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We study the performance of an N-qubit W superposition state composed of a W state and its obverse in
quantum metrology. Taking advantage of the general Ising-type Hamiltonian (including noninteracting and
interacting operation), we analytically present the quantum Fisher information (QFI) of an N-qubit W super-
position state under different situations and then investigate its phase sensitivity. The results show that the phase
sensitivity under noninteracting operation displays a crossover from the W state to Greenberger-Horne-Zeilinger
(GHZ) state, where it is same as W state in the few-qubit case (N � 6) but asymptotically equal to the GHZ
state for large-qubit cases (N � 1). Interestingly, the 4-qubit W superposition state is found to have the same
sensitivity as the 4-qubit GHZ state. And the optimal measurement protocols are provided for ideal metrology.
Under the phase-amplitude damping channel, the phase sensitivity of the W superposition state (except for
N = 3) is ultimately decreased to the standard quantum limit, while it turns worse in a depolarizing channel.
Finally, the tunable phase sensitivity under interacting operation is studied, and the general Heisenberg limit is
surpassed with the increasing interaction strength γ . Meanwhile, a plateau of QFI and phase sensitivity is found
for all large-qubit W superposition states, which is similar to the study of the GHZ state and again verifies the
common feature of GHZ-type states in quantum metrology.
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I. INTRODUCTION

Quantum metrology, with quantum squeezing and quan-
tum entanglement as the key resources, plays an important
and fundamental role in measurement of physical parameters
[1,2], including gravitational wave detection [3], magnetome-
try [4,5], atomic clock [6], and biological measurement [7],
etc. A high-precision metrology scheme generally includes
three stages: preparation of the probe state, evolution under
different scenarios (or phase encoding), and probe readout
[8]. As dictated by quantum Cramér-Rao bound (qCRB) in
statistics [9,10], the phase sensitivity is limited by quantum
Fisher information (QFI), which is theoretically decided by
the probe state and Hamiltonian [11]. Many kinds of strategies
have been proposed to realize high-resolution measurement
from theory and experiment [1,12–17], and it mainly is di-
vided into two categories, the classical state with nonlinear
Hamiltonian and the nonclassical state with linear Hamilto-
nian. Specifically, the measurement limit is achieved from
the separable state under the nonlinear Hamiltonian [18] and
alternatively, the constructed maximal entangled state under
the linear Hamiltonian [19,20]. Here we focus on the general
nonclassical state under the nonlinear Hamiltonian [21,22].

Recently, the N-qubit W superposition state,

|WW̄N 〉 = 1√
2

(|WN 〉 + |W̄N 〉), (1)

*Corresponding author: li8989971@163.com

composed of the symmetric W state

|WN 〉 = 1√
N

(|0⊗(N−1)〉|1〉 + √
N − 1|WN−1〉|0〉) (2)

and its obverse W̄

|W̄N 〉 = 1√
N

(|1⊗(N−1)〉|0〉 + √
N − 1|W̄N−1〉|1〉), (3)

has been studied in theory and experiment [23–27]. Although
it belongs to the GHZ entanglement class, it behaves differ-
ently from the GHZ state in quantum information processing.
For example, the GHZ state has only genuine three-party en-
tanglement, whereas the W superposition state also possesses
the pairwise entanglement and hence can be more robust to
the loss of qubits [23]. How about its performance in quantum
metrology—Does it perform better than the GHZ state or the
W state?

In this work we pursue this question and present a detailed
study of the N-qubit W superposition state from the perspec-
tive of quantum metrology. By utilizing QFI, we investigate
the phase sensitivity of the N-qubit W superposition state
under an Ising-type Hamiltonian [28,29]. We first present the
analytical QFI of the N-qubit W superposition under non-
interacting operation and analyze the phase sensitivity with
respect to the number of qubits involved. The results show
that the phase sensitivity is the same as the W state for the
few-qubit case, whereas it is asymptotically equal to the GHZ
state in the larger qubit case. Interestingly, the 4-qubit W
superposition state is found to have the same QFI with the
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4-qubit GHZ state. Based on parity measurement [30,31], the
specific measurement protocols for the ideal metrology limit
are provided and verified. Subsequently, the phase sensitivity
of an N-qubit W superposition state under three decoherence
channels is studied. Except for the 3-qubit case, the phase
sensitivity of the other superposition state is decreased to the
standard quantum limit (SQL) in the phase-amplitude damp-
ing channel, while it turns worse in the depolarizing channel.

Considering the interference between nearby noninteract-
ing operations on the large-qubit quantum state [32–35], we
then explore the performance of an N-qubit W superposition
state under the Ising-type interacting operation. With the in-
creasing interaction strength γ , the phase sensitivity of all
W superposition state surpasses the general Heisenberg limit.
Taking the 3-qubit W superposition state as a paradigm, we
compare the phase sensitivity with the W state and GHZ state,
and it shows that the W superposition state performs a little
worse than the others. In the study of the large-qubit case, a
plateau of QFI and phase sensitivity with respect to γ is found,
similar to the study of the GHZ state [22], which again verifies
the common feature of GHZ-type quantum states in quantum
metrology. With respect to the special case of a 4-qubit W
superposition state, the QFI is still found to be the same as the
4-qubit GHZ state, which reveals the consistency of both in
quantum metrology under either noninteracting operation or
interacting operation.

The remainder of the paper is organized as follows. We
start by reviewing the relationship between the quantum
Cramér-Rao lower bound and QFI in Sec. II. In Sec. III we in-
vestigate the phase sensitivity of an N-qubit W superposition
state under noninteracting operation. Additionally, we present
the optimal measurement protocol with respect to the specific
W superposition state and study the effect of decoherence
channels on the precision limit. In Sec. IV we also study the
phase sensitivity of the N-qubit W superposition state under
Ising-type interacting operation and compare its performance
with the W and GHZ state. Finally, the results are summarized
in Sec. V.

II. MODEL AND METHOD

Let us take quantum interferometry as a platform to illus-
trate the relationship between the quantum Cramér-Rao bound
and Fisher information. Given the general quantum resources
(quantum state and systematic Hamiltonian), we briefly re-
view the formula to access QFI under different circumstances,
including the ideal situation and noisy environments. With
respect to the simplest two-body Hamiltonian given by Ising-
type interacting operation, we present the formula to acquire
QFI ideally.

A. Quantum Cramér-Rao bound and Fisher information

Here we consider a general estimation problem of the
unknown phase shift θ0 in quantum interferometry. Given ν

independent repeated experimental results ε = {ε1, ..., εν}, we
can theoretically obtain the likelihood function p(ε|θ0) from
the conditional probability p(εi|θ0) that receiving the result εi

conditioned on estimated phase θ0. With respect to the unbi-
ased estimation method (e.g., maximum likelihood estimation

or Bayesian inference [36]), the smallest standard error of the
estimator θest is limited by the Cramér-Rao bound,

�θest � 1√
νF (θ )

. (4)

Evidently, the phase sensitivity is bounded by the quantity
F (θ ), which is the Fisher information and formally defined
by [37]

F (θ ) ≡ ∑
εi

p(εi|θ )

(
∂ ln p(εi|θ )

∂θ

)2

, (5)

and the larger the Fisher information, the better the phase
sensitivity.

In quantum mechanics, for a unitary phase encoding de-
noted by ρ̂θ = e−iθĤ ρ̂0eiθĤ , the maximal Fisher information
is given by quantum Fisher information [11],

FQ[ρ̂0, Ĥ ] = 2
k∑

i, j=1

(λi − λ j )2

λi + λ j
|〈ψi|Ĥ |ψ j〉|2, (6)

where the diagonalized density matrix ρ̂0 is expressed as ρ̂0 =∑k
i=1 λi|ψi〉〈ψi|, and Ĥ is the phase generator representing

the Hamiltonian in the quantum system. For an ideal pure
state ρ̂0 = |ψin〉〈ψin| in the quantum interferometer, Eq. (6)
is reduced to

FQ = 4�2Ĥ , (7)

where �2Ĥ = 〈Ĥ2〉 − 〈Ĥ〉2. Therefore, the quantum Cramér-
Rao bound becomes

�θest � 1√
νFQ

, (8)

and the key point in quantum metrology is the access of QFI
from the given quantum system [38–42].

B. Quantum Fisher information under the Ising-type
interacting operation

In the field of quantum many-body interactions, the sim-
plest and well-known interaction model is the Ising-type
interacting operation, such as nearest-neighbor coupling and
fully connected coupling. It is generally given by [43]

Ĥ = Ĥ0 + Ĥ1, (9)

where Ĥ0 = ∑N
i=1

μi

2 σ (i)
m and Ĥ1 = ∑N

i, j=1
Vi j

4 σ (i)
n σ

( j)
n denote

the noninteracting operation and interacting operation, respec-
tively. Here μi means the inhomogeneous linear couplings,
and Vi j = Vji, σ (i)

n = σ (i) · �n is the Pauli matrix for the ith
particle and �n is a vector.

According to the formula of QFI for the pure state, Eq. (7),
we have

FQ = v2
0 + v2

1 + v2
2, (10)

in which v2
0 = 4�2Ĥ0, v2

1 = 4�2Ĥ1, and v2
2 = 4(〈{Ĥ0, Ĥ1}〉 −

2〈Ĥ0〉〈Ĥ1〉) separately represent the noninteracting QFI, in-
teracting QFI, and covariant QFI. With respect to a general
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quantum state and two-body interacting operation, Eq. (9), the
QFI is obtained by

v2
0 =

N∑
i=1

μ2
i

(
1 − 〈

σ (i)
m

〉2) +
N∑

i, j=1
i 	= j

μiμ j
(〈
σ (i)

m σ ( j)
m

〉

− 〈
σ (i)

m

〉〈
σ ( j)

m

〉)
, (11)

v2
1 =

N∑
i, j=1
i 	= j

V 2
i j

2

(
1 − 〈

σ (i)
n σ ( j)

n

〉2) +
N∑

i, j,k=1
i 	= j 	=k

Vi jVjk
(〈
σ (i)

n σ (k)
n

〉

− 〈
σ (i)

n σ ( j)
n

〉〈
σ ( j)

n σ (k)
n

〉)+ N∑
i, j,k,l=1
i 	= j 	=k 	=l

Vi jVkl

4

(〈
σ (i)

n σ ( j)
n σ (k)

n σ (l )
n

〉

− 〈
σ (i)

n σ ( j)
n

〉〈
σ (k)

n σ (l )
n

〉)
, (12)

v2
2 = 2

N∑
i, j=1
i 	= j

μiVi j
(
m · n

〈
σ ( j)

n

〉 − 〈
σ (i)

n σ ( j)
n

〉〈
σ (i)

m

〉)

+
N∑

i, j,k=1
i 	= j 	=k

μkVi j
(〈
σ (i)

n σ ( j)
n σ (k)

m

〉 − 〈
σ (i)

n σ ( j)
n

〉〈
σ (k)

m

〉)
. (13)

In light of the permutation symmetry of the N-qubit W super-
position state, the calculation of QFI mainly focuses on the
expectation value of interactive qubits, i.e., 〈σ (i)

n 〉, 〈σ (i)
n σ

( j)
n 〉,

and 〈σ (i)
n σ

( j)
n σ (k)

n σ (l )
n 〉. Next we will exploit the above formulas

to present the specified QFI with respect to the given W
superposition state and further analyze its phase sensitivity.

III. METROLOGY LIMIT OF N-QUBIT W
SUPERPOSITION STATE UNDER
NONINTERACTING OPERATION

In order to fully understand the performance of the N-
qubit W superposition state in quantum metrology, we first
investigate the traditional metrology limit of the N-qubit W
superposition state from the point of noninteracting operation,
then present the corresponding measurement protocols, and at
last the effect of decoherence channels on the metrology limit
is considered.

A. Ideal metrology limit of the N-qubit W superposition state
under noninteracting operation

We begin with the noninteracting operation (collective gen-
erator Ĥ0, μi = 1 ∀i) and investigate the phase sensitivity of
the N-qubit W superposition state by QFI. Assuming σ (i)

m =
aσ (i)

x + bσ (i)
y + cσ (i)

z and a2 + b2 + c2 = 1, the expectation
value of the specified interactive terms in Eq. (11) is calculated
as

〈
σ (i)

m

〉 =
{

2a
3 , N = 3

0, N 	= 3
(14)

3 6 9 12
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250 W superposition state
W state
GHZ state

F Q

N

(a)

FIG. 1. QFI and phase sensitivity with respect to the number of
qubits N under noninteracting operation. (a) Red dots, black trian-
gles, and blue squares respectively denote the QFI of an N-qubit W
superposition state, W state, GHZ state. (b) Red circles, black hollow
triangles, and blue hollow squares represent the corresponding phase
sensitivity, separately.

and

〈
σ (i)

m σ ( j)
m

〉 =
{

a2, N = 4
2+(N−6)c2

N , N 	= 4
. (15)

Therefore the optimized noninteracting QFI of an N-qubit W
superposition state (except for N = 4) is obtained and repre-
sented by

F (N )
Q = 3N − 2 + (N − 1)(N − 6)c2. (16)

The 4-qubit W superposition state is a special case, and its
noninteracting QFI is written as

F (4)
Q = 4 + 12a2. (17)

To vividly exhibit the feature of the N-qubit W superpo-
sition state in quantum metrology, we show the optimized
noninteracting QFI (red dots) and phase sensitivity �θ (red
circles) with respect to the number of qubits N in Fig. 1. As a
comparison, we have also added the results of the N-qubit W
state (triangles) and N-qubit GHZ state (squares).

Obviously, when the number of qubits N is smaller than
6, the noninteracting QFI and phase sensitivity �θ of the W
superposition state are the same as the W state and behave
as a feature of the W state, i.e., Eq. (16) for N � 6. With the
increasing number of qubits (N � 7), the noninteracting QFI
becomes

F (N )
Q = (N − 2)2, (18)

which is asymptotically equal to the QFI of the GHZ state for
larger N , F (GHZ)

Q = N2, and displays the features of the GHZ
state. During the middle region in Fig. 1(b), the phase sensi-
tivity (red circles) shows a crossover from the W state (black
hollow triangles) to the GHZ state (blue hollow squares).

Specially, we have found that the optimized QFI of a
4-qubit W superposition state is F (4)

Q = 16, which indicates
the same sensitivity with the 4-qubit GHZ state. Moreover,
from Ref. [23] we know the W superposition state behaves
more robustly to the loss of qubits than the GHZ state, which
may shed some new light on high-precision metrology, es-
pecially in relatively noisy environments. It is also possible
to replace the 4-qubit GHZ state with it to manage some
quantum computational tasks [44]. Besides, from the point of
view of entanglement detection and classification [45–47], it
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also raises the dilemma that we cannot distinguish both via
noninteracting QFI.

B. Optimal measurement protocols for
N-qubit W superposition state

In this section the optimal measurement protocols of the
N-qubit W superposition state for the ideal metrology limit are
presented. As is well known, the parity measurement has been
adopted to realize the optimal metrology in many experiments
[31], such as the optical Mach-Zehnder (M-Z) interferometry
[48] and others [49,50]. Combined with the similarity of the
W superposition state and GHZ state in the study of phase
sensitivity, we here employ parity measurement to explore
the optimal metrology scheme. The general form of parity
operator in the qubit system is expressed as [51]

�̂(α, β ) =
N⊗

i=1

(σ̂ · �n)(i), (19)

and the eigenvalues are ε+ = +1 and ε− = −1. The spe-
cific ones can be reduced by the choice of vector �n =
(sin α cos β, sin α sin β, cos α), e.g., the analysis operator
�̂(π/2, β ) for witnessing the GHZ state [52].

The standard procedures referring to the probe state in M-Z
interferometry include three parts: the initial state preparation,
evolution or phase shift encoding, and measurement for higher
precision metrology. Actually, the preparation of a 3-qubit W
superposition state has been realized in experimentation [25],
and what we need to do is to find an optimal strategy to reach
the ideal metrology limit, that is, to perfectly complete the
last two steps. The evolution of a general W superposition
state is depicted by the operator e−iĴmθ , where Ĵm = 1

2

∑N
i=1 σ̂m

(m = x, y, z) denotes the collective angular momentum oper-
ator, and the measured physical quantity is the parity operator
mentioned previously. In the following we will explicitly
present the optimal scheme for every N-qubit W superposition
state. Similar to the previous section, it is divided into four
categories, including the 3-qubit W superposition state, the
4-qubit W superposition state, the 5,6-qubit W superposition
state, and the N-qubit case.

In the case of the 3-qubit W superposition state, we numer-
ically calculate and find the optimal strategy where the output
density matrix is expressed as

ρ̂θ = e−iĴyθ ρ̂0eiĴyθ , (20)

and ρ̂0 = |WW̄3〉〈WW̄3| denotes the initial probe state. The
measured parity operator is given by �̂(π/2, 0), and so the
averaged value is accessed by

〈�̂〉 = Tr[ρ̂θ �̂(π/2, 0)] = p3(ε+|θ ) − p3(ε−|θ )

= 1
4 (cos θ + 3 cos 3θ ). (21)

Combined with the relationship p3(ε+|θ ) + p3(ε−|θ ) = 1, the
conditional probability p3(ε+|θ ) is obtained,

p3(ε+|θ ) = 1
2 + 1

8 (cos θ + 3 cos 3θ ). (22)

Substituting Eq. (22) into the formula of Fisher information,
Eq. (5), we have

F (3)(θ ) = csc2 θ (sin θ + 9 sin 3θ )2

2(23 + 24 cos 2θ + 9 cos 4θ )
, (23)

and by maximizing it, the QFI F (3)
Q = 7 is obtained at the

optimal phase shift θ (3)
op = k · 2π (k = 0, 1, 2...). This means

that the ideal metrology limit can be theoretically realized
with Eq. (8).

With respect to the special case, the 4-qubit W superposi-
tion state, the optimal scheme is realized through the rotation
operator e−iĴxθ acting on the probe state. Similarly, the mea-
sured parity operator is numerically obtained and shown as
�̂(0, π/2). Therefore the conditional probability is obtained
and given by

p4(ε+|θ ) = 1
2 (1 − cos 4θ ). (24)

Fisher information F (4)(θ ) = 16 is easily obtained by replac-
ing Eq. (24) into Eq. (5). It is evident that F (4)(θ ) is equal
to F (4)

Q , which implies that the ideal metrology limit can be
achieved in all of the phase shift region.

For the 5,6-qubit W superposition state, the optimal strate-
gies are the same as the 3-qubit case and are realized by
the rotation operator e−iĴyθ and measured parity operator
�̂(π/2, 0). In brief, the conditional probabilities are respec-
tively shown by

p5(ε+|θ ) = 1
2 + 1

4 cos θ3(5 cos 2θ − 3) (25)

and

p6(ε+|θ ) = 1
2 + 1

16 (5 cos 2θ + 3 cos 6θ ). (26)

The QFI can be obtained in the same way, and the opti-
mal phase shifts for the ideal metrology limit are θ (5)

op = k ·
2π (k = 0, 1, 2...) and θ (6)

op = k · π (k = 0, 1, 2...).
As the number of qubits involved is larger than 6, we find

that the optimal strategies of the N-qubit W superposition
state are the same and depicted by the rotation operator e−iĴzθ

and measured parity operator �̂(π/2, 0). Therefore the con-
ditional probability is represented as

pN (ε+|θ ) = 1
2 [1 − cos(N − 2)θ ], (27)

and substituting it into Eq. (5), we obtain the Fisher infor-
mation F (N )(θ ) = (N − 2)2, equaling QFI. This implies that
the ideal metrology limit of the N-qubit W superposition state
can be obtained in all of the phase shift region. Besides, the
conditional probability Eq. (27) is very similar to the GHZ
state [53] and reflects the consistency of both, to some extent.

C. Decoherence effects on the ideal metrology limit

Decoherence exists in all physical systems, and in this
section we study the phase sensitivity of the N-qubit W su-
perposition state under three decoherence channels [54], i.e.,
depolarizing, phase damping, and amplitude damping. The
Kraus representation used to describe the density matrix after
decoherence is generally given by [55]

K (ρ̂ ) = ∑
k

Êk ρ̂Ê†
k , (28)
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FIG. 2. QFI and phase sensitivity of 3-qubit W superposition
state under decoherence channels. (a) The QFI with respect to p
under a depolarizing channel (dot line), phase damping channel (dash
line), and amplitude damping channel (solid line). (b) Similar to
(a) but for the corresponding phase sensitivity, and the dashed red
line denotes the SQL.

where Êk denotes the Kraus operator and satisfies the com-
pleteness relationship ∑

k
Ê†

k Êk = 1. (29)

According to the evolution of density matrix under different
channels, the decohered density matrix of the N-qubit W
superposition state is given by

K (ρ̂ ) = ∑
k1,k2,...,kN

(Êk1 ⊗ Êk2 ⊗ · · · ⊗ ÊkN )

× ρ̂(Êk1 ⊗ Êk2 ⊗ · · · ⊗ ÊkN )†. (30)

Then we diagonalize it and substitute the eigenvalues and
eigenvectors into Eq. (6) with Ĥ0 and μi = 1, and therefore
the decohered QFI of the N-qubit W superposition state is
obtained. Finally, after maximizing QFI over all direction �n,
the maximal QFI is achieved. Below we adopt the above
procedures and take the 3,4-qubit W superposition state as
paradigms to study the effect of three decoherence channels
on the metrology limit.

1. Depolarizing

We first analyze the effect of the depolarizing channel with
the Kraus operators:

Ê0 =
√

1 − 3

4
p1, Ê1 =

√
p

4
σ̂x,

Ê2 =
√

p

4
σ̂y, Ê3 =

√
p

4
σ̂z, (31)

where p is the depolarizing coefficient. With respect to the
state |WW̄3〉, the decohered density matrix is obtained by

K (ρ̂WW̄3
) =

3∑
k1,k2,k3=0

(Êk1 ⊗ Êk2 ⊗ Êk3 )|WW̄3〉〈WW̄3|

× (Êk1 ⊗ Êk2 ⊗ Êk3 )†. (32)

After diagonalization we obtain the eigenvalues and normal-
ized eigenvectors, which are lengthy and not shown here.
Substituting both into Eq. (10) and maximizing it over all di-
rections �n = (sin θ cos φ, sin θ sin φ, cos θ ), the maximal QFI
is acquired.

0.0 0.2 0.4 0.6 0.8 1.0
0

4

8

12

16 Amplitude damping
Phase damping
Depolarizing

F Q

p

(a)

FIG. 3. QFI and phase sensitivity of 4-qubit W superposition
state under decoherence channels. (a) The QFI with respect to p
under a depolarizing channel (dot line), phase damping channel
(dash line), and amplitude damping channel (solid line). (b) The
corresponding phase sensitivities are shown, and the dashed red line
represents the SQL.

In the case of the 3-qubit W superposition state, the ex-
pression of QFI under a depolarizing channel is tedious and
not shown. For the 4-qubit case, it is written as

F de4
Q = 128(1 − p)8

8 − 16p + 12p2 − 4p3 + p4
. (33)

In Figs. 2(a) and 3(a), the dotted lines depict the decohered
QFI of a 3,4-qubit W superposition state with respect to p
in the depolarizing channel, which reflects that the phase
sensitivity becomes worse for larger p, see Figs. 2(b) and 3(b)
for details.

2. Phase damping and amplitude damping

In the phase damping channel and amplitude damping
channel, the Kraus operators are described by

Ê0 =
(√

1 − p 0
0

√
1 − p

)
, Ê1 =

(
0 0
0

√
p

)
,

Ê2 =
(√

p 0
0 0

)
, (34)

and

Ê0 =
(

1 0
0

√
1 − p

)
, Ê1 =

(
0

√
p

0 0

)
. (35)

Taking advantage of the same procedures in the depolarizing
channel, we obtain the decohered QFI of the 3-qubit and 4-
qubit W superposition state under the phase damping channel,

F pd3
Q = 126 − 354p + 397p2 − 204p3 + 31p4 + 12p5 − 2p6

18 − 24p + 12p2

(36)

and

F pd4
Q = 16 − 24p + 12p2, (37)

which are shown by dashed lines in Figs. 2(a) and 3(a).
Obviously, the decohered QFI of a 3-qubit W superposition
state displays a different behavior from the result of the 4-
qubit case, especially at the point of p = 1. Similarly, the
corresponding phase sensitivity �θ obtained by Eq. (8) is
also different, as it is shown by dashed lines in Figs. 2(b)
and 3(b). In the amplitude damping channel, the expressions
of QFI (F ad3

Q and F ad4
Q ) for the 3-qubit W superposition state
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FIG. 4. QFI and phase sensitivity of 5,6,7-qubit W superposition
states under decoherence channels. (a) From bottom to top, black,
blue, and red lines respectively denote the QFI of a 5,6,7-qubit W
superposition state with respect to p under a depolarizing channel
(dot line), phase damping channel (dash line), and amplitude damp-
ing channel (solid line). (b) The corresponding phase sensitivities,
from top (black) to bottom (red), with respect to p are shown, and
the corresponding dashed dot lines represent the SQL.

and 4-qubit W superposition state are lengthy and not shown.
We present the results in Figs. 2 and 3, where the solid lines
denote the decohered QFI and corresponding phase sensitivity
�θ with respect to p, respectively. It is obvious that with
increasing p the phase sensitivity is finally decreased to the
SQL, but not so in the middle region. In addition, the values
of F adN

Q for special p can be easily obtained, such as p = 0
(or p = 1), for which the decohered QFI is equal to Eq. (16)
(or N). It is same in the phase damping channel except for the
3-qubit case, which can also be drawn from Fig. 4(a).

For comparison, we have also presented the decohered QFI
and phase sensitivity of the N = 5, 6, 7-qubit W superposition
states in Fig. 4. The results show that the phase sensitivity of
the N-qubit W superposition state is always better than SQL
in the phase damping channel, but not so in the amplitude
damping channel and depolarizing channel.

IV. METROLOGY LIMIT OF N-QUBIT W SUPERPOSITION
STATE UNDER INTERACTING OPERATION

This section we preliminarily explore the effect of inter-
acting operation on the metrology limit. The nearest-neighbor
Ising-type interacting operation (Vi j = γ

δ j,i+1+δ j,i−1

2 ) is chosen
as a prototype to investigate the phase sensitivity of the N-
qubit W superposition state. Due to permutation symmetry of
the given quantum state, the QFI is obtained only through the
calculation of the expectation value in Eq. (10). Without loss
of generality, it assumes m · n = 1, μi = 1 ∀i, σ (i)

m = σ (i)
n =

aσ (i)
x + bσ (i)

y + cσ (i)
z , and a2 + b2 + c2 = 1 as follows.

In the case of the 3-qubit W superposition state, the QFI is
calculated and represented by

F (3)
Q =7 − 4a2 − 6c2 + 3a(1 − c2)γ + 3

4 (1 + 2c2 − 3c4)γ 2,

(38)

and evidently the maximal QFI [maximizing Eq. (38) over the
direction �n] is varied with interaction strength γ . In Fig. 5 we
plot the maximal QFI and phase sensitivity �θ with respect
to γ , and meanwhile, the results of the W state and GHZ
state are chosen for comparison [22]. It is shown that they all
surpass the general Heisenberg limit with increasing γ , but the
W superposition state performs a little worse than the others.

0 1 2 3 4 5
0

10

20

30

40

50
W superposition state
W state
GHZ state

F Q

(a)

FIG. 5. QFI and phase sensitivity of 3-qubit W superposition
state under interacting operation. (a) Red, blue, and black lines, from
bottom to top (right-hand side), respectively denote the QFI of W su-
perposition state, GHZ state, and W state with respect to interaction
strength γ . (b) The corresponding phase sensitivity �θ with respect
to γ , and the dashed blue line denotes the general Heisenberg limit.

For the 4-qubit W superposition state, the QFI is written as

F (4)
Q = 4(4a2 + b2 + c2) + 4[2b2c2 + a2(b2 + c2)]γ 2, (39)

and after maximization it is reduced to

F (4)
Q =

{
16, γ �

√
3

2(2 + 9
γ 2 + γ 2), γ �

√
3
. (40)

In Fig. 6 we show the QFI and phase sensitivity of a 4-qubit W
superposition state with respect to γ (red lines), accompanied
with the results from the 4-qubit GHZ state (blue lines) and
4-qubit W state (black lines). It is found that the plots of the
4-qubit W superposition state are exactly overlapped with the
results of the 4-qubit GHZ state [22]. This is very interesting,
that both perform consistently in quantum metrology, whether
the noninteracting operation or interacting operation, and it
may exhibit superiority in high-precision measurement and
other related assignments.

We then have managed the case of 5,6-qubit W superposi-
tion states and separately presented the QFI as

F (5)
Q = 13a2 + 13b2 + 9c2 + 6a(a2 − 3b2)γ

+ 1
4 (a2 + b2)[5(a2 + b2) + 36c2]γ 2 (41)

and

F (6)
Q = 16 + 3[(a2 − b2)2 + 4(a2 + b2)c2]γ 2. (42)

FIG. 6. QFI and phase sensitivity of a 4-qubit W superposition
state under interacting operation. (a) Red, blue, and black lines, from
bottom to top (right-hand side), respectively denote the QFI of a W
superposition state, GHZ state, and W state with respect to inter-
action strength γ . (b) The corresponding phase sensitivity �θ with
respect to γ , and dashed blue line denotes the general Heisenberg
limit.
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FIG. 7. QFI and phase sensitivity of 5-, 6-qubit W superposition
states under interacting operation. (a) Red and black lines, from
bottom to top, respectively denote the QFI of 5- and 6-qubit W su-
perposition states with respect to interaction strength γ . (b) The solid
and dashed lines, from top to bottom, represent the corresponding
phase sensitivities and the general Heisenberg limits.

In Fig. 7 we show the QFI and phase sensitivity of 5,6-qubit
W superposition states with respect to γ . It is found that
there are two intersections from the results of a 5,6-qubit W
superposition state. Besides, with increasing γ the general
Heisenberg limit is also surpassed in both cases.

As the number of qubits involved is larger than 6, the
formula of QFI of an N-qubit W superposition state is found
and expressed by

F (N )
Q = 3N − 2 + (N − 1)(N − 6)c2

+ 1
4 (1 − c2)(N + 11Nc2 − 24c2)γ 2, (43)

and by maximizing it we analytically obtain the optimal QFI,

F (N )
Q =

{
(N − 2)2, γ � γt

(N2−7N+6)2+(N−2)(5N2−4N+12)γ 2+9(N−2)2γ 4

(11N−24)γ 2 , γ � γt
.

(44)

In Fig. 8 the QFI and phase sensitivity of
7-, 8-, 9-, 10-, 11-, and 12-qubit W superposition states
with respect to γ are shown. A plateau is found for every
W superposition state, and the turning point is analytically
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12-qubit

FIG. 8. QFI and phase sensitivity of 7-, 8-, 9-, 10-, 11-, and 12-
qubit W superposition states under interacting operation. (a) Col-
orful lines, from bottom to top, respectively denote the QFI of
7-, 8-, 9-, 10-, 11-, and 12-qubit W superposition states with respect
to interaction strength γ , and colorful dots represent the turning
points given by Eq. (45). (b) The colorful solid and dashed lines,
from top to bottom, represent the corresponding phase sensitivities
and the general Heisenberg limits.

obtained and given by

γt =
√

(N − 6)(N − 1)

3(N − 2)
. (45)

Obviously, it is approximately
√

N/3 − 2 for larger N , which
is reminiscent of the plateau that emerged in the study of
the GHZ state, where it is

√
N − 1 [22]. This again implies

the common feature of GHZ-type quantum states in quantum
metrology.

V. CONCLUSIONS

In summary, we have analyzed the phase sensitivity of
an N-qubit W superposition state under noninteracting and
interacting operation by QFI. As presented in noninteracting
operation, the phase sensitivity of an N-qubit W superposition
state is the same as the W state for the number of qubits N � 6
and asymptotically equal to the GHZ state for larger qubits
involved (N � 1). Interestingly, the 4-qubit W superposition
state is found to have the same phase sensitivity as a 4-qubit
GHZ state. This may shed some new light on high-precision
metrology, especially in some relatively noisy environments.
Based on parity measurement, we have presented the optimal
measurement protocols for the ideal metrology limit with
respect to every W superposition state. Considering the effect
of decoherence on the metrology limit, we have shown the
phase sensitivity of an N-qubit W superposition state with
respect to p under different channels and found that it is
always better than the standard quantum limit in the phase
damping channel (except for the 3-qubit case). Finally, the
phase sensitivity under Ising-type interacting operation was
studied and the general Heisenberg limit is surpassed with in-
creasing interaction strength γ for all W superposition states.
In the case of a larger qubit W superposition state, a plateau
of QFI and phase sensitivity with respect to γ is found,
similar to the result of a GHZ state, which again verifies
the common feature of GHZ-type quantum states in quantum
metrology.

In addition, the phase sensitivity of a 4-qubit W superpo-
sition state is found to be the same as a 4-qubit GHZ state,
whether under noninteracting operation or interacting opera-
tion. This deserves to be explored and may exhibit superiority
in related topics. Meanwhile, it also raises a question regard-
ing the aspect of entanglement detection and classification,
that we cannot distinguish them via QFI, and this issue will
be studied elsewhere.
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