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Search for optimal driving in finite quantum systems with precursors of criticality
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Using the adiabatic perturbation theory of driven dynamics [Phys. Rev. A 78, 052508 (2008)] we design a
hierarchy of quantum state preparation protocols that systematically increase the fidelity at very long driving
times. We test these and other protocols, including those based on the geometric analysis of the parameter space,
in a single-qubit system and in a fully connected multiqubit system showing in its infinite-size limit several
quantum phase transitions. Our protocols excel in the asymptotic driving regime, above a crossover time from
the Landau-Zener regime which increases with a decreasing minimal energy gap along the driving path (with the
size of the system). In the medium-time domain, the performance of all tested protocols is indecisive.
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I. INTRODUCTION

One of the big challenges of modern physics and technol-
ogy is to build a scalable quantum computer. The idea of
so-called adiabatic quantum computation [1,2] is based on
encoding a particular computational problem into complex
correlations involved in a quantum state of an interacting
many-body system. The most commonly discussed method of
a noiseless preparation of such a state relies on the adiabatic
theorem of quantum mechanics [3–6]. The system is initially
prepared in an easily obtainable, uncorrelated configuration,
such as a fully oriented state of a spin lattice. This state
represents the ground state of the lattice in a strong external
magnetic field and can be prepared by cooling down the sys-
tem with field to nearly zero absolute temperature. In contrast,
the desired highly correlated state reflects mutual interactions
between individual spins in the ground state of the lattice in
absence of the external field. This state cannot be efficiently
produced by cooling down the system without field (the free
energy landscape is assumed to have numerous local minima),
but can be obtained from the uncorrelated initial configuration
by a very slow, nearly adiabatic attenuation of the field. This
in an ideal case prevents any excitation of the lattice, keeping
it in the instantaneous ground state up to the moment when
the field completely vanishes.

Cast in a general form, the above method of adiabatic
preparation of target states represents an externally driven
slow change of some control parameters which keeps the
system in a selected discrete eigenstate (the ground state)
of the evolving Hamiltonian. The method can be used not
only for purely quantum computational purposes, but also in
other related techniques of quantum information processing
[7,8]. However, to realize such a driving protocol in practice
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is usually a rather difficult task because finite-time correc-
tions to the adiabatic evolution can be rather large [9–15].
Obstacles to adiabaticity may follow from various system-
specific structural properties. In particular, the probability
of unwanted excitations of the system increases as a conse-
quence of accidental or systematic enlargement of transition
matrix elements or reduction of energy gaps between indi-
vidual levels in some parameter regions. To perform the state
preparation protocol with a high fidelity requires a slow down
of the parameter change in these regions, which sets lower
bounds on the minimal time required. This is tightly con-
nected with latterly widely discussed topic of quantum speed
limits [16–18].

The adiabatic state preparation techniques are most prob-
lematic if the uncorrelated and correlated initial and final
states belong to different quantum phases of the system, being
therefore separated by a finite-size precursor of a quantum
phase transition (QPT) [19,20]. The energy gap between the
ground state and the first excited state at the critical point
converges to zero with an increasing size of the system, which
may lead to the loss of scalability of the protocol—a too rapid
increase of time with size [21]. Various aspects of driving
through a QPT, including links to the celebrated Kibble-Zurek
mechanism, were studied, e.g., in Refs. [22–29].

The problem of high-fidelity driving in quantum precritical
system is addressed in this paper. We combine an analytic
approach based on the adiabatic perturbation theory (APT) in
the form of Ref. [13] with numerical simulations of driven
dynamics in systems composed of N � 1 fully connected
qubits. We show that previously discussed driving protocols
based on the geometric approach (using the geodesic path in
the parameter space according to the Provost-Vallée metric)
[18,30–32] do not give (in general) the best results. We
nevertheless propose a class of driving protocols that yield
increasingly high fidelity for very long driving times, in the
regime where the APT dominates. We show that the transition
to this regime from the Landau-Zener regime, which domi-
nates at smaller times, has a character of a sharp crossover.
It takes place at times that grow with a decreasing minimal
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energy gap on the driving trajectory, i.e., with an increasing
size of the system if the minimal gap coincides with crossing
of the QPT.

The plan of the paper is as follows: In Sec. II we outline the
APT of Ref. [13] and describe its application to the driving
problem, designing the above-mentioned class of driving pro-
tocols. These are subsequently compared with several other
protocols, all summarized in Sec. III, including the protocols
based on the geometric approach. Results of numerical sim-
ulations of driven dynamics in systems composed of one or
more qubits are described in Secs. IV and V, respectively.
The one-qubit system with an avoided crossing serves as a
treatable toy model for a more complex behavior observed in
an interacting multiqubit system with finite-size precursors of
QPTs of various kinds. The simulations demonstrate a high
fidelity obtained in the proposed APT-based protocols in suf-
ficiently long times and contest the alleged general supremacy
of protocols based on the geometric approach. Brief summary
and conclusions come in Sec. VI.

Note that in this paper we set h̄ = 1.

II. ADIABATIC PERTURBATION THEORY

Various perturbative approaches to the dynamics of slowly
driven systems have been discussed in the literature; see, e.g.,
Refs. [9–15]. In this work we use the APT developed by
Rigolin, Ortiz, and Ponce [13–15]. The present section briefly
outlines the theory and shows its application to the maximum
fidelity problem.

A. Outline of the theory

We consider a quantum system with d-dimensional Hilbert
space H (the dimension can also be infinite) and Hamiltonian
Ĥ (�) depending on a finite set of real control parameters � ≡
(�1,�2, . . . , �D) (external fields and/or coupling constants)
that form a D-dimensional parameter space. Eigenvalues and
the corresponding eigenvectors of Ĥ (�) are denoted as En(�)
and |En(�)〉, respectively. In accord with Ref. [13], we assume
a fully nondegenerate spectrum in the parameter region rele-
vant for the driving, which implies unique identification of
eigenvectors at each point �. The eigenvalues are ordered in
an increasing manner with n = 0 corresponding to the ground
state. Energy differences are denoted by

�nm(�) = En(�) − Em(�). (1)

The Hamiltonian parameters � are varied in a prescribed
way, following a path

℘≡ {�(t ) = (�1(t ),�2(t ), . . . , �D(t ))}T
t=0, (2)

which starts at �(0) = �I at the initial time t = 0 and ends at
�(T ) = �F at the final time t = T . Let us stress that Eq. (2)
defines not only the geometric shape of the path in the pa-
rameter space, but also speeds, accelerations, and all higher
derivatives at all points along the path. Defining a rescaled
time

τ = t

T
∈ [0, 1], (3)

we obtain a parametrization �(τ ) of the path indepen-
dent of the total driving time T . All derivatives dk

dtk �
μ(t )

scale with the respective power of T . In the follow-
ing, the derivatives with respect to τ will be denoted
by dots, so, for instance, �̇μ(τ ) ≡ d

dτ
�μ(τ ) = T d

dt �
μ(t ),

�̈μ(τ ) ≡ d2

dτ 2 �
μ(τ ) = T 2 d2

dt2 �
μ(t ), and so on.

Our task is to find the evolution of the state vec-
tor |ψ (τ )〉℘ induced by the time-dependent Hamiltonian
Ĥ (�(τ )) ≡ Ĥ (τ ) associated with a general parameter path ℘.
In particular, starting from an initial state |ψ (0)〉℘, we want to
determine the overlap of the final state |ψ (1)〉℘ with a chosen
state |ψF〉 to be prepared. The usual choice, applied also in
this work, is

|ψ (0)〉℘ = |E0(�I )〉, (4)

|ψF〉 = |E0(�F)〉. (5)

In the APT, the exact solution to the Schrödinger equation is
searched as an expansion in powers of T −1,

|ψ (τ )〉℘ = lim
P→∞

NP(τ )℘

P∑
p=0

T −p|ψ (p)(τ )〉℘, (6)

where |ψ (p)(τ )〉℘ is the pth-order correction of the state vector
for the particular path ℘and

NP(τ )℘ =
⎡
⎣ P∑

p,p′=1

T −(p+p′ )〈ψ (p)(τ )|ψ (p′ )(τ )〉℘
⎤
⎦− 1

2

(7)

is a normalization coefficient of the expansion up to the order
p = P. The highest order P goes to infinity in the exact solu-
tion (6), but it can be set to a finite value to get a reasonable
approximation of the exact solution for sufficiently large T .
Here and in the following, all entities with subscript ℘depend
on the specific path (2), while those depending only on τ

can be determined from the local properties of the system at
�(τ ) and from the instantaneous speed �̇(τ ). We note that
the assignment to ℘ brings a certain residual dependence on
the perturbation parameter T −1 into the expansion “coeffi-
cients” |ψ (p)(τ )〉℘, which is in contrast to usual perturbation
techniques.

The pth term in the series (6) can be expressed in the eigen-
basis |En(�(τ ))〉 ≡ |En(τ )〉 of the instantaneous Hamiltonian,

|ψ (p)(τ )〉℘ =
d−1∑
n=0

e−iϕn (τ )℘ b(p)
n (τ )℘ |En(τ )〉, (8)

where b(p)
n (τ )℘ are expansion coefficients and

ϕn(τ )℘ = ωn(τ )℘T − γn(τ )℘ (9)

are phases, each composed of the dynamical phase ωn(τ )℘T
and the geometrical phase γn(τ )℘. We have

ωn(τ )℘ =
∫ τ

0
En(τ ′) dτ ′, (10)

γn(τ )℘ = i
∫ τ

0
Mnn(τ ′) dτ ′, (11)
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where we employed diagonal elements (which can be proven
to be pure imaginary) of the matrix

Mnm(τ ) =
〈
En(τ )

∣∣∣∣ d

dτ
Em(τ )

〉

=
⎧⎨
⎩

�̇μ(τ )
〈
En(τ )

∣∣ ∂
∂�μ En(τ )

〉
n = m,

−�̇μ(τ )

〈
En(τ )
∣∣ ∂

∂�μ Ĥ (τ )|Em (τ )
〉

�nm (τ ) n 	= m.
(12)

The Einstein summation convention is used for index μ (this
convention will be kept for Greek indices everywhere below)
and the energy difference (1) is evaluated at � = �(τ ). We
stress that the explicit separation of phases (10) and (11) in
Eq. (8) is useful since for slow driving near the adiabatic
limit these represent the principal contributions to the overall
phase. The zeroth-order contribution to the expansion (6) for
the initial condition (4) is set to coincide with the adiabatic
solution

|ψ (0)(τ )〉℘ = e−iϕ0(τ )℘|E0(τ )〉. (13)

We note that the phases of eigenvectors |En(τ )〉, which enter
through Eq. (12) into the APT formulas below, are fixed
by the requirement of continuity of eigenvectors along the
driving path. At the initial point τ = 0, e.g., the phases can be
chosen arbitrarily.

To obtain an iterable expression of the evolving state vector
(6), the expansion coefficients in Eq. (8) are further expanded
as

b(p)
n (τ )℘ =

d−1∑
m=0

eiϕnm (τ )℘ b(p)
nm(τ )℘, (14)

where b(p)
nm(τ )℘ are new coefficients and

ϕnm(τ )℘ = ϕn(τ )℘ − ϕm(τ )℘ (15)

are phase differences. The expansion (14) may seem redun-
dant, being just a reexpression of each coefficient b(p)

n (τ )℘ in
terms of many new coefficients b(p)

nm(τ )℘, m = 0, 1, . . . , d − 1.
Nevertheless, this ansatz plays a crucial role in the formulation
of the APT in Ref. [13] as the new coefficients satisfy a
recurrent formula

i�nm(τ ) b(p+1)
nm (τ )℘ + ḃ(p)

nm(τ )℘

+ [Mnn(τ ) − Mmm(τ )] b(p)
nm(τ )℘

+
∑
k( 	=n)

Mnk (τ ) b(p)
km (τ )℘ = 0, (16)

which contains only snapshots of the quantities involved at
specific time τ and allows for an iterative solution. Although
the resulting expressions for b(p)

nm(τ )℘ acquire, in general, the

path dependence via some integrals over τ ′ ∈ [0, τ ] (see be-
low), the locality of the condition (16) is very suitable for its
practical solution.

As already pointed out, solving of Eq. (16) proceeds in
an iterative way, so the coefficients b(p+1)

nm (τ ) are determined
from b(p)

nm(τ ). For the initial condition (4) we start the iteration
from b(0)

nm(τ ) = δn0δm0, which is equivalent to the adiabatic
ansatz for the p = 0 term in Eq. (13). Details of the recursive
determination of general p = 1 and p = 2 terms are described
in Ref. [13]. Here we explicitly show only the p = 1 term,

b(1)
n (τ )℘=

{
i
∑d−1

m=1

∫ τ

0
|Mm0(τ ′ )|2
�m0(τ ′ ) dτ ′ n=0,

i
[
eiϕn0(τ )℘ Mn0(τ )

�n0(τ ) − Mn0(0)
�n0(0)

]
n>0,

(17)

where we use off-diagonal elements of the matrix (12), energy
differences (1) and the phase differences (15). We stress that
expression (17) is valid only for the initial condition (4).

B. Application to the maximum fidelity problem

The overlap of the final t = T state |ψ (τ = 1)〉℘ of the sys-
tem with the target state |ψF〉 is characterized by the fidelity
F (τ = 1)℘ = |〈ψF|ψ (τ = 1)〉℘|2 (simply the probability of
identifying the evolved state with the target one). Its value
between 0 (no overlap) and 1 (full overlap) quantifies the suc-
cess of the completed driving protocol. Since |ψF〉 coincides
with the ground state |E0(�F)〉 of the final Hamiltonian [see
Eq. (5)], it is convenient to measure an overlap of the evolving
state with the instantaneous ground state:

F (τ )℘ = |〈E0(τ )|ψ (τ )〉℘|2 = 1 − I (τ )℘. (18)

This provides an evolving fidelity value which converges to
the resulting fidelity at τ = 1. The time dependence of F (τ )℘
will help us to monitor the progress of the state prepara-
tion protocol, e.g., to identify the parameter domains where
the system is easily excitable. The complementary time-
dependent quantity I (τ )℘ = 1 − F (τ )℘ is named infidelity.

Following the formalism of Sec. II A, we can expand the
evolving fidelity in powers of 1/T ,

F (τ )℘ = lim
P→∞

∣∣∣∣∣NP(τ )℘

P∑
p=0

T −p〈E0(τ )|ψ (p)(τ )〉℘
∣∣∣∣∣
2

=
∞∑

p=0

T −pF (p)(τ )℘, (19)

where F (p)(τ )℘ is the pth-order contribution. One
can easily verify that 〈ψ (0)(τ )|ψ (0)(τ )〉℘ = 1 [see
Eq. (13)], 〈ψ (0)(τ )|ψ (p)(τ )〉℘=b(p)

0 (τ )℘ [see Eq. (8)], and
Re b(1)

0 (τ )℘ = 0 [see Eq. (17)]. Thus the fidelity up to the
P = 4 term of Eq. (19) is determined from

F (τ )℘ =
[

1 −
∑

n

∣∣b(1)
n

∣∣2 + 2Re b(2)
0

T 2
− 2Re

(∑
n b(1)∗

n b(2)
n + b(3)

0

)
T 3

−
∑

n

∣∣b(2)
n

∣∣2 + 2Re
(∑

n b(1)∗
n b(3)

n + b(4)
0

)− (∑n

∣∣b(1)
n

∣∣2 + 2Reb(2)
0

)2
T 4

+ O

(
1

T 5

)]

×
[

1 +
∣∣b(1)

0

∣∣2 + 2Re b(2)
0

T 2
+ 2Re

(
b(1)∗

0 b(2)
0 + b(3)

0

)
T 3

+
∣∣b(2)

0

∣∣2 + 2Re
(
b(1)∗

0 b(3)
0 + b(4)

0

)
T 4

+ O

(
1

T 5

)]
, (20)
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where the first and second square brackets, respectively, correspond to the squared normalization factor and the squared sum from
Eq. (19). We used a shorthand notation b(p)

n = b(p)
n (τ )℘ and the star for complex conjugation. The above expression immediately

yields

F (0)(τ )℘ = 1, F (1)(τ )℘ = 0, F (2)(τ )℘ = −
∑
n>0

∣∣b(1)
n (τ )℘

∣∣2, F (3)(τ )℘ = −2Re
∑
n>0

b(1)
n (τ )∗℘ b(2)

n (τ )℘,

F (4)(τ )℘ = −
∑
n>0

{∣∣b(2)
n (τ )℘

∣∣2+2Re
{
b(1)

n (τ )℘b(3)
n (τ )∗℘

}− ∣∣b(1)
n (τ )℘

∣∣2[∑
m

∣∣b(1)
m (τ )℘

∣∣2+2Re b(2)
0 (τ )℘

]}
. (21)

These considerations can be directly converted to the
fourth-order formula for the final τ = 1 infidelity:

I (1)℘ = I (2)(1)℘
T 2

+ I (3)(1)℘
T 3

+ I (4)(1)℘
T 4

+ O

(
1

T 5

)
. (22)

Here we introduce the pth-order infidelity terms given
by I (0)(τ )℘ = 0 and I (p)(τ )℘ = −F (p)(τ )℘ for p > 0; see
Eq. (21). For very long driving times, when the leading term
∝T −2 completely dominates in Eq. (22), the final infidelity in
the logarithmic form reads as

log10 I (1)℘ ≈ −2 log10 T + log10

[∑
n>0

∣∣b(1)
n (1)℘

∣∣2], (23)

where the absolute term log10 I (2)(1)℘ is identified [cf.
Eq. (21)] with the logarithm of the total first-order transition
probability to all excited states.

From formula (23) we conclude that for large driving
times, the leading dependence of the final infidelity on time
in the log-log representation is a linear decrease with generic
slope −2. Local deviations from this behavior are caused by
a residual dependence of the absolute term log10 I (2)(1)℘ on
T . This conclusion is verified by numerical simulations of
driven dynamics within specific models; see Fig. 1 and the
forthcoming sections. We observe (besides the cases specified

FIG. 1. A log-log plot of the final infidelity I(1)℘ as a function of
the total driving time T for various driving protocols in a two-level
model explained in Sec. IV. Hamiltonian (36) is driven along line
(44) with (x0, z0) = (0.5, 1) and s(τ ) from Table I. We compare lin-
ear driving protocols with �̇μ = const 	= 0 (k = 0) and polynomial
driving protocols of increasing order 2k + 1 (k = 1, 2, . . .) that for
the initial and final times τ = 0, 1 yield �̇μ = �̈μ = · · · = dk

dτ k �μ =
0. The protocols with increasing k yield an ordered decreasing se-
quence of infidelity on the rightmost side of the figure. The slopes of
the upper envelope of individual curves for log10 T � 1.5 are given
by −2(k + 1).

below) that in a long-time domain the log10 I (1)℘ × log10 T
plot exhibits an upper envelope which linearly decreases with
slope −2. Fast oscillations with T below the envelope result
from the evolving phase ϕn0(1)℘ in b(1)

n (1)℘ for n > 0, which
causes alternation of constructive and destructive interference
of the two terms in Eq. (17) (second line). The linearly de-
creasing upper envelope of the observed log-log dependence
corresponds to the constructive interference of both terms,
while local undershoots of the linear dependence are caused
by the destructive interference.

The driving protocols operated in long enough times to
observe the above-described linear behavior are said to be
in the asymptotic time regime. The lower bound of the
efficiency of any generic protocol in this regime is deter-
mined by the upper envelope of the log10 I (1)℘ × log10 T
dependence. Having reached the asymptotic time regime for
several state preparation protocols based on various driving
paths (2), we can guarantee that the upper limits of infi-
delity for these protocols will not change their ordering with
increasing T .

Formula (23) is valid for a generic driving protocol, but
one may ask whether it is not possible to design specific,
nongeneric protocols for which one or more of low-order
coefficients in Eq. (22) become zero. Yes, it is indeed possible
to design such protocols. Looking at Eq. (17), we notice that
both coefficients I (2)(1)℘ and I (3)(1)℘ simultaneously vanish
if

�̇μ(0) = �̇μ(1) = 0, μ = 1, 2, . . . , D, (24)

that is, if the instantaneous speed is zero at the beginning
as well as at the end of the driving path. In this case we
have b(1)

n (1)℘ = 0 for n > 0, which according to Eq. (21)
yields F (2)(1)℘ = F (3)(1)℘ = 0. For driving protocols satisfy-
ing condition (24) we can write

log10 I (1)℘ ≈ −4 log10 T + log10

[∑
n>0

∣∣b(2)
n (1)℘

∣∣2], (25)

so the infidelity logarithm in the asymptotic time regime de-
creases with log10 T linearly with slope −4 instead of −2, and
the absolute term is the logarithm of the total second-order
transition probability to all excited states.

For the paths satisfying condition (24) one can derive the
following expression for n > 0 coefficients in Eq. (25):

b(2)
n (1) = −eiϕn0(1)℘

d
dτ

Mn0(τ )
�n0(τ )

∣∣
τ=1

�n0(1)
+

d
dτ

Mn0(τ )
�n0(τ )

∣∣
τ=0

�n0(0)
(26)
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(cf. Ref. [13]). These coefficients become zero for driving
protocols satisfying an additional condition

�̈μ(0) = �̈μ(1) = 0, μ = 1, 2, . . . , D, (27)

which sets vanishing initial and final accelerations. Hence
for driving protocols satisfying simultaneously Eqs. (24) and
(27), the dependence of the final infidelity on T in the asymp-
totic time regime is pushed to even higher terms than the
fourth-order one. Although we have not derived explicit an-
alytic formulas for higher-order infidelity terms, we have
checked numerically that this game can be played repeatedly:
for higher vanishing derivatives of �μ at τ = 0 and τ = 1
we gain decreasing negative slopes of the asymptotic log-
log dependence of the final infidelity on the driving time.
This is illustrated in Fig. 1, which compares the final in-
fidelity in a toy model from Sec. IV for driving protocols
satisfying di

dτ i �(0) = di

dτ i �(1) = 0 with i = 1, 2, . . . , k. We
observe that the slope of the log10 I (1)℘ × log10 T plot in the
asymptotic time regime (or more precisely, the slope of the
upper envelope of an oscillatory dependence) takes values
−4,−6,−8, . . . for protocols with k = 1, 2, 3, . . ., respec-
tively.

We conclude that the drivings with vanishing initial and
final derivatives of �μ(τ ) lead to a reduction of the maximum
final infidelity for very large driving times. The more deriva-
tives vanish, the better result can be reached. This potentially
represents a very useful technique for designing optimal state
preparation protocols. However, it needs to be stressed that for
T before or at the beginning of the asymptotic time regime the
protocols with vanishing derivatives may yield worse results
than some other protocols. This is seen already in Fig. 1 and
will be further illustrated below.

III. DRIVING PROTOCOLS

For any Hamiltonian Ĥ (�), there exist an infinite number
of driving protocols, i.e., specific time dependencies �μ(t ),
that take us from a selected initial point �I to a desired final
point �F in a given total time T . The question is which of
these protocols yields larger fidelity with respect to the final
ground state |E0(�F)〉. In this section, we describe the driving
protocols tested in our work. A sketch of these protocols is
presented in Fig. 2. Each protocol is characterized by a shape

FIG. 2. Driving protocols explained in Sec. III. Path (2) con-
necting points �I and �F in the parameter space is characterized
by its shape (specified on the left) and by its time dependence or
speed (specified on the right). The coefficients aμ

i in the linear and
polynomial drivings follow from formula (28) and Table I. Links
denoted by letters A, B, C, D define four combinations employed
below.

TABLE I. Polynomials (29) satisfying s(1) = 1 and yielding
zero derivatives di

dτ i �
μ(τ ) at τ = 0 and 1 for i = 1, 2, . . . , k.

k s(τ )

0 τ linear

1 2
(−τ 3 + 3

2 τ 2
)

polynomial

2 6
(
τ 5 − 5

2 τ 4 + 5
3 τ 3
)

3 20
(−τ 7 + 7

2 τ 6 − 21
5 τ 5 + 7

4 τ 4
)

4 70
(
τ 9 − 9

2 τ 8 + 54
7 τ 7 − 6τ 6 + 9

5 τ 5
)

5 252
(−τ 11 + 11

2 τ 10 − 110
9 τ 9 + 55

4 τ 8 − 55
7 τ 7 + 11

6 τ 6
)

of the corresponding curve in the parameter space and by
a time dependence of the motion along this curve. We first
introduce the linear and polynomial driving protocols and then
explain the constant-speed and geodesic protocols based on
the geometric structure of the parameter space.

A. Linear and polynomial drivings

The simplest way of getting from �I to �F is to go along a
straight line in the parameter space. The line is determined by

�μ(s) = (�μ
F − �

μ
I

)
s + �

μ
I , s ∈ [0, 1], (28)

where s is a parameter specifying a fraction of the line already
passed. This parameter is supposed to depend on the scaled
time τ so that s(τ ) monotonously increases from 0 to 1 as τ

runs from 0 to 1. In the simplest case, hereafter called the lin-
ear driving, we set s(τ ) = τ . This yields constant derivatives
�̇μ(τ ) = �

μ
F − �

μ
I and di

dτ i �
μ(τ ) = 0 for i > 1.

In order to implement the driving protocols with vanishing
derivatives at the initial and final times (see Sec. II B), we
apply a straightforward generalization of the linear driving
called a polynomial driving. In this case, the dependence of
s(τ ) is given by a polynomial of an odd order 2k + 1,

s(τ ) = s2k+1τ
2k+1 + s2kτ

2k + · · · + s1τ, (29)

where {sn}2k+1
n=1 are coefficients that need to be fixed with

respect to the required cancellation of some of the τ = 0, 1
derivatives. Vanishing of the derivatives up to the kth term
sets 2k constraints, an additional constraint follows from the
condition s(1) = 1, while the last condition s(0) = 0 is guar-
anteed by the missing absolute term s0. The forms of the
polynomial (29) for values of k up to 5 are given in Table I.
We note that the linear driving is apparently a special case of
the polynomial driving with k = 0.

B. Drivings based on the geometric structure

Following the approach initiated by Provost and Vallée [30]
and extended by Berry and others [32–37], one can equip the
parameter space of Hamiltonian Ĥ (�) with a geometric struc-
ture invoking the formalism of curved spaces. Since recent
literature presents several attempts to apply this formalism to
the design of optimal state preparation protocols [18,31,32],
we also include the geometric approach to the present
analysis.

Consider an infinitely small shift in the parameter space
from � to � + d�, where d� ≡ (d�1, d�2, . . . , d�D) has
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D infinitesimal components d�μ. The geometric approach
starts from the definition of an element of distance d� as-
sociated with this shift. It does not measure just a length
covered in the parameter space, but reflects the induced
change of the system properties, particularly the modifica-
tion of individual Hamiltonian eigenstates. Considering the
nth eigenstate, we associate with each parameter point �

a set {eiγ (�)|En(�)〉} of vectors differing by phase factors
with arbitrary γ (�) ∈ [0, 2π ). This defines a fibered mani-
fold, hereafter called the nth-state manifold. As we intend to
maximize the fidelity of the ground state, we focus on the
ground-state manifold. The squared element of distance d�2

on the ground-state manifold is given by

d�2 = 1 − |〈E0(�)|E0(�+d�)〉|2 = gμν (�) d�μd�ν,

(30)

which is apparently independent of any local choice of phases
γ (�). The first expression identifies the squared distance with
the ground-state infidelity generated by a sudden jump of
parameters from � to � + d� (an infinitesimal quench). The
second expression introduces the metric tensor gμν (�) [30].
It can be determined from

gμν =Re

[〈
∂

∂�μ
E0

∣∣∣∣ ∂

∂�ν
E0

〉
−
〈

∂

∂�μ
E0

∣∣∣∣E0

〉〈
E0

∣∣∣∣ ∂

∂�ν
E0

〉]

= Re
∑
n>0

〈E0| ∂
∂�μ Ĥ |En〉〈En| ∂

∂�ν Ĥ |E0〉
�2

n0

, (31)

where, for simplicity, we suppressed marking of the depen-
dencies on � (as in some formulas below).

The metric tensor gμν is naturally symmetric under the
exchange of indices μ and ν since any antisymmetric part
would not contribute to the expression (30). It can be sup-
plemented by an antisymmetric component, proportional to
the imaginary part of the expressions in Eq. (31). This so-
called curvature tensor determines geometric phases acquired
in adiabatic drivings along closed paths [33].

The norm of the metric tensor is large in those parameter
regions where the energy gaps �n0 are small and/or where
the matrix elements 〈E0| ∂

∂�μ Ĥ |En〉 are large. These are the
most problematic regions for drivings whose aim is to min-
imize the ground-state infidelity. As we see from Eq. (30),
the squared distance element d�2 measures the ground-state
infidelity caused by an infinitesimal parameter quench, so it
roughly reflects the difficulty to transfer the state over the
corresponding interval in the parameter space. Limitations of
this statement will be discussed below.

Having defined the metric on the ground-state manifold,
we can measure the length � of an arbitrary stretch of any
curve C in the parameter space (C defines only the shape of
the path ℘ and not the time dependence of driving along it).
Let �(s), s ∈ [0, 1] be a parametrization of such a curve. Then

�(s) =
∫ s

0

√
gμν (�(s′))

d�μ(s′)
ds′

d�ν (s′)
ds′ ds′ (32)

measures the length of the stretch of C from the start s = 0 to
the point corresponding to a given s. Prescribing to the curve
parameter an arbitrary time dependence s(τ ), we can deter-
mine an instantaneous speed at any moment of the driving

along C,

�̇(τ ) =
√

gμν (τ )�̇μ(τ )�̇ν (τ ), (33)

where gμν (τ ) = gμν (�(τ )).
From definition (30) we can expect that the speed on the

manifold (33) reflects an instantaneous transition rate from
the ground state to all excited states. Therefore, to minimize
the losses of fidelity, it may be useful to avoid any maxima
of the speed and perform the driving in so that �̇(τ ) remains
constant, fixed by a given total duration T . This idea can
be implemented for the above-discussed driving protocols
performed along a line in the parameter space (Sec. III A).
Adopting parametrization (28) and applying the condition
�̇(τ ) = const, we determine the dependence s(τ ) from an
implicit equation∫ s

0
ds′
√

gμν (�(s′))
(
�

μ
F −�

μ
I

)(
�ν

F−�ν
I

)
︸ ︷︷ ︸

A(s)

= A(1) τ. (34)

This type of driving complements the previously discussed
linear and polynomial drivings from Table I. So, in connection
to the paths whose shape is a line, we have three types of
driving protocols (see Fig. 2): linear (type A), polynomial of
various orders (type B), and the constant-speed one (type C).

The above-mentioned interpretation of d�2 as an infidelity
generated by an infinitesimal quench gives rise to a ques-
tion whether the fidelity of the state preparation procedure
in time T can be further improved (on top of the possible
improvement due to the constant speed condition) by reducing
the total length L = �(1) of the corresponding curve. Is the
geodesic, i.e., the curve of minimal length among the curves
connecting points �I and �F, always an optimal trajectory for
the �̇(τ ) = const driving? The negative answer to this ques-
tion based on our numerical simulations will be manifested
below. Nevertheless, some skepticism to such a direct link
between geometry and dynamics follows already from general
arguments, namely from the fact that full quantum evolution
by time-dependent Hamiltonians unavoidably involves coher-
ence effects which are not properly reflected in the quench
picture behind Eq. (30). This will be further commented in
Secs. IV B and V B.

The geodesic can be obtained by variation of Eq. (32) with
s = 1. This yields the differential equation

d2�μ

ds2
+ �μ

νρ

d�ν

ds

d�ρ

ds
= 0,

�μ
νρ = 1

2
gμξ

(
∂gξν

∂�ρ
+ ∂gξρ

∂�ν
− ∂gνρ

∂�ξ

)
, (35)

where �μ
νρ are the Christoffel symbols of the second kind and

gμξ are components of the inverse metric tensor [38]. It can
be shown that the solution to Eq. (35) automatically satisfies
the condition d

ds� = const. This means that using the simplest
time dependence of the curve parameter s, namely, s(τ ) = τ ,
we select the paths that follow the geodesic curve and in
addition keep a constant speed on the manifold, �̇(τ ) = const.
These represent the fourth type of the drivings employed
below (type D in Fig. 2).
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IV. DRIVING IN A ONE-QUBIT SYSTEM

So far, we have discussed the problem of driving indepen-
dently of a specific system where it is realized. In this and
the following sections we apply the general ideas to concrete
systems, in which we can identify some precursors of ground-
state QPTs. We start with an elementary system that hints at
such behavior, namely a single-qubit model with an avoided
crossing of energy levels.

A. The model

Inspired by Ref. [31], we use the well-known Landau-
Zener model [39] defined in a two-dimensional Hilbert space
H = C2 spanned by vectors

(1
0

)
and

(0
1

)
. These can be in-

terpreted as the basis states |0〉 and |1〉 of a qubit. The
Hamiltonian is considered real, given by

Ĥ = x σ̂x + z σ̂z =
(

z x
x −z

)
= r

(
sin α cos α

cos α − sin α

)
, (36)

where σ̂x and σ̂z stand for Pauli matrices, and x, z ∈
(−∞,+∞) are parameters characterizing an external field
that will be later subject to a prescribed time dependence
�(τ ) = (x(τ ), z(τ )).

The parametrization of Hamiltonian (36) by (x, z) is ap-
parently redundant since the expression in terms of polar
coordinates r ∈ [0,∞) and α ∈ [0, 2π ) reveals that r rep-
resents merely a scaling factor. Moreover, any Hamiltonians
with the same r and different angles α and α′ are equivalent
up to a unitary transformation Û = e−iσ̂y (α−α′ )/2. The Hamil-
tonian eigenvalues and eigenvectors read as

E0 = −r, |E0〉 = 1√
2

(−η1(α)
√

1−sin α

η2(α)
√

1+sin α

)
, (37)

E1 = +r, |E1〉 = 1√
2

(
η2(α)

√
1+sin α

η1(α)
√

1−sin α

)
, (38)

where η1(α) = sgn( π
2 −α) and η2(α) = sgn( 3π

2 −α).
The parameter plane of Hamiltonian (36) contains a single

diabolic point (x, z) = (0, 0) where both eigenvalues coin-
cide. Selecting as the driving path in the plane x × z any line
passing near the origin, we let the system evolve through an
avoided crossing of both energy levels, the spacing �10 = 2r
being minimal when the radius r takes the smallest value. This
can be considered as a toy model for simulating precursors of
quantum phase transitions in finite-size systems.

The metric tensor expressed in the (x, y) and (r, α) coordi-
nates has the form

gμν ≡

⎧⎪⎨
⎪⎩
(gxx gxz

gzx gzz

)
= 1

4(x2+z2 )2

( z2 −xz
−xz x2

)
,

(grr grα

gαr gαα

)
= 1

4

(0 0
0 1

)
.

(39)

Identities grr = grα = gαr = 0, following directly from the
independence of eigenvectors on r, imply a vanishing eigen-
value of gμν . This means that the model has a singular metric
structure. Indeed, the length of an arbitrary curve (r(s), α(s))
depends only on the angular part α(s), so for any pair of points
in the parameter plane there exist infinite number of connect-
ing curves of the same length. Also the geodesic between
these points is undetermined, including for instance linear and

arc paths, as well as multitudes of paths showing arbitrary
wiggles in the radial direction.

B. Results and discussion

Despite its simplicity, the two-level model demonstrates
majority of intricacies involved in the problem of driven
quantum dynamics. In the Hilbert space of dimension two
it is possible to find various analytical and approxima-
tive solutions to the nonstationary Schrödinger equation;
see, e.g., Refs. [40–42]. Here we use mostly numerical
(hence exact) calculations, as well as explicit evaluation of
some APT expressions. We nevertheless start with some
differential equations governing the evolution of fidelity
F (τ )℘ and infidelity I (τ )℘ = 1 − F (τ )℘ from Eq. (18). For
F (τ )℘, I (τ )℘ 	= {0, 1} we obtain

Ḟ (τ )℘ = −İ (τ )℘

= 2|M10(τ )|√F (τ )℘I (τ )℘cos [φ10(τ )℘−χ (τ )], (40)

where M10(τ ) = |M10(τ )|eiχ (τ ) is defined in Eq. (12) and the
angle φ10(τ )℘ = arg[a1(τ )℘a0(τ )∗℘] is a relative phase between
complex coefficients in the expansion

|ψ (τ )〉℘ = a0(τ )℘|E0(τ )〉 + a1(τ )℘|E1(τ )〉. (41)

Note that the exact phase φ10(τ )℘ should not be confused with
the adiabatic phase ϕ10(τ )℘ from Eq. (15). The exact phase in
our two-level system follows the equation

φ̇10(τ )℘ = −�(τ )T − ImM11(τ ) + ImM00(τ )

+ |M10(τ )|F (τ )℘−I (τ )℘√
F (τ )℘I (τ )℘

sin [φ10(τ )℘−χ (τ )],

(42)

where �(τ ) ≡ �10(τ ). We point out that for the real Hamil-
tonian (36) Eqs. (40) and (42) have a simpler form with
M00(τ ) = M11(τ ) = 0 and χ (τ ) = 0 or π . The nonlinearity
of these equations hints at nontrivial solutions, which will be
numerically confirmed below.

We also mention that in the two-dimensional case
there exists a simple relation between the (in)fidelity
and the energy variance V (τ )℘ ≡ E2(τ )℘ − E (τ )2

℘, where
En(τ )℘ = 〈ψ (τ )|Ĥ (τ )n|ψ (τ )〉℘ stands for the nth statistical
moment of energy at time τ . In particular, we have

V (τ )℘ = F (τ )℘I (τ )℘�(τ )2, (43)

which indicates that for small values of infidelity (below 0.5)
the energy variance can be used as an alternative measure of
driving-induced excitation.

Now let us turn to the numerical results. The initial and
final parameter points �I ≡ (xI, zI ) and �F ≡ (xF, zF) in all
driving protocols employed here are selected symmetrically,
lying on a circle with the same radius in the x × z plane. In
particular we will have xI = −xF < 0 and zI = zF > 0, so both
initial and final points are determined by (xF, zF) ≡ (x0, z0). If
these points are connected by a line

(x(s), z(s)) = ( 2x0 s−x0, z0 ), s ∈ [0, 1], (44)

the energies from Eqs. (37)–(38) exhibit a symmetric depen-
dence E0(s) = −

√
x(s)2 + z2

0 = −E1(s) with an avoided level
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FIG. 3. Instantaneous infidelity (18) at time τ in the two-level
model for linear driving protocols A along line (44) with s = τ for
four values of (x0, z0) (the ordering of curves in the left part of each
panel corresponds to the ordering of the legend) and four total driving
times T (various panels).

crossing centered precisely at the halfway s = 0.5 where the
line gets closest to the diabolic point (x, z) = (0, 0). It should
be stressed that driving along paths obtained by arbitrary
rotations of line (44) around the origin would yield identical
results.

Figure 3 shows the evolution of instantaneous infidelity
I (τ )℘ along trajectory (44) for a linear driving with s = τ

(case A in Fig. 2) for various choices of (x0, z0) and for various
total driving times T . To emphasize that now we deal with
linear driving protocols, we substitute ℘= A. The maximum
of infidelity at τ = 0.5, which appears in a more or less
sharp form for most of the curves in Fig. 3, corresponds to
driving through the region around the minimum energy gap.
We stress that nonmonotonous dependences of infidelity on
τ follow from evolving relative phase φ10(τ )℘ in Eq. (40)
and hence directly reflect the coherence of quantum evolution
(41) of our isolated system. Repeated passage of the phase
through the interval [0, 2π ) leads to infidelity oscillations.
From Eqs. (40), (42), and (12) we infer that the impact of
phase variations on the infidelity evolution is strong if the
energy gap �(τ ) is small, and also that a fast change of the
phase is most likely if �(τ ) or I (τ )℘ is small. These notes
explain some features of the observed dependencies.

Behind the avoided crossing at τ = 0.5, the infidelity os-
cillations (if any) in Fig. 3 are damped and for not too large
values of T , depending on parameters, the infidelity saturates
at a final value I (1)A (see the curves for T = 10, 100 and
some curves for T = 1000). In these cases, the saturation
value of infidelity is very well approximated by the Landau-
Zener formula [39]

ln I (1)A = −πz2
0

2x0
T, (45)

where the parameters (x0, z0) can be expressed from general
“observables” describing the avoided crossing, namely, the
minimal energy gap, min �(τ ) = 2z0, and the asymptotic gap
derivative, limτ→±∞ �̇(τ ) = 4x0.

FIG. 4. The final infidelity in the two-level model for linear driv-
ing protocols A with the same parameters as in Fig. 3 as a function
of total driving time T (the ordering of curves in the rightmost
side of the main panel corresponds to the ordering of the legend in
Fig. 3). The transition between the Landau-Zener and the asymptotic
time regimes is indicated by the vertical dashed lines obtained from
formula (48). The inset shows an example of driving that violates
condition (49) and therefore shows only a gradual transition to the
asymptotic regime.

The exponential decrease of the infidelity with T in
Eq. (45) looks contradictory to the results of Sec. II B, where
we showed that in the asymptotic regime the infidelity exhibits
an algebraic decrease with T (see Fig. 1). The resolution of
this inconsistency is illustrated by Fig. 4. It shows that the
infidelity actually manifests both regimes: the Landau-Zener
regime for smaller values of T and the asymptotic regime for
larger values of T . The value Tc, at which the exponential and
algebraic dependencies merge, represents a crossover time
that marks the beginning of the asymptotic regime. Examples
of driving in this regime are the nonsaturating curves in Fig. 3.

In the two-level model, the crossover time Tc can be easily
estimated. Indeed, the sum in Eq. (23) contains only a single
term, which can be evaluated with a help of Eqs. (17) and
(36)–(38). This yields

∣∣b(1)
1 (1)A

∣∣2 = x2
0z2

0(
x2

0 + z2
0

)3 sin2 ϕ10(1)A

2
, (46)

where we can replace the squared sine by its average 1
2 , an-

ticipating fast oscillations of quantity (46) in the time domain
of interest. Equating then the Landau-Zener formula (45) with
the asymptotic formula (23), we arrive at the identity

2 ln Tc − πz2
0

2x0
Tc = ln

x2
0z2

0

2
(
x2

0 + z2
0

)3 , (47)

which can be solved through the Lambert W function:

Tc = − 4x0

πz2
0

W−1

(
− πz3

0

4
√

2
(
x2

0 + z2
0

) 3
2

)
. (48)

Index −1 of W marks the w � −1 branch of solutions to the
equation wew = a in the interval − 1

e � a < 0. The solutions
exist only if

x0

z0
�

√(
eπ

4
√

2

) 2
3

− 1 ≡ ξ
.= 0.562. (49)
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FIG. 5. The crossover time from Eq. (48) as a function of the
minimal energy gap, min �(τ ) = 2z0, in the two-level model for lin-
ear driving protocols A. Individual curves correspond to the indicated
values of x0. Low-Tc endpoints of these curves correspond to the
saturation of condition (49).

The value of Tc grows to infinity if x0 → ∞ and/or
z0 → 0, and in this case we can use an approxima-
tion W−1(a) ≈ ln(−a) − ln[− ln(−a)]. For the limiting ratio
x0/z0 = ξ from Eq. (49) we get Tc = 4ξ 2/(πx0) = 4ξ/(πz0),
which for any fixed x0 or z0 represents a minimal value of the
crossover time. If x0/z0 < ξ , no sharp crossover time Tc can
be defined and the transition to the asymptotic regime has a
gradual character.

The crossover times predicted by Eq. (48) are shown in
Fig. 5. It depicts the log-log dependence of Tc on the minimal
energy gap 2z0 for various values of x0. The limiting values
following from the condition (49) correspond to endpoints
of individual curves. The predicted values of Tc are marked
by vertical lines in the infidelity dependencies shown earlier
in Fig. 4. We see that formula (48) works very well. The
infidelity dependence demonstrating the absence of a sharp
crossover time for driving parameters violating the condition
(49) is shown in the inset of Fig. 4.

The polynomial driving protocols discussed in Sec. II B
lead to linear dependencies of log10 I (1)B (where ℘= B
stands for the polynomial paths from Fig. 2) on log10 T
with higher slopes. This was shown in Fig. 1. In principle
the transition to these nongeneric asymptotic time regimes
is again connected with some crossover times analogous
to the above Tc. However, to apply a similar approach as
in Eq. (47) to the polynomial driving protocols faces two
problems: First, the higher-order coefficients b(p)

1 (1)B are
difficult to calculate even in the present two-level system.
Second, the Landau-Zener formula would have to be replaced
by a more sophisticated expression valid for protocols with
ṡ(τ ) 	= const. The dependencies in Fig. 1 indicate that the
onset of the asymptotic time regime for polynomial driving
protocols happens at times that increase with the degree of the
polynomial. So these protocols do really an excellent job for
very long driving times but are not as good for shorter times.

What about the geometry-inspired types of driving from
Sec. III B? In Sec. IV A we explained that geodesics are
undetermined in the present model, or in other words, for
any pair of parameter points there exists an infinite num-
ber of geodesic curves. Considering, as in the cases above,
(−xI, zI ) = (xF, zF) = (x0, z0) with x0, z0 > 0, we select the
following two particular geodesic paths: (a) the line (44) and

FIG. 6. Instantaneous infidelity at time τ for the geometry-
inspired driving protocols in the two-level model: row (a) corre-
sponds to the driving with a constant geodesic speed along line (44)
(protocol C), row (b) to the ṡ = const driving along arc (50) (protocol
D). Columns correspond to two indicated values of T . Individual
curves are assigned to the same parameters as in Fig. 3. Curves with
x0 = 0.5 and 1 are plotted in solid and dashed line style, respectively.
In row (a) curves with z0 = 0.05 lie above those with z0 = 0.1 for
both choices of x0, in row (b) curves with the same x0 practically
overlap.

(b) the arc

(x(s), z(s)) = r0(cos α(s), sin α(s)),

α(s) = α0s+(π−α0)(1−s), s ∈ [0, 1], (50)

where r0 =
√

x2
0 + z2

0 and α0 = arctan(z0/x0). The request of
a constant speed (33) leads to the conditions ṡ(τ ) ∝ r(τ )2 in
case (a) and ṡ(τ ) = const in case (b); see Eq. (34). So the
nongeodetic speed

√
ẋ2+ż2 in the x × z plane varies in case

(a) while it is constant in case (b). Both drivings are of type D
from Fig. 2, but the driving along the line is simultaneously of
type C. So we set ℘= C in case (a) and ℘= D in case (b).

Dependencies of the instantaneous infidelity for both
geometry-inspired driving protocols are shown in Fig. 6. Al-
though individual curves in this figure correspond to the same
initial and final points as those in Fig. 3, their shapes are
qualitatively different. Across the whole range of time τ we
observe (except the upper left panel) oscillations whose fre-
quency increases and upper boundary decreases with T . For
driving along the line [see row (a)], the passage through the
avoided-crossing region at τ = 0.5 is still visible in the depen-
dence I (τ )C for larger final times (here T = 100). For driving
along the arc [see row (b)], the spacing �(τ ) is constant and
I (τ )D exhibits periodic dips reaching exact zeros of infidelity
at some sharp instants of time (this conclusion, indirectly
indicated by numerical results of Fig. 6, can be proven from
an analytic solution available for this particular driving).

The final infidelity for both geometry-inspired driving pro-
tocols is shown in Fig. 7. As expected (see Sec. II B), upper
envelopes of both I (1)C and I (1)D follow a linear log-log
decrease with T , the slope taking the predicted value −2.
The upper envelope of both curves is exactly the same, which
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FIG. 7. Final infidelity for two geometry-inspired driving proto-
cols C and D in the two-level model as a function of the total driving
time T . Parameters (x0, z0) = (0.5, 1) are the same as in Fig. 1. The
sharp dips can be proven to reach the value I(1)℘ = 0.

follows from the expression

∣∣b(1)
1 (1)℘

∣∣2 = arctan2 x0
z0

x2
0 + z2

0

sin2 ϕ10(1)℘
2

(51)

that can be obtained for both drivings ℘= C and D. Oscil-
lations of both curves differ due to different behavior of the
phases ϕ10(1)℘.

Since Fig. 7 shows results for the same initial and final
points as Fig. 1, the efficiency of all driving protocols for
these parameters can be compared. While the final infidelities
for protocols C and D are about the same (they only differ
in oscillations), the infidelities of protocols A and B are sys-
tematically lower. In the interval T ∈ [100, 1000] (not shown
in Figs. 1 and 7, but covered by our calculations) the upper
envelope of infidelity in protocol A is reduced by a factor
≈0.74 and the overall averages by ≈0.36. For protocols of
type B the difference reaches several orders of magnitude. We
can conclude that for large enough final times the polynomial
protocols in our two-level model provide far better results than
all other protocols considered here. Note, however, that these
differences apply to the upper envelopes of all dependencies
and not to the local minima of infidelity at some particular
values of T .

Finally, let us discuss the quality of the APT approxima-
tion in the two-level model. In Fig. 8 we compare the exact
infidelity I (1)℘ obtained from the numerical solution with
the infidelity IAPT(1)℘ predicted by the leading-order APT
expression (23) for driving protocols A, C, and D (polyno-
mial protocols B are not included as the corresponding APT
calculations require higher-order terms). The absolute term of
Eq. (23) is given by Eqs. (46) (protocol A) or (51) (proto-
cols C and D). The difference between the exact and APT
infidelities is expressed relative to the smoothly evolving max-
imal APT infidelity IAPT

max (1)℘ obtained by setting ϕ10(1)℘ = π

in formulas (46) and (51) (the upper envelope of the APT
curve) and is depicted as a function of log10 T . We see that
the APT correctly predicts not only the overall decrease of
infidelity, but also its local oscillations. The relative error
of the APT approximation for all three driving protocols is
very small already at T ≈ 10 and quickly decreases with
increasing T .

FIG. 8. Relative error of the APT approximation in the two-level
model for driving protocols A, C, and D (the upper, middle, and
lower panel, respectively) with (x0, z0) = (0.5, 1). The T -dependent
difference between the exact infidelity and the second-order APT
infidelity is normalized to the smoothly evolving upper envelope of
the APT infidelity.

V. DRIVING IN AN INTERACTING MULTIQUBIT SYSTEM

In this section we proceed from a single qubit to a sys-
tem of several mutually interacting qubits. We use a specific
version of the familiar Lipkin-Meshkov-Glick (or simply Lip-
kin) model [43]. This model was originally introduced in the
context of nuclear physics, but today it often serves as a gen-
eral example of quantum criticality in a numerically treatable
and experimentally realizable many-body system (see, e.g.,
Refs. [44–52]).

A. The model

Let us have a system of N > 1 qubits enumerated by
indices i = 1, 2, . . . , N , each of them endowed with the
Hilbert space H(i) = C2 supporting an algebra of operators
{Î (i), σ̂ (i)

x , σ̂ (i)
y , σ̂ (i)

z } (unit operator and the triple of Pauli ma-
trices). In the total Hilbert space H = ⊗N

i=1H(i) of the full
system (dimension 2N ) we introduce so-called quasispin op-
erators

Ĵ• = 1

2

N∑
i=1

σ̂ (i)
• , • = x, y, z, (52)

which satisfy commutation relations of angular momentum.
The quasispin algebra conserves the total squared quasispin
Ĵ2 ≡ Ĵ2

x + Ĵ2
y + Ĵ2

z , so one can restrict the solution to a
(2 j+1)-dimensional subspace H j of H characterized by a
single value of the total angular momentum quantum number
j. In the following, we set j to the maximal value j = N

2 ,
whose unique subspace H j with dimension d = N+1 is fully
symmetric under the exchange of qubits.

A Hamiltonian written in terms of quasispin operators (52)
and their products describes a fully connected system of in-
teracting qubits. Indeed, any linear combination of quasispin
operators can be interpreted as a one-body Hamiltonian char-
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acterizing the total energy of qubits in an external field, while
a product of n = 2, 3, . . . quasispin operators represents an
n-body interaction acting between all qubits of the set. Here
we use a Hamiltonian of the following form:

Ĥ = Ĵz − 1

N

{
λĴ2

x + χ
[
Ĵx
(
Ĵz+ N

2

)+ (Ĵz+ N
2

)
Ĵx
]

+χ2
(
Ĵz+ N

2

)2}
, (53)

where λ, χ ∈ (−∞,+∞) are two control parameters. Param-
eter λ represents a relative strength of two-body interactions
conserving parity �̂ = (−1)Ĵz+N/2, while parameter χ con-
trols parity-violating interactions. Here we consider both these
parameters as externally controllable.

The phase transitional structure of the model in the pa-
rameter plane λ × χ becomes explicit in the infinite-size limit
N → ∞. It can be more intuitively deduced from the bosonic
form of Hamiltonian (53), namely,

Ĥ
N→∞−−−→ −N

2
+ t̂†t̂ − 1

N

[
λ

4
(t̂†t̂†ŝŝ + ŝ†ŝ†t̂ t̂ + 2t̂†ŝ†ŝt̂ )

+χ (t̂†t̂†ŝt̂ + t̂†ŝ†t̂ t̂ ) + χ2(t̂†t̂†t̂ t̂ )

]
, (54)

where we use the Schwinger mapping

(Ĵx +iĴy, Ĵx −iĴy, Ĵz ) �→ (
t̂†ŝ, ŝ†t̂, 1

2 (t̂†t̂ −ŝ†ŝ)
)

(55)

of quasispin operators to expressions containing creation and
annihilation operators ŝ†, t̂† and ŝ, t̂ of structureless bosons of
two types: s with positive parity and t with negative parity.
Thus the form (54), which keeps O(N ) terms and neglects
O(1) ones, recasts our qubit system as a system of N in-
teracting bosons. The phase-transitional analysis has been
already presented for a large number of such systems (see,
e.g., Refs. [44–47]), so we outline here only the main results.

The ground-state of Hamiltonians (53) and (54) exhibits
QPTs of various types. For small values of interaction
strengths λ and χ , the system is in phase I with the
ground-state wave function characterized by expectation val-
ues 〈t̂†t̂ 〉0 = 0 and 〈Ĵz〉0 = −N

2 . For λ or χ increasing across
a certain critical borderline, the ground state in the N → ∞
limit flips to the form with 〈t̂†t̂ 〉0 > 0 and 〈Ĵz〉0 > −N

2 .
There are two kinds of this interacting phase: phase II
with 〈t̂†ŝ+ŝ†t̂ 〉0 > 0 and 〈Ĵx〉0 > 0 for χ > 0, and phase III
with 〈t̂†ŝ+ŝ†t̂ 〉0 < 0 and 〈Ĵx〉0 < 0 for χ < 0. The transition
between these mirror-symmetric phases also has a critical
character.

The ground-state phase diagram in the plane λ × χ is
depicted in Fig. 9 together with a finite-size precursor of
criticality—the energy gap �10 between the ground state and
the first excited state for N = 10. The gap at the critical
borderlines vanishes in the infinite-size limit, and this happens
exponentially (�10 ∝ e−aN , where a > 0 is a constant) in
the first-order phase transition, or algebraically (�10 ∝ N−p,
where p > 0 is a rational power) in the second-order phase
transition. In the phase diagram of Fig. 9, all ground-state
QPTs are of the first order, except the “triple point” (λ, χ ) =
(1, 0), where the phase transition is of the second order.

The above-described phase structure of the model strongly
affects geometric properties of its ground-state manifold. The

FIG. 9. The phase diagram of Lipkin Hamiltonian (53) in the
plane of control parameters. The dashed curves correspond to the
N → ∞ ground-state QPTs between phases I, II, and III explained
in the text. The grayscale of the background expresses the size of the
energy gap �10 for N = 10.

metric tensor can be calculated numerically and, for finite
qubit numbers N , it is nonsingular, except some isolated
diabolic points in the parameter plane where the gap �10 ac-
cidentally vanishes (we will show elsewhere that these points
appear on the finite-N precursor of the QPT separatrix in the
λ < 0 half-plane). However, in the limit N → ∞, the gap
is zero everywhere on the QPT separatrices, which implies
divergence of the metric tensor and impassability of the sepa-
ratrices for geodesic curves [37]. Since we study only finite-N
systems, the QPT-induced singularities of the metric structure
are not actually present. They are virtual, showing up only
through precursors of the infinite-size behavior. Let us note
that the N-dependent geometric structure of the ground-state
manifold of Hamiltonian (53) is rather complex and will be
analyzed in a separate paper.

B. Results and discussion

The j = N
2 ground state of the Lipkin Hamiltonian at any

parameter point � can be expanded in the eigenbasis |m〉 of
the Ĵz operator,

|E0(�)〉 =
+N/2∑

m=−N/2

am(�) |m〉, (56)

with am(�) denoting normalized amplitudes. The ini-
tial parameter point for all driving paths is chosen
as �I ≡ (λI, χI ) = (0, 0), where the ground state reads
|E0(�I )〉 = |m = −N

2 〉. This is a totally uncorrelated state of
qubits expressed as |0〉1 ⊗ |0〉2 ⊗ · · · ⊗ |0〉N . The target state,
i.e., the ground state at a selected final parameter point �F, has
a more complex structure. Let us stress that within the present
model the target state is always classically computable in a
polynomial time with respect to N , so we use it here merely
to benchmark the performance of various driving protocols.
The final point �F is chosen at various places of the λ × χ

plane, either still in phase I or in phase II. Let us note that
phase III does not need to be considered because of its formal
equivalence to phase II (this means that any path in the χ > 0
half-plane has its identical mirror-symmetric image in the
χ < 0 half-plane). Crossing of the QPT separatrix implies that
the target state |E0(�F)〉 is spread in the |m〉 basis and contains
strong correlations between individual qubits induced by their
mutual interactions. This conforms with the idea of adiabatic
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FIG. 10. Geodesic curves of the Lipkin model (53) connect-
ing point (λI, χI ) = (0, 0) with (λF, χF ) = (1.2, i/100), where
i = 1, 3, . . . , 29, for different qubit numbers N . The precritical
curves of the minimal energy gap �10 are depicted in each panel
associated with a given N , the values of �10 being indicated by
varying color along these curves. The geodesic to the last point
(1.2,0.29) is highlighted (red online) and the linear path to the same
point is also shown (dashed line).

quantum computation, but simultaneously induces the prob-
lem of passing the critical parameter region where the energy
gap �10 becomes infinitely small as the number of qubits N
asymptotically increases.

We will again compare all driving protocols from Sec. III
(Fig. 2). To do so, we first calculate the metric tensor (31)
on the ground-state manifold and then determine the geodesic
paths for various final parameter points �F. The latter is done
with the aid of Eq. (35), which is solved as a boundary-
value problem for the function �μ(s) (where we further set
s = τ ) with Dirichlet boundary condition �μ(0) = �

μ
I and

�μ(1) = �
μ
F . As mentioned above, the metric tensor of the

present N > 1 model is nonsingular (except isolated diabolic
points) and the geodesics nondegenerate. So the driving path
along the geodesic (protocol D) and those along the line (pro-
tocols A, B, and C) have different geometric lengths.

Figure 10 depicts geodesic curves connecting the initial
point (λI, χI ) = (0, 0) with different final points (λF, χF) for
several values of the qubit number N . Each panel, associ-
ated with a given N , also shows a precritical curve, i.e., the
curve demarcating the minimal energy gap �10 (a finite-N
version of the QPT separatrix). The value of �10 is encoded
into the indicated color scale. We see that for χF 	= 0 the
driving trajectories always cross the precritical curve in the
region of the first-order QPT. We even observe attraction of
the geodesic curves to the parts of the precritical curve with
smaller values of the gap. Although this may seem counterin-
tuitive (one could guess that the geodesics will try to avoid
parameter domains with large values of the metric tensor),
the displayed behavior represents true solutions to Eq. (35)

FIG. 11. A log-log plot of the final infidelity I(1)℘ as a function
of the total driving time T in the Lipkin model with N = 10 for
various driving protocols whose trajectories do not cross the QPT
separatrix. The curves corresponding to various protocols are dis-
tinguished by color (the ordering of curves for large T is the same
as the ordering of the legend, protocols C and D are distinguished by
dashed and solid lines but mostly overlap). The trajectories lead from
(λ, χ ) = (0, 0) to (0.3, χF ), with χF specified in each panel.

(we invoke an analogy with gravitational attraction to spatial
regions containing large masses). As a consequence, numeri-
cal determination of geodesics becomes a challenge for large
numbers of qubits since �10 drops exponentially with N at the
first-order QPT.

Calculations of the final infidelity for all driving protocols
A, B (k = 1, . . . , 5), C, and D in the Lipkin model with
N = 10 are presented in Figs. 11 and 12. The driving trajecto-
ries lead from (λI, χI ) = (0, 0) to various final points (λF, χF).
Figure 11 shows results for the trajectories that do not cross
the QPT separatrix (λF = 0.3, final point in phase I) and
Fig. 12 collects results for the trajectories that cross the QPT
separatrix (λF = 1.2, final point in phase II). While all curves
in Fig. 11 pass through the crossover to the asymptotic regime
within the displayed infidelity range I (1)℘ > 10−15, some of
the curves in Fig. 12 reach the crossover for I (1)℘ < 10−15.
That is why the low-fidelity parts of the dependencies are
shown in the insets of Fig. 12. Because of larger computa-
tional demands implied by the required high accuracy, the
low-fidelity parts of the dependencies were calculated with a
lower resolution on the time axis.

Considering all the main panels and insets together, we
can say that the dependencies in Figs. 11 and 12 manifest
qualitatively the same features as those in the two-level model
(cf. Figs. 1, 4, 7). At very short driving times T , the infidelity
for all protocols starts from nearly the same value, depending
only on positions of the initial and final parameter points in
the given one- or multiqubit system (exact convergence of all
curves would be observed at T = 0). The explanation follows
from the sudden approximation, which equates the short-time
fidelity with the overlap of the ground-state eigenvectors at the
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FIG. 12. The same as in Fig. 11, but for driving protocols whose
trajectories end at (λ, χ ) = (1.2, χF ) behind the QPT separatrix (the
line colors distinguish the same protocol types). The parts of the
dependencies with lower infidelity are shown with a lower time reso-
lution in the insets; symbols •, �, � and � correspond to polynomial
protocols with k = 2, 3, 4, and 5, respectively.

initial and final points. We notice that the overlap is larger (the
infidelity smaller) if the initial and final points lie in the same
quantum phase of the system (Fig. 11) than if they lie in differ-
ent phases (Fig. 12). In the domain of medium driving times
T , the infidelity dependencies exhibit roughly an exponential
overall decrease connected with smaller or larger oscillations.
In this domain, the ordering of individual curves quickly
varies with T and depends also on the choice of the final
parameter point. This evolution lasts until the curves—each
one at a different time—reach the asymptotic regime. In the
domain of very long driving times T , we observe just a linear
log-log decrease (still accompanied by some oscillations) with
the slope directly deduced from the APT.

Both Figs. 11 and 12 clearly demonstrate that for very long
driving times the final infidelity is fairly the best (smallest)
for the polynomial driving protocols B. This dominance in-
creases with time T and with the degree of the polynomial
as the slopes of the corresponding graphs increase with k.
In this domain, the linear driving protocol A as well as the
geometry-inspired protocols C and D yield much worse re-
sults depending on (λF, χF). On the other hand, polynomial
protocols B reach the asymptotic regime later than the oth-
ers, the delay being proportional to k and also depending on
(λF, χF). This leads to a better performance of protocols A,
C, and D in some time windows at smaller values of T . The
advantage of these protocols at medium times is larger for
driving trajectories across the QPT separatrix (Fig. 12) than
for those confined within the same phase (Fig. 11). Never-
theless, there is no clear winner of this competition since the
optimal medium-time protocol depends on (λF, χF) and is
sensitive to T . We can observe that for the driving trajectories
leading to larger values of χF (�0.4) across the QPT sepa-
ratrix (Fig. 12), the medium-time performance of protocol C

FIG. 13. Log-log dependencies of the crossover time Tc on
the minimal energy gap �10 for driving protocols A, B (k = 1),
and C in the Lipkin model. The driving trajectory is a line from
(λ, χ ) = (0, 0) to (1.5, χF ), with χF specified in each panel. The
minimal energy gap is associated with crossing of the QPT separatrix
and is reduced by increasing the number of qubits (the points on the
graphs correspond to N = 5, 6, 7, 8, 9, 10, 15, 20).

becomes systematically better than that of both protocols D
and A. We assume that the disadvantage of protocol D follows
from its inclination towards the small-gap domain near the
QPT separatrix (see Fig. 10). In this domain, �̇(τ ) is very
small, and therefore, big values of �̈(τ ) are needed in the rest
of the trajectory to keep the fixed total time T , which delays
the onset of the asymptotic regime.

As mentioned in the above discussion, an important role
in selecting an optimal driving protocol is played by the
crossover time Tc from the preasymptotic regime of driving
(characterized by an approximately exponential decrease of
the final infidelity with the driving time T ) to the asymptotic
regime (characterized by an algebraic decrease of infidelity
following from the APT). Although no analytic expression
can be derived for the crossover time in the present multiqubit
system, approximate values of Tc can be determined from
graphs of the final infidelity for different qubit numbers N .
The results are shown in Fig. 13. It presents log-log depen-
dencies of the crossover time Tc on the minimal energy gap
�10(τ ) along the line from (λI, χI ) = (0, 0) to final points
(λF, χF) across the QPT separatrix (λF = 1.5) for various pro-
tocols along the given line: the linear driving A, polynomial
diving B with k = 1, and the constant-speed driving C. The
variation of the minimal gap is achieved via changing the size
parameter N . We observe a qualitatively similar dependence
(a roughly algebraic decrease) of Tc on min �10(τ ) as in the
two-level model (Fig. 5), where we however analyzed only the
linear driving.

Figure 13 manifests a clear hierarchy of crossover times
for the three driving protocols. The smallest values of Tc are
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systematically achieved for the protocol C, medium values of
Tc characterize the protocol A, and finally the highest values
of Tc are observed for the protocol B (when the crossover
leads to the asymptotic regime with slope −4 instead of −2).
Let us note that the crossover times for polynomial proto-
cols with k > 1 are increasingly higher than those for k = 1.
The crossover for these protocols occurs at decreasing values
of infidelity, which would make a detailed evaluation of Tc

(whose dependence on the minimal gap also shows roughly
an algebraic decrease) more time consuming. The information
obtained from Fig. 13 extends the results discussed in connec-
tion with the medium-time dependencies in Figs. 11 and 12.
It allows us to conclude that a good driving strategy (the best
among those tested here) in the medium-time domain, at least
if the initial and final points lie in different quantum phases
of the system, is the one inscribed in the geometry-inspired
protocol C. It combines two aspects which turn out to be
important: (a) a linear trajectory across the QPT separatrix,
which ensures a larger minimal energy gap than the geodesic
path, and (b) the requirement of the constant speed on the
manifold, which reduces the losses of fidelity when crossing
the minimal gap domain and apparently advances the transi-
tion to the asymptotic regime.

As in the one-qubit system (Sec. IV), the results obtained
in the present multiqubit model manifest that the driving
protocol D using exact geodesics in the parameter space is
suboptimal in majority of cases covering both medium- and
asymptotic-T regimes. We again invoke the argument based
on coherence of quantum dynamics for isolated systems. In-
deed, unitary evolution of coherent quantum superpositions
of the immediate Hamiltonian eigenstates allows for non-
monotonous variations of instantaneous fidelity along the
driving path. In such situations, the maximal fidelity at the
final point is apparently not guaranteed by the minimal length
of the driving trajectory in the sense of Provost-Vallée metric.

Finally, as in Sec. IV B, we present a short comparison of
the results derived from the APT with those obtained from ex-
act simulations of driven dynamics in the multiqubit system.
In Fig. 14 the exact final infidelity I (1)℘ from numerical simu-
lations for N = 10 is compared with the leading-order (∝T −2)
APT prediction IAPT(1)℘ for protocols A, C, and D along
a line crossing the QPT separatrix. As in Fig. 8, the differ-
ence between both infidelities is normalized to the smoothly
evolving upper envelope IAPT

max (1)℘ of the APT infidelity. The
comparison is shown within the range T ∈ [1, 1000], and
we observe that the agreement becomes almost perfect for
T � 300.

VI. CONCLUSION

In this paper, we design and test several driving protocols
with the aim to maximize the fidelity of preparation of a cor-
related pure state of a quantum many-body system. The initial
state and the target state of the driving procedure are supposed
to be ground states of the system belonging to different quan-
tum phases, so the driving trajectory in the parameter space
has to cross a finite-size precursor of a QPT. As a toy model
for preliminary tests of our approaches, we use a single-qubit
(two-level) system with a single avoided crossing of levels.

FIG. 14. Relative error of the APT approximation in the Lip-
kin model with N = 10 for driving protocols A, C, and D from
(λ, χ ) = (0, 0) to (1.2,0.4). The meaning of symbols is the same as
in Fig. 8.

The analysis is then extended to an interacting fully connected
multiqubit system with several types of QPT.

An essential point of our analysis is the use of the adia-
batic perturbation theory of Refs. [13–15]. This theory in its
leading order is shown to give remarkably good predictions
of infidelity for sufficiently long driving times. Adopting the
APT to the optimal driving problem, we find a hierarchy of
polynomial driving protocols that maximize the fidelity in the
very long-time domain—above a sharp crossover from the
medium-time (Landau-Zener) driving regime to the asymp-
totic time APT regime. The dominance of these protocols in
the asymptotic regime is really strong, but the crossover time
to this regime increases roughly in an algebraic way with a
decreasing minimal energy gap between the ground state and
first excited state along the driving trajectory. If the trajectory
crosses a finite-size precursor of a QPT separatrix, the mini-
mal gap drops with the size of the system (exponentially for
the first-order QPT or algebraically for a continuous QPT).
Therefore, the applicability of the protocols is hindered by the
system size, which sets limits on scalability of quantum state
preparation techniques based on these protocols. This is not
surprising and in principle conforms with similar conclusions
discussed previously in connection with the Landau-Zener
regime of driving (see, e.g., Ref. [21]).

The second important aspect of our study is the use of
geometry-inspired driving protocols in systems with higher
than one-dimensional parameter space. The determination of
the metric structure of the ground-state manifold in such
systems and calculation of geodesic curves is an interesting
problem on its own, and we intend to present this analysis
in a separate paper. However, the driving protocols based on
the full solution to the geodesic problem turned out to yield
mostly suboptimal results in the situations discussed. A better
driving strategy in the medium-time domain seems to follow
from the idea of keeping a constant speed on the ground-
state manifold along an arbitrary (artificially designed) driving
trajectory that avoids parameter regions with small energy
gap. Our study is inconclusive in selecting the optimal driving
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protocol for the medium-time domain, but we clearly disprove
the conjecture on general supremacy of the geodesic protocols
[31,32]. We believe that this is because of quantum coherence
effects that necessarily appear in the dynamics of isolated
quantum systems but are not reflected by the Provost-Vallée
definition of the metric tensor (interpreted as the infidelity
induced by an infinitesimal quench in the parameter space).

Therefore Berry’s question [35] on the physical significance
of geodesic trajectories for quantum systems remains open.
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