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Quantum state discrimination involves identifying a given state out of a set of possible states. When the states
are mutually orthogonal, perfect state discrimination is always possible using a global measurement. In the case
of multipartite systems when the parties are constrained to use multiple rounds of local operations and classical
communication (LOCC), perfect state discrimination is often impossible even with the use of asymptotic LOCC,
wherein an error is allowed but must vanish in the limit of an infinite number of rounds. Utilizing our recent
results on asymptotic LOCC, we derive a lower bound on the error probability for LOCC discrimination of any
given set of mutually orthogonal pure states. Informed by the insights gained from this lower bound, we are
able to prove necessary conditions for perfect state discrimination by asymptotic LOCC. We then illustrate by
example the power of these necessary conditions in significantly simplifying the determination of whether perfect
discrimination of a given set of states can be accomplished arbitrarily closely using LOCC. The latter examples
include a proof that perfect discrimination by asymptotic LOCC is impossible for any minimal unextendible
product basis (UPB), where minimal means that for the given multipartite system no UPB with a smaller number
of states can exist. We also give a simple proof that what has been called strong nonlocality without entanglement
is considerably stronger than had previously been demonstrated.
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I. INTRODUCTION

Nonlocality in quantum physics is a concept that has long
intrigued researchers. Recognizing that this concept can mean
different things in different contexts, Griffiths [1] has drawn a
distinction between the use of the term nonlocality to describe
the properties of quantum systems, on the one hand, and
nonlocal influences between systems, on the other. The latter
is a subject that continues to be widely debated, even to the
present day.1 Nonlocal properties of quantum systems are less
controversial, but there are at times differing conceptions of
what they entail. One such example, wherein a set of quantum
states can exhibit nonlocal properties even when no one of
those states is itself nonlocal, has received a great deal of
attention in recent years. This property, first discovered over
20 years ago in the seminal work of Ref. [2], is commonly
referred to as nonlocality without entanglement (NLWE) and
arises in the context of quantum state discrimination [3–7],
wherein a party or parties are tasked with determining in
which one of a known set of states their shared system
had been prepared. Quantum state discrimination is a key
paradigm in quantum information processing and quantum
computing [8], and can also play a role in any experiment
for which there exists enough a priori information to narrow
down the possible outcomes of that experiment.

When the set of states consists only of product states, hav-
ing no entanglement [9] and therefore exhibiting no nonlocal
properties individually, it may still turn out that, taken as a

*cohensm52@gmail.com
1While we have not studied this issue in depth, we do lean in

the direction of Griffiths’s view that there is no evidence for these
nonlocal influences.

set, the collection does indeed behave nonlocally. As shown in
Ref. [2], a particular set of mutually orthogonal product states
on a 3 × 3 system cannot be perfectly discriminated when the
parties are restricted to multiple rounds of measuring their
local part of the system and communicating their outcomes
to the other parties—a process known as local operations and
classical communication (LOCC)—even though this can be
easily accomplished by a single global measurement on the
entire system taken as a whole. It is in this sense that the
set of states exhibits nonlocality: When the system is mea-
sured locally it behaves differently than when it is measured
globally.

The proof of NLWE given in Ref. [2] involved a long,
complicated argument. The reason was that their aim was
not simply to exclude the possibility of perfect local discrim-
ination of the states, which is actually quite easily shown,
but importantly, that the parties could not even approach ac-
complishing this task arbitrarily closely. We believe the latter
definition of NLWE is the proper one to follow, and we will do
so throughout this paper: A set of mutually orthogonal product
states exhibits NLWE if and only if perfect discrimination
of that set is impossible even when an error is allowed but
must vanish in the limit of an infinite number of rounds.
By not allowing for this vanishing error, one overlooks the
fact that any measurement will be subject to experimental
imperfections—that nothing is ever accomplished perfectly in
the real world. As a consequence of these unavoidable im-
perfections, it is more appropriate to ask whether or not a task
can be accomplished arbitrarily closely and, if not, the amount
of error that is impossible to avoid. Many of us over the years
have failed to clearly understand the important distinction that
considering infinite-round protocols, alone, is not the same
as allowing for vanishing error. In the former approach, it
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would be sufficient to show that no party can make a first local
measurement without destroying orthogonality of the set (see,
for example, Appendix B of Ref. [10]): If no one can start the
protocol, they cannot continue it indefinitely (or at all). This
approach fails to consider all possible sequences of LOCC
protocols of steadily increasing number of rounds, wherein as
one proceeds through the sequence, the error incurred might
become smaller and smaller, approaching zero asymptotically.
To better understand what is missed, let us consider how one
may think about these things.

LOCC protocols are commonly viewed as a tree graph
with a single root node representing the situation before any
party has measured. From the root node, the tree branches to
multiple nodes, each one representing an outcome of the first
measurement, which is local, being implemented by only one
party. From each of these nodes, the tree continues to branch
to more nodes, each set of child nodes of a given parent node
representing outcomes of the local measurement performed at
that stage of the protocol. A finite branch of the tree starts
at the root and continues until it reaches a node that has no
children, denoted as a leaf node. In the limit of an infinite
number of rounds, there may be branches that never terminate
and are of infinite length. As shown in Ref. [11], each branch
(finite or infinite) corresponds directly to a continuous path
of product operators through a particular subset of operator
space. Significantly, for a given protocol, each such path is
piecewise local, which means that it consists of straight line
segments along which the product operator changes only in
one party’s local part. For example, on a bipartite system, this
might be represented as [(1 − x)A + xA′] ⊗ B, which is a
line stretching from A ⊗ B to A′ ⊗ B as x ranges from 0 to
1, A′ corresponding to one outcome of a local measurement
by Alice, A being the cumulative effect of Alice’s actions
up to (and preceding) this latest measurement. Only the A
part changes; the B part remains unchanged. This piecewise
local property applies even to infinite branches, which then
consist of many (an infinite number of) infinitesimally short
pieces.

To understand why only considering individual infinite-
round protocols overlooks possibilities, let us recall how we
learned about integrals in our introductory calculus classes:
Any curve can be approximated arbitrarily closely by a piece-
wise constant curve, and this provides a way to approximate
the area under the original curve. In the limit that the number
of constant pieces goes to infinity, the piecewise constant
curve asymptotically approaches the original curve, which
in general is not piecewise constant. Similarly, there exist
sequences of LOCC protocols for which each protocol in the
sequence corresponds to piecewise local paths in operator
space, but for which the limit of this sequence corresponds
to paths which are not piecewise local. In particular, it may
well be that the limit of a sequence of LOCC protocols
corresponds to an initial measurement that is not local, and
such sequences are not excluded by simply demonstrating
that the only initial local measurement that does not destroy
orthogonality of the original set is a measurement for which
all outcomes are proportional to the identity operator (a trivial
measurement). Instead, as we will see below, it is sufficient to
show that any nontrivial initial separable measurement oper-

ator that is arbitrarily close to IH destroys orthogonality (see
Corollary 1).

In an effort to ensure these ideas are clear, let us divide the
class of infinite-round protocols into two distinct subclasses
[12]. The first subclass involves sequences of protocols where
each subsequent protocol in a given sequence differs from
the preceding protocol simply by adding more rounds of
communication, but without changing the local measurements
implemented in earlier rounds. Since the earlier rounds are
unchanged, the branches remain piecewise local even in the
infinite limit. Thus, one obtains a valid LOCC protocol in
this limit, albeit one having an infinite number of rounds,
so this subclass may be seen as being a part of LOCC. The
second subclass includes limits of sequences in which mea-
surements made at the earlier rounds are changed from one
protocol in the sequence to the next. This subclass must be
included to obtain the asymptotic LOCC discussed above, and
its inclusion gives rise to the topological closure of LOCC,
which we denote as LOCC in the sequel. By changing those
earlier rounds, the branches need not correspond to piecewise
local paths in the infinite limit (see the comparison to limits
of piecewise constant curves in the preceding paragraph) and
as such, in this limit, one may fail to obtain a valid LOCC
protocol.

Let us review the main result, Theorem 1, of Ref. [11],
where we consider a measurement to be a positive opera-
tor valued measure (POVM) consisting of a set of positive
semidefinite operators, Ej , known as POVM elements. Note
that M ∈ LOCC means there exists a sequence of LOCC
protocols, the nth such protocol implementing measurement
Mn, such that limn→∞ Mn = M.

Theorem 1 of Ref. [11]. If M ∈ LOCC, with measurement
M consisting of POVM elements Ej , then for each j, there
exists a continuous, monotonic path of product operators from
IH to a point on the (half-open) line segment (0, Ej], and
this path lies entirely within the geometric object, ZM =∑

j[0, Ej], which is known as a zonotope.
An alternative, but equivalent, definition of the zonotope

just introduced is ZM := {z|z = ∑
j c jE j, 0 � c j � 1 ∀ j}. In

addition, by monotonic, we mean that the trace of the product
operators is nonincreasing along these paths. These paths,
which need not themselves be piecewise local, are found as
the limit of a sequence of piecewise local paths, the lat-
ter being associated with that sequence of LOCC protocols,
the limit of which implements M. Of course, without the
restriction that the paths lie within ZM, these paths would
always exist. That is, there are always such paths between
any pair of product operators. For example, one path from
A ⊗ B to A′ ⊗ B′ would be [(1 − x)A + xA′] ⊗ B followed
by A′ ⊗ [(1 − y)B + yB′]. As is amply illustrated by the ex-
amples in Ref. [11], however, there are many measurements
for which there are no paths of product operators starting
at IH and lying within ZM. It is worth noting that those
examples were drawn from well-studied cases of local state
discrimination, for which much of the work in Ref. [11] in-
volved determining the most general separable measurement
M capable of perfectly discriminating the given set, and then
showing that the requisite paths of product operators within
ZM do not exist. Here, we simplify things by finding ways
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to reach these conclusions for given sets of states without
the need to know anything about what measurements can
accomplish the task successfully. Another observation is that
since the paths considered here are continuous and starting
at IH, they require the existence of a positive semidefinite
product operator lying within ZM at every distance, R, from
IH in the range 0 � R � d (IH, Ej ), with d (X,Y ) the distance
between (normalized operators) X and Y . Suppose such con-
tinuous paths do not exist. Then it seems a reasonable guess
that the error incurred by any LOCC protocol used for im-
plementing the desired POVM will be in some way related
to how far away from ZM one must stray in order to find
such paths, and in an attempt to lower bound this error, one
may then consider, for each R, how far it is from ZM to the
nearest positive semidefinite product operator. This is part of
the motivation for the present work, in which we prove a result
that is similar, but not quite identical, to what we have just
conjectured. Our result differs from the ideas just described in
one very important aspect: in order to know the distance of an
operator from ZM, one needs to know the measurement, M.
It turns out that knowledge of what measurement(s) might be
successful is not needed; all we need to know is the set of
states one is setting out to discriminate.

The remainder of the paper is organized as follows: In
Sec. II, we use the insights of Ref. [11] to derive a lower
bound on the probability of error, perr, in locally discrimi-
nating any mutually orthogonal set of pure states. We allow
for limits of sequences of protocols, discussed above, go-
ing beyond LOCC itself to include LOCC. These arguments
demonstrate that perr > 0 implies the set of states cannot be
perfectly discriminated within LOCC, which would require
asymptotically vanishing error. Unfortunately, we have found
this lower bound to be difficult to compute. Nonetheless, in
Sec. III we use the insights gleaned from this lower bound
to prove two theorems providing necessary conditions that
a given set of states can be perfectly discriminated within
LOCC, and then in Sec. IV we give examples where these
theorems easily demonstrate that this is impossible. We also
show that perfect discrimination within LOCC is impossible
when the set of states is an unextendible product basis with
the minimal number of states for the associated multipartite
Hilbert space. Finally, we end with our conclusions.

II. ERROR PROBABILITY FOR DISCRIMINATING ANY
SET OF ORTHOGONAL PURE STATES BY LOCC

In this section, we begin by considering the error incurred
in using LOCC to discriminate a set S of N orthogonal pure
states on Hilbert space H: S = {ηm, |�m〉}, given with a priori
probabilities ηm > 0,

∑
m ηm = 1, and 〈�m|�n〉 = δmn. For

an arbitrary set of orthogonal states |�m〉, not necessarily a
complete basis of the Hilbert space, there will generally be
a number of possible global measurements that perfectly dis-
criminate those states. In general, however, when these states
describe a multipartite system, there may be constraints on
the actions the parties are able to perform, and under such
circumstances, any given global measurement, Mg, may be
impossible. Instead, the parties may be restricted to using
LOCC in their efforts to discriminate the state, and they may

be forced to utilize a different measurement, say,

MQ =
{

Qi

∣∣∣∣∣∑
i

Qi = IH, Qi � 0

}
. (1)

It may be that MQ can be implemented by LOCC, at least
arbitrarily closely: MQ ∈ LOCC. If not, then the question
arises, how well can the parties do in discriminating the state
if they are able to perform the best possible LOCC measure-
ment, MQ?

Define PR to be the set of positive semidefinite product
operators acting on H and lying at a distance R from the
identity operator IH [distances between normalized operators
are measured using the Frobenius norm, defined above Eq. (4),
below], and also define

� =
∑

m

√
ηm�m, (2)

with �m = |�m〉〈�m|. Then, in Appendix A, we prove the
following theorem.

Theorem 1. Given any set of mutually orthogonal pure
states, the probability of error for local state discrimination
of this set is lower bounded as

perr �
1

2
max

R
min
Q∈PR
z∈Z�

∥∥∥∥�Q� − z

Tr(�2Q)

∥∥∥∥2

, (3)

where ‖ · ‖ is the Frobenius norm, and maxR is taken over
the range 0 � R � √

(D − 1)/D (see Appendix A for de-
tails). With Z� := {z|z = ∑

m cm�m, 0 � cm � 1 ∀m}, it is
straightforward to see that the minimum over z ∈ Z� is
achieved at z = ∑

m ηm〈�m|Q|�m〉�m. Note that the defini-
tion of Z� closely adheres to how ZM was defined above
for a measurement M, even though the set of operators, �m,
does not in general constitute a complete measurement. When
perr = 0 and the set of states can be perfectly discriminated
using LOCC, then operator � effectively takes the paths
of Ref. [11], which are associated with an actual complete
measurement M and lie within ZM, projecting (and scaling,
by the ηm) them into Z� . Thus, we obtain continuous paths
of operators that lie entirely within Z� (these need not be
product operators after they are projected by � into Z� ; see
Sec. III, below for further details), and this is why we need
not know ZM or the optimal measurement, M, that is to be
used. Given this observation, it would seem to make sense
to consider measurements M such that Z� ⊆ ZM whenever
possible, although it is not entirely clear this would necessar-
ily minimize the error.

Calculating this lower bound on perr appears to be ex-
tremely challenging in practice. Approaching this problem
analytically is prohibitively difficult except for the smallest
systems, that is, for two qubits, in which case it is merely very
challenging. For the latter case, we have been able to show for
discriminating the four Bell states [8] by LOCC—when they
are given with equal a priori probabilities, ηm = 1/4—that
our lower bound is perr = 1/4, which is just a factor of 2
smaller than the known optimal strategy [13]. That this is the
correct order of magnitude may be seen as an encouraging
sign. Calculating this lower bound does not appear to fall into
any of the classes that admit an efficient numerical approach,
however. Therefore, one would need access to significant
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computational resources to obtain a result with a high degree
of confidence that it is truly a lower bound. Therefore, in the
next section, we will obtain powerful necessary conditions for
the possibility of perfect state discrimination by LOCC of any
given set of mutually orthogonal pure states. Note that the a
priori probabilities, ηm > 0, are only relevant to the question
of the amount of error incurred and not to whether or not
perfect discrimination is possible.

III. NECESSARY CONDITIONS FOR PERFECT STATE
DISCRIMINATION BY LOCC

Our first necessary condition is obtained as follows. If there
exists R such that the quantity maximized over R in Eq. (3)
is nonvanishing, then perr > 0—or alternatively (recalling the
perspective of the result of Ref. [11]), the required continuous
paths of product operators whose projection by � lies entirely
within Z� do not exist—then perfect discrimination of the set
of states by LOCC is impossible.

Theorem 2. Given a set of mutually orthogonal quantum
states, {|�m〉}, if for any fixed state |�n〉, no continuous path
of positive semidefinite product operators, say Qi(s), exists
such that the following two conditions hold, then this set of
states cannot be perfectly discriminated within LOCC:

(1) The path begins at IH and ends at some fixed positive
semidefinite product operator, Qi, where �Qi� ∝ �n, and
index i will generally depend on index n.

(2) For every s, Qi(s) is diagonal in the (partial) basis of
the |�m〉.

Note that the condition that Qi(s) is diagonal in the |�m〉 is
equivalent to �Qi(s)� lying within Z� .

Proof. Suppose there exists measurement MQ ∈ LOCC
as in Eq. (1) that perfectly discriminates the given set of
states. Then by Theorem 1 of Ref. [11], for each Qi ∈ M,
there exists a continuous path of product operators Qi(s)
extending from IH to Qi and lying entirely within ZM. Fur-
thermore, each Qi � 0 identifies without error one of the
states in the set, say, �n, or in other words, Tr(Qi�m) =
δmnqin, which, since �n � 0 as well, means that Qi�m =
0 = �mQi for all m �= n. This implies that �Qi� = qin�n,
for the given fixed n, with qin � 0. Now, from the proof of
Theorem 1 in Ref. [11], we know that Qi(s) = ∑

j ci j (s)Qj

with ci j (s) � 0. This leads to �Qi(s)� = ∑
j ci j (s)�Qj� =∑

j

∑
m qjmci j (s)�m ∈ Z� . Since the path terminates at Qi,

and as we have seen, �Qi� ∝ �n for some n, the proof of
this theorem is complete. �

We will use this theorem in the next section to prove that no
unextendible product basis consisting of the minimal number
of states can be perfectly discriminated using LOCC. First,
noting that we can write our positive semidefinite path of op-
erators as Q(s) = K (s)†K (s), the condition in Theorem 2 that
Q(s) is diagonal in the partial basis of the |�m〉 is equivalent
to orthogonality of the new states, K (s)|�m〉. Thus, we have
the following corollary to Theorem 2.

Corollary 1. If a given set of mutually orthogonal quantum
states, |�m〉, can be perfectly discriminated within LOCC,
then there exists a continuous path of product operators, K (s),
such that for every s, the states K (s)|�m〉 remain orthogonal
along the entire path.

Notice how this generalizes the observation, discussed here
in the Introduction, that the initial, local measurement in any
LOCC protocol must preserve orthogonality of the states.
Here we see instead that for LOCC, orthogonality is preserved
along entire continuous paths of operators, and also that while
K (s) must be a product (separable measurement) operator, this
path need not be piecewise local, so need not correspond to a
series of local measurements.

The proof of the next result will use an extension of the
notion, introduced in Ref. [14], of partitions of the states of an
unextendible product basis (UPB) among the various parties.
Note, however, that this theorem is general, being applicable
to any set of states, not just UPBs. Let us review these ideas
before proceeding to the theorem itself.

An UPB is a set, S , of N mutually orthogonal product
states on multipartite Hilbert space H such that there is no
other product state on H that is orthogonal to all the orig-
inal N states in the UPB. In principle, a complete product
basis of H is unextendible, but one is usually only con-
cerned with partial bases, such that the N states do not span
the complete space H. The following lemma was proved in
Ref. [14].

Lemma 1 [14]. Let π be a partition of S into P disjoint
subsets equal to the number of parties: S = S1 ∪ S2 ∪ · · · ∪
SP. Let rα = rank{|ψ (α)

j 〉 : |� j〉 ∈ Sα} be the local rank of
subset Sα as seen by the αth party. Then S is extendible if and
only if there exists a partition π such that for all α = 1, . . . , P,
the local rank of the αth subset is less than the dimensionality
of the αth party’s Hilbert space. That is to say, S is extendible
if and only if there exists π such that for all α, rα < dα .

The partitioning introduced in this lemma can be under-
stood as a way of distributing “the job of being orthogonal
to a new product state” [15] among the various parties. If,
for every such partition, at least one party’s local states—say
party α with set of local states Sα—span the full local Hilbert
space, then there is no state orthogonal to all the states in
Sα , and party α fails to fulfill its role of being orthogonal to
an additional product state. If for every partition at least one
party fails in this role, then there is no additional product state
orthogonal to all the states in S . In other words, under these
circumstances, the original set is unextendible.

We are now ready to prove our second necessary condition
for perfect state discrimination by LOCC.

Theorem 3. Consider any mutually orthogonal set of prod-
uct states S = {|� j〉 = ⊗

α |ψ (α)
j 〉}. For each party α, define

the subset of all index pairs, Jα = {(i, j)|〈ψ (α)
i |ψ (α)

j 〉 =
0; 〈ψ (β )

i |ψ (β )
j 〉 �= 0 ∀β �= α}. If for every party α the set of

dyads, {|ψ (α)
i 〉〈ψ (α)

j |}(i, j)∈Jα
, spans a space of dimension d2

α −
1, then this set of product states cannot be perfectly discrimi-
nated within LOCC.

Throughout the remainder of this paper, we will refer to
kets |ψ (α)

j 〉 as the local states on Hα . The idea of the proof
is that when these dyads span a space of dimension d2

α − 1,
there is one and only one operator orthogonal to all of them,
that being the identity operator, Iα . If this is true for all parties,
there can be no global product operator that is orthogonal to
all these global dyads and is close to but not proportional to
IH, and then by Theorem 1, perfect discrimination by LOCC
is impossible.
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Proof. We extend the notion of partitioning to the set
of dyads D = {|�i〉〈� j |} j �=i. Let π̂ be such a partition,
yielding D = D1 ∪ D2 ∪ · · · ∪ DP, which we will under-
stand as a way to distribute the “job of being orthogonal”
to a product operator Q = ⊗

α Q(α). That is, given π̂ (s),
Tr(Q(α)(s)|ψ (α)

i 〉〈ψ (α)
j |) = 0 for all |�i〉〈� j | ∈ Dα .

By Theorem 2, if the states of S can be perfectly dis-
criminated within LOCC, then there exists a continuous path
of positive semidefinite product operators Q(s) such that for
every s, Q(s) is diagonal in the partial basis of the states
in S: 〈�i|Q(s)|� j〉 = δi j〈�i|Q(s)|�i〉. Now, for each distinct
s, one may assign a different partition π̂ (s) to distribute the
orthogonality job. However, given that there is a finite number
of states, N , there is also a finite number of dyads, N (N − 1),
and thus there is a finite number of distinct partitions that
can be used here. If, for any given partition, each (and ev-
ery) party α is given a set of dyads spanning a subspace of
dimension d2

α − 1, then for that partition there is one and only
one operator Q(α) orthogonal to all of that party’s dyads, and
thus there is one and only one operator Q orthogonal to all
the multipartite dyads, |�i〉〈� j | for j �= i. Given there are a
finite number of partitions, there are then only a finite number
of operators orthogonal to all the multipartite dyads, and there
cannot be a continuous path of operators from IH to anywhere.
Indeed, given that the dyads have been distributed according
to the index sets Jα , each of these local dyads is traceless,
and thus orthogonal to the identity operator, Iα . Thus, for each
such partition, the only operator orthogonal to these dyads is
Q(s) = IH, which is a point and not a path that leaves IH, as
is required.

There are two points that need clarification here. First,
partitioning dyads according to Jα omits dyads, which are
therefore not given to any of the parties. As already noted
elsewhere, this is not an issue for our proof because including
those additional dyads can only increase the space spanned
by the dyads given to any given party, and so can only further
constrain operators Q(α)(s) orthogonal to these local dyads.
The second point is that there are many partitions that do not
conform to Jα . For example, there will generally be partitions
such that dyad |�i〉〈� j | is given to party α even when the cor-
responding local states on α are not themselves orthogonal. As
explained in the next paragraph, we will not need to consider
any of these other partitions.

The reason we can restrict consideration to those partitions
that follow Jα is that these are the only ones relevant for
small enough s. Let us see why this is so. Since this path of
operators starts at Q(0) = IH, then by continuity, there exists
Q(s) for small enough s which is arbitrarily close to IH. If
〈ψ (β )

i |ψ (β )
j 〉 �= 0, then for small enough s, 〈ψ (β )

i |Q(β )(s)|ψ (β )
j 〉

is also nonvanishing, and |ψ (β )
i 〉〈ψ (β )

j | is not orthogonal to
Q(β )(s). To see this formally, one may measure distances
between operators on Hβ by the Frobenius norm, ‖X‖ =√∑

k,l |Xkl |2 � |〈ψ (β )
i |X |ψ (β )

j 〉| for some fixed i, j (no sum).2

2This inequality is obvious when 〈ψ (β )
i |ψ (β )

j 〉 = 0, and it is straight-

forward to show that ‖X‖ � |〈ψ (β )
i |X |ψ (β )

j 〉| also holds for any
nonorthogonal pair of states.

Then, for |〈ψ (β )
i |ψ (β )

j 〉| = r � ε > 0 and Q(β )(s) within ε of
Iβ , we have

ε > ‖Iβ − Q(β )(s)‖ �
∣∣〈ψ (β )

i

∣∣(Iβ − Q(β )(s))
∣∣ψ (β )

j

〉∣∣
= ∣∣r − 〈

ψ
(β )
i

∣∣Q(β )(s)
∣∣ψ (β )

j

〉∣∣, (4)

implying that |〈ψ (β )
i |Q(β )(s)|ψ (β )

j 〉| ≈ r � ε > 0 and Q(β )(s)

is not orthogonal to the corresponding dyad, |ψ (β )
j 〉〈ψ (β )

i |. If

〈ψ (β )
i |ψ (β )

j 〉 �= 0 for all β �= α, then the job of |� j〉〈�i| being
orthogonal to Q(s) for small enough s must be assigned to
party α, and this completes the proof. �

As a simple illustration of how this works, consider the
set of two-qubit states, which can be perfectly discriminated
by LOCC, S = {|0〉|0〉, |0〉|1〉, |1〉|+〉, |1〉|−〉}, with |±〉 =
(|0〉 ± |1〉)/

√
2. For the second party, we have the index set

J2 = {(1, 2), (2, 1), (3, 4), (4, 3)}. The corresponding dyads
are {|0〉〈1|, |1〉〈0|, |+〉〈−|, |−〉〈+|}. This set spans a space
of dimension d2

2 − 1 = 3, indicating there is a unique local
operator orthogonal to the entire set, that being the identity op-
erator I2. Thus, there is no product operator A ⊗ B close to IH
that does not destroy orthogonality of the original set S , except
possibly those with B ∝ I2. Looking at the first party, J1 =
{(1, 3), (2, 3), (1, 4), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2)}, with
corresponding dyads, {|0〉〈1|, |1〉〈0|}, which span a space of
dimension only 2 < d2

1 − 1. This leaves party 1 with a range
of possible measurement operators close to the identity (any-
thing diagonal in the standard basis is acceptable) and, as
is fairly obvious, this party can indeed initiate a successful
LOCC protocol.

If the local parts of dyads |�m〉〈�n|, m �= n, are to span
a subspace of dimension d2

α − 1 for each party α, there must
be enough pairs of states in the original set to distribute to
all parties, N (N − 1) � ∑

α (d2
α − 1) =: T . This provides a

lower bound on the number of states, N � � 1
2 +

√
T + 1

4 �,
which is smaller than the minimal number of states in a UPB
on the same system. However, we do not know if there exist
sets of states that achieve this new lower bound while still
exhibiting NLWE, or if a larger number is needed.

Additional examples illustrating the power of these ideas
will be found in the next section.

IV. APPLICATIONS

In this section, we illustrate the results of the preceding one
with a few explicit examples.

A. The rotated domino states and the Tiles UPB

It is perhaps worth showing how easy it can sometimes
be to prove that certain sets of states cannot be perfectly dis-
criminated within LOCC. Let us begin with two well-known
sets of states for which this has previously been proven [6,11]
using more—sometimes, much, much more—complicated ar-
guments. The rotated domino states are [2]

|�1〉 = |1〉 ⊗ |1〉,
|�2〉 = |0〉 ⊗ (cos θ1|0〉 + sin θ1|1〉),

|�3〉 = |0〉 ⊗ (sin θ1|0〉 − cos θ1|1〉),

|�4〉 = (cos θ2|0〉 + sin θ2|1〉) ⊗ |2〉,
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|�5〉 = (sin θ2|0〉 − cos θ2|1〉) ⊗ |2〉,
|�6〉 = |2〉 ⊗ (cos θ3|1〉 + sin θ3|2〉),

|�7〉 = |2〉 ⊗ (sin θ3|1〉 − cos θ3|2〉),

|�8〉 = (cos θ4|1〉 + sin θ4|2〉) ⊗ |0〉,
|�9〉 = (sin θ4|1〉 − cos θ4|2〉) ⊗ |0〉, (5)

with 0 < θ j � π/4. We can easily show these states cannot
be perfectly discriminated using LOCC.

Theorem 4. The rotated domino states of Eq. (5) cannot be
perfectly discriminated using LOCC.

Proof. We will use Theorem 3, so identify for the first
party, J1 ⊃ {(3, 9), (5, 7), (3, 7), (4, 5), (8, 9)}, correspond-
ing to dyads,

|0〉(sin θ4〈1| − cos θ4〈2|), (sin θ4|1〉 − cos θ4|2〉)〈0|,
|2〉(sin θ2〈0| − cos θ2〈1|), (sin θ2|0〉 − cos θ2|1〉)〈2|,

|0〉(〈2|, (|2〉〈0|,
(cos θ2|0〉 + sin θ2|1〉)(sin θ2〈0| − cos θ2〈1|), (cos θ4|1〉 + sin θ4|2〉)(sin θ4〈1| − cos θ4〈2|), (6)

and the Hermitian conjugates of the last pair of dyads are omitted, as they are not needed. To readily show these are linearly
independent, consider

0 = c1|0〉(sin θ4〈1| − cos θ4〈2|) + c2(sin θ4|1〉 − cos θ4|2〉)〈0| + c3|2〉(sin θ2〈0| − cos θ2〈1|)
+ c4(sin θ2|0〉 − cos θ2|1〉)〈2| + c5|0〉(〈2| + c6|2〉〈0| + c7(cos θ2|0〉 + sin θ2|1〉)(sin θ2〈0| − cos θ2〈1|)
+ c8(cos θ4|1〉 + sin θ4|2〉)(sin θ4〈1| − cos θ4〈2|). (7)

It is very easy to show that this is satisfied if and only if all
the coefficients vanish. The 0,0 matrix element of Eq. (7)
gives c7 = 0 and the 2,2 element gives c8 = 0. Then, each
off-diagonal element shows that one of the remaining c j van-
ishes, and this encompasses all of them. Thus, c j = 0 for all
j, and these eight dyads are linearly independent. Since there
is a symmetry between the parties, then by Theorem 3, this
completes the proof. �

Notice that while |�1〉 is needed to make this set a full ba-
sis, it does not appear in any of the dyads of Eq. (6). Therefore,
the set still cannot be perfectly discriminated within LOCC
even if this state is omitted.

Next, consider the states of the Tiles UPB, which is a subset
of the dominoes (unrotated, all θ j = π/4), except with |�1〉
replaced by |F 〉:

|F 〉 = 1

3
(|0〉 + |1〉 + |2〉) ⊗ (|0〉 + |1〉 + |2〉),

|�3〉 = 1√
2
|0〉 ⊗ (|0〉 − |1〉),

|�5〉 = 1√
2

(|0〉 − |1〉) ⊗ |2〉,

|�7〉 = 1√
2
|2〉 ⊗ (|1〉 − |2〉),

|�9〉 = 1√
2

(|1〉 − |2〉) ⊗ |0〉. (8)

We have the following.
Theorem 5. The Tiles UPB of Eq. (8) cannot be perfectly

discriminated using LOCC.
Proof. In this case, we can use six of the same dyads as

were used for the (rotated) dominoes, the ones in the first
three rows of Eq. (6) (but with θ j = π/4, as noted above).
Then, instead of those in the fourth row there, include the
local (on the first party) parts of |�5〉〈F | and |�9〉〈F |. By

following the same argument as was just used in the proof
of the preceding theorem, it is easily seen that these are eight
linearly independent dyads. Since there is again a symmetry
between the parties, the proof is complete. �

B. “Strong” quantum nonlocality without entanglement

We now turn to the results of Ref. [16] concerning what
they have denoted as strong nonlocality without entanglement.
We have argued in the Introduction that these results are
perhaps not as strong as claimed or, at least, as one might
wish them to be. The authors of that paper have not proved
that the sets of states discussed in their paper exhibit NLWE,
according to how we believe NLWE should be understood,
and therefore they have also not proved that they exhibit a
stronger version of NLWE, as is their claim. Here, we show
that for the first of their sets of states (on a tripartite system),
their claims are nonetheless correct, that this set does exhibit
NLWE, and we also show that it demonstrates NLWE across
all bipartite cuts, therefore also exhibiting the stronger version
of NLWE.

Defining | j ± k〉 = (| j〉 ± |k〉)/
√

2, the set of states on a
3 × 3 × 3 system, given in Eq. (4) of Ref. [16] as an example
of what they call strong nonlocality without entanglement, is

|�1±〉 = |1〉|2〉|1 ± 2〉, |�4±〉 = |1〉|3〉|1 ± 3〉,
|�7±〉 = |2〉|3〉|1 ± 2〉, |�10±〉 = |3〉|2〉|1 ± 3〉, (9)

and cyclic permutations of the local states in Eq. (9)—so that,
for example, |�2±〉 = |2〉|1 ± 2〉|1〉, and generally |�3 j+k,±〉
is obtained by permuting the local states in |�3 j+1,±〉 k − 1
times—along with |i〉|i〉|i〉, i = 1, 2, 3. We now demonstrate
that this set of states does indeed exhibit strong NLWE, ac-
cording to our definition. First, we show that this set exhibits
NLWE.

Theorem 6. The set of states in Eq. (4) of Ref. [16] cannot
be perfectly discriminated within LOCC.
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Proof. We wish to apply Theorem 3. Toward that end,
we seek orthogonal pairs of local states on the first party,
such that the corresponding pairs on the other parties are
not orthogonal. By simple inspection, one easily finds there
are many index pairs which satisfy this condition. We only
need to find enough dyads to span a subspace of dimension
d2

α − 1; including more index pairs means more dyads, which
cannot shrink the subspace that they span. Select index pairs,
(1+, 2+), (1+, 10+), (2+, 5+), (3+, 3−), and (6+, 6−),
which lead to ten distinct dyads (including Hermitian conju-
gates) that (as explained in the proof of Theorem 3) must be
given to the first party, those dyads being |i〉〈 j| for all i �= j
and |1 + i〉〈1 − i|, i = 2, 3. Since we need only eight linearly
independent dyads, we omit the two other dyads that appear,
which are |1 − i〉〈1 + i|, i = 2, 3. Consider

0 =
3∑

i=1

3∑
j=1
j �=i

ci j |i〉〈 j| + c′
1|1 + 2〉〈1 − 2| + c′

2|1 + 3〉〈1 − 3|.

(10)

It is almost trivial to show that this is satisfied if and only if
all coefficients vanish. First, take the 〈2| · · · |2〉 and 〈3| · · · |3〉
matrix elements of Eq. (10), yielding 0 = c′

1 and 0 = c′
2,

respectively. Then, the 〈i| · · · | j〉 matrix element for all j �=
i leads to the conclusion that ci j = 0 as well, and we are
done. The chosen eight dyads are linearly independent, and
by the symmetry between the three parties, we have veri-
fied that the conditions for Theorem 3 hold for the states of
Eq. (9). �

We can also use Theorem 3 to prove this set cannot be
discriminated by LOCC even if two of the parties get together
and make joint measurements on their combined (two) parts
of the tripartite system.

Theorem 7. The set of states in Eq. (4) of Ref. [16] exhibits
true strong nonlocality without entanglement.

Proof. Since their combined parts have dimension equal
to dBC = 9, the proof here is slightly more challenging than
that for Theorem 6, since we need to demonstrate there are
d2

BC − 1 = 80 linearly independent dyads. Selecting this many
dyads out of the hundreds to choose from is difficult to do by
hand, but it is easy to write a short computer program that
will perform this task for us. We do, indeed, find that there
are 80 linearly independent dyads satisfying the conditions of
Theorem 3. Given that we have already shown that for any one
party there are d2

A − 1 = 8 linearly independent such dyads,
then because of symmetry between the parties, this completes
the proof. �

Thus, we have shown that this set of states demonstrates
what we consider to be a significantly stronger “nonlocality”
than was originally shown by the authors of Ref. [16].

We note that the above proof of NLWE, in the case
that one views it as a tripartite system, requires only eight
linearly independent dyads for each party, and it turns out
that a much reduced set of states still exhibits NLWE. It is
straightforward to show that the reduced set of 12 states,
|�1±〉, |�2±〉, |�3±〉|�10±〉, |�11±〉, |�12±〉, still exhibits non-
locality without entanglement. We have checked numerically,
and it turns out that this reduced set does not exhibit (our ver-
sion of) strong nonlocality without entanglement. However,

omitting only the three states |i〉|i〉|i〉, i = 1, 2, 3 does leave a
strongly nonlocal set.

As another illustration of the power of Theorem 3, we use it
in Appendix C to prove that GenTiles1 [14], a bipartite UPB
on an n × n system for any even n � 4, cannot be perfectly
discriminated by LOCC, a result we first obtained recently in
Ref. [11], where it was necessary to first determine the most
general separable POVM that perfectly discriminates the set.
Here, by using Theorem 3, we are able to avoid a great deal of
effort since, with this approach, one need not know anything
about what measurements will succeed; all one needs to know
is the set of states itself.

C. Unextendible product bases consisting
of the minimal number of states

We will show in this section that every unextendible prod-
uct basis (UPB) [14] consisting of the minimal number of
states—which we will refer to as a minimal UPB—cannot be
discriminated perfectly by LOCC. (There is a paper [17] pur-
porting to prove that this is true for any unextendible product
basis. We believe their proof is wrong, probably in various
places, and explain our reasons for this belief in Appendix D.)
When the UPB is on P parties each having local Hilbert space
Hα of dimension dα , the minimal number of states is given as
N = ∑

α (dα − 1) + 1 [14].
We start by showing that for a minimal UPB, every set of

dα of the local states making up this UPB is linearly indepen-
dent.

Lemma 1. A set of N = ∑
α (dα − 1) + 1 pure product

states on P parties is an unextendible product basis if and only
if, for every α, every set of dα of the local states on Hα , of
dimension dα , is linearly independent.

The proof can be found in Appendix E. The following
lemma will also play an important role.

Lemma 2. Suppose |ψ (α)
k 〉 and linearly independent set

{|φ(α)
kl 〉}dα

l=1 are states on Hα of dimension dα . If operator X
is orthogonal to each of the dα dyads, |ψ (α)

k 〉〈φ(α)
kl |, for fixed k

and l = 1, 2, . . . , dα , then X has rank strictly smaller than dα .
Proof. Orthogonality of X to each of the dyads means〈

φ
(α)
kl

∣∣X ∣∣ψ (α)
k

〉 = 0, (11)

for all l . Note that states |φ(α)
kl 〉 constitute a complete basis of

Hα for each k, so that any state |(α)〉 ∈ Hα can be written
as a linear combination of the |φ(α)

kl 〉. Multiply Eq. (11) by
arbitrary complex numbers, μl , and sum over l to obtain
〈(α)|X |ψ (α)

k 〉 = 0. Since |(α)〉 is arbitrary, this means that
X |ψ (α)

k 〉 = 0, so X cannot be full rank, and this completes the
proof. �

Now we are ready to prove our desired result, as codified
in the following theorem.

Theorem 8. Given any unextendible product basis on P
parties, S = {|�m〉 = ⊗

α |ψ (α)
m 〉}, having the minimal num-

ber of states, N = ∑
α (dα − 1) + 1, with the αth local Hilbert

space Hα having dimension dα , then this set of N multipartite
states cannot be perfectly discriminated within LOCC.

Proof. According to Theorem 2 of the previous section, if a
set of N orthogonal states |�m〉 can be perfectly discriminated
by LOCC, then there exists a continuous path of product
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operators, Q(s), starting from IH, such that 〈�m|Q(s)|�n〉 =
0 for all m �= n. Restated in terms of dyads, we have that
Q(s) must be orthogonal to N (N − 1) = N

∑
α (dα − 1) dyads

|�n〉〈�m| for all m �= n. Let us drop the parameter s and focus
on understanding the conditions under which Q = ⊗

α Q(α) is
orthogonal to all these dyads associated with the states of a
minimal UPB. More specifically, since we require a contin-
uous path starting at IH, there must be part of this path that
consists of full-rank operators, so let us restrict to the case
that Q, and therefore each Q(α), is full rank.

We may partition the dyads among the parties, again as a
way to distribute the job of “being orthogonal” to Q. First,
suppose in a given such partition, party α is given less than
N (dα − 1) distinct dyads to which Q(α) must be orthogonal.
Then, there must be another party, say, β, that has been given
at least N (dβ − 1) + 1 distinct dyads to which Q(β ) must be
orthogonal. Each of these dyads is of the form |ψ (β )

k 〉〈ψ (β )
l |,

for some k, l . Since there are only N distinct kets |ψ (β )
k 〉 to

choose from, there must be at least one k such that |ψ (β )
k 〉 is

the ket appearing in dβ of the distinct dyads. Otherwise, there
is no way to account for all N (dβ − 1) + 1 dyads partitioned
to this party. Then, by Lemma 1 we see that this set of bras,
〈ψ (β )

l |, spans Hβ , so by Lemma 2, Q(β ) is not full rank.
Therefore, since we are seeking full rank Q, we may restrict
to partitions that give no one party, α, less than N (dα − 1)
distinct dyads.

On the other hand, if any party α is given more than
N (dα − 1) distinct dyads, then by the same argument just
given, Q cannot be full rank. Therefore, any partition allowing
for full rank Q must distribute exactly N (dα − 1) distinct
dyads to party α, for every α.

For any such partition allowing for Q to have full rank,
we will next identify a set of d2

α − 1 linearly independent
dyads distributed to party α, for all α. This implies that for
any partition consistent with full rank Q, there is at most
one possible Q orthogonal to all d2

α − 1 dyads. Since all of
these dyads are orthogonal to IH, operators proportional to the
latter are the only ones of full rank orthogonal to all these
dyads and, as such, satisfying the constraint that �Q� is
diagonal in the (partial) basis of the |�m〉. Therefore, there
can be no continuous path of product operators starting from
IH and satisfying this constraint. Therefore, the proof will
be complete once we demonstrate the linear independence
of d2

α − 1 of the (local) dyads, for each partition and for
each α.

Note that since there are P � 2 parties (and there are no
UPBs on a two-qubit system), then for all α, N > dα + 1,
so there are N (dα − 1) > (dα + 1)(dα − 1) = d2

α − 1 dyads
distributed to each party, α. In Appendix F, we show that the
following set of dyads is linearly independent:∣∣ψ (α)

1

〉〈
ψ

(α)
l

∣∣, l = dα + 1, . . . , 2dα − 1,∣∣ψ (α)
l

〉〈
ψ

(α)
1

∣∣, l = dα + 1, . . . , 2dα − 1,∣∣ψ (α)
k

〉〈
φ

(α)
kl

∣∣, k = 2, . . . , dα; l = 1, . . . , dα − 1, (12)

where each |φ(α)
kl 〉 is one of the |ψ (α)

m 〉, m �= k; for each k, no
two of the |φ(α)

kl 〉 correspond to the same m; and in the last

line, the |ψ (α)
k 〉 are specifically chosen to be distinct from the

|ψ (α)
l 〉, l = dα + 1, . . . , 2dα − 1. Note that such a set of dyads

always exists for any minimal UPB and for every partition:
as argued above, each |ψ (α)

m 〉 appears as the ket in dα − 1
distinct dyads given to party α, so any choice of |ψ (α)

1 〉 appears
with dα − 1 of the |ψ (α)

l 〉; and since P � 2, we have N �
2(dα − 1) + 1, so there are more than the needed dα − 1 other
states remaining to be chosen as the |ψ (α)

k 〉, k = 2, . . . , dα , on
the third line, each of which appear in dα − 1 distinct dyads,
which provides for the |φ(α)

kl 〉. As discussed in the preceding
paragraph, this completes the proof. �

V. CONCLUSIONS

In summary, we have applied the insights of Ref. [11] to the
problem of quantum state discrimination using local opera-
tions and classical communication wherein an error is allowed
but must vanish in the asymptotic limit. We obtained a lower
bound on the probability of error under these circumstances
and found that this lower bound provides an estimate of the
correct order of magnitude relative to the known optimal
error for discriminating the four Bell states. We then proved
new necessary conditions that a set of mutually orthogonal
states can be perfectly discriminated by LOCC, and provided
examples illustrating the power of these conditions, which
greatly simplify what has previously been an extremely ar-
duous task—that of determining whether a set of states can be
discriminated with error that is vanishingly small. While for
quantum state discrimination by LOCC, the approach given in
Ref. [11] required knowledge of the precise measurement the
parties were trying to implement, a key advance attained here
is that they only need to know the set of states they are tasked
with discriminating, nothing more.

The work we have presented here and in Ref. [11] opens
up a wide range of questions for further study. Since the
numerical evaluation of our lower bound, Eq. (3), appears
to be difficult, it would be of interest for experts to develop
methods of addressing this problem. At present, the greatest
lower bound that we are aware of for the domino states [2]
is perr � 1.9 × 10−8 [6]. As such, it would be interesting to
know how our lower bound compares to this (perhaps surpris-
ingly) small value.

Other avenues for further exploration include applying the
ideas of Ref. [11] to (i) strengthen those results by demon-
strating the need not only for continuous paths to individual
measurement outcomes, but to all outcomes of a given mea-
surement simultaneously, which we believe we have found
a way to do; (ii) find ways of determining when a quantum
channel can be implemented by LOCC, a goal we also believe
we are well on the way to achieving; and, finally, (iii) deter-
mine a lower bound on the error incurred when implementing
a given quantum channel by LOCC, say, for example, to
transform one entangled state to another.
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APPENDIX A: PROOF OF THEOREM 1

We begin by considering the error incurred by using
any given POVM, MQ as in Eq. (1), to discriminate the
set of states S , for the moment without the restriction

to LOCC. Note that with � = ∑
m

√
ηm�m, we have that

Tr(�2) = ∑
m ηmTr(�m) = ∑

m ηm = 1, and for any com-
plete POVM, {Qi},

∑
i Tr(Qi�

2) = Tr(�2) = 1. In addition,
��m� = ηm�m. Defining Q̂i = �Qi� � 0, we have

perr = 1 −
∑

i

max
m

ηmTr(Qi�m) =
∑

i

[Tr(�Qi�) − max
m

Tr(Qi��m�)]

=
∑

i

[Tr(Q̂i ) − max
m

Tr(Q̂i�m)]

�
∑

i

[
Tr(Q̂i ) + maxm Tr(Q̂i�m)

2Tr(Q̂i )

]
[Tr(Q̂i ) − max

m
Tr(Q̂i�m)]

=
∑

i

1

2Tr(Q̂i )
([Tr(Q̂i )]

2 − [max
m

Tr(Q̂i�m)]2)

�
∑

i

1

2Tr(Q̂i )

[
Tr

(
Q̂2

i

) −
∑

m

(Tr(Q̂i�m))2

]

=
∑

i

1

2Tr(Q̂i )
Tr

(
Q̂2

i − 2ziQ̂i + z2
i

)
=

∑
i

Tr(Q̂i )

2

∥∥∥∥∥ Q̂i − zi

Tr(Q̂i )

∥∥∥∥∥
2

. (A1)

The third line follows from the fact that maxm Tr(Q̂i�m) �
Tr(Q̂i ), while the fifth line follows from the fact that Tr(Q̂2

i ) �
[Tr(Q̂i )]2 for any Q̂i � 0, and that 0 � [maxm Tr(Q̂i�m)]2 �∑

m[Tr(Q̂i�m)]2. In the sixth line, we introduce zi =∑
m Tr(Q̂i�m)�m, from which the equality to the preceding

line follows from the fact that Tr(�m�n) = δmn. Finally, in
the seventh line, we introduce the definition of the Frobenius
norm, which is ‖M‖2 = Tr(M†M ) = ∑

k,l |Mkl |2.
Let us now restrict to MQ ∈ LOCCN , implemented by

any finite-round LOCC protocol. We will represent each such
protocol as a tree graph consisting of an arbitrary number of
finite branches, each branch itself consisting of a sequence of
nodes. Each node α corresponds to a POVM element Q̃α as
described elsewhere, and each such element, once normalized
to unit trace, lies at a distance R̃α from the similarly normal-
ized identity operator,

R̃α =
∥∥∥∥ IH

D
− Q̃α

Tr(Q̃α )

∥∥∥∥, (A2)

with D the overall dimension of H. Since it is straightforward
to show that any refinement of a given measurement into
rank-1 operators does not increase the error probability, we
may assume that the outcomes of MQ are all rank-1 operators,
in which case the leaf nodes, l , of the LOCC protocol all lie
at a distance R̃l = √

(D − 1)/D. That is, every branch of the
protocol terminates at this distance from IH.

We will use the following lemma to inform a trun-
cation of LOCC protocols (see below). Define �(Q, z) =
‖(�Q� − z)/Tr(�Q�)‖ = ‖(Q̂ − z)/Tr(Q̂)‖ and �(Q) :=
minz∈Z�

�(Q, z), where z is an element of zonotope Z� ,

defined in the main text. Note for later reference that every
element of Z� is diagonal in the (partial) basis of the |�m〉.
Then we have the following.

Lemma 3. Consider the set PR of all positive semidefinite
product operators acting on H and lying at distance R from
the identity operator IH, in the sense of Eq. (A2), and suppose
that no operator in that set lies closer than �R to zonotope Z� .
That is,

�R = min
Q∈PR
z∈Z�

�(Q, z) = min
Q∈PR

�(Q). (A3)

Suppose, in addition, there exists node Q̃p, parent of its child
node Q̃s, both lying along a branch of a LOCC protocol
implementing measurement MQ and such that R̃p � R and
R̃s � R. Then, �(Q̃p) � �R or �(Q̃s) � �R, or both.

Proof. As noted in the main text, the minimum
over z ∈ Z� is achieved at z = ∑

m Tr(Q̂�m)�m =∑
m ηmTr(Q�m)�m, for any Q, so in the basis of states

|�〉, Q̂ − z is the same as Q̂ but with its diagonal elements set
to zero (note that states |�m〉 may constitute an incomplete
basis here, but this is not a problem since with the use of � in
its definition, the support of Q̂ is confined to the span of that
incomplete basis).

Consider the line segment, Q(x) = (1 − x)Q̃p + xQ̃s, 0 �
x � 1, which connects Q̃p to Q̃s. Since this is a continuous
function of x, and since R̃p � R and R̃s � R, there exists y
in the range 0 � y � 1 such that Q(y) is at distance R from
IH, again in the sense of Eq. (A2). Q(y) ∈ PR because we
are considering a LOCC protocol, for which Q̃p and Q̃s differ
only in one party’s local operator. To prove the lemma, assume
�(Q̃p) < �R and �(Q̃s) < �R, which we will see leads to the
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condition that �(Q(y)) < �R, contradicting the definition of
�R as the minimum over Q ∈ PR. We have

�(Q(y)) = min
z

∥∥∥∥∥ Q̂(y) − z

Tr(Q̂(y))

∥∥∥∥∥
=

∥∥∥∥∥ Q̂(y) − z(y)

Tr(Q̂(y))

∥∥∥∥∥, (A4)

with Q̂(y) = �Q(y)� and

z(y) =
∑

m

Tr(Q̂(y)�m)�m

= (1 − y)
∑

m

Tr(Q̂p�m)�m + y
∑

m

Tr(Q̂s�m)�m

= (1 − y)zp + yzs, (A5)

where Q̂p,s = �Q̃p,s�, and zp, zs are defined in analogy to
z(y). This gives

[Tr(Q̂(y))]2�(Q(y))2 = ‖(1 − y)(Q̂p − zp) + y(Q̂s − zs)‖2

= (1 − y)2[Tr(Q̂p)]2�2
p

+ y2[Tr(Q̂s)]2�2
s + 2y(1 − y)

× Tr([Q̂p − zp][Q̂s − zs]). (A6)

Noting that the inner product of unit vectors cannot exceed
unity, we have that

Tr
(
[Q̂p − zp][Q̂s − zs]

)
�

√
Tr([Q̂p − zp]2)Tr([Q̂s − zs]2)

= Tr(Q̂p)Tr(Q̂s)�p�s, (A7)

and then from Eq. (A6) that

[Tr(Q̂(y))]2�(Q(y))2 � [(1 − y)Tr(Q̂p)�p + yTr(Q̂s)�s]
2.

(A8)

By assumption, �p < �R and �s < �R. This leads to the
conclusion that

[Tr(Q̂(y))]2�(Q(y))2 < [(1 − y)Tr(Q̂p) + yTr(Q̂s)]2�2
R

= [Tr(Q̂(y))]2�2
R, (A9)

or �(Q(y)) < �R, a contradiction. This completes the
proof. �

This lemma provides a way to truncate a given finite-
round LOCC protocol such that every branch that reaches a
distance R � √

(D − 1)/D from IH is left with a (new) leaf
node, Q̃α , for which �Q̃α� is a distance of at least �R from
Z� . Recall that, since we can restrict consideration to rank-1
measurements, all leaf nodes lie at distance R = √

(D − 1)/D,
and every branch corresponds to a continuous path starting at
distance R = 0. Therefore, for each branch, identify the first
node Q̃α that is a distance at least R from IH. Truncate this
branch at its parent Qp, unless Q̃α is at a distance equal to R or
�p < �R, in either of which cases, truncate at Q̃α , for which
the lemma tells us �α � �R. Now we have a truncated tree
for which

�α =
∥∥∥∥�Q̃α� − z̃α

Tr(Q̃α )

∥∥∥∥ � �R (A10)

for all leaf nodes, Q̃α , in the truncation, and z̃α =∑
m ηmTr(Q̃α�m)�m. Each such leaf node has a set of descen-

dants in the original protocol, which we index as Lα = {l|Ql

is a leaf node descendant of Q̃α in the original protocol},
unless Q̃α is itself a leaf node in the original protocol, in which
case we instead define Lα = {l|Ql is the leaf node Q̃α in the
original protocol}. Then, Q̃α = ∑

l∈Lα
Ql , and from Eq. (A1)

we have

perr �
∑

l

Tr(�2Ql )

2

∥∥∥∥�Ql� − zl

Tr(�2Ql )

∥∥∥∥2

�
∑

α

∑
l∈Lα

‖�Ql� − zl‖2

2Tr(�2Ql )

=
∑

α

∥∥∑
i∈Lα

(�Ql� − zl )
∥∥2

2
∑

i∈Lα
Tr(�2Ql )

=
∑

α

∥∥�Q̃α� − z̃α

∥∥2

2Tr(�2Q̃α )

=
∑

α

Tr(�2Q̃α )

2
�α

�
∑

α

Tr(�2Q̃α )

2
�R

= 1

2
min
Q∈PR
z∈Z�

∥∥∥∥�Q� − z

Tr(�2Q)

∥∥∥∥2

, (A11)

where the second line (and, slightly indirectly, last line) fol-
lows since the sum over leaves descended from all of the Q̃α

includes all leaves in the original protocol; the step going
from line 2 to line 3 is proven in Appendix B; and z̃α is
defined below Eq. (A10). The second-to-last line follows from
Lemma 3, while the last line is a result of the fact that Q̃α is
a product operator (since it is an intermediate outcome of a
LOCC protocol), along with

∑
α Q̃α = IH.

Thus, we have derived the expression in Theorem 1, which
lower-bounds perr for any finite number of rounds, r. Since
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this result is independent of r, it continues to hold in the limit
r → ∞, and this completes the proof.

APPENDIX B: PROOF OF LINE 3 IN EQ. (A11)

Here we prove that

∑
l∈Lα

‖Q̂l − zl‖2

Tr(Q̂l )
�

‖∑
l∈Lα

(Q̂l − zl )‖2∑
l∈Lα

Tr(Q̂l )
, (B1)

with Q̂l = �Ql�. Let tl = Tr(Q̂l ) > 0. Then, defining M (l ) =
Q̂l − zl and denoting its matrix elements in any chosen basis

as M (l )
μν , consider

S ≡
∑
l∈Lα

‖Q̂l − zl‖2

Tr(Q̂l )
−

∥∥∑
l∈Lα

(Q̂l − zl )
∥∥2∑

l∈Lα
Tr(Q̂l )

=
∑
l∈Lα

∑
μν

∣∣M (l )
μν

∣∣2

tl
−

∑
μν

∣∣∑
l∈Lα

M (l )
μν

∣∣2∑
l∈Lα

tl
≡

∑
μν

Sμν.

(B2)

We will show that each term, Sμν , is non-negative. To simplify
notation, let us replace l ∈ Lα by l and take the restriction on
the sums as implicit. Multiply by

∑
j t j > 0 and

∏
k tk > 0 to

obtain

Sμν =
∑

j

t j

∑
l

∣∣M (l )
μν

∣∣2 ∏
k �=l

tk −
∣∣∣∣∣∑

l

M (l )
μν

∣∣∣∣∣
2 ∏

k

tk

=
∑

l

( ∏
k �=l

tk

)(∑
j �=l

t j + tl

)∣∣M (l )
μν

∣∣2 −
∑

l

(∣∣M (l )
μν

∣∣2 +
∑
j �=l

M (l )∗
μν M ( j)

μν

) ∏
k

tk

=
∑

l

( ∏
k �=l

tk

)∑
j �=l

t j

∣∣M (l )
μν

∣∣2 −
∑

l

∑
j �=l

M (l )∗
μν M ( j)

μν

∏
k

tk

=
∑

l

∑
j �=l

( ∏
k �=l, j

tk

)[
t2

j

∣∣M (l )
μν

∣∣2 − tl t jM
(l )∗
μν M ( j)

μν

]

= 1

2

∑
l

∑
j �=l

( ∏
k �=l, j

tk

)[
t2

j

∣∣M (l )
μν

∣∣2 − tl t jM
(l )∗
μν M ( j)

μν + t2
l

∣∣M ( j)
μν

∣∣2 − t jtlM
( j)∗
μν M (l )

μν

]

= 1

2

∑
l

∑
j �=l

( ∏
k �=l, j

tk

)∣∣t jM
(l )
μν − tlM

( j)
μν

∣∣2
, (B3)

which is manifestly non-negative. Therefore, each Sμν � 0
implies that S � 0 as well, and this completes the proof.

APPENDIX C: GenTiles1 CANNOT BE PERFECTLY
DISCRIMINATED BY LOCC

As an illustration of how these results may be applied, we
use Theorem 3 to prove that GenTiles1 [14], a bipartite UPB
on an n × n system for any even n � 4, cannot be perfectly
discriminated by LOCC, a result we obtained recently in
Ref. [11]. The states in this UPB are

|Vkm〉 = 1√
n
|k〉 ⊗

n
2 −1∑
j=0

ω jm| j + k + 1 (mod n)〉,

|Hkm〉 = 1√
n

n
2 −1∑
j=0

ω jm| j + k (mod n)〉 ⊗ |k〉, (C1)

|F 〉 = 1

n

n−1∑
i j=0

|i〉 ⊗ | j〉,

with ω = e4π i/n, m = 1, . . . , n/2 − 1, and k = 0, . . . , n − 1.
Notice that the system is symmetric under interchange of
parties, so if we can show there exists a set of dyads, each of
which is traceless on one party but not on the other, and which
on the first party spans a subspace of dimension n2 − 1, then
this will also hold for the other party, and then by Theorem 3,
we will have demonstrated the desired result. The local states
on the first party are

|hkm〉 =
n
2 −1∑
j=0

ω jm| j + k (mod n)〉,

| f 〉 =
n−1∑
j=0

| j〉, (C2)

along with the standard basis states, |i〉.
Following a bit of guesswork and playing around nu-

merically looking for patterns on systems with several
smallish values of n, we have identified the following
set of n2 − 1 linearly independent, traceless dyads on the
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first party:

(1) |i〉〈 j| i, j = 0, . . . , n − 1; j �= i, i + n

2
(modn),

(2) | f 〉〈hkm| and |hkm〉〈 f | k = 0, m = 1, . . . ,
n

2
− 1 and k = 1, m = 1; and | f 〉〈hk1| k = 2, . . . ,

n

2
,

(3) |hkm〉〈hkl | k = 1, m = 1, l = 2, . . . ,
n

2
− 1 and k = 1, m = 2, l = 1,

(4) |h01〉〈n/2|. (C3)

Set 1 corresponds to orthogonality of |Him〉, |Hjl〉, which are not orthogonal on the second party for at least some values of m, l—
these are n(n − 2) dyads. Set 2 corresponds to orthogonality of |F 〉, |Hkm〉, which again, are not orthogonal on the second party—
these are 2(n/2 − 1) + 2 + n/2 − 1 = 3n/2 − 1. Set 3 is for |Hkm〉, |Hkl〉 (same k)—n/2 − 1 dyads. Set 4 is for H01, |Vn

2
m〉—

which is one last dyad. The total number of these dyads is n2 − 1, as required, and none of these are orthogonal on the second
party. They are linearly independent if there is no set of nonzero coefficients satisfying the following equation:

0 =
∑
i, j=0

j �=i,i+n/2 (mod n)

ci j |i〉〈 j| +
n/2−1∑
m=1

( f0m| f 〉〈h0m| + f ′
0m|h0m〉〈 f |) + f11| f 〉〈h11| + f ′

11|h11〉〈 f |

+
n/2∑
k=2

fk1| f 〉〈hk1| +
n/2−1∑
m=2

g1m|h11〉〈h1m| + g21|h12〉〈h11| + h|h01〉〈n/2|. (C4)

We next show that this latter equation is satisfied if and only
if all its coefficients vanish, which proves that the set of
dyads listed in Eqs. (C3) are linearly independent, spanning
a space of dimension n2 − 1. By the symmetry of the parties
for GenTiles1, this conclusion holds for the second party,
as well. Thus, by Theorem 3, GenTiles1 cannot be perfectly
discriminated within LOCC for any value of n.

We start by taking the 〈n/2 + l| · · · |n/2 + l〉 matrix ele-
ments of Eqs. (C3) for l = 1, . . . , n/2 − 1. Since for these
values of l , 〈n/2 + l|hkm〉 = 0 for k = 0, 1, and since the
terms involving ci j only include nondiagonal dyads ( j �= i),
these matrix elements of Eq. (C4) yield

0 =
n/2∑
k=2

fk1〈hk1|n/2 + l〉 =
n/2∑

k=l+1

fk1ω
k−l , (C5)

and we have used the facts that 〈hk1|n/2 + l〉 vanishes un-
less k � n/2 + l � k + n/2 − 1 (mod n), in which case it is
equal to ωk−n/2−l , and 〈i| f 〉 = 1 for all i. Beginning with l =
n/2 − 1, this reduces to fn/2,1 = 0. Then, l = n/2 − 2 yields
fn/2−1,1 = 0, and continuing on step-by-step, reducing l by
unity each time, we find that fk1 = 0 for all k = 2, . . . , n/2.

Noting that the terms involving ci j also do not include j =
i + n/2 (mod n), we next take 〈n/2| · · · |0〉 to obtain

0 =
n/2−1∑
m=1

f0m + f ′
11ω

−1, (C6)

and then 〈n/2 + l| · · · |l〉, l = 1, . . . , n/2 − 1, to obtain

0 =
n/2−1∑
m=1

f0mω−ml + f11ω
1−l . (C7)

Using
∑n/2−1

l=0 ω−ml = 0 for all m �= 0, we can add Eq. (C6)
to the sum of all versions (different l) of Eq. (C7) to obtain

f ′
11 = f11ω

2. Similarly, from 〈0| · · · |n/2〉 we get

0 =
n/2−1∑
m=1

f ′
0m + f11ω + h, (C8)

and from 〈l| · · · |n/2 + l〉, l = 1, . . . , n/2 − 1,

0 =
n/2−1∑
m=1

f ′
0mωml + f ′

11ω
l−1 =

n/2−1∑
m=1

f ′
0mωml + f11ω

l+1.

(C9)

Adding Eq. (C8) and all n/2 − 1 instances of Eq. (C9) leaves
h = 0.

Looking now at the diagonal element, 〈0| · · · |0〉, we have

0 =
n/2−1∑
m=1

( f0m + f ′
0m). (C10)

Adding Eq. (C10) and all instances of Eq. (C7) and Eq. (C9),
we obtain

0 =
n/2−1∑

l=0

n/2−1∑
m=1

( f0mω−ml + f ′
0mωml ) +

n/2−1∑
l=1

f11ω(ωl + ω−l ),

(C11)

which reduces to 0 = −2 f11ω, so f11 = 0, implying [see be-
low Eq. (C7)] f ′

11 = 0. Now Eq. (C7) can be written (with
f11 = 0) as M �f0 = �0, with the elements of �f0 being ( �f0)m =
f0m, and those of M are given by Mlm = ω−ml , m, l �= 0. If
we add a column of all ones to obtain matrix M ′, then it
is straightforward to see that M ′M ′† is proportional to the
(n/2 − 1)-dimensional identity operator. Thus, the rank of M ′
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is n/2 − 1. However, the sum of all columns of M ′ vanishes,
implying that the column rank of M ′ is the same as that of M.
This, in turn, implies that the rank of M is also n/2 − 1, so M
is invertible. Therefore, we have that �f0 = �0, and f0m = 0 for
all m = 1, . . . , n/2 − 1.

Similarly, Eq. (C9) can be written as M �f ′
0 = 0, with the

same M and ( �f ′
0)m = f ′

0m, and thus f ′
0m = 0 for all m =

1, . . . , n/2 − 1, as well. Thus, the only nonzero coefficients
left are the c′s and g′s.

For the g′s, consider all remaining diagonal elements of
our constraint equations, those not previously used in the pre-
ceding arguments, 〈l| · · · |l〉, l = 1, . . . , n/2 − 1. Given our
preceding results, these yield

0 =
n/2−1∑
m=2

g1mω−(m−1)l + g21ω
l . (C12)

Defining �gT = (g21 g1,n/2−1 g1,n/2−2 . . . g13 g12), this last
equation may be written as M∗�g, with M the same matrix as
has appeared above. Therefore, each entry of �g vanishes, and
the only nonzero coefficients remaining are the ci j .

That is,

0 =
∑
i, j=0

j �=i,i+n/2 (mod n)

ci j |i〉〈 j|, (C13)

and it is clear that ci j = 0 for all remaining i, j, as well. Thus,
we have that Eq. (C4) can be satisfied if and only if all of
the coefficients appearing there vanish, showing that the set of
dyads in Eq. (C3) is linearly independent, which is what we
set out to prove.

APPENDIX D: WHY REFERENCE [17] IS WRONG

Here we argue that the results of Ref. [17] purporting to
prove that any unextendible product basis exhibits NLWE is
wrong. It is probably wrong in various places, including the
assumption that A in their Eq. (4), the key part of which reads
as

max
i �= j

(2λ2δ′〈φi|A|φ j〉 + λ2δ′2〈φi|A†A|φ j〉)

> max
i �= j

2λ2δ′〈φi|A|φ j〉,

must be a positive semidefinite operator: E = λ(I + δ′A) is
positive semidefinite, but there is no apparent reason why
A needs to be. It is all well and good to use the polar de-
composition of S = EU to obtain E � 0, but this implies
S = λ(U + δ′A′), and there is no reason that (with the starting
point being S) the polar decomposition of A′ should yield
the same U as that for S. Put more simply, E � 0 being
close to (proportional to) the identity operator only means that
the operator A, seen above, is small; to maintain generality,
one must allow for indefinite (and even negative semidefinite)
A. In other words, it is wrong to assume that A is positive
semidefinite. More importantly, the inequality in their Eq. (4)
is unjustified, even if one maximizes over the absolute value

of the off-diagonal matrix element of E†E , instead of (as it
is written in their paper) maximizing over the off-diagonal
matrix element itself (which may not be a real number, im-
plying that this maximization makes no sense). The reason is
that off-diagonal elements of positive semidefinite operators
(such as A†A in this equation) need not be positive (this
problem arises even when considering the absolute value of
the off-diagonal matrix element, as we have just suggested
must be done). Indeed, these off-diagonal elements may well
be complex numbers. Therefore, the inequality in their Eq. (4)
could very easily be in the opposite direction, thus failing to
provide the critical lower bound on the degree to which the
states remain orthogonal.

The argument given in Ref. [17] has been criticized pre-
viously [7] for a different technical point, a criticism that we
do not understand. We do take issue with that same technical
point, however, but for different reasons. Below Eq. (16) of
Ref. [17], for the case cN → 0, the claim that Eqs. (5) and
(6) lead to ε → 0 appears to have no basis. It is not entirely
clear how they arrive at this conclusion, but they seem to be
assuming that if the off-diagonal elements of O(N ) all vanish,
then its diagonal elements must all be equal to each other, an
assumption for which we see no justification. In any case, if
their Eq. (4) is wrong, as we have suggested above, then it
is almost certain that the analogous Eq. (15) is also wrong,
calling into question the validity of the critical Eq. (16).

Finally, given the fact that there are several apparent erro-
neous assumptions made in the proof—along with numerous
apparent typographical errors and omissions of detailed expla-
nations of their reasoning—one is left with little confidence in
their conclusions, even if one could follow the proof in detail,
which is not an easy task.

APPENDIX E: PROOF OF LEMMA 1

Proof. We prove the “only if” direction by way of con-
tradiction. Thus, suppose we have a minimal UPB and there
exists party α and a linearly dependent set of dα local states,
say, {|ψ (α)

m 〉}dα

m=1. Then, there exists a partition of the entire set
of N states such that {|�m〉}dα

m=1 are placed with party α, and all
the other parties, β, are each given dβ − 1 states. Note that for
every party, the local states corresponding to this partition fail
to span the entire local Hilbert space. Therefore, for each party
β, we can identify one additional local state, |φ(β )〉 orthogonal
to all the dβ − 1 local states apportioned to party β for β �= α,
and since the dα local states partitioned to party α also do not
span the local Hilbert space, we can do the same for party α

with state |φ(α)〉. Taking the tensor product of these P local
states, we obtain a product state

⊗
μ |φ(μ)〉, orthogonal to all

N of the original states of the UPB, extending the UPB and
contradicting the fact that it is a UPB to begin with. This
completes the proof of the “only if” part.

To prove the other direction, simply notice that, for every
partition of the states among the parties, there is at least one
party that is given at least dα local states. By assumption,
the set of states given to that party is linearly independent,
spanning Hα , and thus, there can be no state on Hα orthogonal
to those dα local states. Therefore, one cannot extend the
original set of states by adding one more orthogonal product
state. That is, the set is unextendible. �
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APPENDIX F: LINEAR INDEPENDENCE OF DYADS FOR THEOREM 8

Here, we show that the set of dyads in Eq. (12) is linearly independent. To this end, consider

0 =
dα−1∑
l=1

⎛⎝ dα∑
k=2

ckl

∣∣ψ (α)
k

〉〈
φ

(α)
kl

∣∣ + c1l

∣∣ψ (α)
1

〉〈
ψ

(α)
dα+l

∣∣ + cdα+1,l

∣∣ψ (α)
dα+l

〉〈
ψ

(α)
1

∣∣⎞⎠. (F1)

Since according to Lemma 1, |ψ (α)
k 〉, k = 1, . . . , dα , are a basis of Hα , we may expand

∣∣ψ (α)
dα+l

〉 =
dα∑

k=1

μkl

∣∣ψ (α)
k

〉
, (F2)

and then Eq. (F1) becomes

0 =
dα−1∑
l=1

⎡⎣ dα∑
k=2

∣∣ψ (α)
k

〉(
ckl

〈
φ

(α)
kl

∣∣ + cdα+1,lμkl
〈
ψ

(α)
1 |) + ∣∣ψ (α)

1

〉⎛⎝ dα∑
k=1

c1lμ
∗
kl

〈
ψ

(α)
k

∣∣ + cdα+1,lμ1l
〈
ψ

(α)
1

∣∣⎞⎠⎤⎦. (F3)

Since |ψ (α)
k 〉, k = 1, . . . , dα , are linearly independent, each of their coefficients in the preceding equation must vanish separately.

That is,

0 =
dα−1∑
l=1

(
ckl

〈
φ

(α)
kl

∣∣ + cdα+1,lμkl
〈
ψ

(α)
1

∣∣), k = 2, . . . , dα, (F4)

and

0 =
dα−1∑
l=1

⎛⎝ dα∑
k=1

c1lμ
∗
kl

〈
ψ

(α)
k

∣∣ + cdα+1,lμ1l
〈
ψ

(α)
1

∣∣⎞⎠ =
dα−1∑
l=1

⎡⎣ dα∑
k=2

c1lμ
∗
kl

〈
ψ

(α)
k

∣∣ + (cdα+1,lμ1l + c1lμ
∗
1l )

〈
ψ

(α)
1

∣∣⎤⎦. (F5)

Noting that the set of dα states {〈ψ (α)
1 |, {〈φ(α)

kl |}dα−1
l=1 } is also linearly independent for each k, the coefficients of these states must

each vanish in Eq. (F4), implying ckl = 0 for all k = 2, . . . , dα and all l = 1, . . . , dα − 1. In addition,

dα−1∑
l=1

cdα+1,lμkl = 0, k = 2, . . . , dα. (F6)

Considering Eq. (F2), we find

dα−1∑
l=1

cdα+1,l

∣∣ψ (α)
dα+l

〉 =
dα∑

k=1

dα−1∑
l=1

cdα+1,lμkl

∣∣ψ (α)
k

〉 =
⎛⎝dα−1∑

l=1

cdα+1,lμ1l

⎞⎠∣∣ψ (α)
1

〉
, (F7)

and we have used Eq. (F6). This implies linear dependence of the dα states |ψ (α)
1 〉 and |ψ (α)

dα+l〉, l = 1, . . . , dα − 1, a contradiction,
unless cdα+1,l vanishes for all l . These results reduce Eq. (F5) to

0 =
dα−1∑
l=1

c1l

⎛⎝ dα∑
k=2

μ∗
kl

〈
ψ

(α)
k

∣∣ + μ∗
1l

〈
ψ

(α)
1

∣∣⎞⎠. (F8)

Once again, the coefficient of each |ψ (α)
k 〉 must vanish separately, implying

∑
l c1lμkl = 0 for all k. Similarly to what we just did

in Eq. (F7), consider

dα−1∑
l=1

c∗
1l

∣∣ψ (α)
dα+l

〉 =
dα∑

k=1

dα−1∑
l=1

c∗
1lμkl

∣∣ψ (α)
k

〉 = 0, (F9)

and we have used Eq. (F8). This implies that the set of dα − 1 states in the sum on the left is linearly dependent, which contradicts
Lemma 1 unless c1l = 0 for all l .

Collecting all these results, we see that the sum of d2
α − 1 dyads in Eq. (F1) vanishes if and only if each of the cmn appearing

there vanishes identically. That is, those d2
α − 1 dyads constitute a linearly independent set. As argued in the paragraph preceding

Eq. (12), this completes the proof.
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