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Non-Markovianity through entropy-based quantum thermodynamics
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We introduce a generalized approach to characterize the non-Markovianity of quantum dynamical maps via
breakdown of monotonicity of thermodynamic functions. By adopting an entropy-based formulation of quantum
thermodynamics, we use the relationship between heat and entropy to propose a measure of non-Markovianity
based on the heat flow for single-qubit quantum evolutions. This measure can be applied for unital dynamical
maps that do not invert the sign of the internal energy. Under certain conditions, it can also be extended for other
thermodynamic functions, such as internal energy and work flows. In this context, a natural connection between
heat and quantum coherence can be identified for dynamical maps that are both unital and incoherent. As appli-
cations, we explore dissipative and nondissipative quantum dynamical processes, illustrating the compatibility
between our thermodynamic quantifiers and the well-establish measure defined via quantum coherence.
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I. INTRODUCTION

Quantum thermodynamics [1,2] is a research field in the
making, with fruitful conceptual implications and a potential
range of applications, mainly in the field of quantum tech-
nologies (see, e.g., Ref. [3]). It aims at generalizing the laws
of thermodynamics to the quantum domain, rewriting thermo-
dynamic state functions and processes from the bottom up so
that the laws of thermodynamics can be consistently applied
to small systems and scaled up to the classical world [4–9].
Remarkably, the definitions of thermodynamic variables, such
as work and heat, have been challenging, since they cannot be
taken as observables described by Hermitian operators [10].
In the standard framework of quantum thermodynamics [11],
the internal energy change due to state population rearrange-
ment induced by the external environment has been defined
as heat. On the other hand, the internal energy change due
to energy gap variations induced by the coherent dynamics
has been defined as work. This framework has recently been
revisited through an entropy-based formulation for heat and
work [12–14], with heat identified as the entropy-related con-
tribution to the internal energy change and work taken as the
part unrelated to the entropy change. In particular, this has
been applied to the study of the thermodynamics of a single
qubit far from equilibrium [15], where a notion of temperature
compatible with the classical limit was introduced. The alter-
native entropy-based view turns out to motivate an interplay
with quantum information, with the interpretation of thermo-
dynamic variables in terms of resources and correlations in a
quantum system.

Indeed, quantum thermodynamics is intrinsically con-
nected with quantum information theory, with quantum
resources strongly affecting thermodynamic variables and
processes. This is manifested in a number of situations, such

as measurements and their influence on the work performed
on or by a quantum system [10,16–19], efficiency of ther-
modynamic tasks in quantum correlated devices [6,20–22],
and coherence effects on work and heat [23–30], among oth-
ers. By looking at information-based quantifiers, it is known
that quantum coherence plays a relevant role in the char-
acterization of system-bath memory effects. In particular,
quantum coherence can be associated with a measure of
non-Markovianity for incoherent dynamical maps [31–34].
Notice that a memoryless (Markovian) behavior is always an
idealization, with non-Markovian quantum dynamics being
non-negligible in a number of different scenarios (see, e.g.,
Refs. [35–37]). From an applied point of view, non-Markovian
dynamics may also be a resource for certain quantum tasks
[38,39].

In this work we adopt the entropy-based formulation of
quantum thermodynamics to introduce a measure of non-
Markovianity based on the heat flow for single-qubit quantum
evolutions. This measure can be applied for unital dynami-
cal maps that do not invert the sign of the internal energy
(energy sign-preserving maps), which is rooted in the idea
that von Neumann entropy itself can be used to build a
non-Markovianity measure for unital maps [40]. Under cer-
tain conditions, we can also extend this approach to other
thermodynamic functions, such as internal energy and work
flows. Then a natural connection between heat and quantum
coherence can be observed for dynamical maps that are both
unital and incoherent. In particular, we show that heat and
work are monotonically related to quantum coherence for
nondissipative processes. Consequently, both heat and work
can witness non-Markovianity for nondissipative unital maps
as well as nondissipative incoherent maps. Moreover, we es-
tablish and illustrate the conditions over the system purity and
the Hamiltonian such that the thermodynamic variables can
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be used to provide non-Markovianity measures throughout the
evolution in a decohering environment.

The paper is organized as follows. In Sec. II we briefly
introduce the entropy-based formulation of quantum thermo-
dynamics, expressing the first law of thermodynamics and
its corresponding thermodynamic variables for a single-qubit
system. In Sec. III we discuss the non-Markovian dynamics,
where we propose measures of non-Markovianity via gen-
eralized sign-preserving functions. In Sec. IV we consider
applications in dissipative and nondissipative evolutions, il-
lustrating the use of thermodynamic variables as measures of
non-Markovianity. In Sec. V we summarize and present our
conclusions.

II. QUANTUM THERMODYNAMICS

According to the standard framework for quantum thermo-
dynamics [11], the internal energy U of a system described by
a density operator ρ is provided by the expected value of its
Hamiltonian H , i.e., U = tr[ρH]. In this formalism, the first
law of thermodynamics emerges from an infinitesimal change
in the internal energy dU = δQ + δW , with δQ = tr[dρH]
and δW = tr[ρdH] defining the heat absorbed by system and
the work performed on system, respectively. Considering the
density operator as expressed in its spectral decomposition,
we have ρ = ∑

k rk|rk〉〈rk|, where |rk〉 denotes an eigenvector
of ρ and rk the corresponding eigenvalue. Then the thermody-
namic quantities U , δQ, and δW can be rewritten as

U =
∑

k

rk〈rk|H |rk〉, (1)

δQ =
∑

k

drk〈rk|H |rk〉 +
∑

k

rk (〈rk|Hd|rk〉 + H.c.), (2)

δW =
∑

k

rk〈rk|dH |rk〉. (3)

Note that the first term on the right-hand side of Eq. (2) is
responsible for changes in the von Neumann entropy S =
−kBtr[ρlnρ] since dS = −kB

∑
k drklnrk . Therefore, in or-

der to connect the heat flow with the entropy change as in
classical thermodynamics, an entropy-based formulation of
quantum thermodynamics has recently been introduced in
Refs. [12–14]. In this framework, heat and work are redefined
through

δQ = δQ − δW ∗ (4)

and

δW = δW + δW ∗, (5)

where δW ∗ is an additional work contribution given by

δW ∗ =
∑

k

rk (〈rk|Hd|rk〉 + H.c.). (6)

The work δW ∗ is related to the variation d|rk〉 of the density
operator eigenvectors. Note that the entropy-based formalism
satisfies the first law of thermodynamics, i.e., dU = δQ +
δW , being then equivalent to the standard framework for
δW ∗ = 0. Remarkably, it can be shown that the existence of
quantum coherence in ρ in the energy eigenbasis {|hk〉} is a
necessary ingredient for a nonzero work δW ∗ if the energy

eigenvectors are fixed, i.e., for d|hk〉 = 0 ∀ k. Here we will
define coherence through the l1-norm [31] of ρ in the energy
eigenbasis, reading

C(ρ) =
∑
k �=l

|〈hk|ρ|hl〉|. (7)

Indeed, observe that if H is constant and ρ and H have a
common basis of eigenvectors, then d|hk〉 = d|rk〉 = 0. This
leads to δW ∗ = 0. Moreover, since a common basis for H and
ρ implies that ρ is diagonal in the energy eigenbasis {|hk〉}, we
will have C(ρ) = 0.

For an arbitrary single-qubit system, the density operator
can be written in the Pauli basis {I, �σ } as

ρ = 1
2 (I + �r · �σ ), (8)

where �r = (x, y, z) is the Bloch vector. For the Hamiltonian,
we have H = −�h · �σ . We observe that �r = (x, y, z) can be
interpreted as a classical magnetic dipole moment immersed
in an external magnetic field �h. Indeed, the quantities in
Eqs. (1)–(7) reduce to [15]

U = −�h · �r, (9)

δQ = −�h · d�r, (10)

δW = −�r · d �h, (11)

δQ = Urdr, (12)

δW = rdUr, (13)

δW ∗ = −rhĥ · dr̂, (14)

and

C = r

√
1 − U 2

r

h2
, (15)

where r ≡ |�r | is the purity, Ur ≡ U/r is the internal energy
per unit of purity, h ≡ |�h| is the positive energy eigenvalue,
r̂ ≡ �r/r is the dipole direction, and ĥ ≡ �h/h is the external
field direction. Note that heat and work in the entropy-based
qubit formalism, namely, δQ and δW , are necessarily as-
sociated with changes in r (and consequently in S) and Ur ,
respectively. On the other hand, the standard contributions for
these thermodynamic quantities, δQ and δW , are required to
be associated with variations in �r and �h, respectively.

An interpretation for δW ∗ in terms of the behavior of �r
can be obtained through the relation between δW ∗ and C(ρ).
First, a change in the eigenvectors of ρ is required for nonzero
δW ∗. By imposing dĥ = 0, i.e., a fixed energy eigenbasis,
we can express δW ∗ in Eq. (14) as δW ∗ = hCdθ , where
hC = |�r × �h| denotes the absolute value of the torque on �r
induced by �h and θ = arccos(ĥ · r̂) is the angle between �r
and �h [15]. Therefore, δW ∗ is equivalent to the energy cost
required to rotate a magnetic dipole moment immersed in
an external magnetic field, being proportional to coherence.
More generally, δW ∗ represents the departure from the qua-
sistatic dynamics [12,13].
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III. CHARACTERIZING NON-MARKOVIANITY

Let us suppose an open-system dynamical evolution gov-
erned by a time-local master equation

ρ̇ = Ltρ(t ) = −i[H (t ), ρ(t )]

+
∑

i

γi(t )[Ai(t )ρ(t )A†
i (t ) − 1

2
{A†

i (t )Ai(t ), ρ(t )}], (16)

whereLt is the time-dependent generator, H (t ) is the effective
Hamiltonian of the system, Ai(t ) are the Lindblad operators,
γi(t ) are the relaxation rates, and the overdot denotes time
derivative. By taking γi(t ) � 0, Lt assumes the Lindblad
form at each instant of time [41]. Consequently, the mas-
ter equation solution ρ(t ) = �t,τ ρ(τ ) is obtained through a
completely positive and trace-preserving (CPTP) map �t,τ =
T exp(

∫ t
τ

dt ′Lt ′ ), with T representing the chronological time-
ordering operator. In this case, the dynamical map �t,τ

satisfies the divisibility condition, i.e., �t,τ = �t,r�r,τ (t �
r � τ � 0), which characterizes the Markovianity of the dy-
namical evolution. On the other hand, for γi(t ) < 0, the
corresponding dynamical map �t,τ may not be CPTP for
intermediate time intervals and the divisibility property of
the overall CPTP dynamics is violated, which characterizes
a non-Markovian behavior [42–44].

Now assume that Fα (t ) = Fα (ρ(t )) represents an arbitrary
monotonic function of t under divisible dynamical maps,
where α = +1 and α = −1 indicate increasing and decreas-
ing behaviors, respectively. Then a sign change in Ḟα (t ) works
as a witness of non-Markovianity. From this breakdown of
monotonicity, we propose a measure of non-Markovianity as

NFα
[�] = maxρ0

∫
sgnḞα=−α

|Ḟα (t )|dt . (17)

The maximization in Eq. (17) is performed over all sets of
possible initial states ρ0 and the integration extends over all
time intervals for which the sign of Ḟα (t ) is sgnḞα = −α.
If {(t k

i , t k
f )} represents the set of all time intervals for which

sgnḞα = −α, then we can write

NFα
[�] = maxρ0

∑
k:sgnḞα=−α

∣∣Fα

(
t k

f

) − Fα

(
t k
i

)∣∣. (18)

Note that NFα
[�] quantifies the departure from the map di-

visibility. It has been previously adopted for several functions
Fα (t ), such as in Refs. [42,44]. Here we use the terminology
measure for NFα

[�] in the way it has been employed in the
seminal work in Ref. [42] and not as it is properly used in
resource theories (see, e.g., Refs. [26,45]). The choice for
Fα (t ) will depend on the dynamical map. First, let us consider
the case of operations over incoherent states. By choosing a
fixed basis {|i〉} in a d-dimensional Hilbert space, incoherent
states are defined by density operators ρinc that are diagonal
when expressed in the basis {|i〉}, namely, ρinc = ∑

i ci|i〉〈i|,
with ci denoting an arbitrary complex amplitude. Then it
follows the notion of an incoherent map, which is a dynam-
ical map leading any incoherent state to another incoherent
state. For the case of incoherent quantum operations, it can
be shown that quantum coherence C(ρ(t )) can witness non-
Markovianity through F−1(t ) = C(ρ(t )) [32]. We can also
consider the case of a unital map, which maps the identity
operator to itself, �(I ) = I . In this case, it can be shown

that the von Neumann entropy can witness non-Markovianity
through F+1(t ) = S(ρ(t )) [40]. An operational approach to
determine whether or not a dynamical map is unital or in-
coherent can be established through the sufficient conditions
obtained from Eq. (16): (i) If [Ai, A†

i ] = 0 then � is a unital
map; (ii) if 〈hn|Ai|hk〉〈hk|A†

i |hm〉 = 0 for all k and n �= m then
� is an incoherent map in the energy eigenbasis {|hk〉} [32].
There are several well-known quantum channels that are both
incoherent and unital, such as phase flip, bit flip, and bit-phase
flip, among others [46]. For further applications of Eq. (18) as
a non-Markovianity measure and its relationship with correla-
tion measures, see also Ref. [47]. Note that, in this generalized
approach, α may depend on the initial state, enabling the use
of thermodynamic quantities such as internal energy, heat, and
work to characterize non-Markovianity.

The use of the von Neumann entropy to witness non-
Markovianity for unital maps suggests that heat flow, as
defined by the entropy-based formulation of quantum ther-
modynamics, is also able to detect non-Markovian processes
for unital maps. Indeed, the expression Q̇ = Urṙ obtained
from Eq. (12) reveals that heat is monotonically related to the
purity (consequently to the entropy) for single-qubit energy
sign-preserving dynamics, i.e., quantum evolutions such that
the internal energy U is either a non-negative or a nonpositive
function of the time t . Note that the purity does not increase
under unital Markovian quantum processes [48]. Then we can
establish the following measure of non-Markovianity.

(a) NQ[�] is a measure of non-Markovianity if � is a
single-qubit energy sign-preserving unital map.

In this case, heat can witness non-Markovianity via
Fα (t ) = Q(ρ(t )) with α = sgnU �= 0. As an illustration, the
sign of U does not change under isochoric processes, with
heat a monotonic function of the purity

Q = 
U = Ur (r − r0) (U̇r = 0), (19)

where r0 represents the initial purity. Then we can employ
either Q or U to quantify the degree of non-Markovianity for
isochoric unital maps. Other examples include nondissipative
processes, where heat and work are monotonically related to
the quantum coherence,

Q = −W = U ln

√
C2 + U 2/h2

C2
0 + U 2/h2

(U̇ = 0), (20)

with C0 the initial quantum coherence. Consequently, we can
use either Q or W to characterize the non-Markovianity of
nondissipative unital maps as well as nondissipative inco-
herent maps. Regardless of Q, we can use U and W for
characterization of non-Markovianity if �h(t ) · �r(t ) and Ur (t )
are monotonic functions of t for γi(t ) � 0 (∀ t � 0), respec-
tively. As a special case, let us provide sufficient conditions for
the thermodynamical variables to witness non-Markovianity
for a time-independent Hamiltonian. In this scenario, we take
H = ω0σz and define �r = [x(t ), y(t ), z(t )]. Moreover, let us
define zr ≡ z/r = cosθ . Then it follows that

U (t ) = ω0z(t ), (21)

Q̇(t ) = ω0zr (t )ṙ(t ), (22)

Ẇ (t ) = Ẇ ∗(t ) = ω0r(t )żr (t ). (23)

Hence, from Eq. (22), we can establish the following.
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(b) NQ[�] is a measure of non-Markovianity for a time-
independent Hamiltonian H = ω0σz if � is a single-qubit
unital map that does not invert the sign of z(t ).

Furthermore, it follows from Eqs. (21) and (23) that NU

and NW are measures of non-Markovianity if z(t ) and zr (t )
are monotonic functions of time for γi(t ) � 0 (∀ t � 0), re-
spectively.

IV. APPLICATIONS

A. Dissipative quantum evolution

Let us first consider a dissipative single-qubit dynamics
described by a time-local master equation given by Eq. (16),
with H = ω0σz, Ai = δ1,iσx, and γi = δ1,iγ , such that ω0 > 0
and γ > 0. Then

ρ̇(t ) = −iω0[σz, ρ(t )] + γ [σxρ(t )σx − ρ(t )]. (24)

This master equation generates a Markovian quantum
process ρ(t ) = �Mρ0 = [I + �r(t ) · �σ ]/2, where �r(t ) =
[x(t ), y(t ), z(t )], whose solution for the Bloch vector is given
by

x(t ) = e−γ t

2ω
[αxeωt + βxe−ωt ], (25)

y(t ) = e−γ t

2ω
[αyeωt + βye−ωt ], (26)

z(t ) = z0e−2γ t , (27)

where

αx = ωx0 + γ x0 − 2ω0y0, (28)

βx = ωx0 − γ x0 + 2ω0y0, (29)

αy = ωy0 − γ y0 + 2ω0x0, (30)

βy = ωy0 + γ y0 − 2ω0x0, (31)

with

ω =
√

γ 2 − 4ω2
0 (32)

and �r0 = [x0, y0, z0] denoting the initial state. The Markovian
map �M is both unital and incoherent, since the Lindblad op-
erators Ai = δ1,iσx satisfy the conditions (i) and (ii) described
in Sec. III. Moreover, �M is also a map that preserves the sign
of z(t ) [note that sgnz(t ) = sgnz0 ∀ t � 0]. Consequently, we
can use the monotonicity of Q(t ) or C(t ) as a function of t to
observe the Markovianity of Eq. (24). Then

NFα
[�M] = 0, (33)

where Fα = Q with α = sgnz0 �= 0 or Fα = C with α = −1.
Indeed, Fig. 1 illustrates the sign preservation of Ḟα (t ) for the
initial state �r0 = [1/2, 0, 1/2], where the heat and coherence

0 5 10 15 20 25
-0.10

-0.05

0.00

0 5 10 15 20 25
-0.10

-0.05

0.00

FIG. 1. Heat (black dotted line) and quantum coherence (red
solid line) flows as a function of time for �r0 = [1/2, 0, 1/2], in units
such that γ = 0.1 and ω0 = 1. The inset shows Q̇ as a function of t .

flows reduce to

Q̇(t ) = ω0γ
{
2ω2

0[1 − cosh (2ωt )] − ω2e−2γ t
}
e−2γ t

ω2e−2γ t + γ 2 cosh (2ωt ) + ωγ sinh (2ωt ) − 4ω2
0

,

(34)

Ċ(t ) = 2ω2
0γ e−γ t (1 − cosh 2ωt )

ω

√
γ 2 cosh (2ωt ) + ωγ sinh (2ωt ) − 4ω2

0

. (35)

The Markovianity of Eq. (24) can also be witnessed from
the behavior of the internal energy and work (see plots for U
and W for �r0 = [1/2, 0, 1/2] in Ref. [12]). Concerning the
standard thermodynamic quantities, we have that the conven-
tional heat flow Q̇ is equal to the internal energy flow U̇ . This
holds for an arbitrary time-independent Hamiltonian, since the
conventional work flow Ẇ is zero in this case. From Eqs. (21)
and (27) we then obtain Q̇ = U̇ = −2γ z0ω0e−2γ t . Since the
map �M preserves the sign of Q̇ (see the inset in Fig. 1),
we can also conclude that NFα

[�M] = 0 for Fα = Q with α =
sgnz0 �= 0. From the inset in Fig. 1 we observe that the mono-
tonicity between the heat flow and the coherence flow is lost
in the conventional framework, but the identification of the
Markovian behavior still works. In order to investigate a non-
Markovian scenario, we may take temporary negative constant
rates γ . In this case, Eqs. (25)–(27) are kept for either positive
or negative piecewise constant γ . This fact implies that the
signs of internal energy, heat, and coherence flows will not be
preserved throughout the dynamics, then identifying the non-
Markovian behavior. Notice that the equivalence observed in
this example between the conventional and entropy-based for-
malisms to characterize non-Markovianity is far from general.
Indeed, we will consider next a nondissipative quantum evo-
lution for a time-independent Hamiltonian. As we will show
for that case, both internal energy and conventional heat flow
fail as non-Markovianity witnesses since Q̇ = U̇ = 0 ∀ t � 0.
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B. Nondissipative quantum evolution

Let us consider now the dynamics of a single qubit under
dephasing, whose master equation is given by

ρ̇(t ) = −iω0[σz, ρ(t )] + γ (t )[σzρ(t )σz − ρ(t )]. (36)

This master equation can be derived from Eq. (16) by taking
H = ω0σz, Ai = δ1,iσz, and γi = δ1,iγ . The solution is given
by a map �D such that ρ(t ) = �Dρ0 = [I + �r(t ) · �σ ]/2 with
[32]

�r(t ) = [x0
(t ), y0
(t ), z0], (37)

where


(t ) = exp

(
−

∫ t

0
γ (t )dt

)
. (38)

In this case, the internal energy and the quantum coherence
are given by

U (t ) = U0, (39)

with U0 = ω0z0, and

C(t ) = C0
(t ), (40)

with C0 =
√

r2
0 − z2

0, respectively. The map �D is both
nondissipative unital and nondissipative incoherent. Conse-
quently, we can use Q(t ), W (t ), or C(t ) to characterize the
non-Markovianity of Eq. (36). Inserting Eqs. (39) and (40) in
Eq. (20), we can express heat in the form

Q(t ) = ω0zr0r0 ln
√


(t )2 + [1 − 
(t )2]z2
r0. (41)

The non-Markovianity measure in Eq. (18) then reads

NQ[�D] = maxρ0

∑
k:sgnQ̇=sgnU0

∣∣Q(
t k

f

) − Q
(
t k
i

)∣∣ = ω0max|zr0|,r0 r0

∑
k:γ<0

|zr0| ln

√√√√

(
t k

f

)2 + (
1 − 


(
t k

f

)2)|zr0|2



(
t k
i

)2 + (
1 − 


(
t k
i

)2)|zr0|2

= ω0max|z0|
∑

k:γ<0

|z0| ln

√√√√

(
t k

f

)2 + (
1 − 


(
t k

f

)2)|z0|2



(
t k
i

)2 + (
1 − 


(
t k
i

)2)|z0|2
. (42)

Note that a pure initial state, i.e., r0 = 1, results from the
maximization procedure in Eq. (42). In order to enable a
numerical comparison with the coherence-based measure of
non-Markovianity, let us consider a typical example of a zero-
temperature bosonic reservoir with an Ohmic-like spectral
density, where the time-dependent dephasing rate presents the
specific form [32,49,50]

γ (t, s) = [1 + (ωct )2]−s/2
∗(s) sin[s arctan(ωct )], (43)

with s � 0 the Ohmicity parameter, 
∗(s) the Euler Gamma
function, and ωc the cutoff spectral frequency. In this case,
γ (t, s) < 0 occurs for t k

i = t2k−1 and t k
f = t2k , where tk =

tan(kπ/2s)/ωc, with k an integer such that 0 � k � �s� (�s� is
the floor function of s). Thus, we can conclude that 0 � s � 2
and s > 2 correspond to the Markovian and non-Markovian
regimes of this model. In terms of the Ohmicity parameter,
NQ[�D] takes the form

NQ(s) = ω0 ln

⎡
⎣�s/2�∏

k=1


(t2k )2 + [1 − 
(t2k )2]z2
max


(t2k−1)2 + [1 − 
(t2k−1)2]z2
max

⎤
⎦

zmax/2

,

(44)

where zmax represents the value of |z0| that maximizes the
last expression in Eq. (42). The coherence-based measure
NC[�] has been employed to quantify the degree of non-
Markovianity of the incoherent map �D for the dephasing rate
described in Eq. (43) [32]. As a function of the parameter s,

NC[�D] reduces to

NC (s) = maxρ0

∑
k:sgnĊ=+1

∣∣C(
t k

f

) − C
(
t k
i

)∣∣

=
�s/2�∑
k=1

[
(t2k ) − 
(t2k−1)], (45)

where a maximally coherent state (i.e., C0 = 1) emerges from
the maximization process.

In order to witness non-Markovianity, Fig. 2 shows the
time evolution of the heat Q for an initial pure state under
the single-qubit dephasing channel in both Markovian and

0 5 10 15 20
-0.15

-0.10

-0.05

0.00

s = 1.5
s = 3.5

FIG. 2. Plot of Q as a function of ωct for s = 1.5 (black dotted
line) and s = 3.5 (red solid line), with ω0 = 1, r0 = 1, and z0 = 0.05.
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FIG. 3. Plot of NQ (black dotted line) and NC (red solid line)
as functions of s for ω0 = 1 and ωc = 1. The inset shows zmax as a
function of s.

non-Markovian regimes. Note that Q is a monotonically de-
creasing function of time for s = 1.5. On the other hand, a
nonmonotonic behavior arises due to the backflow of heat
from the environment to the system for s = 3.5. The behaviors
of the non-Markovianity measures NQ and NC as functions of
s are illustrated in Fig. 3, with the inset showing zmax versus
s. These measures are monotonically related, i.e., NC (s) ≈
2.0NQ(s), with both assuming nonzero values only for s > 2,
a maximum value at s = 3.2, and negligible values for s > 5.
From the behavior of zmax(s), note that a maximally coher-
ent state (where z0 = 0) does not optimize the expression in
Eq. (44) for all s.

V. CONCLUSION

We have introduced a characterization of non-
Markovianity by using the entropy-based formulation of
quantum thermodynamics. Specifically, by looking at the
divisibility property of the overall CPTP dynamics, we
derived a measure of non-Markovian behavior through the
relationship between entropy and heat in a thermodynamic
process. This result supports the entropy-based approach,
since it provides utility for the definition of heat by exclusively
taking the entropy change contribution in the internal energy
balance.

The analysis of the heat flow can be a useful tool from
an experimental point of view to provide a thermodynamic
assessment of the memory effects of the bath. Based on the
heat flow behavior, we can design an environment engineer-
ing approach to induce the desired amount of memory in a
system-bath interaction for a suitable physical architecture,
from a conceptual point of view, it would be interesting to
establish to what extent a thermodynamic characterization of
non-Markovianity beyond single-qubit maps can be achieved.
These are left as perspectives for future investigations.
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