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In this paper we claim that a common underlying structure—a skeleton structure—is present behind discrete-
time quantum walks (QWs) on a one-dimensional lattice with a homogeneous coin matrix. This skeleton
structure is independent of the initial state, and partially, even of the coin matrix. This structure is best interpreted
in the context of quantum-walk-replicating random walks (QWRWs), i.e., random walks that replicate the
probability distribution of quantum walks, where this structure acts as a simplified formula for the transition
probability. Additionally, we construct a random walk whose transition probabilities are defined by the skeleton
structure and demonstrate that the resultant properties of the walkers are similar to both the original QWs and
QWRWs.
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I. INTRODUCTION

A quantum walk (QW) is the quantum counterpart of the
classical random walk [1–4], which it extends by including
the effects of quantum superposition and complex probability
amplitudes. QWs were first introduced in the field of quantum
information theory [5–7]. The characteristic structure of quan-
tum walks was intensively studied by mathematicians [8,9],
and since then, quantum walks have been important subjects
in both fundamental and applied research. Indeed, quantum
walks exhibit varying behavior depending on the conditions or
settings of time and space, so there have been many studies on
the mathematical analysis of these evolution models [10–15].
In addition, their unique behavior is useful for implementing
quantum structures or quantum analogs of existing models;
therefore, their application has been considered in fields such
as quantum teleportation [16,17], time series analysis [18],
topological insulators [19,20], radioactive waste reduction
[21,22], and optics [23].

The main properties of QWs are linear spreading and
localization. The former means that the standard deviation
of the distribution of the measurement probability of quan-
tum walkers (QWers) grows in proportion to the run time
n ∈ N0 := N ∪ {0}. The latter implies that the probability is
distributed at a particular position no matter how long the walk
runs. QWs have both or either of these properties, resulting in
a probability distribution that is totally different from those
of random walks, which weakly converge to normal distribu-
tions.

In this paper, we introduce an underlying structure of quan-
tum walks which we call the skeleton structure. The skeleton

structure is based on the quantities denoted by pn(x) and
qn(x), which appear when describing the quantum walk in a
certain way, and encapsulates how the properties of quantum
walks arise. The quantities pn(x) and qn(x) are interpreted in
the context of random walks whose probability distribution
is identical to that of one-dimensional discrete-time quantum
walks [quantum-walk-replicating random walks (QWRWs)]
[24]; they play the roles of the transition probabilities in the
left and right directions, respectively. The transition probabil-
ities determine the trajectories of walkers that are affected by
the properties of quantum walks as mentioned above, and in
our previous paper [24], we obtained insights into quantum
walks through the trajectories.

The quantities pn(x) and qn(x), however, possess a highly
complex shape because they have fluctuations inside the posi-
tions where the probability distribution is the highest, and thus
it has been difficult to quantitatively explain the behavior of
quantum walks with these quantities. By considering the weak
limit that excludes the oscillatory behavior of these new terms,
pn(x) and qn(x), we obtain the skeleton structure in the form
of quite a simple formulas. Our study focuses on the case of a
homogeneous coin, where only linear spreading is observed.
In this case, it is noteworthy that the skeleton structure does
not depend on the initial state nor, partially, on the coin matrix
of the quantum walk. This is despite the fact that the full
description of pn(x) and qn(x), including oscillatory terms,
does significantly depend on the coin matrix and the initial
conditions. Analyzing this structure allows the visualization
of the behavior that the walkers perform.

To additionally investigate the implication of the skele-
ton structure, we define a time- and site-dependent random
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walk whose transition probabilities are directly defined by the
skeleton structure, which we call the quantum-skeleton ran-
dom walk (QSRW). This structure is robbed of its oscillation,
meaning that the resulting random walk is a simplified model
of the QWRW. Furthermore, we compare our random walk
with the QWRW and show that it still has linear spreading.

The rest of this paper is organized as follows. First, we
review quantum walks (QWs) in Sec. II. Then we formally de-
fine the skeleton structure of QWs and present its underlying
statements as our main results in Sec. III. Here we introduce
the QWRW to give an interpretation of the skeleton structure.
In Sec. IV we construct the QSRW, whose transition prob-
abilities are defined by the skeleton structure, and compare
this with QWRWs. Section V is devoted to the proofs of the
theorems presented in Sec. III. Finally, we give a summary
and discussion in Sec. VI.

II. QUANTUM WALK (QW)

We introduce discrete-time quantum walks on a one-
dimensional lattice (Z). The space of QWs is defined in a
compound Hilbert space consisting of the position Hilbert
space HP = span{|x〉 | x ∈ Z} and the coin Hilbert space
HC = span{|L〉, |R〉} with |L〉 = [1 0]T and |R〉 = [0 1]T.
Here, for a matrix M, MT represents its transpose. Note that
HP and HC are equivalent to

�2(Z) :=
⎧⎨
⎩ f : Z → C

∣∣∣∣∣∣
∑
x∈Z

| f (x)|2 < ∞
⎫⎬
⎭ (1)

and C2, respectively. Then the whole system is described by

H =HP ⊗ HC

:= span{|x〉 ⊗ |J〉 | x ∈ Z, J = L, R}. (2)

We consider the state of QWs as follows: For n ∈ N0 :=
N ∪ {0},

|Ψn〉 =
∑
x∈Z

|x〉 ⊗ |Ψn(x)〉 ∈ H. (3)

Here n ∈ N0 represents run time of QWs, and |Ψn(x)〉 ∈ C2 is
called the probability amplitude vector on the position x ∈ Z
at run time n. Also, we set the initial state as

|Ψ0〉 = |0〉 ⊗ |ϕ〉, (4)

where |ϕ〉 ∈ C2 is a constant vector with ‖ϕ‖ = 1. In other
words, it follows that

|Ψ0(x)〉 = 10(x)|ϕ〉, (5)

where, for a ∈ R,

1a(x) =
{

1 (x = a)
0 (x 	= a) . (6)

The time evolution of the system is defined as follows:

|Ψn+1〉 = U |Ψn〉. (7)

Now we introduce the unitary operator U to describe the
time evolution of the system of QWs: For run time n ∈ N0,

U = SC, (8)

which are defined with a shift operator S and a coin operator
C as follows:

S = S−1 ⊗ |L〉〈L| + S ⊗ |R〉〈R| (9)

with

S =
∑
x∈Z

|x + 1〉〈x| (10)

and

C =
∑
x∈Z

|x〉〈x| ⊗ C. (11)

Here S represents the transition from position x to x + 1 (right
direction), and S−1 = ∑

x∈Z |x − 1〉〈x| indicates the transition
from position x to x − 1 (left direction). C is a unitary matrix
called a coin matrix. In particular, since C is independent of
time n and position x, C is called a homogeneous coin matrix.
We can describe C with δ ∈ [−π, π ) and a, b ∈ C satisfying
|a|2 + |b|2 = 1 as

C =
[

a b
−eiδb eiδa

]
, (12)

without loss of generality because of unitarity.
Here, by applying the property of the Kronecker product,

we have

U = S−1 ⊗ P + S ⊗ Q, (13)

where

P = |L〉〈L|C =
[

a b
0 0

]
(14)

and

Q = |R〉〈R|C =
[

0 0
−eiδb eiδa

]
. (15)

The matrices P and Q are considered to be the decomposition
elements of C; that is, the relation P + Q = C holds. This
decomposition is called the Ambainis type [7]; there exists
another type of decomposition (see Appendix A).

By Eqs. (7) and (13), we have

|Ψn+1(x)〉 = P|Ψn(x + 1)〉 + Q|Ψn(x − 1)〉. (16)

Moreover, from the initial state (4), there exists Ξn(x) such
that

|Ψn(x)〉 = Ξn(x)|ϕ〉. (17)

Ξn(x) describes the weight of all the possible paths from the
origin to the position x at run time n, which can be written as

Ξn(x) =
∑

(� j , r j )∈P

⎛
⎝ n∏

j=1

P� j Qr j

⎞
⎠, (18)

where

P =
{

{(� j, r j )}n
j=1 ∈ {(1, 0), (0, 1)}n

×
∣∣∣∣∣
(

n∑
j=1

� j = n − x

2

)
∧
(

n∑
j=1

r j = n + x

2

)}
. (19)
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Moreover, from Eq. (16), the following relation holds:

Ξn+1(x) = PΞn(x + 1) + QΞn(x − 1). (20)

At the end of the definition of QWs, the measurement
probability of the particle at position x at run time n, denoted
by μn(x), is given by

μn(x) = P (Xn = x) := ‖Ψn(x)‖2, (21)

where Xn is the position of a walker that follows a QW, called
a QWer, at time n, and P donates a probability. This is the
application of Born’s rule of quantum mechanics. Note that
for any n ∈ N0, the following is satisfied:∑

x∈Z
μn(x) =

∑
x∈Z

‖Ψn(x)‖2 = ‖Ψn‖2 = 1. (22)

III. SKELETON STRUCTURE OF QUANTUM WALKS

In this section, as our main results, we introduce a quantity
representing a property of quantum walks, which we call the
skeleton structure of quantum walks. This structure is inde-
pendent of the initial state and, partially, even the coin matrix.

First of all, for the pair (n, x) ∈ N0 × Z, we consider the
functions pn(x) and qn(x) satisfying the following:

‖PΨn(x)‖2 = pn(x)‖Ψn(x)‖2, (23)

‖QΨn(x)‖2 = qn(x)‖Ψn(x)‖2. (24)

Note that pn(x) and qn(x) are arbitrary if the relation
‖Ψn(x)‖2 = 0 holds. If this relation does not hold, we can
rewrite Eqs. (23) and (24) as

pn(x) = ‖PΨn(x)‖2

‖Ψn(x)‖2
, (25)

qn(x) = ‖QΨn(x)‖2

‖Ψn(x)‖2
. (26)

It is worth remarking that, by the definitions of the matrices P
and Q [Eqs. (14) and (15)], the relation

‖PΨn(x)‖2 + ‖QΨn(x)‖2 = ‖Ψn(x)‖2 (27)

holds; that is, pn(x) + qn(x) = 1. From this perspective, we
can consider that pn(x) and qn(x) are the ratios how the values
of ‖Ψn(x)‖2 are distributed to ‖PΨn(x)‖2 and ‖QΨn(x)‖2,
respectively.

The functions pn(x) and qn(x) can be interpreted as the
transition probabilities of random walks that replicate a prob-
ability distribution of quantum walks. Before defining the
skeleton structure, we introduce the quantum-walk-replicating
random walk (QWRW) [24].

A. Quantum-walk-replicating random walk (QWRW)

By using the time evolution of the QWs [Eq. (16)] and the
definitions of the matrices P and Q [Eqs. (14) and (15)], we
obtain the following relation:

‖Ψn+1(x)‖2 = ‖PΨn(x + 1)‖2 + ‖QΨn(x − 1)‖2. (28)

By using Eqs. (23) and (24), we can construct the recurrent
formula of ‖Ψn(x)‖2 with pn(x) and qn(x) as follows:

‖Ψn+1(x)‖2

= pn(x + 1)‖Ψn(x + 1)‖2 + qn(x − 1)‖Ψn(x − 1)‖2.

(29)

Here we recall that ‖Ψn(x)‖2 represents the measurement
probability μn(x) at position x at time step n [Eq. (21)]. Thus,
we obtain

μn+1(x) = pn(x + 1)μn(x + 1) + qn(x − 1)μn(x − 1). (30)

This formula describes the main idea behind the QWRW.
As described in our previous work [24], a random walk that
replicates the probability distribution of a quantum walk can
be constructed with the help of pn(x) and qn(x), where these
terms become the site- and time-dependent transition proba-
bilities to the left and right sides, respectively. These transition
probabilities are formally determined as

P (Sn+1 = x − 1 | Sn = x) := pn(x)

=

⎧⎪⎪⎨
⎪⎪⎩

‖PΨn(x)‖2

μn(x)
(μn(x) > 0)

1

2
(μn(x) = 0)

, (31)

P (Sn+1 = x + 1 | Sn = x) := qn(x)

=

⎧⎪⎪⎨
⎪⎪⎩

‖QΨn(x)‖2

μn(x)
(μn(x) > 0)

1

2
(μn(x) = 0)

, (32)

where Sn is the position of a QWRWer at time n. It should
be noted that defining pn(x) and qn(x) for a pair (n, x) which
satisfies μn(x) = 0 is only a formal treatment; recall that we
can define them arbitrarily. Note that pn(x) and qn(x) satisfy
the necessary condition to be transition probabilities: They
take real values between 0 and 1, and pn(x) + qn(x) = 1 for
all pairs (n, x) ∈ N0 × Z.

Figure 1 shows the numerical results of the calculations
of pn(x) and qn(x) and their relationship to the probability
distributions of QWRWs, which are naturally identical to
those of the corresponding quantum walks; a symmetric case
and an asymmetric case have the parameters (a, b, δ, |ϕ〉)
as shown in Table I, respectively. Note that the parameters
(a, b, δ) in the symmetric case construct a coin matrix called
the Hadamard matrix. A common property of these two cases
is that the graphs of pn(x) and qn(x) can be divided into two
kinds of regions: Oscillatory and nonoscillatory regions. The
boundaries of these parts correspond to the peaks of the prob-
ability distribution of the QWs, which are at peaks x = ±n|a|
at run time n.

We can regard pn(x) and qn(x) as a kind of “mean velocity”
of walkers in the left and right directions, respectively. The
larger pn(x) becomes, the faster the walkers go to the left
side, and the larger qn(x) is, the faster the walkers go to the
right side. The transition probabilities have high-frequency
oscillations inside the peaks, which make them difficult to
analyze. However, we can capture their “tendency.” Inside the
peaks, the farther from the origin a walker is, the faster it tends

012222-3



TOMOKI YAMAGAMI et al. PHYSICAL REVIEW A 107, 012222 (2023)

FIG. 1. Probability distributions μn(x) of QW or QWRW and functions pn(x) and qn(x) in the symmetric and asymmetric cases at time steps
n = 500. The parameters in both cases are summarized in Table I. Each value is plotted only on even points; on odd points, the probabilities
are 0. Functions p500(x) and q500(x) on the lower panel are expressed with a stacked bar graph, which is drawn only on the even points. Note
that the relation p500(x) + q500(x) = 1 holds for all x. The vertical dotted lines indicate the position of the peaks of μ500 at x = ±500|a|.

to move away from the origin; this corresponds to the property
that the local maxima of pn(s) on the left side is larger than
that on the right side, and vice versa. Outside the peaks, this
relation is reversed; that is, the farther away from the origin a
walker is, the slower it moves away from it. This is caused by
the change of the slope of pn and qn at x = ±n|a|. We can infer
that the behavior on both sides of the peaks causes walkers to
accumulate around x = ±n|a| and say that the functions pn

and qn indicates how the peaks of QW-distributions are made
through the interpretation of QWRWs.

TABLE I. Parameters of the symmetric and asymmetric cases.

Symmetric case Asymmetric case

a 1/
√

2 1/
√

3
b 1/

√
2

√
2/3

δ π 0
|ϕ〉 [1 i]T/

√
2 [1 0]T

The structure of pn(x) and qn(x) as seen in Fig. 1 is quite
complicated and not easy to interpret. Not only do pn(x) and
qn(x) strongly depend on the spatial position x inside the
peaks, but there are also temporal oscillations with n. These
two kinds of oscillations prevent us to clearly explain the ten-
dency mentioned above (see Appendix D regarding the de-
tailed discussions of oscillations).

The strong fluctuations of pn and qn make it difficult to
quantitatively explain the behavior of quantum walks through
QWRWs. This is one of the reasons why we want to consider
the skeleton structure of quantum walks as the simplified
model thereof.

B. Main theorems

We present our main theorems from which we construct the
skeleton structure of quantum walks and its relation to pn(x)
and qn(x) as described above. Detailed proofs are given later
in Sec. V. These are based on the original calculations using
the original quantum walk and its time evolution.
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Inside the peaks, oscillations do not decay with time n, and
thus pn(x) does not converge with increasing n. Nevertheless,
we can characterize the transition probabilities in the follow-
ing form with the notion of a weak limit.

Theorem III.1 (Inside the peaks). Let xn ∈ Z and
s ∈ (−|a|, |a|) satisfy

xn = ns + O

(
1

n

)
as n → ∞. (33)

Then, pn(xn) and qn(xn) can be described as

pn(xn) = τ1(s) + ξn(s)

1 + ηn(s)
, (34)

qn(xn) = (1 − τ1(s)) + ζn(s)

1 + ηn(s)
, (35)

where

τ1(s) = 1 − s

2
, (36)

wlim
n→∞ ξn(s) = wlim

n→∞ ηn(s) = wlim
n→∞ ζn(s) = 0. (37)

Here, for the sequence { fn}n∈N0 ⊂ L2(R), there exists f ∈
L2(R) such that wlimn→∞ fn(s) = f (s) [ fn(s) weakly con-
verges to f (s)] iff for any function g(s) ∈ L2(R) and y ∈ R,

lim
n→∞

∫ y

−∞
fn(s)g(s) ds =

∫ y

−∞
f (s)g(s) ds. (38)

The forms represented in Theorem III.1 are the decompo-
sition of the numerator and denominator of pn(xn) and qn(xn)
into the terms dependent on or independent of run time n.

The functions ξn, ηn and ζn correspond to the former terms;
they include a term that oscillates and one that decays with the
growth of n on the order of 1/n. Although these terms do not
converge to specific values, weak convergence holds.

In contrast, the function τ1(s) corresponds to the latter
term, meaning that τ1(s) does not depend on n. In other words,
it represents the invariant structure of pn(xn) inside the peaks.
Similarly, 1 − τ1(s) is the invariant structure of qn(xn).

Congruently, we obtain the following fact about the transi-
tion probabilities outside the peaks:

Theorem III.2 (Outside the peaks). For s ∈ R that satisfies
|a| < |s| < 1 and a sequence {xn} conditioned by Eq. (33),
pn(xn) and qn(xn) can be described as

lim
n→∞ pn(xn) = s − |a|2 + |b|

√
s2 − |a|2

2s
=: τ2(s), (39)

lim
n→∞ qn(xn) = 1 − τ2(s). (40)

Herein, the transition probabilities converge to a function
τ2(s), without involving time n, in contrast to the inside-the-
peaks case described above.

The final statement regards the area around the peaks, or
the boundaries between the regions inside and outside the
peaks.

Theorem III.3 (Around the peaks). Let a sequence {x±
n }

satisfy

x±
n = ±n|a| + d±

n , (41)

where {d±
n } is a sequence that satisfies d±

n = cn1/3 + o(n1/3)
with any c � 0. Then, it follows that

lim
j→∞

pn(x±
n ) = 1 ∓ |a|

2
=: τ±

◦ , (42)

lim
j→∞

qn(x±
n ) = 1 − τ±

◦ . (43)

C. Skeleton structure of quantum walks

The skeleton structure of a QW is defined by combining the
functions τ1, τ2, and τ±

◦ introduced in Theorems III.1, III.2,
and III.3:

Definition III.4 (Skeleton structure). We define the func-
tion τ : (−1, 1) → [0, 1] as

τ (s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τ1(s) = 1 − s

2
(0 � |s| < |a|)

τ±
◦ = 1 ∓ |a|

2
(s = ±|a|),

τ2(s) = s − |a|2 + |b|
√

s2 − |a|2
2s

(|a| < |s| < 1)

(44)

and call it the skeleton structure of quantum walks.
The function τ (s) defined by Eq. (44) is independent of

the initial state |ϕ〉, i.e., the skeleton structure is determined
only by the parameters of the coin matrix. In addition, on
the straight part inside the peaks, the range is determined by
the parameters of the coin matrix, but the gradient is always
−1/2, regardless of the settings of the QWs, as long as the
coin matrix is time- and site-homogeneous. That is, the gradi-
ent is invariant for all the unitary matrices C. Moreover, τ (s)
is continuous around the peaks s = ±|a|; that is,

lim
s→±|a|∓0

τ1(s) = lim
s→±|a|±0

τ2(s) = τ±
◦ . (45)

The graph of this skeleton structure τ (s) fits with that of
pn(x) by stretching the s axis n times. As examples, we show
the symmetric and asymmetric cases in Figs. 2(a) and 2(b), re-
spectively. Inside the peaks, these two cases seemingly exhibit
quite different oscillatory behavior. However, the skeleton
structures of these two cases are the same. Outside the peaks,
both cases exhibit curves that do not accompany oscillatory
behavior. This is the visualization of the convergence stated in
Theorem III.2.

The skeleton structure encapsulates the properties of quan-
tum walks. The function τ (s) indicates how the walkers tend
to move in the left direction, while the right direction corre-
sponds to 1 − τ (s). We can capture the characteristic that the
walkers tend to the position x = ±n|a|, resulting in the high
peaks there. This is more reliable than describing the behavior
with the functions pn and qn; the complicated oscillation that
prevents us from quantitative estimation is excluded.

IV. QUANTUM-SKELETON RANDOM WALK

To further analyze the properties of the skeleton structure
of quantum walks, we now construct a random walk whose
transition probabilities are defined based on only the skeleton
structure of quantum walks, i.e., without the oscillatory behav-
ior present in QWRWs. We call this different type of random
walk a quantum-skeleton random walk (QSRW).
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FIG. 2. The relationship between p500(x) (blue line) and its skeleton structure τ (s) (red line) in each case.

The transition probabilities of QSRW is defined by the
skeleton structure whose input is the position appropriately
scaled by time step n. Then it is reasonable to define the
distribution of p̃0(0) and q̃0(0) as τ (0) by the symmetry;
then pn(0) = qn(0) = 1/2 holds for any n ∈ N0. Precisely,
the transition probability of the QSRW to the left (resp. right)
side, denoted by p̃n(x) (resp. q̃n(x)), is described as follows:
For n = 0,

p̃0(0) = τ (0) = 1
2 , (46)

q̃0(0) = 1 − p̃0(0) = 1
2 . (47)

For n � 1,

p̃n(x) = τ (x/n)

=

⎧⎪⎪⎨
⎪⎪⎩

n − x

2n
(|x| � n|a|)

x − n|a|2 + |b|
√

x2 − n2|a|2
2x

(n|a| < x � n)

,

(48)

q̃n(x) = 1 − p̃n(x) = 1 − τ (x/n). (49)

The probability distribution of the QSRW, denoted by
ρn(x), has the following recurrent formula:

ρn+1(x) = p̃n(x + 1)ρn(x + 1) + q̃n(x − 1)ρn(x − 1). (50)

In addition, we assume that walkers start from the origin:

ρ0(x) = 10(x). (51)

Figures 3(a) and 3(b) show comparisons of the probability
distribution between the QSRW [ρ500(x), blue line] and the
corresponding QWRW [μ500(x), red dashed line] in the sym-
metric and asymmetric cases over positions x ∈ Z at time n =
500, respectively. In both cases, we observe that the probabil-
ity distributions ρ500(x) and μ500(x) exhibit linear spreading,
with their peaks at the positions x = ±500|a|. At the same
time, however, the degree of linear spreading in the QSRW

is attenuated compared with the QWRW; the maximum prob-
ability around the peak in the QSRW exhibits a lower value
compared with the QWRW (and thus also with the original
QW). This implies that the effect of the oscillatory terms of
pn and qn may contribute to enhancing the linear spreading
of the QWs. These properties are also observed for a general
time step n; the peaks of the probability distribution of QSRW
are always around x = ±n|a|, and the height is lower than that
of the corresponding QWRW.

Besides, in both cases, ρ500(x) of QSRW is always sym-
metric. That is, even if the probability distribution of the
QWRW is asymmetric [Fig. 3(b)], the corresponding QSRW
results in a symmetric probability distribution. This symmetry
of the QSRW is mathematically derived from the equation
p̃n(x) = q̃n(−x) for all x, which is easily obtained from
Eqs. (48) and (49).

Moreover, the probability distribution of the QWRW, as
well as the original QW, shows an oscillatory dependency
on the spatial position, especially around the peak. By con-
trast, the probability distribution of the QSRW shows smooth
dependency on position; such a property results from the
simplified structure of the transition probabilities. It is one of
the interesting observations that this smoothing of the prob-
ability distributions occurs in removing the initial state and
asymmetry of the peaks.

Although there are some remarkable differences in prob-
ability distributions between the QSRW and QWRW, as
described above, we observe similar properties from the view-
point of directivity [24]. In the following, we investigate it in
the symmetric case on Table I.

Figures 4(a) and 4(b) show path trajectories of 100 individ-
ual walkers following the QSRW or QWRW in the symmetric
case given in Table I, respectively. In each case, individual
trajectories start from the coordinates (n, x) = (0, 0); this
indicates that the particles are surely on the origin at n = 0
[μ0(0) = ρ0(0) = 1]. From these figures, both cases exhibit
linear spreading trajectories. Certainly, the density of paths of

012222-6



SKELETON STRUCTURE INHERENT IN DISCRETE-TIME … PHYSICAL REVIEW A 107, 012222 (2023)

FIG. 3. The probability distribution of the QSRW at time n = 500 [ρ500(x), blue line] and comparison with the that of the corresponding
QWRW [μ500(x), red line, dashed]. Each value is plotted only on the even points; on the odd points, the probabilities are 0.

the QSRW at the edges of the range of motion is lower than
that of the QWRW, which corresponds to the difference of the
height of the peaks between both walks in Fig. 3 (the sym-
metric case). However, many more walkers reach positions
outside ±300 than would be expected in the case of a simple
random walk. The upper and lower bounds of the finite posi-
tions of trajectories are about ±500/

√
2, which corresponds

to the peaks of the probability distributions shown in Fig. 3.
To examine the similarity between the QSRW and QWRW,

Fig. 5 shows the future direction [24] of walkers. Here we
define a figure of merit r(n) of future direction defined by

r(n) = P (sgn(SN Sn) = 1). (52)

Here N ∈ N0 is the final time instant, and Sn is the posi-
tion of a walker at time step n ∈ {0, 1, . . . , N} for respective
walks. This definition is detailed in Appendix B. If a walker
chooses the trajectory that satisfies sgn(SN Sn) = 1 in the def-
inition of r(n) (52), then the walker is on the same side as
the final position with respect to the origin at time step n.
On the other hand, if it chooses the trajectory that satisfies
sgn(SN Sn) = −1, then the walker is on the opposite side of
the final position with respect to the origin at time step n.
Moreover, if a trajectory gives sgn(SN Sn) = 0, either relation
sgn(Sn) = 0 or sgn(SN ) = 0 holds; the latter indicates that
a walker goes to neither positive nor negative side in the
end. Note that r(0) = 0, shown in Fig. 5, is derived from the
assumption that walkers start from the origin (S0 = 0). If a

FIG. 4. Paths of walkers following (a) QSRW and (b) QWRW (the final time n = 500, the number of walkers K = 100). In both cases
paths spread radially, which is caused by linear spreading.
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FIG. 5. Future direction following QSRW (red line; dashed) and
QWRW (blue line) in the symmetric case on Table I. The final time
is N = 500.

walker maintains the relation sgn(SN Sn) = 1, we can say that
the walker determines its own evolving direction, and thus
the probability of satisfying the equation sgn(SN Sn) = 1 can
be the benchmark for investigating when walkers effectively
determine the directions in which they arrive in the future.

As represented in the red curve in Fig. 5, r(n) of the
QWRWs increases dramatically soon after the time evolution
begins after n = 0. That is, the future direction of a walker
is highly determined by the position in its early stages. This
tendency is also clearly observed in QSRWs, as shown by
the blue curve in Fig. 5; the steep increase of r(n) in the
early stages in the QSRW is almost equivalent to that in the
QWRW. From this analysis, the property of linear spreading
of the QSRW is comparable to that of the QWRW. The walk-
ers quickly spread away from the origin while reducing the
probability of returning to the origin again.

Finally, we numerically show the similarity of probability
distributions between QWRW and QSRW via KL divergence
defined as follows:

DKL(μn‖ρn) =
∑

x∈suppμn

μn(x) ln
μn(x)

ρn(x)
(53)

with suppμn= {x ∈ Z | μn(x)>0}. The value of DKL(μn‖ρn)
is obtained for any n ∈ N by iteratively using the recurrence
formulas (30) and (50), as shown in Fig. 6. Therein we
can observe that the values in the finite range grow slowly
with fluctuations. This indicates that the similarity of the
two walks is well maintained, and the effect from neglecting
the initial states is weak, at least for the symmetric case
studied here.

V. PROOFS OF THEOREMS

In this section, we use the results obtained by Sunada and
Tate [11] in proving the theorems described in Sec. III B. The
definition used by them is different from our one, and thus
we have to make an appropriate transformation from theirs
to ours.

FIG. 6. KL divergence between probability distributions be-
tween QWRW and QSRW in the symmetric case in Table I, denoted
by DKL(μn‖ρn).

Let Ξ (δ, )
n be the weight of all the possible paths from the

origin to the position x at time n in the case where arg(det C)
is δ ∈ [−π, π ), and the type of quantum walk is . Here
we introduce two types of quantum walks: Ambainis [7] and
Gudder [5] types. The former is the one introduced in Sec. II;
the time evolution of the system is described with the unitary
matrix

U = SC,

as stated in Eq. (8). Here S and C are defined as Eqs. (9)
and (12), respectively. On the other hand, the latter is the one
used in Ref. [11], where the following unitary time evolution
operator U ′ is applied:

U ′ = CS. (54)

The other difference between our model and the one in
Ref. [11] is δ; the former treats the general δ, but in the latter,
δ is set to 0.

In short, to apply the result obtained by Sunada and Tate
[11], we have to transform the Ambainis type to the Gudder
type, and the general δ case to the case of δ = 0. Precisely, we
use the following lemma whose proof is given in Appendix A:

Lemma V.1.

Ξ (δ, A)
n (x) = eiδ(n+x)/2Θ†Ξ (0, G)

n (x)Θ, (55)

where Θ is a unitary matrix defined by

Θ =
[

a b
−b a

]
. (56)

In the lemma above, for a matrix M, M† represents its
conjugate transpose. In the following discussion, we use this
lemma to show our results via Sunada and Tate [11].

For now we assume that s is a rational number on
(−|a|, |a|) such that ns ∈ Z holds. However, s can be ex-
tended to real numbers by applying the theory of the continued
fraction.
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The transition probability pn(x) [see Eq. (31)] can be trans-
formed as

pn(x) = ‖PΨn(x)‖2

μn(x)

= |〈L|PΞ (δ, A)
n (x)ϕ〉|2

|〈L|Ξ (δ, A)
n (x)ϕ〉|2 + |〈R|Ξ (δ, A)

n (x)ϕ〉|2 .

Applying Lemma V.1, we have

pn(x)= |〈L|PΘ†Ξ (0, G)
n (x)Θ|ϕ〉|2

|〈L|Θ†Ξ
(0, G)
n (x)Θ|ϕ〉|2 + |〈R|Θ†Ξ

(0, G)
n (x)Θ|ϕ〉|2

= |〈L|Ξ (0, G)
n (x)|ϕ̃〉|2

|〈L̃|Ξ (0, G)
n (x)|ϕ̃〉|2 + |〈R̃|Ξ (0, G)

n (x)|ϕ̃〉|2 . (57)

It should be noted that PΘ|L〉 = |L〉 holds. Moreover, we set
| ·̃ 〉 = Θ| · 〉, and then because of the unitarity of Θ , ‖ϕ̃‖ = 1
holds.

Here we introduce the functions of vectors |u(z)〉 and |v(z)〉
with z ∈ S1 := {z ∈ C | |z| = 1}:

|u(z)〉 = 1

N (z)

[
abz/|a|

h(z) − |a|z
]
, (58)

|v(z)〉 = 1

N (z)

[−h(z) + |a|z
abz/|a|

]
, (59)

where N (z) is a normalizing function, and

h(z) = |a| cos(arg z) + i
√

1 − |a|2 cos2(arg z). (60)

Note that, assuming |u(z)〉 = [uL(z) uR(z)]T, it follows that

|v(z)〉 =
[−uR(z)

uL(z)

]
. (61)

A. Inside the peaks (Theorem III.1)

Let k(s) and ω(s) be R-valued functions defined as follows:

k(s) = arcsin
|b|s

|a|√1 − s2
, (62)

ω(s) = arccos(|a| cos k(s)). (63)

With the functions above, we use the following proposition:
Proposition V.2 (Proposition 2.2 in [11]). Let x ∈ Z and

sn ∈ (−|a|, |a|) satisfy sn = x/n. Then, for |ψ〉 ∈ C2 and
|χ〉 ∈ C2 with ‖ψ‖ = ‖χ‖ = 1, we have

〈ψ |Ξ (0, G)
n (x)|χ〉

= (1 + (−1)n+x )e−x arg a

√
|b|

2πn
(
1 − s2

n

)√|a|2 − s2
n

× (
ei(nθ (sn )+π/4) f ψ

χ (sn)

+ e−i(nθ (sn )+π/4)gψ
χ (sn) + O(1/n)

)
,

where

θ (s) = ω(s) − sk(s), (64)

f ψ
χ (s) = 〈ψ |u(eik(s) )〉〈u(eik(s) )|χ〉, (65)

gψ
χ (s) = 〈ψ |v(eik(s) )〉〈v(eik(s) )|χ〉. (66)

Applying the result of Proposition V.2 to Eq. (57), we
obtain

pn(x) = GL(sn) + ξ̃n(sn) + O(1/n)

GL̃ (sn) + GR̃ (sn) + η̃n(sn) + O(1/n)
, (67)

where

Gχ (s) = ∣∣ f χ
ϕ̃ (s)

∣∣2 + ∣∣gχ
ϕ̃ (s)

∣∣2, (68)

ξ̃n(s) = −2Im
(
e2inθ (s) f L

ϕ̃ (s)gL
ϕ̃ (s)

)
, (69)

η̃n(s) = −2Im
{
e2inθ (s)

(
f L̃
ϕ̃ (s)gL̃

ϕ̃ (s) + f R̃
ϕ̃ (s)gR̃

ϕ̃ (s)
)}

. (70)

Here, by simple calculation, we obtain

GL(sn) = τ1(sn)λ(sn),

GL̃ (sn) + GR̃ (sn) = λ(sn),

where τ1(s) and λ(s) are given as follows:

τ1(s) = 1 − s

2
, (71)

λ(s) = 1 −
(

|α|2 − |β|2 + 2Re(aαbβ )

|a|2
)

s. (72)

Since λ(s) 	= 0 for s ∈ (−|a|, |a|), Eq. (67) can be trans-
formed to

pn(x) = τ1(sn) + ξ̃n(sn)/λ(sn)

1 + η̃n(sn)/λ(sn)
= τ1(sn) + ξn(sn)

1 + ηn(sn)
, (73)

where ξn(s) := ξ̃n(s)/λ(s) and ηn(s) := η̃n(s)/λ(s).
Here we can replace the pair (x, sn) with another one

(xn, s) ∈ Z × (−|a|, |a|) conditioned by (33); see Eqs. (1.13)
and (1.14) in Sunada and Tate [11].

We show that the weak convergence of ξn(s) and ηn(s).
Since λ(s) is independent of n, it is sufficient that we prove

wlim
n→∞ ξ̃n(s) = wlim

n→∞ η̃n(s) = 0. (74)

Actually, for ξ̃n(s), there exist continuous functions F (ξ )
1 and

F (ξ )
2 such that

ξ̃n(s) = F (ξ )
1 (s) sin(2nθ (s)) + F (ξ )

2 (s) cos(2nθ (s)). (75)

Equally, η̃n(s), there also exist continuous functions F (η)
1 and

F (η)
2 such that

η̃n(s) = F (η)
1 (s) sin(2nθ (s)) + F (η)

2 (s) cos(2nθ (s)). (76)

This can be claimed from the fact that the trigonometric func-
tions of k(s) and ω(s) are continuous, and F (�)

1 (s) and F (�)
2 (s)

are obviously written with them (� = ξ, η).
Here we introduce the following proposition, whose proof

is shown in Appendix C:
Proposition V.3.
(Extension of Riemann-Lebesgue lemma)
For any y ∈ [−|a|, |a|] and a continuous function

F : [−|a|, |a|] → C,

lim
n→∞

∫ y

−|a|
F (s) sin(2nθ (s))ds

= lim
n→∞

∫ y

−|a|
F (s) cos(2nθ (s))ds = 0.
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Applying this to Eqs. (75) and (76), we have

lim
n→∞

∫ y

−|a|
{F (�)

1 (s) sin(2nθ (s)) + F (�)
2 (s) cos(2nθ (s))}ds = 0.

(77)

By the definition of weak convergence, this is equivalent to

wlim
n→∞ {F (�)

1 (s) sin(2nθ (s)) + F (�)
2 (s) cos(2nθ (s))} = 0. (78)

Therefore, we conclude that Eq. (74) holds; that is,

wlim
n→∞ ξn(s) = wlim

n→∞ ηn(s) = 0. (79)

The right transition probability, denoted by qn(x), is de-
scribed as

qn(x) = 1 − pn(x)

= 1 − τ1(sn) + ηn(sn) − ξn(sn)

1 + ηn(sn)
,

(80)

where we applied Eq. (73). Defining ζn(sn) := ηn(sn) −
ξn(sn), we obtain

wlim
n→∞ ζn(s) = 0 (81)

by the linearity of integration and the limit.
From the above, we obtain the desired result.

B. Outside the peaks (Theorem III.2)

We use the following proposition:
Proposition V.4 (Proposition 4.1 in [11]). Let s satisfy

|a| < |s| < 1, and a sequence {xn} be conditioned by (33). For
any |ψ〉 ∈ C2 and |χ〉 ∈ C2 with ‖ψ‖ = ‖χ‖ = 1,

〈ψ |Ξ (0, G)
n (xn)|χ〉 = (

1 + (−1)n+xn
)

× e−xn arg ae−nHQ(s)/2

√
2πn

×
√

|b|
(1 − s2)

√
s2 − |a|2

× eπ i(n−|xn|)/2(Fψ (s) + O(1/n)),

where HQ(s) is a convex positive-valued function given by

HQ(s) =2|s| ln(|bs| +
√

s2 − |a|2) − 2 ln(|b| +
√

s2 − |a|2)

+ (1 − |s|) ln(1 − s2) − 2|s| ln |a|,
and using

r(s) = |b|s +
√

s2 − |a|2
|a|√1 − s2

and

D(s) = |b| +
√

s2 − |a|2√
1 − s2

,

Fψ (s) is defined as

Fψ (s) = φ(s)〈ψ |w(s)〉

with

φ(s) = i|a|(|a|r(s)−1 − D(s)−1)χL − ir(s)abχR

r(s)ab[D(s) + D(s)−1]
,

|w(s)〉 = i

[
r(s)ab/|a|

D(s) + |a|r(s)−1

]
.

First of all, similarly to the case around the peaks, pn(ns)
can be transformed to

pn(xn) = |〈L|Ξ (0, G)
n (x)|ϕ̃〉|2

|〈L̃|Ξ (0, G)
n (x)|ϕ̃〉|2 + |〈R̃|Ξ (0, G)

n (x)|ϕ̃〉|2 .

By Proposition V.4,

pn(xn) = |FL(s)|2 + O(n−2)

|FL̃ (s)|2 + |FR̃ (s)|2 + O(n−2)

= 1

|FL̃ (s)|2 + |FR̃ (s)|2 (|FL(s)|2 + O(n−2))

×
(

1 + O(n−2)

|FL̃ (s)|2 + |FR̃ (s)|2
)−1

= |FL(s)|2
|FL̃ (s)|2 + |FR̃ (s)|2 + O(n−2).

Therefore,

lim
n→∞ pn(xn) = |FL(s)|2

|FL̃ (s)|2 + |FR̃ (s)|2

= φ(s)〈L|w(s)〉|2
|φ(s)〈L̃|w(s)〉|2 + |φ(s)〈R̃|w(s)〉|2

= |〈L|w(s)〉|2
‖w(s)‖2

= s − |a|2 + |b|
√

s2 − |a|2
2s

.

We can also confirm convergence regarding qn(x) easily from
the property of the limit.

C. Around the peaks (Theorem III.3)

We use the following proposition:
Proposition V.5 (Proposition 3.1 in [11]). Let a sequence

{x±
n } satisfy

x±
n = ±n|a| + dn,

where a sequence {dn} satisfies dn = O(n1/3). For any |ψ〉 ∈
C2 and |χ〉 ∈ C2 with ‖ψ‖ = ‖χ‖ = 1,

〈ψ |Ξ (0, G)
n (x±

n )|χ〉
= (1 + (−1)n+x±

n )e−ix±
n arg(a)eiπ (n∓x±

n )/2

× f ψ
χ (±i)κn−1/3Ai(±κn−1/3dn) + O(n−2/3).

Here

κ =
(

2

|a||b|2
)1/3

, τ±
◦ = 1 ∓ |a|

2
,

and Ai(z) is the Airy function defined as

Ai(z) = 1

2π

∫ ∞

−∞
eit3/3+itz dt = 1

π

∫ ∞

0
cos

(
t3

3
+ tz

)
dt .

The function f ψ
χ (z) is given in Proposition V.2.
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Here we choose {d±
n } defined by (41) as {dn} in the proposi-

tion above. Applying the result of Proposition V.2 to Eq. (57),
we obtain

pn(x±
n )

=
∣∣ f L

ϕ (±i)Ai(±κn−1/3d±
n )

∣∣2 + O(n−2/3)(∣∣ f L̃
ϕ (±i)

∣∣2 + ∣∣ f R̃
ϕ (±i)

∣∣2)∣∣Ai(±κn−1/3d±
n )|2 + O(n−2/3)

= |〈L|u(±i)〉|2|Ai(±κn−1/3d±
n )|2 + O(n−2/3)

‖u(±i)‖2|Ai(±κn−1/3d±
n )|2 + O(n−2/3)

= (1 + |a|)(1 − |a|)|Ai(±κn−1/3d±
n )|2 + O(n−2/3)

2(1 ± |a|)|Ai(±κn−1/3d±
n )|2 + O(n−2/3)

= τ±
◦ × |Ai(±κn−1/3d±

n )|2 + O(n−2/3)

|Ai(±κn−1/3d±
n )|2 + O(n−2/3)

, (82)

where τ±
◦ = (1 ∓ |a|)/2.

Here the Airy function Ai(z) takes positive values for all
z > 0, and κ is surely positive under the condition 0 < |a| <

1. These result in the fact that the Airy function in (82) is
positive as n → ∞. Therefore, we can cancel |Ai(±κn1/3dn)|2
from Eq. (82):

pn(x±
n ) = τ±

◦ × 1 + O(n−2/3)

1 + O(n−2/3)
. (83)

Moreover, we can rewrite the equation above as

pn(x±
n ) = τ±

◦ + O(n−2/3), (84)

and thus the convergence (42) holds. Under this condition, we
can also confirm convergence regarding qn(x±

n ) easily by the
property of the limit.

VI. CONCLUSION AND DISCUSSION

In this paper, we have introduced an underlying struc-
ture of quantum walks, which we call the skeleton structure,
in the case of a homogeneous coin matrix. The skeleton
structure is based on a quantity of quantum walks, which
can be interpreted as the transition probabilities of random
walks that replicate the probability distribution of quantum
walks [quantum-walk-replicating random walk (QWRW)]. It
is noteworthy that the skeleton structure is independent of
the initial state and, partially, of the coin matrix, whereas
the base functions pn and qn differ significantly depending
on the conditions of quantum walks. That enhances observ-
ing the mechanism of quantum walks through the directivity
of QWRWs. Moreover, we have defined a time- and site-
dependent random walk, whose transition probabilities are
directly derived by the skeleton structure, which we named
quantum-skeleton random walk (QSRW). While the QSRW
does not perfectly reproduce the probability distribution of the
original quantum walk, we have demonstrated that it exhibits
linear spreading comparable to the genuine quantum walk in
terms of directivity.

There remain many exciting topics related to pn and qn, or
transition probabilities of QWRW. For example, the oscilla-
tion of the transition probabilities can be considered further.
Functions pn(x) and qn(x) have both spatial and tempo-
ral oscillations, which make them complex. Analyzing this

structure is, however, important to investigate how the ini-
tial state—the element excluded by introducing the skeleton
structure—contributes to deriving the probability distribution
of quantum walks in terms of QWRW. We have conducted
preliminary analyses on the oscillatory behavior, although
there are unexplored aspects including the initial-state depen-
dencies. The analyses are given in Appendix D.

Besides, considering to construct skeleton structures of
quantum walks for the models including localization such as
one-defect or three-state ones will be necessary. Especially,
for a one-defect case, characteristic transition probabilities
have been observed, as reported in [24]. Even though for now
we have ignored the case where both linear spreading and
localization occur, more general skeleton structure may yet
exist. The understanding of such universal underlying struc-
tures is of significant interest for further narrowing down, how
the special properties of quantum walks arise.

Further studies focusing on QSRWs may also lead to im-
portant results. For example, can we obtain the closed formula
or limit distribution of ρn? If we can address this, then we can
describe KL-divergence DKL(μn‖ρn) with a closed formula or
obtain the limit of it. That will make it easier to investigate the
velocity of convergence of DKL(μn‖ρn), which is important to
realize quantitative estimation on a deeper level. Also, we may
explain the cause of fluctuations of DKL(μn‖ρn) via the closed
formula of ρn. It is conjectured that these fluctuations are de-
rived from the fact that the probability distribution of QWRW
μn have fluctuations unlike that of QSRW, but quantitative in-
vestigation is needed to ensure that. One remaining difficulty
in analyzing a QSRW lies in how to treat the transition proba-
bility outside the peaks. Actually, inside the peaks, it is known
that the transition probability makes walkers spread linearly,
like the case of elephant random walks [25]. However, it is
not trivial that this spreading is also observed in a QSRW;
outside the peaks, a similar discussion is difficult because p̃n

in this region depends on the position x in a more complicated
fashion. Further considerations on how to analyze p̃n and q̃n

outside x = ±n|a| could likely yield more rigorous results.
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APPENDIX A: PROOF OF LEMMA V.1

Here we give the proof of the transformation formula pre-
sented in Sec. V. As mentioned in Sec. II, there are several
ways of defining a unitary time evolution operator or de-
composing the coin matrix C. One way presented in Sec. II
is called the Ambainis type [7]; the unitary time evolution
operator U is defined by Eq. (8), and then the coin matrix C is
decomposed as in Eqs. (14) and (15). On the other hand, the
way used in Ref. [11] is called the Gudder type, which treats
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the following unitary time evolution operator:

U ′ = CS,

as stated in Eq. (54). Here C and S are the matrices defined by
Eqs. (12) and (9), respectively. Then we can rewrite U ′ as

U ′ = S−1 ⊗ P′ + S ⊗ Q′, (A1)

where

P′ = C|L〉〈L| =
[

a 0
−eiδb 0

]
, (A2)

Q′ = C|R〉〈R| =
[

0 b
0 eiδa

]
. (A3)

This indicates that the coin matrix C in Eq. (12) is decom-
posed as in Eqs. (A2) and (A3), which is different from the
Ambainis type. In particular, the order of the coin matrix and
projector operator is switched. Moreover, in Ref. [11], δ is set
to 0. In short, to apply the result obtained by Sunada and Tate
[11], we have to transform the Ambainis type to the Gudder
type, and the general δ case to the case of δ = 0.

From now on, we use the following notations:

(1) C(δ) = [ a b
−eiδb eiδa]: The coin matrix. It should be

noted that arg[det C(δ)] = δ and C(0) = Θ , given by (56).
(2) C(δ) := ∑

x∈Z |x〉〈x| ⊗ C(δ).
(3) U (δ, ): The unitary time evolution operator in the type

 with the coin matrix C(δ): U (δ, A) and U (δ, G) are U and U ′
given by Eqs. (8) and (54), respectively.

(4) P(δ, ), Q(δ, ): The decomposition matrices of U (δ, ) in
the type . They correspond to the left and right transitions,
respectively. (P(δ, A), Q(δ, A)) and (P(δ, G), Q(δ, G)) are (P, Q)
and (P′, Q′) given by (14), (15), (A2), and (A3), respectively.

(5) Ξ (δ, )
n : The weight of all the possible paths from the

origin to position x at time n in the type  with the coin matrix
is C(δ): Ξ (δ, A)

n is Ξn given by (18).
First, we show the transformation from the Ambainis type

to the Gudder type. From Eq. (54), the matrix U (δ, G) is
written as

U (δ, G) = C(δ)S. (A4)

Here, from Eqs. (8) and (A4),

U (δ, A) = C(δ)†U (δ, G)C(δ) (A5)

holds. Hence, it follows that

(U (δ, A))n = C(δ)†(U (δ, G))nC(δ). (A6)

On the other hand, the relation

(U (δ, ) )n =
∑
x∈Z

(
Sx ⊗ Ξ (δ, )

n (x)
)

(A7)

follows. By applying Eq. (A5) to both sides of the equa-
tion above, we have

Ξ (δ, A)
n (x) = C(δ)†Ξ (δ, G)

n (x)C(δ), (A8)

which represents transformation from the Ambainis type to
the Gudder type.

Next, we show the transformation from the general δ case
to the case of δ = 0. We introduce the Fourier transform of

Ξ (δ, )
n (x) as

Ξ̂ (δ, )
n (k) =

∑
x∈Z

eikxΞ (δ, )
n (x). (A9)

Then we also have

Ξ (δ, )
n (x) =

∫ π

−π

e−ikxΞ̂ (δ, )
n (k)

dk

2π
(A10)

and call it the Fourier inverse transform. From Eq. (20),

Ξ̂ (δ, )
n (k) = Û (δ, )(k) Ξ̂

(δ, )
n−1 (k) (A11)

with

Û (δ, )(k) = e−ikP(δ, ) + eikQ(δ, ). (A12)

Assigning this to Eqs. (A10) and (A11) repeatedly, we have

Ξ (δ, )
n (x) =

∫ π

−π

e−ikx (Û (δ, )(k))nΞ̂
(δ, )
0 (k)

dk

2π

=
∫ π

−π

e−ikx (Û (δ, )(k))n dk

2π
. (A13)

Note that Ξ̂
(δ, )
0 (k) = I2, which is the identity matrix of order

2, since the quantum walk starts from the origin.
On the other hand, by simple calculation, Eq. (A12) can be

transformed to

Û (δ, )(k) = eiδ/2 Û (0, )

(
k + δ

2

)
. (A14)

Applying this to Eq. (A13), we obtain

Ξ (δ, )
n (x) =

∫ π

−π

e−ikx einδ/2 Û (0, )

(
k + δ

2

)n dk

2π

= eiδ(n+x)/2 Ξ (0, )
n (x), (A15)

which implies transformation from the case with C(δ) to the
case with C(0).

Combining Eqs. (A8) and (A15), we obtain the desired
result.

APPENDIX B: MORE RIGOROUS DEFINITION
OF FUTURE DIRECTION

Let �N ⊂ {±1}N be the set of possible path trajecto-
ries of walks until time step N . That is, an element ω :=
(ω0, ω1, . . . , ωN−1) ∈ �N represents which direction is cho-
sen at respective time step; ωn ∈ {±1} represents the left (−1)
or right (+1) shift at time step n. Here, for n ∈ {0, . . . , N}
and ω ∈ �N , we define the quantity Sn = S(ω)

n with S(ω)
0 = 0

and

S(ω)
n =

n−1∑
t=0

ωt (n � 1). (B1)

Then Sn represents the position of a walker at the time step n.
Finally, we define the function r : {0, 1, . . . , N} → [0, 1] as

r(n) := P
({

ω ∈ �N | sgn
(
S(ω)

N S(ω)
n

) = 1
})

. (B2)

In this paper we treat this as the figure of merit of future
direction of QWRW or QSRW.
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APPENDIX C: PROOF OF PROPOSITION V.3

In the following, θ (s) is the function defined as Eq. (64),
and let F : [−|a|, |a|] → C be a continuous function. Then
we consider the following integral:

In =
∫ y

−|a|
F (s) exp(±2inθ (s)) ds (C1)

with y ∈ [−|a|, |a|]. In fact, since F (s) is uniformly continu-
ous on the interval [−|a|, |a|], it can be approximated by the
following step function FJ (s) with arbitrary precision, where
J is an appropriate natural number:

FJ (s) =
J∑

j=1

F (s j )1[s j−1, s j ](s). (C2)

Here s j for j = 0, 1, . . . , J is defined as follows:

s j = −|a| + 2|a| j

J
. (C3)

Also, the function 1[s j−1, s j ](s) is defined by

1[s j−1, s j ](s) =
{

1 (s ∈ [s j−1, s j])
0 (s 	∈ [s j−1, s j])

. (C4)

It means that the s j are equispaced points with −|a| = s0 <

s1 < · · · < sJ = |a|. Therefore, it is sufficient to consider the
integral I (J )

n , which is made by replacing F with FJ . That is,
I (J )
n is described as

I (J )
n =

∫ y

−|a|
FJ (s) exp(±2inθ (s)) ds. (C5)

By Eq. (C2), this can be rewritten as

I (J )
n =

j0∑
j=1

F (s j )
∫ s j

s j−1

exp(±2inθ (s)) ds

+ F (s j0+1)
∫ y

s j0

exp(±2inθ (s)) ds, (C6)

where j0 satisfies s j0 � y � s j0+1.
Here we introduce the following lemma:
Lemma C.1. For any � and r that satisfy −|a|��<r�|a|,

it follows that

lim
n→∞

∫ r

�

exp(±2inθ (s)) ds = 0. (C7)

Using this lemma and Eq. (C6), we obtain

lim
n→∞ I (J )

n = 0. (C8)

This result leads to

lim
n→∞ In = 0. (C9)

Since the relations

cos(2nθ (s)) = 1

2
{exp(2inθ (s)) + exp(−2inθ (s))}, (C10)

sin(2nθ (s)) = 1

2i
{exp(2inθ (s)) − exp(−2inθ (s))} (C11)

hold, our proposition is obtained.

Proof of Lemma C.1

First, we consider the case that the interval [�, r] does not
include any of {0, ±|a|}.

We set t = k(s), where k(s) is given by Eq. (62). Then we
obtain

s = sin t√
|b/a|2 + sin2 t

=: σ (t ). (C12)

Note that σ :[−π/2, π/2] → [−|a|, |a|] is odd and strictly
monotonically increasing, and σ−1 = k. In addition, we can
rewrite θ (s), given by Eq. (64), as

θ (s) = arccos(|a| cos t ) − tσ (t ) =: 1
2 ρ(t ). (C13)

This function ρ(t ) = 2θ (s) is symmetric about t = 0. More-
over, its derivative ρ ′(t ) is positive for t ∈ (−π/2, 0) and zero
on t ∈ {0, ±π/2}.

Incidentally, the case we are considering is equivalent to
−|a| < � < r < 0 or 0 < � < r < |a|. By the symmetry of
ρ(t ) and σ (t ), we can focus on the former case; the discussion
on the latter case is made similarly. In the following, we
consider the function ρ̃ = ρ|[−π/2, 0], which is the restriction
map of ρ to [−π/2, 0]. Note that ρ̃ is strictly monotonically
increasing.

Here we rewrite the integration on the left-hand side of
Eq. (C7) with σ (t ) and ρ̃(t ) as∫ r

�

exp(±2inθ (s)) ds =
∫ k(r)

k(�)
exp(±inρ̃(t ))σ ′(t ) dt . (C14)

Moreover, making the substitution Φ = ρ̃(t ), we have∫ k(r)

k(�)
exp(±inρ̃(t ))σ ′(t ) dt

=
∫ ρ̃◦k(r)

ρ̃◦k(�)
exp(±inΦ )

σ ′◦ ρ̃−1(Φ )

ρ̃ ′ ◦ ρ̃−1(Φ )
dΦ. (C15)

Here, since the inequality −π/2 < k(�) < k(r) < 0 holds,
ρ̃ ′(t ) > 0 holds on the interval [k(�), k(r)]. Therefore, the
function σ ′ ◦ ρ̃−1(Φ )/ρ̃ ′ ◦ ρ̃−1(Φ ) on Eq. (C15) is continuous
on this interval, and thus we can apply the Riemann-Lebesgue
lemma to the right-hand side of Eq. (C15), that is,

lim
n→∞

∫ ρ̃◦k(r)

ρ̃◦k(�)
exp(±inΦ )

σ ′◦ ρ̃−1(Φ )

ρ̃ ′ ◦ ρ̃−1(Φ )
dΦ = 0. (C16)

Summarizing the discussion above, we obtain the desired
result in the case that the relation −|a| < � < r < 0 holds.
Once again, the case that 0 < � < r < |a| can be discussed in
a similar manner.

In the following, we discuss the general case. We take ε

that satisfies 0 < ε < r − �. We also define the open intervals
O1, O2, and O3 as follows:

O1 :=
(

−|a| − ε

6
, −|a| + ε

6

)
, (C17)

O2 :=
(

− ε

6
,

ε

6

)
, (C18)

O3 :=
(

|a| − ε

6
, |a| + ε

6

)
. (C19)
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(a) a = 1/
√

2 (b) a = cos(π/5)

FIG. 7. Graphs of pn(0) over time step n. Plots are given only to even n; if n is odd, then pn(0) = 1/2 by the definition (31). The initial
state |ϕ〉 = [1 0]T for both cases.

Note that putting U = O1 ∪ O2 ∪ O3, the Lebesgue measure
of U is L(U ) = ε, and {0, ±|a|} is included in U . That is, the
set [�, r] \ U is a closed interval that does not contain any of
{0, ±|a|}, or the sum of such ones. Therefore, by the restricted
result above, we obtain

lim
n→∞

∫
(�, r)\U

exp(±2inθ (s)) ds = 0. (C20)

By the triangle inequality, it holds that∣∣∣∣
∫

(�, r)
exp(±2inθ (s)) ds

∣∣∣∣
�

∣∣∣∣
∫

(�, r)
exp(±2inθ (s)) ds −

∫
(�, r)\U

exp(±2inθ (s)) ds

∣∣∣∣
+

∣∣∣∣
∫

(�, r)\U
exp(±2inθ (s)) ds

∣∣∣∣. (C21)

The first term of the right-hand side in this inequality can be
estimated by ε as follows:∣∣∣∣

∫
(�, r)

exp(±2inθ (s)) ds −
∫

(�, r)\U
exp(±2inθ (s)) ds

∣∣∣∣
�

∫
(�, r)\((�, r)\U )

| exp(±2inθ (s))| ds �
∫
U

ds = ε.

(C22)

Applying Eqs. (C20) and (C22) to Eq. (C21), we obtain

lim sup
n→∞

∣∣∣∣
∫

(�, r)
exp(±2inθ (s)) ds

∣∣∣∣ � ε. (C23)

Since ε can be taken to be as close to 0 as one wants, the
lemma follows.

APPENDIX D: DISCUSSION OF OSCILLATION OF pn(x)

We define the function γ : [0,∞)×(−1/
√

2, 1/
√

2) →
[0, 1] as

γ (t, s) = τ1(s) + ξ̃ (c)(t, s)/λ(s)

1 + η̃(c)(t, s)/λ(s)
. (D1)

Here the functions ξ̃ (c), η̃(c) : [0, ∞) × (−1/
√

2, 1/
√

2) →
[0, 1] are given by

ξ̃ (c)(t, s) := −2Im
(
e2itθ (s) f L

ϕ̃ (s)gL
ϕ̃ (s)

)
, (D2)

η̃(c)(t, s) := −2Im
{
e2itθ (s)

(
f L̃
ϕ̃ (s)gL̃

ϕ̃ (s) + f R̃
ϕ̃ (s)gR̃

ϕ̃ (s)
)}

,

(D3)

and τ1(s), λ(s), f ψ
χ (s), and gψ

χ (s) in Eqs. (D1), (D2), and (D3)
are given by Eqs. (71), (72), (65), and (66), respectively. It
is remarkable that functions ξ̃n(s) and η̃n(s) in Eqs. (69) and
(70) are the restricted functions of ξ̃ (c)(t, s) and η̃(c)(t, s) to
N0 × (−1/

√
2, 1/

√
2), and thus the relation

pn(xn) = γ

(
n,

xn

n
+ O

(
1

n2

))
(D4)

holds by Eq. (34).
The function γ (t, s) has both temporal (t) and spatial

(s) oscillations resulting from the trigonometric functions in-
cluded in ξ̃ (c)(t, s) and η̃(c)(t, s). These oscillations in turn
create the oscillatory behavior of pn(x).

First, we shall discuss the temporal oscillations. For a fixed
s ∈ (−1/

√
2, 1/

√
2), the temporal oscillation of γ (t, s) has

the periodicity T (s) = π/θ (s), where θ is given by Eq. (64).
The temporal oscillations of pn(x) is strongly affected by
γ (t, s) and show the similar periodic behavior to it in some

FIG. 8. Time variation of transition probabilities pn(x) and qn(x) in the case of Fig. 7. The values are expressed only on the even (resp.
odd) points when the time step is even (resp. odd).

012222-14



SKELETON STRUCTURE INHERENT IN DISCRETE-TIME … PHYSICAL REVIEW A 107, 012222 (2023)

cases. Let x fix to 0. Then, if n is even, pn(0) is described as

pn(0) = γ

(
n, O

(
1

n2

))
. (D5)

This indicates that pn(0) is approximated by γ (n, 0) for suf-
ficiently large n if n is even. Therefore, considering pn(0)
is 1/2 if n is odd, and T (0) = arccos(|a|) holds by θ (0) =
π/ arccos(|a|), we can classify the periodicity T of pn(0) for
sufficiently large n as follows:

Proposition D.1. Assume that there exists a pair of the
relatively prime natural numbers (�, m) that satisfies 0 � � <

2m and a = cos(�/m)π . Then

T =
{

�m (if � is even)
2�m (if � is odd) . (D6)

If this assumption is not true, then T = ∞; that is, pn(0) is
aperiodic.

Figures 7(a) and 7(b) show the value of pn(0) in the case
of a = 1/

√
2 and a = cos(π/5), respectively. For both cases,

the initial state |ϕ〉 is set to be [1 0]T. In the Fig. 7(a) case, the
corresponding γ (t, s) has periodicity T (0) = 4, and we can
observe the same one (T = 4) from pn(0). In the Fig. 7(b)
case, the corresponding γ (t, s) has periodicity T (0) = 5, and
we can observe periodicity T = 10 from pn(0). These facts
regarding the relation between T (0) and T agree with Propo-
sition D.1. Note that the behavior of pn(x) is unstable at early
n due to the error term O(1/n2), but the periodic behavior is
clearly observed for sufficiently large n.

Figure 8 shows time variation of pn(x) and qn(x) in the
case of Fig. 7(a); i.e., a = 1/

√
2. Herein, the periodic behavior

is observed, which is investigated in Fig. 7(a). Incidentally,
γ (t, 0) in this case is calculated as

γ (t, 0) = 1

2

(
1 − cos

(
π

2
t

))
, (D7)

and this fact seems to affect the behavior near the origin, the
clarification of which is still open.

Second, we discuss the spatial oscillation. As shown in
Fig. 1, pn(x) has high-frequency spatial oscillation, and the
frequency is higher for positions farther from the origin. Our
desire is to explain this phenomenon via γ (t, s), but a full
mathematical analysis has not been made yet. However, a
simple argument based on the function ψ (t, s) = sin(2tθ (s))
can be made. The function ψ (t, s) has in common with
γ (t, s) that the farther from the origin one goes, the higher the
frequency of oscillation becomes; see Fig. 9. We can interpret
this phenomenon with the intervals of extrema of ψ (t, s); that
is, the intervals of extrema get narrower if the absolute value
of s get larger. Assume that t is fixed and satisfies t > 0. If

FIG. 9. Functions ψ (t, s) = sin(2tθ (s)) and θ (s) (t = 20).

ψ (t, s) has an extremum on a certain s, then the equation

∂ψ (t, s)

∂s
= 0 (D8)

holds. This equation holds iff either ∂θ (s)/∂s = 0 or
cos[2tθ (s)] = 0 holds. Here the former condition is equiva-
lent to s = 0 because θ (s) is concave. The latter condition is
equivalent to that there exists m ∈ N0 such that the following
holds:

θ (s) = 2m + 1

4t
π. (D9)

This indicates that θ (s) is taken in equidistant intervals, and
the corresponding s has extrema of ψ (t, s). Here θ (s) is
concave, and thus intervals of two extrema get narrower on the
larger-s area as visualized in Fig. 9. Therefore the frequency
of oscillations of ψ (t, s) is higher on the area farther from
s = 0. Whether the similar discussion can be made for γ (t, s)
is an open question at this point.
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