set of Gaussian states {ρ j} and any p j � 0 with∑
j p j = 1. Note that the set of Gaussian states is not convex;

thus ρ j and
∑

j p jρ j in (C3) should be all Gaussian. Based on
the definition of the coherence measure, the relative entropy
measure has been provided by

CR(ρ) = inf
δ∈I

S(ρ||δ),

S(ρ||δ) = tr(ρ log2 ρ) − tr(ρ log2 δ) being the relative en-
tropy. Furthermore,

CR(ρ) = −S(ρ) +
m∑

i=1

[(ni + 1) log2(ni + 1) − ni log2 ni],

S(ρ) = ∑m
i=1[ vi−1

2 log2
vi−1

2 − vi+1
2 log2

vi+1
2 ], ni =

1
4 [tr(V (i) ) + ‖d (i)‖2 − 2], where S(ρ) is the von Neumann
entropy of ρ, {vi}m

i=1 are symplectic eigenvalues of V [45],
and ni is determined by ith-mode covariance matrix V (i) and
mean value d (i), and ‖d (i)‖ is the Euclidean norm of d (i) [23].

For coherent Gaussian states ρ(V, d ), σ (V ′, d ′), we say
they are IGO equivalent if there exist IGOs � and 	 satisfying
�(ρ(V, d )) = σ (V ′, d ′) and 	(σ (V ′, d ′)) = ρ(V, d ). We de-

note this by ρ(V, d )
IGO∼ σ (V ′, d ′). We will provide a structural

characterization of equivalence for coherent Gaussian states
by incoherent unitary operations and the coherence measure
based on the relative entropy.

III. MAIN RESULTS

Before giving our main results, we need to introduce the
concept of strictly incoherent Gaussian operations which orig-
inates from the definition of strictly incoherent operations
of discrete-variable systems [46,47]. It plays a key role in
classifying the IGO equivalence of Gaussian states.

Definition 3.1. An incoherent Gaussian operation �(T, N )
is called strictly incoherent if each (2i − 1, 2i) row and each
(2 j − 1, 2 j) column of T has just one element of {t jO j}m

j=1,
ω j � |1 − t2

k det Ok| (r(k) = j). Throughout the paper, we
write mean values and covariance matrices of m-mode
Gaussian states in terms of two-dimensional sub-blocks as

d = (d1, d2, . . . , dm)t ,

V =

⎛⎜⎜⎜⎝
V11 V12 · · · V1m

V t
12

. . .
. . .

...
...

. . .
. . . Vm−1,m

V t
1m · · · V t

m−1,m Vmm

⎞⎟⎟⎟⎠.
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Vii and di are the ith-mode covariance matrix and mean value,
respectively. It is known that each subvector di and off-
diagonal block Vi j become 0 for every incoherent Gaussian
state [23]. The nonzero elements of off-diagonal blocks of
V and subvectors of d reveal coherence of Gaussian states.
In order to classify coherent Gaussian states, we assume
that every row of V has at least one nonzero off-diagonal
block.

Now we are in a position to give our main results.
Theorem 3.2. Assume m � 2 and every row of V and V ′

have at least one nonzero off-diagonal block, then the follow-
ing statements are equivalent:

(i) ρ(V, d )
IGO∼ σ (V ′, d ′);

(ii) There exists an incoherent Gaussian unitary oper-
ator U such that UVUt = V ′,Ud = d ′, where U = Pπ ⊗
I2(

O1 0
. . .

0 Om

), Pπ is the permutation matrix corresponding

to a permutation π of {1, 2, . . . , m}, Oi (1 � i � m) are 2 × 2
real orthogonal matrices with det Oi = 1, and I2 is the 2 × 2
unit matrix;

(iii) There is a strictly incoherent Gaussian opera-
tion � satisfying �(ρ(V, d )) = σ (V ′, d ′) and CR(ρ(V, d )) =
CR(σ (V ′, d ′)).

For the one-mode case, our result reads as
follows.

Theorem 3.3. Assume d �= 0 or V �= λI2 [ρ(V, d ) is coher-
ent], I2 is the 2 × 2 unit matrix, then the following statements
are equivalent:

(i) ρ(V, d )
IGO∼ σ (V ′, d ′);

(ii) There exists an incoherent Gaussian unitary operator U
such that UVUt = V ′,Ud = d ′, here U = ( cos θ sin θ

− sin θ cos θ ) for
some θ ∈ R;

(iii) There is an incoherent Gaussian operation � satisfying
�(ρ(V, d )) = σ (V ′, d ′) and CR(ρ(V, d )) = CR(σ (V ′, d ′)).

Theorems 3.2 and 3.3 show the existence of measure-
independent freezing of coherence. Quantum coherence is a
useful physical resource, but coherence of a Gaussian state
is decreasing under IGOs [C(�(ρ)) � C(ρ)]. The loss of
coherence may weaken the abilities of a Gaussian state to
fulfill certain quantum information processing tasks. An in-
teresting question is to study when the coherence of an
open system is frozen [48], i.e., when C(�(ρ)) = C(ρ) for
a coherent Gaussian state ρ and an IGO �. However, some
coherence measures being frozen do not imply other coher-
ence measures being frozen too, since different coherence
measure results in different orderings of coherence in general
[49]. Freezing of coherence is dependent on the coherence
measures in general. By Theorems 3.2 and 3.3, we find
all measures of coherence are frozen for an input Gaus-
sian state if and only if the relative entropy measure of
coherence is frozen for the state. A parallel result in discrete-
variable systems is that all measures of coherence are frozen
for an initial state in a strictly incoherent channel if and
only if the relative entropy of coherence is frozen for the
state [50].

Theorems 3.2 and 3.3 present frozen phenomenon
of coherence and entanglement simultaneously [51].
An important class of two-mode Gaussian states has

covariance matrices in standard form

V =
(

aI2 C
C bI2

)
, C =

(
c 0
0 d

)
,

a � 1, b � 1, c, d ∈ R [14,52,53]. Any Gaussian state can be
transformed to the Gaussian state with the covariance matrix
in standard form by local linear unitary Bogoliubov operations
[52]. Let d = (d1, d2), ρ(V, d )� denote the set of all Gaus-
sian states which are incoherent equivalent with ρ(V, d ), by
Theorem 3.2:

ρ(V, d )� = {σ [V1, (O1d1, O2d2)t ]} ∪ {δ[V2, (O1d2, O2d1)t ]},

V1 = ( aI2 O1CO†
2

O2CO†
1 bI2

), V2 = ( bI2 O1CO†
2

O2CO†
1 aI2

), Oi =
( cos θi sin θi

− sin θi cos θi
), ∀ θi ∈ R, i = 1, 2. Note that any transfor-

mation of

V �→
(

O1 0
0 O2

)
V

(
Ot

1 0
0 Ot

2

)
= V1

is a special kind of local linear unitary Bogoliubov opera-
tion [52], which tells us that the amount of coherence of
{σ [V1, (O1d1, O2d2)t ]} and the amount of entanglement of
Gaussian states of {σ [V1, (O1d1, O2d2)t ]} are equal, respec-
tively. In addition, by a direct computation, the symplectic
spectrum {v+, v−} of Vi (i = 1, 2) is given by

v± =
√

 ± √
2 − 4 det V

2
,

 = a2 + b2 + 2 det C (one can also refer to [14]). This im-
plies that the symplectic spectrum of the partial transposed
Gaussian states of ρ(V, d )� are the same [53]. Note that the
entanglement measure of formation is a function of the less
symplectic spectrum of partial transposed Gaussian states if
a = b [14,42], and Gaussian states of ρ(V, d )� have the same
amount of entanglement under Gaussian measure of forma-
tion. (The detailed definition of Gaussian entanglement of
formation can be found in Appendix A for the convenience
of readers.) This shows elements of ρ(V, d )� have the same
amount of entanglement and coherence in the case a = b,
respectively. That is, coherence and entanglement of ρ(V, d )�

are frozen simultaneously. It hints that there might have been
a closed inner link between the measure of coherence and
entanglement of formation.

Theorems 3.2 and 3.3 are also key to characterizing the
incoherent equivalence class of Gaussian states. It is clear that
equivalence class of any pure coherent Gaussian state consists
of some pure Gaussian states. The most general pure Gaussian
state |ψ〉 of one mode is a displaced squeezed state obtained
by the combined action of the Weyl displacement operator

D̂(α) = eαâ†−αâ, α ∈ C,

and the squeezing operator

Ŝ(β ) = e
1
2 [βâ†2−βâ2], β ∈ C,

on the vacuum state |0〉 [54]:

|ψα,β〉 = D̂(α )̂S(β )|0〉.
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The mean value and covariance matrix of |ψα,β〉 are

2[Re(α), Im(α)],(
ch(2|β|) + cos θ sh(2|β|) sin θ sh(2|β|)

sin θ sh(2|β|) ch(2|β|) − cos θ sh(2|β )

)
,

where β = |β|eiθ , ch(x) = ex+e−x

2 , sh(x) = ex−e−x

2 are hyper-
bolic functions. Denote

α = |α|eiγ , α′ = |α′|eiγ ′
, β ′ = |β ′|eiθ ′

,

by Theorem 3.3, a direct computation shows that

|ψα,β〉 IGO∼ |ψα′,β ′ 〉
�

|α| = |α′|, |β| = |β ′|, θ ′ − θ = 2(γ ′ − γ ) − 2kπ

for some integer k. It reveals explicitly the geometric feature
of the incoherent equivalence class of displaced squeezed
states [55, Fig. 1].

IV. SUMMARY

In this work, necessary and sufficient conditions for ar-
bitrary multimode Gaussian states to be equivalent under
incoherent Gaussian operations are obtained. It is shown that
two coherent Gaussian states are incoherent equivalence if and
only if they are related by incoherent unitaries, if and only
if coherence of Gaussian states are frozen [48] under rela-
tive entropy measure. Our results first provide an operational
description of equivalent Gaussian states and so allow us to
formulate a simple criterion to decide whether Gaussian states
are equivalent. Second, our results imply that all measures of
coherence are frozen for an initial Gaussian state if and only
if the relative entropy measure of coherence is frozen for the
state. So this provides an entropy-based dynamical condition
in which the coherence of an open quantum system is totally
unaffected by noise.

Our results raise one interesting question naturally. How
about the equivalence of coherent Gaussian states under
stochastic incoherent Gaussian operations. The study may
produce finitely many kinds of coherence and open a new door
for deterministic Gaussian conversion protocols.
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APPENDIX A: GAUSSIAN ENTANGLEMENT
OF FORMATION

For pure N × M Gaussian states |φ〉, the Gaussian entan-
glement of formation is defined as the von Neumann entropy
of the reduced states ρA,B = TrB,A(|φ〉〈φ|), i.e., EF (|φ〉) =
S(ρA) = S(ρB). The Gaussian entanglement of formation of

mixed states is defined as an infimum,

EF (ρ) = inf

{ ∑
k

pkEF (φk )

∣∣∣∣ ρ =
∑

k

pk|φk〉〈φk|
}
,

over all possibly convex decompositions (possibly contin-
uous) of the state into pure states [14]. In general, this
optimization is difficult to carry out. We only know the
solution for two-mode symmetric Gaussian states whose co-
variance matrix is symmetric under the permutation of the two
modes, i.e., two diagonal elements are equal when we write
its covariance matrix in the block form, where EF (ρ) is a
function of the less symplectic spectrum of partial transposed
Gaussian states.

APPENDIX B: PROOF OF MAIN RESULTS

Proofs of all results in this paper are given in Appendix B.
Proof of Theorem 3.2. By the definition of strictly incoher-

ent Gaussian operations and monotonicity of coherence under
all IGOs, it is clear that (ii) ⇒ (iii). We will prove (iii) ⇒ (i)
and (i) ⇒ (ii) in the following.

“(iii) ⇒ (i)”: For a fixed orthonormal basis ({|n〉}∞n=0)⊗m

with positive integer m > 1, all Gaussian states are of the
form ρ = ρ(V, d ) = ρA1A2...Am , where Ai denotes the ith mode.
Furthermore, if ρ = (ρn1n2···nm,l1l2···lm ) with

ρn1n2···nm,l1l2···lm = 〈n1n2 · · · nm|ρ|l1l2 · · · lm〉,

ni =
∑

ni

( ∑
n1n2···ni−1ni+1···nm

ρn1n2···nm,n1n2···nm

)
ni,

(B1)

it is shown that CR(ρ) = S(ρ||δ) with some thermal state
δ = ⊗m

i=1ρ
Ai
th (ni ) [23].

Combining the definition of relative entropy measure of
coherence and monotonicity of relative entropy under com-
pletely positive and trace-preserving mappings [56], we have

CR(�(ρ)) � S(�(ρ)||�(δ)) � S(ρ||δ) = CR(ρ).

From CR(�(ρ)) = CR(ρ), it follows that

CR(�(ρ)) = S(�(ρ)||�(δ)) = S(ρ||δ) = CR(ρ). (B2)

Recall that the strictly incoherent Gaussian operation � is
described by a pair of operators (T, N ). It performs on the
Gaussian state ρ(V, d ) and gets the Gaussian state with the
mean value and the covariance matrix as

d �→ T d, V �→ TV T t + N.

We now demonstrate that there exists an IGO 	 such that
	(�(δ)) = δ. Noting that �(δ) is an incoherent Gaussian
state, we can assume �(δ) = ⊗m

i=1ρ
Ai
th (ki ). In order to use

a Petz recovery map of Gaussian systems [57], we have to
check that �(δ) is faithful, i.e., V�(δ) + i� > 0, V�(δ) is the
covariance matrix of �(δ). By [23],

V�(δ) =
m⊕

i=1

(2ki + 1)I2.

It is easy to check that V�(δ) + i� > 0 ⇔ ki > 0 for
i = 1, 2, . . . , m. Indeed, by (B1) and (B2), if ki = 0 for some
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i, then∑
k1k2···ki−1ki+1···km

�(ρ)k1k2···km,k1k2···km = 0, if ki �= 0,∑
k1k2···ki−1ki+1···km

�(ρ)k1k2···km,k1k2···km = 1, if ki = 0.

Thus �(ρ) has the form |0Ai〉〈0Ai | ⊗ �(ρ)A1A2···Ai−1Ai+1···Am .
This deduces the covariance matrix V�(ρ) of �(ρ) has the form
I2 ⊕ V ′

2 , which contradicts our assumption. Theorem 1 of [57]
shows that the Petz recovery map 	 is a Gaussian operation
with the following action:

	 :

{
V �→ T	V T t

ψ + N	

d �→ T	d + d ′,

where

T	 =
√

I + (Vδ�)−2VδT t (
√

I + (�V�(δ) )−2 )−1V −1
�(δ),

N	 = Vδ − T	V�(δ)T
t
	,

d ′ = dδ − T	 (T dδ + 0).

From Vδ = ⊕m
i=1(2ni + 1)I2, V�(δ) = ⊕m

i=1(2ki + 1)I2, and
dδ = 0, it follows that

T	 = [ ⊕m
i=1

√
(2ni + 1)2 − 1I2

]
× T t

(
⊕m

i=1
I2√

(2ki + 1)2 − 1

)
,

d ′ = 0.

Note that � is a strictly incoherent Gaussian operation, and
we may write

T = Pπ ⊗ I2

⎛⎝t1O1 0
. . .

0 tmOm

⎞⎠,

where Pπ is the permutation matrix corresponding to a permu-
tation π of {1, 2, . . . m}. One can check that

N	 = V�(δ) − T	VδT t
	 = ⊕w′

iI2,

for some scalars w′
i. It is evident that T	 ∈ T2m. The remaining

inequalities in the definition of IGOs are from the complete
positivity condition of 	. Thus T	 , N	 satisfy the conditions
of IGOs, and so 	 is a IGO with 	(�(δ)) = δ.

Next we claim that 	(�(ρ)) = ρ. A rotated Petz map 	t ,
for t ∈ R, is defined as 	t (ω) = δit	[�(δ)−itω�(δ)it ]δ−it ,
with δit = exp(it log2 δ) being understood as a unitary evo-
lution according to the Hamiltonian log2 δ [58]. Obviously,
	t = 	 if t = 0. In [59], it is shown that

S(ρ||δ) � S[�(ρ)||�(δ)]

−
∫
R

p(t ) log2 F (ρ, [	
t
2 (�(ρ))]dt,

where p(t ) = π
2 [cosh(πt ) + 1]−1 is a probability distribution

parametrized by t ∈ R, and F denotes the quantum fidelity,
defined as F (ω, τ ) := ‖√ω

√
τ‖2

1 for quantum states ω and τ .
From Eq. (B2), it follows that∫

R
p(t ) log2 F (ρ,	

t
2 [�(ρ)])dt = 0,

F (ρ,	
t
2 [�(ρ)]) = 1,

ρ = 	
t
2 (�(ρ)), ∀t ∈ R

ρ = 	(�(ρ)).

“(i) ⇒ (ii)”: From (i), there are matrices T, S ∈ T2m, and
N, N ′ such that

TV T t + N = V ′, SV ′St + N ′ = V.

Hence

STV T t St + SNSt + N ′ = V. (B3)

By the property of T2m, there are permutations π, π ′ such that
Pπ ⊗ I2T = (Ti j ), Pπ ′ ⊗ I2S = (Si j ), where (Ti j ) and (Si j ) are
upper triangular blocks with the form

Ti j = δ(i, f ( j))tiOi, Si j = δ(i, g( j))siO
′
i,

where f , g are functions from {1, . . . , m} to {1, . . . , m} with
f ( j), g( j) � j,

δ(i, j) =
{

1, i = j
0, i �= j

.

We need only show that f (i) = g(i) = i, |ti| = |si| = 1, and
det Oi = det O′

i = 1 for i = 1, . . . , m. Without loss of gener-
ality, we assume T = (Ti j ), S = (Si j ). Since there is at least
one nonzero off-diagonal element in every column of V and
V ′, T, S are invertible. Hence f (i) = g(i) = i, i ∈ {1, . . . , m},
and so

T =
⎛⎝t1O1 0

. . .

0 tmOm

⎞⎠, S =
⎛⎝s1O′

1 0
. . .

0 smO′
m

⎞⎠,

N =
⎛⎝ω1I2 0

. . .

0 ωmI2

⎞⎠, N ′ =
⎛⎝ω′

1I2 0
. . .

0 ω′
mI2

⎞⎠.

We will show that wi = 0, det Oi = 1, and |ti| = 1.
Computing the diagonal blocks of (B3), we have, for 1 �

i � m,

s2
i t2

i O′
iOiViiO

t
i O

′t
i + wis

2
i + w′

i = Vii. (B4)

From the spectral theorem of positive operators, it follows
that s2

i t2
i � 1. Comparing blocks of (i, j) (1 � i < j < m)

positions in (B3), we have

sis jtit jO
′
iOiVi jO

t
jO

′t
j = Vi j . (B5)

Note that for each i, there is ji such that Vi, ji �= 0. Com-
puting the trace norm of (B5), we have |sis ji tit ji | = 1 and
s2

i t2
i = 1. From (B4), we get ωi = ω′

i = 0 (i = 1, 2, . . . , m).
Note that ωi � |1 − t2

i det Oi, and hence det Oi = 1, |ti| =
1, (i = 1, 2, . . . , m), as desired.

Proof of Theorem 3.3. By the definition of IGOs, it is
clear that (ii) ⇒ (iii). The proof of (iii) ⇒ (i) is almost ver-
batim from (iii) ⇒ (i) of Theorem 3.2. We need only show
(i) ⇒ (ii). We only treat V �= λI2 and the other case can be
treated similarly. Assume that there exists an IGO � such that
�[ρ(V1, d1)] = σ (V2, d2). By the definition of IGO, we can
obtain

t2OV Ot + ωI = V ′, tOd1 = d2,
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where O is a real orthogonal matrix, ω, t ∈ R, ω � |1 −
t2 det O|. Similarly, there exists a real orthogonal matrix O′
and real numbers ω′, s with

s2t2O′OV Ot O′t + ωs2I2 + ω′I2 = V, (B6)

ω′ � |1 − s2 det O′|. Suppose eigenvalues of V are λ1 and λ2,
it is clear that λ1 �= λ2. By the spectral mapping theorem of
positive operators, from (B6) we have

{s2t2λ1 + ωs2 + ω′, s2t2λ2 + ωs2 + ω′} = {λ1, λ2}.

If {s
2t2λ1 + ωs2 + ω′ = λ2

s2t2λ2 + ωs2 + ω′ = λ1
, then s2t2(λ1 − λ2) = λ2 − λ1.

Thus ts = 0 and so V = λI2 from (B6). This is a contradiction.
Therefore {

s2t2λ1 + ωs2 + ω′ = λ1

s2t2λ2 + ωs2 + ω′ = λ2

and |st | = 1. This implies ω = ω′ = 0. Note that ω � |1 −
t2 det O|, and hence |t | = 1 and det O = 1 as desired.
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