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Testing of quantum nonlocal correlations under constrained free will and imperfect detectors
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In this work, we deal with the relaxation of two central assumptions in standard locally realistic hidden
variable (LRHV) inequalities: free will in choosing measurement settings, and the presence of perfect detectors
at the measurement devices. Quantum correlations violating LRHV inequalities are called quantum nonlocal
correlations. In principle, in an adversarial situation, there could be a hidden variable introducing bias in the
selection of measurement settings, but observers with no access to that hidden variable could be unaware
of the bias. In practice, however, detectors do not have perfect efficiency. A main focus of this paper is the
introduction of the framework in which given a quantum state with nonlocal behavior under constrained free
will, we can determine the threshold values of detector parameters (detector inefficiency and dark counts) such
that the detectors are robust enough to certify nonlocality. We also introduce a class of LRHV inequalities with
constrained free will, and we discuss their implications in the testing of quantum nonlocal correlations.
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I. INTRODUCTION

Randomness acts as a primitive resource for various de-
sirable information processing and computational tasks, e.g.,
cryptography [1–6], statistical sampling [7,8], probabilistic
algorithms [9–11], genetic algorithms [12–14], simulated an-
nealing algorithms [15–17], neural networks [18–20], etc.
Generation and certification of private randomness also con-
stitute a major goal of cryptographic protocols [4–6,21–23].
The quantum theory allows for the generation and certification
of true randomness [5,6,22,24,25], which otherwise seems to
be impossible within classical theory [26].

In a seminal paper [24], Bell showed that the statistical pre-
dictions of quantum mechanics cannot be explained by local
realistic hidden variable (LRHV) theories. Several LRHV in-
equalities, also called Bell-type inequalities, which are based
on two physical assumptions (the existence of local realism
and the no-signalling criterion [26]), have been derived since
then (see, e.g., [27,28] and references therein). Quantum sys-
tems violating these LRHV inequalities [27] are said to have
quantum nonlocal correlations. Quantum nonlocal correla-
tions are not explainable by any LRHV theories. Hence, the
randomness generated from the behavior of quantum systems
with nonlocal correlations can be deemed to exhibit true ran-
domness. The presence of these nonlocal correlations allows
for the generation and certification of randomness and a secret
key in a device-independent way [6,25,29–33].
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It is known that the experimental verification of Bell’s
inequality requires additional assumptions that could lead to
incurring loopholes such as locality loophole [34], freedom-
of-choice (measurement independence or free will) loophole
[35,36], and fair-sampling loophole (detection loophole)
[35,37]. In recent major breakthroughs [38–41], the incom-
patibility of quantum mechanics with LRHV theories has
been demonstrated by considerably loophole-free experiments
showing a violation of Bell’s inequality by quantum states
with quantum nonlocal correlations. In an experimental setup,
the locality assumption requires spacelike separation between
the measurement events [24,26], which leads to the locality
loophole [42,43]. In a Bell experiment with a photonic setup,
the detection events of the two parties are identified as be-
longing to the same pair by observing whether the difference
in the time of detection is small [44]. This makes it possible
for an adversary to fake the observed quantum correlations by
exploiting the time difference between the detection events of
the parties [45] giving rise to the detection loophole, which
can be closed by using predefined coincidence detection win-
dows [45].

The free will assumption [46] in the Bell-type inequality
states that the parties (users) can choose the measurement set-
tings freely or use uncorrelated random number generators. In
an experimental demonstration presented in [41], human ran-
dom decisions were used to choose the measurement settings
in an attempt to close this loophole. In practice, the detectors
are imperfect, which introduces dark counts [47] and detection
inefficiency [47]. In this paper, we discuss the implications of
bias in the freedom-of-choice and nonideal detectors on the
LRHV tests of quantum nonlocal correlations. To the best
of our knowledge, the assumption of free will was relaxed
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FIG. 1. In this figure, we plot the minimum detection efficiency
η as a function of the dark count probability δ obtained using
Algorithm 1. For each pair of (η, δ) in this figure, there exists a
quantum behavior {p(aid , bid |xy)} that violates Eq. (8). From such
a behavior, {p(aob, bob|xy)} is obtained by using the values of the pair
(η, δ). The behavior {p(aob, bob|xy)} violates Eq. (32). See Sec. IV.

in [48] using a distance-measure-based quantification of the
measurement dependence. It was shown that the Bell-CHSH
inequality can be violated by sacrificing an equal amount of
free will for both parties. This result was extended to the
scenario of parties having different amounts of free will in
[49] and for one of the parties in [50]. In an alternate approach,
measurement dependence was quantified in [51,52] by bound-
ing the probability of choosing the measurement settings to be
in a given range. Following this approach, tests for nonlocality
have been constructed [51,53]. These inequalities have been
applied to randomness amplification protocols [53,54]. How-
ever, consideration of imperfect detectors in the implication of
these measurement-dependent LRHV inequalities is still lack-
ing, as the above-mentioned works assumed perfect detection
while allowing for relaxation in measurement dependence.

A main focus of this work is to study the implica-
tions of imperfect detectors and constrained free will on
the test of quantum nonlocal correlations. We adapt the ap-
proach discussed in [55] to model imperfect detectors for
the Bell experiment as a sequential application of a per-
fectly working inner box followed by a lossy outer box.
The inner box contains a quantum source whose behavior
is nonlocal under constrained free will, i.e., it violates cer-
tain measurement-dependent LRHV inequality. The outer box
separately introduces detector inefficiency and dark counts
for each party. Using this model, we determine the thresh-
old values of the detector parameters that make detectors
robust for testing quantum nonlocality under constrained free
will (e.g., see Fig. 1 with details in Sec. IV). Next for the
scenario of perfect detectors, we compare the implications
of two different approaches presented in [51,48] to quantify
measurement dependence (a) by bounding the probability of
choosing the measurement settings x (for Alice’s side) and y
(for Bob’s side) conditioned on a hidden variable λ to be in

the range [l, 1 − 3l] [51], and (b) by using a distance measure
M to quantify measurement setting distinguishability [48].
This comparison is made in the two (party)-two (measurement
settings per party)-two (outcome per measurement) scenario
and their effects on the certification of the nonlocality. We also
introduce a new set of measurement-dependent LRHV (MDL)
inequalities by introducing a distance-based measurement-
dependent quantity in the adapted AMP tilted Bell inequality
[21], and we discuss implications and tradeoff between mea-
surement dependence parameters and tilted parameters for the
certification of quantum nonlocal correlations.

Throughout this paper, we limit our discussions to LRHV
for bipartite quantum systems. The structure of this paper is
as follows. In Sec. II, we introduce the framework of local-
ity and measurement dependence, which is a constraint that
limits the free will of the user. We present a model in which
the user is tricked by an adversary into thinking that they
have freedom-of-choice for the measurement. In Sec. III, we
consider and compare two different approaches to quantify
the measurement dependence in terms of parameters l and M
mentioned earlier. We determine the critical values of these
parameters necessary for the certification of nonlocality in the
measurement dependence settings, and we compare them with
the amount of violation obtained for the Bell-CHSH inequal-
ity, tilted Hardy relations, and the tilted Bell inequalities. In
Sec. IV, we determine the threshold values of the detector pa-
rameters, namely inefficiency and dark count probability, such
that the detectors are robust enough to certify nonlocality in
the presence of constrained free will. In Sec. V, we introduce
a new set of LRHV inequalities adapted from the AMP tilted
Bell inequality using distance-measure-based measurement
dependence quantities. We use these inequalities to observe
the effect of relaxing the free will assumption for either party
on the certification of quantum nonlocal correlations.

II. THE ADVERSARIAL ROLE IN THE CHOICE
OF MEASUREMENT SETTINGS

Formally a quantum behavior of a device with bipartite
state ρAB is given by its quantum representation {p(ab|xy)},
where p(ab|xy) = Tr[�x

a ⊗ �
y
bρAB], with {�x

a}a and {�y
b}b be-

ing positive operator valued measures (POVMs) for each
input (x, y) to the device, for x ∈ X and y ∈ Y . If a state
ρAB = |ψ〉〈ψ |AB is pure, then we may simply represent it as
a ket |ψ〉AB instead of density operator ρAB. Henceforth, the
abbreviation MDL inequalities would stand for measurement-
dependent LRHV inequalities.

We consider the Bell scenario in which two parties, Alice
and Bob, share a bipartite quantum state ρAB. Each party can
choose to perform one of two measurements available to them,
i.e., |X | = 2 = |Y|. We attribute POVM {�x

a}x to Alice and
{�y

b}y to Bob. Each of these measurements can have two out-
comes. We denote measurement outcomes for Alice and Bob
by a and b, respectively. The statistics of the measurement
outcomes in the experiment can then be described by the prob-
ability distribution P = {p(ab|xy)}, which is also termed as
behavior. In this framework, let there exist a hidden variable λ

belonging to some hidden-variable space, �. The probability
distribution of the outputs conditioned on the inputs can then
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TABLE I. Probability distribution for choice of settings by Alice
and Bob based on the hidden variable λ. An adversary can use this
distribution, and by suitably choosing the parameters of the table the
adversary can trick Alice and Bob into thinking they have free will
in choosing the measurement settings.

Probability distributions of Eve

Joint setting Distribution 1 (λ1) Distribution 2 (λ2)

p(0, 0|λ) cos2(φs1 ) cos2(φs2 )
p(0, 1|λ) sin2(θs1 ) sin2(φs1 ) sin2(θs2 ) sin2(φs2 )
p(1, 0|λ) cos2(δs1 ) cos2(θs1 ) cos2(δs2 ) cos2(θs2 )

sin2(φs1 ) sin2(φs2 )
p(1, 1|λ) sin2(δs1 ) cos2(θs1 ) sin2(δs2 ) cos2(θs2 )

sin2(φs1 ) sin2(φs2 )

be expressed as

p(ab|xy) =
∑
λ∈�

p(ab|xyλ)p(λ|xy). (1)

The hidden variable λ [distribution according to p(λ)] can
provide an explanation of the observed experimental (mea-
surement) statistics. In each run of the experiment, there exists
a fixed λ that describes the outcome of the experimental trial
following the distribution p(ab|xyλ). After multiple runs of
the experiment, the output statistics are described by sampling
from the distribution p(λ|xy).

In an adversarial scenario, Alice and Bob can believe that
they are choosing all the settings with equal probability, i.e.,
p(xy) = 1/4 for each pair (x, y) while an adversary biases
their choice in the scale λ. The adversary can distribute the
settings chosen by Alice and Bob according to

p(xy) =
∑
λ∈�

p(xy|λ)p(λ). (2)

In Eq. (2), let λ take two values, λ1 and λ2, whose proba-
bility distributions are given as p(λ1) = sin2(θλ) and p(λ2) =
cos2(θλ), respectively. In the simplest scenario, x and y can
each take values 0 or 1 and there are four possible ways in
which the measurement settings can be chosen by Alice and
Bob, i.e., (x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Let the proba-
bility of choosing the measurement setting (x, y) conditioned
on the hidden variable be distributed according to Table I. To
observe the effect of the conditional probability distribution
for the choice of x and y from Table I on p(xy), consider the
following examples:

(i) For the case of θs2 = 0.6847, φs2 = 1.2491, φs1 =
0.8861, δs2 = 1.2491, θλ = 0.785 398, θs1 = 0.504 13, and
δs1 = 0.175 353. It can be seen that this choice of parameters
set p(xy) = 0.25 ∀ (x, y).

(ii) For the case of θs2 = 0.5796, φs2 = 1.2491, φs1 =
0.6847, δs2 = 0.75, θλ = 0.579 64, θs1 = 0.793 732, and δs1 =
1.063 95. It can be seen that this choice of parameters set
p(xy) = 0.25 ∀ (x, y).

The above examples show that by proper choice of param-
eters in Table I, the adversary can trick Alice and Bob into
thinking that they have free will in choosing the measurement
setting. In the scenario in which Alice and Bob choose be-
tween the measurement settings with unequal probabilities,

i.e., p(xy) �= 1/4 for each pair (x, y), the adversary can adjust
the parameters of Table I accordingly. In the presence of a bias
in the choice of measurement settings in the λ scale of which
Alice and Bob are unaware, the following constraints [56] can
be imposed on the conditional joint probability distribution:

(a) The signal locality, i.e., no-signaling, assumption im-
poses the factorizability constraint on the conditional joint
probability distribution,

p(ab|xyλ) = p(a|xλ)p(b|yλ). (3)

(b) The measurement independence, i.e., freedom of choice
or free will, assumption requires that λ does not contain any
information about x and y, which is equivalent to stating

p(λ|xy) = p(λ)

or equivalently, p(xy|λ) = p(xy). (4)

III. QUANTIFYING MEASUREMENT DEPENDENCE

In this section, we first review two different approaches
considered in [51,53] and [48–50] to quantify the measure-
ment dependence. We then compare these two approaches
and observe their effects on the tests of quantum nonlocal
behaviors.

A. Review of MDL inequalities from prior works

We review the approach discussed in [51,52] to quan-
tify measurement dependence by bounding the probability
of choice of measurement settings conditioned on a hidden
variable to be in a specific range (Sec. III A 1). Then we review
the approach discussed in [48–50] to quantify measurement
dependence using a distance measure (Sec. III A 2).

1. Bound on the probability of choosing the measurement settings

In Refs. [51,52], we observe that the probability of Alice
and Bob to choose measurement settings x and y conditioned
on λ can be bounded as

l � p(xy|λ) � h, (5)

where 0 � l � p(xy|λ) � h � 1. If Alice and Bob each
choose from two possible values of measurement settings,
then l = h = 0.25 corresponds to the complete measurement
independence; other values of l and h represent bias in the
choice of measurement settings.

In the two (user)–two (measurement settings per user)–
two (outcome per measurement) scenario with a, b ∈ {+,−}
and x, y ∈ {0, 1}, it was shown in [51,52] that all the
measurement-dependent local correlations satisfy the PRBLG
MDL inequality

l p(+ + 00) − h[p(+ − 01) + p(− + 10) + p(+ + 11)] � 0.

(6)
A two-dimensional slice in the nonsignaling space is shown

in Fig. 2 (figure from [51]). In the figure, the quantum set
is bounded by the green line, and the set of nonsignaling
correlations lie within the black triangle. In Fig. 2, the red
dotted line corresponds to Eq. (6) with h = 1 − 3l . If we
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FIG. 2. A two-dimensional slice of the no-signaling space with
the MDL correlations discussed in [51]. The blue line encloses the
set of Bell-CHSH local correlations. The green line encloses the
quantum set. The black triangle encloses the no-signaling distribu-
tions. For the case of h = 1 − 3l , the inequality (6) shifts from the
Bell-CHSH boundary to the no-signaling boundary via the red dotted
line.

set h = 1 − 3l , the PRBLG MDL inequality tilts from the
Bell-CHSH inequality (l = 0.25) to the nonsignaling border
(l = 0). For h = 1 − 3l , Eq. (6) is expressed as

l p(+ + 00) − (1 − 3l )[p(+ − 01) + p(− + 10)

+ p(+ + 11)] � 0. (7)

We note that if Alice and Bob believe they have complete mea-
surement dependence, i.e., p(xy) = 0.25 ∀(x, y), then Eq. (7)
reduces to

l p(+ + |00) − (1 − 3l )[p(+ − |01)

+ p(− + |10) + p(+ + |11)] � 0. (8)

It follows from [53] that invoking the PRBLG MDL inequality
(7) in the tilted Hardy test [53], we obtain the ZRLH MDL
inequality. The ZRLH MDL inequality is expressed as

l[p(+ + |00) + wp(− − |00) − max{0,w}]
− (1 − 3l )[p(+ − |01) + p(− + |10) + p(+ + |11)] � 0,

(9)

where w is the tilting parameter taking real numbers in the
range, w ∈ (−0.25, 1). We call the quantum behaviors that
violate Eqs. (8) and (9) as quantum nonlocal in the presence
of measurement dependence.

2. Distance measure to quantify measurement distinguishability

We discussed in Sec. II that the experimental statistics
described by the joint probability distribution p(ab|xy) can be

explained by λ ∈ � in the following form:

p(ab|xy) =
∫

dλp(ab|xyλ)p(λ|xy). (10)

The assumption of the measurement independence constrains
the probability distribution of measurement settings via

p(λ|xy) = p(λ). (11)

Equation (11) implies that no extra information about λ can
be obtained from the knowledge of x and y. This is equivalent
to saying

p(xy|λ) = p(λ|xy)p(xy)

p(λ)
= p(xy). (12)

Equation (12) implies that Alice and Bob have complete
freedom in choosing the measurement settings x and y, respec-
tively. If x ∈ U ≡ {x1, x2} and y ∈ V ≡ {y1, y2}, measurement
dependence implies p(λ|x1, y1) �= p(λ|x2, y2). Distinguisha-
bility between p(λ|x1, y1) and p(λ|x2, y2) can be quantified
using a distance measure defined in [48],

M =
∫

dλ|p(λ|x1, y1) − p(λ|x2, y2)|. (13)

We can express the probability to successfully distinguish
p(λ|x1, y1) and p(λ|x2, y2) based on the knowledge of λ as

F = 1

2

(
1 + M

2

)
. (14)

When M = 0, we have F = 1
2 , which suggests that no addi-

tional information about the hidden variable λ can be obtained
from knowing the choice of measurement settings.

This observation is consistent with maximum free will that
Alice and Bob have while choosing the measurement settings,
whereas for M = 2 we have F = 1, which suggests that the
complete information about the hidden variable λ can be ob-
tained from knowing the choice of the measurement settings.
This observation is consistent with no free will for Alice and
Bob while choosing the measurement settings.

The local degrees of measurement dependence for Alice
and Bob as introduced in [48] are given by

M1 ≡ max

{∫
dλ|p(λ|x1, y1) − p(λ|x2, y1)|,

∫
dλ|p(λ|x1, y2) − p(λ|x2, y2)|

}
, (15)

M2 ≡ max

{∫
dλ|p(λ|x1, y1) − p(λ|x1, y2)|,

∫
dλ|p(λ|x2, y1) − p(λ|x2, y2)|

}
. (16)

M1 quantifies the measurement dependence for Alice’s set-
tings keeping Bob’s settings fixed, and similarly the other way
round for M2. The above parameters will be useful in deriving
the bounds on the AMP tilted Bell inequalities [21] in Sec. V.

B. Comparison and discussion on the implications of different
measurement-dependent LRHV inequalities

In this section, we check for the allowed values of mea-
surement dependence parameter l to ensure nonlocality of
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TABLE II. This table presents the expectation values of oper-
ators from [21] that violate the AMP tilted Bell inequality given in
Eq. (34). The parameter μ := tan−1 ( sin(2φ)/α), where φ is the state
parameter and α is the tilting parameter in Eq. (34) as defined in [21].

Expectation values of the operators

〈x1〉 = cos(2φ); 〈x2〉 = 0;
〈y1〉 = cos(2φ) cos(μ); 〈y2〉 = cos(2φ) cos(μ);
〈x1, y1〉 = cos(μ); 〈x1, y2〉 = cos(μ);
〈x2, y1〉 = sin(2φ) sin(μ); 〈x2, y2〉 = − sin(2φ) sin(μ).

quantum behaviors that are used to obtain randomness. Con-
sider the quantum behavior in Table II that violates the AMP
tilted Bell inequality (34). In the limit of α → ∞, close to two
bits of randomness can be obtained from such a behavior by
violating the AMP tilted Bell inequality [21]. For the quantum
behavior in Table II, the PRBLG MDL inequality (8) reduces
to

l � 3αt + α cos(2φ)t − 2
√

2α sin2(φ) + √
2[cos(4φ) − 1]

10αt + 4α cos(2φ)(t + √
2) − 2

√
2[α + 3 sin2(2φ)]

,

(17)

where t =
√

− cos(4φ)
α2 + 1

α2 + 2. In the limit of α → ∞, from
Eq. (17) we have l � 0.25. We see that in the limit of α → ∞
the quantum behavior in Table II does not violate any PRBLG
MDL inequality. For α = 1 (which is equivalent to the Bell-
CHSH inequality) and φ = π

4 (the maximum violation of the
Bell-CHSH inequality,) we see from Eq. (17) that the quantum
behavior in Table II violates the family of PRBLG MDL
inequalities for l > 0.2023.

We observe in Fig. 3 that for a fixed value of α, the range
of the allowed values of φ from Table II that violates the
PRBLG MDL inequality given by Eq. (8) increases with the
increase in l . Also as α increases, for a particular value of
l , there is a decrease in the range of the allowed values of
φ from Table II that violates the AMP tilted Bell inequality.
It was shown in [53] that the state ρg = |ψg〉〈ψg| (18) and
measurement settings {Ag

0, Ag
1, Bg

0, Bg
1} can be used to obtain

close to 1.6806 bits of global randomness (at θ ≈ 1.135 57),
where

|ψg〉 = cos

(
θ

2

)
|00〉 − sin

(
θ

2

)
|11〉, (18)

Ag
0 = Bg

0 = −√
2 sin(θ )

√
sin(θ )

[2 − sin(θ )]
√

sin(θ ) + 1
σx

+−[sin(θ ) + 2]
√

1 − sin(θ )

[2 − sin(θ )]
√

sin(θ ) + 1
σz, (19)

Ag
1 = Bg

1 =
√

2
√

sin(θ )√
sin(θ ) + 1

σx −
√

1 − sin(θ )√
sin(θ ) + 1

σz, (20)

such that θ = sin−1 (3 − √
4w + 5) and Ag

x, Bg
y for x, y ∈

{0, 1} denote measurement settings for Alice and Bob, respec-
tively.

Observation 1. Let us consider the quantum behavior given
by the state ρg and measurement settings {Ag

0, Ag
1, Bg

0, Bg
1}. For

FIG. 3. For α ∈ {1, 2}, we plot the range of the state parameter φ

from Table II [φ = 1
2 sin−1(α tan μ)] that violates the PRBLG MDL

inequality [given by Eq. (8)] for different values of the measurement
dependence parameter l .

such a behavior, the PRBLG MDL inequality given by Eq. (8)
reduces to

2l

(ξ − 1)2
[31ξ + w(4ξ − 34) − 69]

+ 2l (ξ − 5)
√

ξ − 2√
4 − ξ (ξ − 1)

√
−4w + 6ξ − 13

− 2(1 − 3l )

1 − ξ

(
8w − 10ξ +

√
ξ − 2 sin(2 sin−1(3 − ξ ))√

4 − ξ

+ 22

)
� 0, (21)

where ξ = √
4w + 5. On inspection we see that for all w ∈

(−0.25, 1), Eq. (21) reduces to l � 0. The quantum be-
havior specified by the state ρg and measurement settings
{Ag

0, Ag
1, Bg

0, Bg
1} is nonlocal for l > 0.

For the given quantum behavior, the ZRLH MDL inequal-
ity (9) reduces to

1

2(ξ − 1)

(
2l (−4w + 7ξ − 15)

+ (1 − 3l )
√

ξ − 2 sin(2 sin−1(3 − ξ ))√
4 − ξ

+ 8w − 10ξ + 22

)

− l max(0,w) � 0. (22)

On inspection we see that for all w ∈ (−0.25, 1), Eq. (22)
reduces to l � 0.
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That is, the quantum behavior given by state ρg and mea-
surement settings {Ag

0, Ag
1, Bg

0, Bg
1} violates both PRBLG and

ZRLH MDL inequalities, and its quantum nonlocality can be
certified for all possible l > 0.

IV. IMPERFECT DETECTOR AND CONSTRAINED
FREE WILL

We model the detection units of Alice and Bob using a
two-box approach following Ref. [55]. There is an inner box
containing a quantum source generating bipartite quantum
states whose behavior is nonlocal under constrained free will
but assuming that detectors are perfect. Nonlocality of the
quantum behavior in the inner box is tested by violation of a
given MDL inequality. The output of the inner box is quantum
nonlocal behavior that violates a given MDL inequality. An
outer box introduces the detector imperfections, namely the
detection inefficiency and dark counts. The quantum nonlocal
behavior obtained from the inner box gets mapped at the
outer box to the output behavior with detector imperfection
parameters. The output behavior then undergoes an LRHV
test based on which we are able to determine the threshold
values of detection inefficiency and dark counts such that the
given quantum nonlocal behavior can still be certified to be
nonlocal with imperfect detectors. A deviation from a two-
box approach in [55] is the introduction of the measurement
dependence assumption to the working of the inner box. Alice
and Bob have access only to the input settings and the outputs
of the outer box. We assume that either party (Alice and
Bob) has access to two identical detectors that can distinguish
between the orthogonal outputs.

The measurement outcomes for the inner box are labeled
as aid and bid, respectively. We note that aid and bid can each
take values from the set {+,−}. Introducing nonunit detection
efficiency, 0 � η � 1, and nonzero dark count probability,
0 � δ � 1, in the outer box, the ideal two-outcome scenario
becomes a four-outcome scenario with the addition of no-
detection event � and the dark-count event χ . These events
are defined in the following way:

� : One particle is sent to the party, and none of the two
detectors of that party click.

χ : One particle is sent to the party, and both the detectors
of the party click.

We label the measurement outcomes for Alice and Bob
obtained from the outer box as aob and bob, respectively.
We note that aob and bob can each take values from the set
{+,−,�, χ}. Furthermore, we assume that Alice and Bob’s
detection units have identical values for η and δ. The con-
ditional probability of observing the outcome tob from the
outer box conditioned on observing t id in the ideal scale is
given by p(tob|t id ) with tob ∈ {aob, bob} and t id ∈ {aid, bid}.
The observed joint probabilities can then be expressed as [55]

p(aobbob|xy) =
∑

aid,bid

p(aob|aid)p(bob|bid)p(aidbid|xy). (23)

We relax the free-will assumption in the inner box by
introducing the hidden variable λ ∈ �. Considering this

assumption, p(aidbid|xy) is expressed as

p(aidbid|xy) =
∑
λ∈�

p(aidbid|xyλ)p(λ|xy). (24)

The hidden variable λ [distributed according to p(λ)] provides
an explanation of the observed experimental statistics of the
inner box. The distribution of settings that are chosen by Alice
and Bob depends on λ via the following relation:

p(xy) =
∑
λ∈�

p(xy|λ)p(λ). (25)

If we impose the locality condition from Eq. (3) on the exper-
imental statistics of the inner box, we arrive at the following
factorizability constraint:

p(aidbid|xyλ) = p(aid|xλ)p(bid|yλ). (26)

Also, if we impose the measurement independence assump-
tion from Eq. (4), we arrive at the following constraint:

p(xy|λ) = p(xy) or equivalently p(λ|xy) = p(λ). (27)

The output statistics of the outer box for imperfect detectors
can depend on the output of the inner box in the following
four ways [55]:

(i) No particle is detected on either of the detectors, and no
dark count detection event takes place. We can then write the
following:

p(aob|aid) = (1 − η)(1 − δ)2. (28)

(ii) No particle is detected by the detector that should have
detected it, and a dark count takes place in the other detector.
We can then write the following:

p(aob|aid) = (1 − η)(1 − δ)δ. (29)

(iii) Either the particle is detected by one of the detectors
and a dark count takes place in the other detector, or the
particle is not detected and dark counts take place in both of
the detectors. We can then write the following:

p(aob|aid) = ηδ + (1 − η)δ2

= δ[1 − (1 − η)(1 − δ)]. (30)

(iv) Either the particle is detected and no dark count takes
place, or the particle is not detected and a dark count takes
place in the detector in which the particle should have been
registered. We can then write the following:

p(aob|aid) = η(1 − δ) + (1 − η)δ(1 − δ)

= (1 − δ)[1 − (1 − η)(1 − δ)]. (31)

The quantum nonlocal behavior obtained from the in-
ner box after getting mapped to the output behavior with
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Algorithm 1

1: Initialize:
l ← parameter of Eq. (8)

2: for δ in range (0, 1) do
3: for η in range (0, 1) do
4: P(aid, bid|xy) ← inner box quantum behavior
5: P(aob, bob|xy) ← f (P(aid, bid|xy), δ, η)
6: obj ← LHS of Eq. (32) for P(aob, bob|xy)
7: MDL ← LHS of Eq. (8) for P(aid, bid|xy)
8: maximize: obj
9: such that: MDL >0
10: opt ← max value of obj
11: if opt >0 then
12: print: δ, η

13: Break

detector imperfection parameters remains nonlocal if the be-
havior obtained from the outer box violates the inequality
[55]

p(+ + |00) + p(+ + |01) + p(+ + |10) − p(+ + |11)

− pA(+|0) − pB(+|0) � 0, (32)

where pA(o|s) and pB(o|s) are the probabilities of Alice and
Bob obtaining the outcome o on measuring s.

At first, let us assume there is a quantum source in the
inner box that is generating a bipartite quantum state whose
behavior {p(aid, bid|xy)} violates the PRBLG MDL inequality
given by Eq. (8) assuming that detectors are perfect. The quan-
tum behavior {p(aid, bid|xy)} obtained from the inner box gets
mapped at the outer box to the behavior {p(aob, bob|xy)} with
the introduction of the detector inefficiency η and dark count
probability δ. The behavior {p(aob, bob|xy)} is then inserted
in Eq. (32) to obtain the critical detector parameters using
Algorithm 1. For a fixed value of δ we obtain the minimum
value of η that violates Eq. (32) using Algorithm 1. We abbre-
viate left-hand side as LHS.

We plot the critical values of η and δ obtained using
Algorithm 1 in Fig. 1.

Observation 2. From Fig. 1, we see that the minimum
value of η for a given δ takes the highest value for l = 0 and
decreases as l increases. For a fixed value of l , the minimum
value of η increases monotonically with the increase in dark
count probability. We note that for δ = 0, we have η ≈ 0.667
for all the values of l .

We next assume there is a quantum source in the inner box
that is generating a bipartite quantum state whose behavior
{p(aid, bid|xy)} violates the ZRLH MDL inequality given by
Eq. (9) assuming that detectors are perfect. The quantum
behavior {p(aid, bid|xy)} obtained from the inner box gets
mapped at the outer box to the behavior {p(aob, bob|xy)} with
the introduction of the detector inefficiency η and dark count
probability δ. The behavior {p(aob, bob|xy)} is then inserted
in Eq. (32) to obtain the critical detector parameters using
Algorithm 2. For a fixed value of δ we obtain the minimum

Algorithm 2

1: Initialize:
w ← parameter of Eq. (9)
l ← parameter of Eq. (9)

2: for δ in range (0, 1) do
3: for η in range (0, 1) do
4: P(aid, bid|xy) ← inner box quantum behavior
5: P(aob, bob|xy) ← f (P(aid, bid|xy), δ, η)
6: obj ← LHS of Eq. (32)
7: MDL ← LHS of Eq. (9)
8: maximize: obj
9: such that: MDL >0.
10: opt ← max value of obj
11: if opt >0 then
12: print: δ, η

13: Break

value of η that violates Eq. (32) using Algorithm 2. We abbre-
viate left-hand side as LHS.

We plot in Fig. 1, the critical values of η and δ from
Algorithm 2 for w = 0.

Observation 3. The ZRLH MDL inequality given by
Eq. (9) and the PRBLG MDL inequality given by Eq. (8)
reduce to the same inequality for l = 0, and they are indepen-
dent of w. For l = 0, Eqs. (9) and (8) cannot be violated [57].
For w = 0, Eqs. (9) and (8) reduce to the same inequality, and
their violation can happen only when l > 0 [58]. For the case
w = 0, we observe the same dependence for the threshold
detector parameters as can be seen from Fig. 1. We observe
from Fig. 1 that for a fixed value of l , the minimum detec-
tion efficiency increases monotonically with the dark count
probability.

We comment here that using Algorithm 2, one can cal-
culate the detector requirements for other values of (w, l )
not mentioned in this section. Next, we consider the state ρg

and measurement settings {Ag
0, Ag

1, Bg
0, Bg

1} with θ ≈ 1.135 57.
This choice of state and measurement settings was shown to
ensure 1.6806 bits of global randomness in [53].

Observation 4. Consider that the quantum source in the
inner box generates a bipartite quantum state ρg. Let Alice
and Bob choose the measurement settings {Ag

0, Ag
1, Bg

0, Bg
1},

with θ ≈ 1.135 57. With this choice of state and measurement
settings, we obtain the quantum behavior {p(aid, bid|xy)} as-
suming that the detectors are perfect. The output behavior
{p(aob, bob|xy)} obtained from the outer box is evaluated using
Eq. (23). The behavior {p(aob, bob|xy)} is nonlocal if we have
a violation of the inequality

δη[δ(9.504 24δ − 4δ2 − 9.008 48) + 4.256 36]

+ η2[δ(2δ3 − 5.504 24δ2 + 5.824 73δ − 3.136 75)

+ 0.816 258] + 2δ(δ − 1)(δ2 − δ + 1)

− 0.752 119η � 0. (33)

The allowed values of the pair (η, δ) for which p(aob, bob|xy)
is quantum nonlocal shown in Fig. 4. In Fig. 4 we observe
that for δ = 0 the minimum detection efficiency ηcrit ≈ 0.92
is required to ensure that p(aob, bob|xy) is quantum nonlocal.
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FIG. 4. In this figure we plot the detector parameters η and δ

for which the behavior {p(aob, bob|xy)} produced in the outer box
is quantum nonlocal when the quantum behavior {p(aid, bid|xy)} is
produced in the inner box using the state ρg and measurement settings
{Ag

0, Ag
1, Bg

0, Bg
1} for θ ≈ 1.135 57.

We also observe that ηcrit increases monotonically with an
increase in δ.

V. THE TILTED BELL INEQUALITY

The AMP tilted Bell inequality is given as [21]

Iβ
α := β〈x1〉+ α〈x1y1〉+ α〈x1y2〉 + 〈x2y1〉− 〈x2y2〉 � β + 2α.

(34)
It plays an important role in (a) demonstrating the inequiv-
alence between the amount of certified randomness and the
amount of nonlocality [21], (b) self-testing of all bipartite
pure entangled states [59], (c) protocol for device-independent
quantum random number generation with a sublinear amount
of quantum communication [60], and (d) unbounded random-
ness certification from a single pair of entangled qubits with
sequential measurements [61].

In the following proposition, we obtain the bound on Iβ
α

when the measurement independence assumption is relaxed
(see Appendix A for proof).

Proposition 1. The AMP tilted Bell expression Iβ
α in the

presence of locality and the relaxed measurement indepen-
dence is bounded by

Iβ
α � β + 2α + min{α(M1 + min{M1, M2}) + M2, 2}, (35)

where M1 and M2 are the measurement dependence parame-
ters for Alice and Bob.

A. Comparison of one-sided and two-sided measurement
dependence to ensure quantum representation

Let Alice and Bob have free will in choosing the measure-
ment settings. Then the maximum violation of Iβ

α obtained by

quantum nonlocal behaviors is given by [21]

Iβ
α � 2

√
(1 + α2)

(
1 + β2

4

)
. (36)

As direct consequences of Proposition 1, we have following
corollaries.

Corollary 1. When M1 = M2 = M, the quantum nonlocal
behaviors that maximally violate Eq. (34) with the amount
of violation given by the right-hand side (RHS) of Eq. (36)
remain nonlocal for

M <
−2α − β +

√
(1 + α2)(4 + β2)

1 + 2α
. (37)

For α = 1 and β = 0 (the Bell-CHSH inequality), Eq. (37)
reduces to M < 2

3 (
√

2 − 1) ≈ 0.276 and is consistent with the
observation in [49].

Corollary 2. When M1 = 0 and M2 = M, the quantum
nonlocal behaviors that maximally violate Eq. (34), with the
amount of violation given by the RHS of Eq. (36), remain
nonlocal for

M < −2α − β +
√

(1 + α2)(4 + β2). (38)

For β = 0 and α = 1 (the Bell-CHSH inequality), Eq. (38)
reduces to M < 2(

√
2 − 1) ≈ 0.828 and is consistent with the

observation in [49].
Corollary 3. When M1 = M and M2 = 0, the quantum

nonlocal behaviors that maximally violate Eq. (34), with the
amount of violation given by the RHS of Eq. (36), remain
nonlocal for

M <
1

α
[−2α − β +

√
(1 + α2)(4 + β2)]. (39)

For β = 0 and α = 1 (the Bell-CHSH inequality), Eq. (39)
reduces to M < 2(

√
2 − 1) ≈ 0.828 and is consistent with the

observation in [49].
In Fig. 5, we plot an upper bound on M as a function of

α for MDL violating behaviors when β = 0 and α � 1. The
values of M and α from Fig. 5 ensure that the quantum nonlo-
cal behaviors that maximally violate Eq. (34) remain nonlocal
in the presence of measurement dependence. We observe
in Fig. 5 that for β = 0 and α � 1, the introduction of one-
sided measurement dependence allows for higher values of M
(implying a lower degree of freedom-of-choice) as compared
to introducing both-sided measurement dependence. Also, for
the case of one-sided measurement dependence, Alice can
have higher values of M as compared to Bob.

B. Bounds on the measurement dependence
for testing nonlocality

We observe in Proposition 1 that in the presence of relaxed
measurement dependence, the behaviors {p(ab|xy)} that vio-
lates Eq. (40) are nonlocal,

Iβ
α � β + 2α + min{α(M1 + min{M1, M2}) + M2, 2}. (40)

In the following, we discuss some of the cases when Eq. (40)
can be violated.

(a) We consider a situation when both Alice and Bob have
the same measurement dependence. We have M1 = M2 = M.
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FIG. 5. In this figure, we consider β = 0 and plot the maximum
values of the measurement dependence parameter M as a function
of the tilting parameter α in Eq. (34). The values of M and α in this
figure ensure that the quantum nonlocal behaviors that maximally
violate Eq. (34) remain nonlocal for the cases of (a) both-sided mea-
surement dependence (in orange), (b) only Alice has measurement
dependence (in dotted blue line), and (c) only Bob has measurement
dependence (in dashed red line).

For this case, violating Eq. (40) requires

Iβ
α > β + 2α + min{(2α + 1)M, 2}. (41)

If (2α + 1)M � 2, Iβ
α reaches the no-signaling boundary,

whereas if (2α + 1)M < 2, then Eq. (41) reduces to the in-
equality

M <
Iβ
α − β − 2α

2α + 1
. (42)

(b) We consider the situation when only Bob has measure-
ment dependence, and we have M1 = 0, M2 = M. For this
case, violating Eq. (40) requires

Iβ
α > β + 2α + min{M, 2}. (43)

If M = 2, Iβ
α reaches the no-signaling boundary, whereas, if

M < 2, then Eq. (43) reduces to the inequality

M < Iβ
α − β − 2α. (44)

(c) We consider the situation when only Alice has mea-
surement dependence, and we have M1 = M, M2 = 0. For this
case, violating Eq. (40) requires

Iβ
α > β + 2α + min{αM, 2}. (45)

If αM � 2, Iβ
α reaches the no-signaling boundary, whereas if

αM < 2, then Eq. (45) reduces to the inequality

M <
Iβ
α − β − 2α

α
. (46)

We note that for α = 1 and β = 0, i.e., for the Bell-CHSH
inequality, the values of M1 and M2 that violate Eq. (40) are
in agreement with that obtained in [49].

Consider that there exists some behavior P′ = {p′(ab|xy)}
that violates Eq. (34) with the amount of violation given by
Iβ
α = I ′(α, β, P′). For α = 1, β = 8, we show in Fig. 6 the

possible values of measurement dependence parameters M1

FIG. 6. In this figure, we plot the values of the measurement de-
pendence parameters M1 and M2 for which the violation of Eq. (34)
given by Iβ

α = I ′(α = 1, β = 8, P′) ∈ {10.83, 11.66, 11.83, 12.00}
cannot be described by a deterministic MDL model. The correlations
violating Eq. (34) with (a) Iβ

α = 12.00 belong to the no-signaling
boundary (shown enclosed by a red line), (b) Iβ

α = 11.66 belong to
the quantum boundary (shown enclosed by a dashed yellow line),
(c) Iβ

α = 10.83 belong to the quantum set (shown enclosed by a
dotted blue line), and (d) Iβ

α = 11.83 belong to the no-signaling set
(shown enclosed by a dot-dashed purple line). The black line in the
figure denotes equal values of M1 and M2 in the regions (a), (b), (c),
and (d).

and M2 for which the amount of violation of Eq. (34) given
by I ′ cannot be described by a deterministic measurement-
dependent local model. The plots for the other combinations
of (α, β ) are given in Appendix B.

VI. DISCUSSION

In this paper, two different approaches are presented in
quantifying measurement dependence via parameters l and
(M1, M2) from standard literature, and a bound on these pa-
rameters for certifying the nonlocality of different behaviors
is obtained. It is observed that the quantum behavior certifying
close to two bits of randomness remains measurement-
dependent nonlocal only in the limit of complete measurement
independence, i.e., in the limit of l → 0.25. The quantum
behavior that provides 1.6806 bits of global randomness from
the violation of the tilted Hardy relations is measurement-
dependent nonlocal for arbitrarily small values of l . This
motivates further study on obtaining an inequality that pro-
vides close to two bits of global randomness in the limit of
arbitrarily low measurement dependence, a problem we leave
for future study. Deviating from the conventional approach
of assuming perfect detectors, we present a framework to
determine the threshold values of the detector parameters that
are robust enough to certify nonlocality of given quantum
behaviors. This is an important step towards experimentally
obtaining nonlocality in the presence of relaxed measurement
independence. For an illustration, we presented the criti-
cal requirements for generating 1.6806 bits of tilted-Hardy
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certified global randomness. The detector parameters obtained
from this study are expected to have important applications in
experimentally implementing various information processing
tasks that rely on quantum nonlocality as a resource.

The modified analytical bound on the AMP tilted Bell
inequality in terms of M1 and M2 has been obtained. Using
the analytical bound, the bounds on M1 and M2 to ensure
quantumness and nonlocality are observed. It is observe that
one-sided measurement dependence is more advantageous
from the point of view of the user as compared to two-sided
measurement dependence. The analytical bound obtained is
expected to have applications in self-testing of quantum states
and other device-independent information processing proto-
cols like randomness generation and secure communication.

For future work, it would be interesting to see the impli-
cations of measurement dependence in multipartite Bell-type
inequalities [27,28] for the certification of multipartite nonlo-
cality and device-independent conference keys [62–64].

Note added. After completion of this work, we noticed a
related work by Šupić, Bancal, and Brunner [65].
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APPENDIX A: CALCULATING THE MODIFIED LOCAL
BOUND FOR THE AMP TILTED BELL INEQUALITY

We consider the AMP tilted-Bell inequality introduced in
[21] and given by

Iβ
α = β〈x1〉 + α〈x1y1〉 + α〈x1y2〉 + 〈x2y1〉 − 〈x2y2〉. (A1)

The determinism assumption states that the measurement out-
comes are deterministic functions of the choice of settings
and the hidden variable λ, i.e., a = A(x, λ) and b = B(x, λ)
with p(a|xλ) = δa,A(x,λ) and p(b|yλ) = δb,B(y,λ). If we assume
that the choice of the measurement settings on the side of
Alice and Bob can depend on some hidden variable, λ, the
correlations of Alice and Bob can be expressed as

〈xy〉 =
∫

dλp(λ|x, y)A(x, λ)B(y, λ). (A2)

The correlation function of Alice can also be written as

〈x〉 =
∫

dλp(λ|x)A(x, λ). (A3)

Applying Eqs. (A2) and (A3) to Eq. (A1), we have

Iβ
α = β

∫
dλp(λ|x1)A(x1, λ)

+ α

∫
dλp(λ|x1, y1)A(x1, λ)B(y1, λ)

+ α

∫
dλp(λ|x1, y2)A(x1, λ)B(y2, λ)

+
∫

dλp(λ|x2, y1)A(x2, λ)B(y1, λ)

−
∫

dλp(λ|x2, y2)A(x2, λ)B(y2, λ). (A4)

Adding and subtracting the terms

α

∫
dλp(λ|x1, y2)A(x1, λ)B(y1, λ) and∫
dλp(λ|x2, y2)A(x2, λ)B(y1, λ)

to Eq. (A4) we obtain

Iβ
α = β

∫
dλp(λ|x1)A(x1, λ)

+ α

∫
dλA(x1, λ)B(y1, λ)[p(λ|x1, y1) − p(λ|x1, y2)]

+
∫

dλA(x2, λ)B(y1, λ)[p(λ|x2, y1) − p(λ|x2, y2)]

+ α

∫
dλp(λ|x1, y2)[A(x1, λ)B(y2, λ)

+ A(x1, λ)B(y1, λ)] −
∫

dλp(λ|x2, y2)

× [A(x2, λ)B(y2, λ) − A(x2, λ)B(y1, λ)]. (A5)

We observe that Eq. (A5) is bounded by Iβ
α � max[T1] +

max[T2] + max[T3]. We also note that as p(λ|x1) is a normal-
ized probability distribution,

∫
dλp(λ|x1) = 1. This implies

that the maximum value of the quantity β
∫

dλp(λ|x1)A(x1, λ)
is given by β when A(x1, λ) is set to 1. With these observa-
tions, T1 can be simplified as

T1 = β

∫
dλp(λ|x1)A(x1, λ)

+ α

∫
dλA(x1, λ)B(y1, λ)[p(λ|x1, y1)

− p(λ|x1, y2)] � β + αM2, (A6)

where we have set B(y1, λ) = 1. To evaluate the maximum
value of T2, we set A(x2, λ) = 1 and obtain

T2 =
∫

dλA(x2, λ)B(y1, λ)[p(λ|x2, y1) − p(λ|x2, y2)]

� M2. (A7)

We evaluate T3 as follows:

T3 = α

∫
dλp(λ|x1, y2)[A(x1, λ)B(y2, λ) + A(x1, λ)B(y1, λ)]

−
∫

dλp(λ|x2, y2)[A(x2, λ)B(y2, λ) − A(x2, λ)B(y1, λ)]

=
∫

dλA(x1, λ)B(y2, λ)

[
αp(λ|x1, y2)

− p(λ|x2, y2)
A(x2, λ)

A(x1, λ)

]
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+
∫

dλA(x1, λ)B(y1, λ)

[
αp(λ|x1, y2)

+ p(λ|x2, y2)
A(x2, λ)

A(x1, λ)

]
. (A8)

To get the maximum value of T3, we set the values of
A(x1, λ), B(y1, λ), A(x1, λ), B(y2, λ) to 1. This then implies,

T3 =
∫

dλ[αp(λ|x1, y2) − p(λ|x2, y2)]

+
∫

dλ[αp(λ|x1, y2) + p(λ|x2, y2)]. (A9)

We evaluate the first term of Eq. (A9) as∫
dλ[αp(λ|x1, y2) − p(λ|x2, y2)]

=
∫

dλ[αp(λ|x1, y2) − αp(λ|x2, y2) + αp(λ|x2, y2)

− p(λ|x2, y2)] (A10)

=
∫

dλ[α(p(λ|x1, y2) − p(λ|x2, y2))

+ (α − 1)p(λ|x2, y2)] (A11)

= α

∫
dλ[p(λ|x1, y2) − p(λ|x2, y2)]

+ (α − 1)
∫

dλp(λ|x2, y2). (A12)

In Eq. (A12) we note that

α

∫
dλ(p(λ|x1, y2) − p(λ|x2, y2)) � αM1.

We note that as p(λ|x2, y2) is a normalized probability distri-
bution,

∫
dλp(λ|x2, y2) = 1. This then implies∫

dλ[αp(λ|x1, y2) − p(λ|x2, y2)] � αM1 + α − 1, (A13)

which on simplification reduces to∫
dλ[αp(λ|x1, y2) − p(λ|x2, y2)] � α(M1 + 1) − 1. (A14)

We proceed in the same way for the second term in Eq. (A9)
as follows:∫

dλ[αp(λ|x1, y2) + p(λ|x2, y2)]

=
∫

dλ[αp(λ|x1, y2) + αp(λ|x2, y2) − αp(λ|x2, y2)

+ p(λ|x2, y2)] (A15)

=
∫

dλα[p(λ|x1, y2) + p(λ|x2, y2)]

− (α − 1)
∫

dλp(λ|x2, y2) (A16)

= α

∫
dλ[p(λ|x1, y2) + p(λ|x2, y2)]

+ (1 − α)
∫

dλp(λ|x2, y2). (A17)

We note that as p(λ|x1, y2), p(λ|x2, y2) are normalized
probability distributions,

∫
dλp(λ|x1, y2) = 1 and∫

dλp(λ|x2, y2) = 1. This then implies∫
dλ[αp(λ|x1, y2) + p(λ|x2, y2)] = α + 1. (A18)

If we insert Eq. (A14) and Eq. (A18) in Eq. (A9), we obtain

T3 � α(M1 + 2). (A19)

Now combining Eqs. (A6), (A7), and (A19), we have the
bound on Iβ

α as

Iβ
α � T1 + T2 + T3 (A20)

� β + αM2 + M2 + α(M1 + 2) (A21)

� β + 2α + αM1 + (α + 1)M2 (A22)

� β + 2α + α(M1 + M2) + M2. (A23)

We again start by considering Eq. (A4) as

Iβ
α = β

∫
dλp(λ|x1)A(x1, λ)

+ α

∫
dλp(λ|x1, y1)A(x1, λ)B(y1, λ)

+ α

∫
dλp(λ|x1, y2)A(x1, λ)B(y2, λ)

+
∫

dλp(λ|x2, y1)A(x2, λ)B(y1, λ)

−
∫

dλp(λ|x2, y2)A(x2, λ)B(y2, λ). (A24)

Adding and subtracting the terms α
∫

dλp(λ|x2, y1)
A(x1, λ)B(y1, λ) and α

∫
dλp(λ|x2, y2)A(x1, λ)B(y2, λ) to

Eq. (A4), we obtain

Iβ
α = β

∫
dλp(λ|x1)A(x1, λ)

+ α

∫
dλA(x1, λ)B(y1, λ)[p(λ|x1, y1) − p(λ|x2, y1)]

+ α

∫
dλA(x1, λ)B(y2, λ)[p(λ|x1, y2) − p(λ|x2, y2)]

+
∫

dλA(x2, λ)B(y1, λ)

[
p(λ|x2, y1)

− B(y2, λ)

B(y1, λ)
p(λ|x2, y2)

]

+ α

∫
dλA(x1, λ)B(y1, λ)

[
p(λ|x2, y1)

+ B(y2, λ)

B(y1, λ)
p(λ|x2, y2)

]
. (A25)

We observe that Eq. (A25) is bounded by Iβ
α � max[t1] +

max[t2] + max[t3]. We also note that as p(λ|x1) is a normal-
ized probability distribution,

∫
dλp(λ|x1) = 1. This implies

that the maximum value of the quantity β
∫

dλp(λ|x1)A(x1, λ)
then takes the value of β when A(x1, λ) is set to 1. With these
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observations, t1 can be simplified as

t1 = β

∫
dλp(λ|x1)A(x1, λ)

+ α

∫
dλA(x1, λ)B(y1, λ)[p(λ|x1, y1) − p(λ|x2, y1)]

� β + αM1. (A26)

Similarly, t2 can be simplified as

t2 = α

∫
dλA(x1, λ)B(y2, λ)[p(λ|x1, y2) − p(λ|x2, y2)]

� αM1, (A27)

and for t3 we have the expression

t3 =
∫

dλA(x2, λ)B(y1, λ)

[
p(λ|x2, y1) − B(y2, λ)

B(y1, λ)
p(λ|x2, y2)

]

+ α

∫
dλA(x1, λ)B(y1, λ)

[
p(λ|x2, y1)

+ B(y2, λ)

B(y1, λ)
p(λ|x2, y2)

]
. (A28)

We set the values of A(x1, λ), B(y1, λ), A(x2, λ), B(y2, λ) to 1
and obtain

t3 =
∫

dλ[p(λ|x2, y1) − p(λ|x2, y2)]

+ α

∫
dλ[p(λ|x2, y1) + p(λ|x2, y2)]. (A29)

The first term in Eq, (A29) is bounded by∫
dλ[p(λ|x2, y1) − p(λ|x2, y2)] � M2. (A30)

We note that as p(λ|x2, y1) and p(λ|x2, y2) are nor-
malized probability distributions,

∫
dλp(λ|x2, y1) = 1 and∫

dλp(λ|x2, y2) = 1. Equation (A29) is then expressed as

t3 � M2 + 2α. (A31)

Now combining the values of t1, t2, and t3, we have the bound
on Iβ

α as

Iβ
α � t1 + t2 + t3 (A32)

� β + αM1 + αM1 + M2 + 2α (A33)

� β + 2α + 2αM1 + M2. (A34)

We note that the bound on Iβ
α must be the minimum of

Eqs. (A23) and (A34) and is expressed as

Iβ
α � β + 2α + α[M1 + min{M1, M2}] + M2. (A35)

We observe that for the case of β = 0 and α = 1,

I0
1 � 2 + M1 + M2 + min{M1, M2}, (A36)

which is in agreement with that obtained in [49]. We note that
the maximum value that Iβ

α [Eq. (A1)] can take is β + 2α + 2
(we get this bound by setting 〈x1〉 = 1, 〈x1y1〉 = 1, 〈x1y2〉 = 1,

FIG. 7. In this figure, we plot the values of the measurement de-
pendence parameters M1 and M2 for which the violation of Eq. (34)
given by Iβ

α = I ′(α = 1, β = 0, P′) ∈ {4.00, 3.42, 2.83, 2.42} can-
not be described by a deterministic MDL model. The correlations
violating Eq. (34) with (a) Iβ

α = 4.00 belong to the no-signaling
boundary (shown enclosed by a red line), (b) Iβ

α = 2.83 belong to
the quantum boundary (shown enclosed by a dashed yellow line),
(c) Iβ

α = 2.42 belong to the quantum set (shown enclosed by a blue
dotted line), and (d) Iβ

α = 3.42 belong to the no-signaling set (shown
enclosed by a dot-dashed purple line). The black line in the figure de-
notes equal values of M1 and M2 in the regions (a), (b), (c), and (d).

〈x2y1〉 = 1, 〈x2y2〉 = −1) and arrive at

Iβ
α � β + 2α + min{α(M1 + min{M1, M2}) + M2, 2}.

(A37)

APPENDIX B: BOUNDS ON THE MEASUREMENT
DEPENDENCE TO CERTIFY NONLOCALITY

We observe in Proposition 1 that in the presence of relaxed
measurement dependence, the behaviors {p(ab|xy)} that vio-
late Eq. (B1) are nonlocal,

Iβ
α � β + 2α + min{α(M1 + min{M1, M2}) + M2, 2}. (B1)

Consider that there exists some behavior P′ = {p′(ab|xy)}
that violates Eq. (34) with the amount of violation given by
Iβ
α = I ′(α, β, P′). We show in Fig. 7 the possible values of

measurement dependence parameters M1 and M2 for which
the amount of violation of Eq. (34) given by I ′ cannot be
described by a deterministic measurement-dependent local
model. We observe that Fig. 7 is in agreement with that ob-
tained in [49].
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