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We revisit the problem involving two constantly accelerating Unruh-DeWitt detectors using open effective
field theory methods. We study the time evolution of the joint detector state using a Markovian approximation
which differs from the standard one taken in the literature. We show that this Markovian limit already implies the
complete positivity of the dynamical evolution map without invoking the rotating wave approximation (RWA),
in contrast to standard derivations of open system master equations. By calculating explicitly the domain of
validity of this Markovian approximation, we argue that the lack of complete positivity in the usual microscopic
derivation stems from the (subtle) fact that the Redfield equation is used outside its domain of validity. We
give two well-known cases studied in the literature that violate the validity of the Markovian approximation:
(i) the “stacked trajectory” limit (when detector trajectories are taken to be on top of one another) and (ii) the
large gap-to-acceleration ratio. Since Markovian dynamics with or without RWA can lead to different qualitative
predictions for entanglement dynamics, our work emphasizes the need to properly track the regime of validity
of all approximations.
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I. MOTIVATION

It is by now well known that vacuum states in quan-
tum field theory (QFT) contain correlations between disjoint
spacetime regions [1–3]. In particular, vacuum entanglement
is responsible for various physical phenomena such as the
Unruh and Hawking effects. However, due to the ultraviolet
properties of field-theoretic entanglement and the lack of di-
rect measurement theory in QFT, one often resorts to the use
of an external probe as a way to study the entanglement struc-
ture of the quantum field. In relativistic quantum information,
the paradigmatic example is the Unruh-DeWitt (UDW) detec-
tor model [4,5], where a two-level quantum system (qubit) is
coupled locally to a quantum scalar field.

From the perspective of relativistic quantum information,
the study of entanglement dynamics between two UDW de-
tectors typically falls into two classes: (i) via the entanglement
harvesting protocol (see, e.g., [6–26]) or (ii) through open
quantum systems methods (see, e.g., [27–41]). Although the
objectives may vary, at the technical level the main difference
between these two approaches is the interaction timescale.
On the one hand, the entanglement harvesting protocol is
by construction restricted to relatively short timescales, since
one wants to extract entanglement from the field (and not
through signaling between the two detectors [12]). On the
other hand, the open quantum systems framework often aims
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to obtain late-time dynamics, which is useful when one wishes
to understand long-time processes such as thermalization. For
example, open system methods allows one to directly deter-
mine if (and when) a single detector approaches a Gibbs state
(see, e.g., [42,43]), instead of stopping at the detailed balance
condition or Planckian transition rates.1 (see, e.g., [44,45]).

In this work we revisit the open system framework between
two UDW detectors undergoing uniform accelerations. Our
motivation is based on two important considerations:

(1) Making late-time predictions in perturbation theory
reliably is notoriously difficult (see, e.g., [46–49]). The issue
is that the strength of the detector-field coupling imposes
a natural timescale for which the perturbation series at any
given order is valid. In essence, perturbative expansions
of quantities like e−igHintt � 1 − igHintt + · · · generically be-
come suspect at late times when gHintt becomes too large.
This is also true for detectors that are switched on and off
adiabatically and smoothly (“carefully” [45,50,51]). In partic-
ular, one needs to have control over how long is “long times”
when studying weakly coupled systems—one virtue of the
open quantum system approach is that it provides a way in
which to resum late-time breakdowns of perturbation theory
so as to more reliably gain access to late-time behavior.

(2) The use of semigroup master equations, which cap-
tures the reduced open system dynamics in the presence of a
large environment, is often done without careful or explicit

1These are necessary but not sufficient conditions for thermaliza-
tion as they do not capture what happens to density matrix coherence.
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analysis of the validity of the approximations that go into
it. One of the most common examples is the invocation of
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master
equation, among many others (e.g., [27–41]).

In more detail, the usual approach to a microscopic deriva-
tion of a GKSL master equation for the reduced density matrix
ρSYS(τ ) of the detector (“system”) at time τ typically involves
three distinct approximations:

(1) First, one perturbs the underlying Liouville–von Neu-
mann equation for the full density matrix using the Born
approximation. This is justified when the environment is large
compared to the system. However, the resulting master equa-
tion for ρSYS(τ ) is intractable because it depends on its entire
history of evolution (i.e., the evolution has memory).

(2) This is where the second approximation—the Marko-
vian approximation—is employed, by working in a regime of
parameter space where the evolution is “memoryless” [mean-
ing here that the evolution equation for ρSYS(τ ) is time-local].
At this point, the resulting evolution equation is infamously
of the “Redfield-type”: the differential equation for ρSYS(τ )
induces a dynamical evolution map �τ : ρSYS(0) �→ ρSYS(τ )
that is believed to be not completely positive2 (CP) [56,57].

(3) The third approximation, known as the secular ap-
proximation or rotating wave approximation (RWA), is
then used in order to make �τ a completely positive and
trace-preserving (CPTP) map, i.e., a quantum channel. The
inspiration for this approximation is from quantum optics in
which rapidly oscillating terms in the master equation can be
neglected when the system is near resonance with an oscillat-
ing environment (like a laser tuned to a specific frequency),
and formally described by Davies in [58,59].

Notably, once the three approximations are taken, the re-
sulting master equation can be treated like a black box and it
is often used liberally, at the risk of not tracking the validity
of its usage.

In this work we argue that the lack of CP-property men-
tioned above in Steps (2) and (3) arises because the Markovian
limit is not carefully taken. Our point of view is that Step
(2) is valid in a specific region of parameter space where the
bath correlation time (in this work, the reciprocal of the Unruh
temperature ∼1/a) is the shortest timescale in the problem—
including timescales associated with the system operators
(such as ∼1/�, where � are the qubit energy gaps). As we
show here, carefully performed Markovian limits amount to
approximating both the system state ρSYS(τ ) in the interaction
picture and the system observables (the monopole operator of
the qubit detector) as memoryless. The manner in which we
perform this approximation is inspired by the work of [60]
(working in the context of cosmology), which uses a slightly
different version of the Markovian approximation compared
to the usual one in the literature.

When this is done, the so-called Born-Markov approxi-
mations [Steps (1) and (2) above] produce an evolution map
that is CP-preserving according to the GKSL theorem [61,62].
This implies that the RWA is not necessary (see also [63]), and

2That is, one can end up with predictions of negative probabilities
with the computed reduced density matrix. This is sometimes known
as “slippage of initial conditions” [52–55].

therefore, the standard approach in employing the RWA-based
GKSL master equation (see, e.g., [56], for a standard refer-
ence) is at best valid on much smaller parameter space than
what the Born-Markov approximations allow for.3 We provide
explicit bounds (“validity relations”) for which the Born-
Markov approximation is valid. The derived bounds show
that two well-known special cases studied in the literature,
(i) the “stacked trajectory” limit (when detector trajectories
are taken to be equal4 with proper separation L = 0, see, e.g.,
[27,31,32,37,38]), (ii) large gap-to-acceleration ratio �/a � 1
(see, e.g., [29,32,34–36,39,41]), and (iii) inertial qubits inter-
acting with vacuum state [30,39,40], all of which violate the
validity of the Markovian approximation.

In this work we also compare the late-time state and en-
tanglement dynamics between the two detectors between the
RWA-based evolution vs the one without RWA. In both cases
the fixed point of the evolution is a maximally mixed state
(understood as a high-temperature Gibbs state), so one cannot
use the late-time state to check the validity of RWA. It is
also worth noting that some of the very early time dynamics
within g2aτ � 1 calculated using Markovian master equation
may not be reliable, since at early times non-Markovian ef-
fects are important. The takeaway is that just because the
Markovian solution exists for early and late times does not
mean the full dynamics agree with Markovian one at all times.
Also importantly, within the Born-Markov approximations
one cannot infer the Unruh temperature TU = a/(2π ) from its
late-time density matrix: the reason is because we are in the
high-temperature limit and the asymptotic state is effectively
the zeroth-order expansion in �/a ∝ �/TU of the Gibbs state.
The information about the Unruh temperature must be ob-
tained elsewhere, e.g., by computing the decay rate or Fisher
information (for recent examples of the latter using the RWA
see [67,68]).

This paper is organized as follows. In Sec. II we discuss
the UDW setup for two uniformly accelerated detectors. From
there we develop the Nakajima-Zwanzig master equation for
the joint detector state in Sec. III, and then further take its
Markovian limit in Sec. IV obtaining the late-time asymptote
for the state and compute the timescales for the approach to
this fixed point. In Sec. V we calculate the validity relations
that constrain the parameters in order for the Born-Markov
approximations to be valid. Finally, in Sec. VI we compare
our results without the RWA with those that are derived using
the RWA. We use the mostly plus signature for the metric and
set c = h̄ = 1.

II. QUBITS IN SPACE

In this section we formulate the detector-field inter-
action based on the Unruh-DeWitt model, sending two
qubits (two-level systems) along parallel accelerated trajec-
tories while interacting with a free massless scalar field

3This is already ignoring the possibility of other problems appear-
ing in RWA: for example, some form of RWA known as pretrace
RWA can lead to causality violation [64] or even the lack of a
Markovian limit [65].

4Sometimes compared to the two-atom Dicke model [66].
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φ in (3 + 1)-dimensional Minkowski space. We work in
perturbation theory to order O(g2) where the coupling strength
of the detector-field interaction is g � 1.

Consider two observers Alice and Bob, each carrying a
pointlike two-level Unruh-DeWitt (UDW) detector, put along
parallel accelerated trajectories in flat spacetime with world-
lines (in Minkowski coordinates)

yA(τ ) = (t (τ ), x(τ ), 0, 0),

yB(τ ) = (t (τ ), x(τ ), L, 0), (1)

with acceleration a > 0, where t (τ ) = 1
a sinh(aτ ), x(τ ) =

1
a cosh(aτ ) and L > 0 is the proper separation along the y
direction. As they are parallel in the transverse direction, the
two observers’ worldlines can be parametrized by the same
proper time, and we set the initial proper times along each
trajectory τ = 0 to align with t = 0.

The massless scalar field φ in Minkowski spacetime
satisfies the Klein-Gordon equation ∂μ∂μφ = 0 with mode
decomposition in the inertial quantization frame (t, x) given
by (in the interaction picture)

φ(t, x) =
∫

d3k√
2(2π )3ωk

[ake−iωkt+ik·x + H.c.], (2)

where ωk = |k| is the relativistic dispersion for massless
fields. The canonical commutation relation is given by
[ak, a†

k′ ] = δ3(k − k′)1φ (with 1φ the identity on the field
Hilbert space) and all other commutators vanish. The free
Hamiltonian for the scalar field reads

hφ = 1

2

∫
�t

d3x [π2(t, x) + ∂iφ(t, x)∂ iφ(t, x)], (3)

where π = ∂tφ and �t is a constant-t Cauchy surface in
Minkowski spacetime. This free Hamiltonian generates time
translations with respect to Minkowski time t .

For the 4 × 4 matrices acting on the joint qubit subspace of
the Hilbert space we use the notation

σ A
α := σα ⊗ 1 and σ B

α := 1 ⊗ σα, (4)

where 1 is the 2 × 2 identity matrix, σα are the standard Pauli
matrices for α ∈ {1, 2, 3,±}, and in particular σ± = 1

2 (σ1 ±
iσ2).

For simplicity, we consider both detectors to be identical
with energy gap �, so that the free Hamiltonian for Alice and
Bob’s detectors reads

h := hA + hB with h j := �

2
σ

j
3 . (5)

The ground and excited states of each detector are denoted by
|↓〉 and |↑〉, respectively, with the action of the su(2) ladder
operators given by σ+ |↓〉 = |↑〉 and σ− |↑〉 = |↓〉. The free
Hamiltonian for the detector-field system reads

H0 = dτ

dt
h ⊗ 1φ + 1 ⊗ 1 ⊗ hφ. (6)

In the interaction picture, two detectors interact with the field
via the interaction Hamiltonian

gH I
int(t ) = g

dτ

dt

∑
j=A,B

μI
j (τ (t )) ⊗ φ[y j (τ (t ))], (7)

with the superscript I denoting the interaction picture. The
monopole operator of each detector appearing in H I

int is given
by

μI
j (τ ) := e+ihτμ je

−ihτ = σ
j

+ei�τ + σ
j

−e−i�τ , (8)

where μ j := σ
j

1 = σ
j

+ + σ
j

− is the monopole operator in the
Schrödinger picture. For simplicity we have chosen each qubit
to interact with the field with the same coupling strength
g � 1.

With this setup, the interaction picture density matrix
ρ I (t ) of the detector-field system evolves according to the
Liouville–von Neumann equation

dρ I (t )

dt
= −ig

[
H I

int(t ), ρ I (t )
]
. (9)

The aim of this work is to determine the evolution of the joint
qubit state, i.e., the reduced density matrix obtained by tracing
over the field’s degrees of freedom where

ρ I
AB(t ) := trφ[ρ I (t )]. (10)

In this work we assume, as is standard in the literature, that
the initial state of the detector-field system at t = 0 is uncor-
related such that

ρ I (0) = ρ I
AB(0) ⊗ |0〉〈0|, (11)

where |0〉 is the Minkowski vacuum defined by ak |0〉 = 0
for all k, and take the initial joint detector state ρ I

AB(0) to be
arbitrary.5

For later use, the joint qubit state in the Schrödinger pic-
ture, denoted by ρAB(t ), is related to the interaction picture
version by

ρ I
AB(τ ) = e+ihτ ρAB(τ )e−ihτ . (12)

III. LATE TIMES AND MASTER EQUATIONS

In this section we begin with the Liouville–von Neumann
equation (9) and connect its standard perturbative expansion
to master equations which are better suited for studying late
times. Using the Nakajima-Zwanzig master equation [equiva-
lent to the Born approximation at the order O(g2) considered
in this work], we then develop explicit integro-differential
equations that can be used later to study the Markovian limit.

5An often unstated fact is that pointlike UDW detector model is
incompatible with arbitrary initial state of the detector, in that it
will lead to ultraviolet (UV) divergences. One has to impose (a) UV
cutoff or (b) spatial smearing to regulate the UV divergence. In open
quantum systems problems, a hard UV cutoff is usually imposed
instead of giving a finite size to the detector due to its mathematical
tractability (see, e.g., [50]).
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A. From perturbation theory to master equations

We begin by noting an equivalent formulation of the
Liouville–von Neumann equation (9),

ρ I (t ) = ρ I (0) − ig
∫ t

0
dt ′ [H I

int(t
′), ρ I (0)

]
− g2

∫ t

0
dt ′

∫ t ′

0
dt ′′ [H I

int(t
′),

[
H I

int(t
′′), ρ I (t ′′)

]]
, (13)

which lends itself useful to perturbative calculations. This
equation is derived by inserting the integral version of (9),

ρ I (t ) = ρ I (0) − ig
∫ t

0
dt ′ [H I

int(t
′), ρ I (t ′)

]
, (14)

into itself iteratively. Invoking the standard perturbative
(Dyson) series expansion on (14) yields to second order in
the qubit-field coupling

ρ I (t ) = ρ I (0) − ig
∫ t

0
dt ′[H I

int(t
′), ρ I (0)

]
− g2

∫ t

0
dt ′

∫ t ′

0
dt ′′ [H I

int(t
′),

[
H I

int(t
′′), ρ I (0)

]] + O(g3).

(15)

After a partial trace over the field, the second term vanishes
due to the vanishing of the one-point function 〈0|φ(t, x)|0〉 =
0, and the joint state of the detectors up to O(g2) reads

ρ I
AB(t ) � ρAB(0)

− g2
∫ t

0
dt ′

∫ t ′

0
dt ′′ trφ

[
H I

int(t
′),

[
H I

int(t
′′), ρ I (0)

]]
.

(16)

In many contexts such as entanglement harvesting protocol
[6–17], this is the order in which the final state of the detectors
are often worked out.

In this context, the standard perturbative approach applies
in a regime where 1 � aτ � 1/g2, and begins to breakdown6

when g2aτ ∼ O(1) as outlined in [47–49]. The utility of the
open system approach is that there exists a Markovian regime
truncated at the same order as (15) that allows us to study the
same problem in the late-time regime g2aτ ∼ O(1) by “re-
summation” of terms to all orders in g2aτ . The way this works
is to note that perturbative series like (15) gives time evolution
of the system from τ0 to τ so long as g2a(τ − τ0) � 1 holds.
Within this window, one can differentiate the perturbative
expression to yield a differential equation for ρ(τ ). If this dif-
ferential equation is time-local in ρ(τ ) i.e. not depending on
its entire integrated history of evolution from τ0 to τ , then the
same differential equation applies in any other perturbatively
small window from any τ j to τ , so long as g2a(τ − τ j ) � 1.
The master equation then applies over much larger timescales,
since it can be trusted over the union of such perturbatively
small but overlapping time domains allowing for integration
out to late times where g2aτ ∼ O(1) (but g4aτ � 1).

6In this case, temporal smooth switching functions multiplying the
interaction Hamiltonian are sometimes used to turn off the interac-
tion before perturbative breakdown occurs.

Indeed, the time-local nature of Markovian master equa-
tions is the essential property that we need to resum the
late-time breakdown of (15) to all orders in g2aτ while ne-
glecting O(g4aτ ) effects. This resummation argument is, in
essence, a renormalization group argument familiar from par-
ticle physics (e.g., see [69] as well as [46,47,70] for a late-time
analogy using particle decays).

Our task is now clear—what remains is to
(1) Turn Eq. (15) into a time-local Markovian equa-

tion that is valid up to late times as specified above using
suitable approximations

(2) Find an explicit, late-time resummed solution to the
Markovian regime

(3) Find the domain of validity of the approximations that
go into (1) and (2), and show that the resulting equation de-
fines a completely positive evolution.

Note that Step (3) is often neglected, which may lead to
unphysical results. We discuss this further in Sec. V.

To gain access to late times, we apply the Born approxima-
tion7 to Eq. (14),

ρ I (t ) � ρ I
AB(t ) ⊗ |0〉〈0| , (17)

which neglects correlations between the joint qubit state and
the field.8 The resulting state at O(g2) reads

ρ I
AB(t ) � ρAB(0) − g2

∫ t

0
dt ′

∫ t ′

0
dt ′′

× trφ

[
H I

int(t
′),

[
H I

int(t
′′), ρ I

AB(t ′′) ⊗ |0〉〈0| ]]. (18)

By taking the derivative with respect to t , we obtain the
integro-differential equation

dρ I
AB

dt
� −g2

∫ t

0
dt ′trφ

[
H I

int(t ),
[
H I

int(t
′), ρ I

AB(t ′) ⊗ |0〉〈0| ]].
(19)

This equation is useful in that it depends only on ρ I
AB, unlike

(15). Note, however, that Eq. (19) is not time-local because it
depends on the entire history (“memory”) of its evolution.

It is worth emphasizing that the equation of motion of
the form Eq. (19) is precisely the O(g2)-truncation of the
Nakajima-Zwanzig equation [71,72] (see, e.g., [56,57] for
introductory material). The basic idea behind the Nakajima-
Zwanzig equation is that we can define a projection P such
that

P[ρ I (t )] := ρ I
AB(t ) ⊗ |0〉〈0| . (20)

This splits the total state into “relevant” part projected by P
(the system) and “irrelevant” part projected by its complement
1 − P (the environment). Since the Liouville–von Neumann

7The Born approximation is a weaker requirement compared to
of the standard Dyson series truncation (16) because we can have
ρ I

AB(t ′′) �� ρ I
AB(0) for long interactions without significantly changing

the bath state.
8These correlations can be shown to be O(g2) [60] so it contributes

only as an O(g4) effect. For any significant backreaction onto the the
field state, the Born approximation is not valid.
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equation (9) is linear, one can use it to derive an exact equa-
tion of motion for P[ρ I (t )] alone, which is here of the form

∂P[ρ I (t )]

∂t
=

∫ t

0
dt ′K(t, t ′)P[ρ I (t ′)], (21)

where K(t, t ′) is a “memory kernel” that measures infor-
mation backflow from the detector to the field. The nice
feature of the Nakajima-Zwanzig equation is that what we
called the “Born approximation” in Eq. (19) is naturally
built-in as the leading-order expansion of the memory ker-
nel K(t, t ′), thus it has the natural interpretation that indeed
we are neglecting memory effect due to backreaction to the
field. The Nakajima-Zwanzig formalism provides a very nat-
ural organizing principle for perturbative expansion in a way
that makes clear the information flow between the “relevant
part” (the system) and “irrelevant part” (the environment)
of the total system. Following [57], we refer to Eq. (19) as
the Nakajima-Zwanzig master equation at second order (NZ-
ME2).

B. Nakajima-Zwanzig equation for two accelerated qubits

After tracing out the field degrees of freedom, NZ-ME2
(19) results in

dρ I
AB

dt
= g2

∑
j,k∈{A,B}

∫ t

0
dt ′ dτ (t )

dt

dτ (t ′)
dt ′

× (
W jk (τ (t ), τ (t ′))

{
μI

k[τ (t ′)]ρ I
AB(t ′), μI

j[τ (t )]
}

+ H.c.
)
, (22)

where H.c. denotes Hermitian conjugate and the sum runs
over the labels j, k ∈ {A,B}. Here t, t ′ are Minkowski time
variables, τ is the common proper time for the detectors. The
pullback of the vacuum Wightman two-point function along
the trajectories y j, yk denoted W jk , is given by

W jk (τ, τ ′) := 〈0|φ[y j (τ )]φ[yk (τ ′)]|0〉 . (23)

For the parallel accelerated trajectories (1), W jk simplifies
greatly: we get the “self-correlations” [73]

WS(�τ ) := WAA(τ, τ ′) = WBB(τ, τ ′)

= − a2

16π2

1

sinh2
[

a
2 (�τ − iε)

] (24)

and “cross-correlations”

W×(�τ ) := WAB(τ, τ ′) = WBA(τ, τ ′)

= − a2

16π2

1

sinh2
[

a
2 (�τ − iε)

] − (
aL
2

)2 , (25)

where �τ = τ − τ ′.9
By performing a change of variable s = �τ , the resulting

NZ-ME2 can be reexpressed in terms of proper time τ such

9These are derived from the Wightman function (23),
〈0|φ(x)φ(x′)|0〉 = [4π 2(−(x0 − x′0 − iε)2 + |x − x′|)]−1, evaluated
for x = y j (τ ) and x′ = yk (τ ′).

that

dρ I
AB

dτ
� g2

∑
j,k∈{A,B}

∫ τ

0
ds

× (
W jk (s)

[
μI

j (τ − s)ρ I
AB(τ − s), μI

k (τ )
]

+ H.c.
)
. (26)

Using the uncoupled basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}, the
integro-differential equation (26) for ρ I

AB(τ ) has two decou-
pled components: that is, we can split the density matrix into

ρ I
AB(τ ) = ρ I

AB,X (τ ) + ρ I
AB,O(τ ), (27)

where

ρ I
AB,X (τ ) =

⎡
⎢⎢⎣

ρ I
11(τ ) 0 0 ρ I

14(τ )
0 ρ I

22(τ ) ρ I
23(τ ) 0

0 ρ I
32(τ ) ρ I

33(τ ) 0
ρ I

41(τ ) 0 0 ρ I
44(τ )

⎤
⎥⎥⎦,

(28a)

ρ I
AB,O(τ ) =

⎡
⎢⎢⎣

0 ρ I
12(τ ) ρ I

13(τ ) 0
ρ I

21(τ ) 0 0 ρ I
24(τ )

ρ I
31(τ ) 0 0 ρ I

34(τ )
0 ρ I

42(τ ) ρ I
43(τ ) 0

⎤
⎥⎥⎦.

(28b)

We call these decoupled pieces the X block and O block,
respectively (due to the positions of the nonzero matrix ele-
ments). Note that ρ I

AB,X (τ ) is known as an X state and some
of its properties have been investigated in the literature (see,
e.g., [74]). The components of Eq. (28) are not all independent
since we can use

ρ I
44(τ ) = 1 − ρ I

11(τ ) − ρ I
22(τ ) − ρ I

33(τ ),

ρ I
nm(τ ) = ρ I∗

mn(τ ) for n �= m ∈ {1, 2, 3, 4}. (29)

Therefore, for the X block we have a system of seven coupled
ordinary differential equations (ODE), while for O block we
have eight coupled ODEs with eight variables. The full ex-
plicit expressions for the ODEs for X block and O block are
given in Appendixes A and B, respectively.

Before we solve these equations, let us remark on the
choice of initial state ρAB(0). Interestingly, many existing
studies involving two UDW detectors in an open system
framework restrict their attention to an X state as the initial
state [27,29,30,32–35,40] because the time evolution pre-
serves the X block [75]. Here we see that this restriction
is unnecessary since X block completely decouples from O
block, so one can evolve the O block independently anyway.
We see in the next section (for nonzero energy gap � > 0)
that the O block tends towards zero at late times, so only the
X block survives in the long-time limit.

IV. TWO-QUBIT ASYMPTOTIC STATE IN THE
MARKOVIAN REGIME

As mentioned earlier, the main obstruction to solving
Eq. (26) (or equivalently the ODEs given in Appendixes A and
B) and obtaining late-time results is that it is not time-local:
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the integrals on the right-hand side have memory over their
entire history of the evolution integrating over functions of
τ − s. To gain access to late time, we must enter a Markovian
regime where the dynamics is memoryless. As we will shall
see, there are subtleties involved in taking Markovian limit of
Eq. (26).

A. A different Markovian approximation

Let us start with a Markovian approximation of Eq. (26)
that is different from the one usually taken in the literature.
We see how this compares with the standard approach in
Sec. IV B.

The physical essence of the Markovian limit is the obser-
vation that the environment correlators WS,×(s) are sharply
peaked about s = 0: this implies that there exists a regime
in which the timescales associated with the system evolve
much slower than the timescale set by the environment. This
timescale is set by 1/a as can be seen from Eqs. (24) and
(25) where the environment correlators fall off exponentially
quickly:

WS(s) � − a2

4π2
e−as as � 1, (30a)

W×(s) � − a2

4π2
e−as as � max

{
1,

1

2
ln

(
aL

2

)}
. (30b)

This means that when the system evolves slower than the
environment, the history or memory dependence in the right-
hand side of (26) becomes negligible,10 and we can perform
Taylor series about s = 0 where

μI
j (τ − s)ρ I

AB(τ − s)

� μI
j (τ )ρ I

AB(τ ) − s
[
μI

j (τ )ρ̇ I
AB(τ ) + μ̇I

j (τ )ρ I
AB(τ )

] + O(s2),
(31)

and a similar Taylor series for the opposite ordering of opera-
tors ρ I

AB(τ − s)μI
j (τ − s) in (26). Therefore, the leading order

of the series expansion is memoryless and reads

dρ I
AB

dτ
� g2

∑
j,k

∫ τ

0
ds

(
W jk (s)

[
μI

j (τ )ρ I
AB(τ ), μI

k (τ )
]

+ H.c.
)
, (32)

and only the correlators WS,× depend on s.
Physically, the series expansion leading to (32) essentially

makes 1/a the shortest timescale of the problem, i.e., the
Markovian limit is where the environment dynamics are ex-
tremely rapid as compared to the system dynamics. In this
regime, the environment erases the history of integration in
Eq. (26), including the integration over the (system) monopole
operators μI

j . This is a very important point that we stress from
time to time in this work: since we are in the interaction pic-
ture, memoryless Markovian limit requires that the memory

10It is sometimes colloquially stated that fast (Markovian) environ-
ment dynamics means that WS,×(s) ∼ δ(s) underneath the integral
sign in (26); from this point of view it also makes sense that one
removes the history of integration as done in Eq. (32).

is neglected from both the monopole operators and the states,
otherwise the residual memory leads to problems as we see
later.

Another noteworthy point that is often neglected is that
the Taylor approximation step from (26) to (32) provides
a means of quantifying when the Markovian approximation
applies: indeed, it is now clear that the Markovian limit begins
to fail when the subleading derivative terms in (31) become
too large. Bounding the next-to-leading-order terms in (31)
to be small relative to the leading-order terms maps out the
parameter space where the Markovian approximation applies.
We explore such Markovian validity bounds in full detail in
Sec. V so as to determine the parameter ranges for which we
can trust the Markovian evolution predicted by Eq. (32).

Time-dependent coefficients and late times

Finally, while Eq. (32) is already memoryless (or time-
local), it turns out the upper limit of τ on the integrals prevents
straightforward integration out to very late times for the prob-
lem at hand. To see why, note that Eq. (32) can be recast
into a system of ordinary differential equations (ODEs) for
a vector u(τ ) whose components are built out of the entries of
the density matrix ρ I

AB(τ ): schematically, it takes the general
form

du(τ )

dτ
= A(τ )u(τ ) + v(τ ), (33)

where v(τ ) is some possibly nonzero vector and A(τ ) is
a square matrix, both of whose entries contain the integral
transforms of environment correlators WS,×(s) appearing in
Eq. (32) (with upper limits τ on the integrals). Even for the
case when v(τ ) = 0, the matrix ODE above cannot be solved
in closed form unless A(τ ) obeys very specific properties.11

Formal solutions to (33) generally involve time-ordered expo-
nentials which in turn requires perturbative treatments that the
late-time resummation was meant to avoid.

Another important point that is often missed is that al-
though Eq. (33) can be organized into a Lindblad-like form
[see Eq. (49)], the resulting coefficients are time-dependent
and therefore this master equation does not obey the as-
sumptions of the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) theorems stated in [61,76]. In particular, if one tries
to put Eq. (33) into “Lindblad form,” the corresponding Kos-
sakowski matrix of Lindblad coefficients can be apparently
negative-definite especially at early times, which is usually
taken to be a violation of the complete-positivity (CP) prop-
erty for the evolution. However, Lindblad’s theorem only
applies for master equations in Lindblad form with time-
independent Kossakowski matrix (see [63] for more details).12

Consequently, one cannot make claims about the CP property
of the evolution (or lack thereof) by invoking Lindblad’s the-
orem at this stage. In fact, since we cannot perform late-time
resummation yet with time-dependent A(τ ), it is pointless to
check the CP properties though the GKSL theorems at this
juncture.

11Such as when [A(s),A(s′)] = 0 for all s, s′ ∈ (0, τ ).
12In essence this is because the Lindblad generator as defined in

[61,62] is a single time-independent (possibly unbounded) operator.
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The upshot is that the practical calculation of late-time re-
summation requires more than just removing memory effect:
we need to find a regime where the time-local equation (32)
can be approximated as a matrix ODE with constant coeffi-
cients, which is exactly solvable in closed form. That is, we
need to work in the regime where Eq. (33) reduces to

du(τ )

dτ
= Au(τ ) + v, (34)

where A is now a constant matrix and v is also a constant
vector. Indeed, this is the case in later sections when we
consider late-time dynamics of the detectors.

To this end, given the falloff of the environment correlators
given in (30a) and (30b), we assume that

aτ � max

{
1,

1

2
ln

(
aL

2

)}
(35)

so that we can approximate ∼∞ on the upper limit of the
integrals in our Markovian equation of motion (32) giving

dρ I
AB

dτ
� g2

∑
j,k

∫ ∞

0
ds

{
W jk (s)

[
μI

j (τ )ρ I
AB(τ ), μI

k (τ )
] + H.c.

}
.

(36)
This is the master equation whose late-time resummed solu-
tion is amenable to explicit computation.

We solve this equation in Sec. IV C, but first we take a
small detour to discuss why we use the stated Markovian
approximation instead of the standard one usually taken in the
literature.

B. Other commonly used versions of the Markovian
approximation

In the majority of the literature, most of which are based on
the approach described in [56,57], the “standard” Markovian
approximation is usually taken as the approximation

ρ I
AB(τ − s) � ρ I

AB(τ ) − s ρ̇ I
AB(τ ) + · · · (37)

as opposed to Eq. (31) taken above. That is, instead of apply-
ing the series expansion about τ on both the observable and
the state μI

j (τ − s)ρ I
AB(τ − s), the usual approach applies the

series expansion only to the density operator ρ I
AB(τ − s) while

keeping the monopole operator μI
j (τ − s) intact. The folklore

is that the Markovian regime is when the state has no memory
about its past history.

We now argue that the self-consistent way of taking the
standard approximation (37) for the setup at hand is exactly
the one considered in this work (which in turn is inspired
by [60]). The usual logic for keeping only the leading-order
term of the state ρ I

AB(τ − s) � ρ I
AB(τ ) − sρ̇ I

AB(τ ) + · · · in any
integro-differential master equations, such as those that arise
from Nakajima-Zwanzig formalism, is that we are guaran-
teed that ρ̇ I

AB(τ ) ∼ O(g2) from the master equation we start
from. Since these derivative terms in the approximation are
suppressed by two extra powers of the coupling strength, this
seems to imply that all the subleading terms in the Taylor se-
ries can be safely ignored. What this argument fails to account
for is that the derivative terms can become dangerously large
if energy scales associated with the system become too large
(compared to the energy scales of the environment).

In order to demonstrate where the problem lies, it is most
easily illustrated for the single detector case where �/a � 1
alone causes the Markovian approximation to break down
(for two detectors there are more conditions, as we see in
Sec. V). By ignoring Bob’s detector entirely and only focusing
on Alice’s detector, one gets the analog of the Nakajima-
Zwanzig equation (26) for Alice’s reduced density matrix
ρ I

A := trB[ρ I
AB] where (see Sec. 3.2 of [47] and also [48,49,77]

for more details)

dρ I
A

dτ
� g2

∫ τ

0
ds

{
WS(s)

[
μI (τ − s)ρ I

A(τ − s), μI (τ )
] + H.c.

}
,

(38)
where μI := trB[μI

A]. The failure of the Markovian approxi-
mation in the case of �/a � 1 is most easily appreciated by
studying the evolution of the off-diagonal components ρ I

A,12
of Alice’s reduced density matrix13

dρ I
A,12

dτ
� −2g2

∫ τ

0
ds Re[WS(s)]e+i�sρ I

A,12(τ − s)

+ 2g2e+2i�τ

∫ τ

0
ds Re[WS(s)]e−i�sρ I∗

A,12(τ − s).

(39)

If one uses (37), as is usually done in the literature, then the
resulting Markovian equation of motion for the off-diagonal
components yields

dρ I
A,12

dτ
� −2g2

∫ ∞

0
ds Re[WS(s)]e+i�sρ I

A,12(τ )

+ 2g2e+2i�τ

∫ ∞

0
ds Re[WS(s)]e−i�sρ I∗

A,12(τ ),

(40)

where we have also assumed aτ � 1 so the upper limit on
the integral can be approximated by � ∞. The time-local
differential equation (40) turns out to have the solution in the
nondegenerate regime g2C � �

ρ I
A,12(τ ) � Ae−g2Cτ + Be(−g2C+2i�)τ , (41)

where C is given by

C := 2
∫ ∞

0
ds Re[WS(s)] cos(�s) = �

4π
coth

(
π�

a

)
, (42)

and A and B are constant coefficients which can be explicitly
computed but whose form is not important in what follows
(see Appendix C).

To check when the Markovian approximation is valid, one
can insert the solution (40) and see when (39) is well approxi-
mated by (40). Although somewhat tedious (see Appendix C),
it can be shown that we require∫ τ

0
ds Re[WS(s)]e+i�se+g2Cs �

∫ ∞

0
ds Re[WS(s)]e−i�s.

(43)

13In Eq. (39) and those that follow, one should include a renormal-
ization of Alice’s detector gap in order to get the Markovian solution
(41). We omit this detail here; see Appendix C.
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Noting that Re[WS(s)] ∝ e−as for as � 1, the above approxi-
mation can work only when

g2C � a, (44a)

e+i�s � e−i�s � 1. (44b)

The main point here is that while the first condition (44a)
can be suppressed by making g sufficiently small, the sec-
ond condition (44b) can hold underneath the integral sign
in (43) only when � � a. In other words, for �/a � 1 it
is impossible to satisfy the approximation (43), and so the
Markovian approximation cannot be consistently applied. The
argument given here is related to the diagnostic for the failure
of the Markovian approximation described in [47] where it
was explicitly shown that derivative terms in the Taylor series
(37) become too large when �/a � 1. This extra requirement
that �/a � 1 is often missed in the literature (although stated
in [43,47,48,77]).

What we have seen above is that the correct way of taking
the Markovian approximation necessarily accounts for the
requirement that �/a � 1. We now claim that our version
of Markovian approximation in Sec. IV A (inspired by the
work in [60]) does account for this. Following Sec. IV A,
the right way of taking the approximation for Alice’s qubit
is to perform Taylor series expansion about τ on both the
monopole and the state:

μI (τ − s)ρ I
A(τ − s)

� μI (τ )ρ I
A(τ ) − s

[
μI (τ )ρ̇ I

A(τ ) + μ̇I (τ )ρ I
A(τ )

] + · · · .

(45)

Note that by approximating μI
j (τ − s) � μI

j (τ ) underneath
the integral sign, we are automatically requiring that the
energy scales associated with the system (in this case �

appearing in the detector’s monopole operator) are small com-
pared to those associated with the environment (encoded in
the falloff of the environment correlators). This amounts to
erasing any history dependence in the system operators as
well as the state itself. Furthermore, by bounding the deriva-
tive terms in (45) relative to the leading-order term, it can
be checked explicitly for a single detector that indeed the
Markovian approximation is valid only when �/a � 1.

In fact, what we believe to be the correct Markovian ap-
proximation also solves other problems that otherwise require
further renormalization of divergences or other sleights of
hands. Using the approximation (45) on (39) gives us a dif-
ferent Markovian equation of motion [cf. Eq. (40)]

dρ I
A,12

dτ
� −2g2

∫ ∞

0
ds Re[WS(s)]ρ I

A,12(τ )

+ 2g2e+2i�τ

∫ ∞

0
ds Re[WS(s)]ρ I∗

A,12(τ ), (46)

which has the solution [cf. Eq. (41)]

ρ I
A,12(τ ) � ASe−g2CSτ + BSe(−g2CS+2i�)τ ,

AS = ρ I
A,12(0) + ig2CS

2�
ρ I∗

A,12(0), (47)

BS = − ig2CS

2�
ρ I∗

A,12(0),

and the constant CS reads

CS := lim
�→0+

C =
∫ ∞

0
ds Re[WS(s)] = a

4π2
. (48)

This solution has three crucial features: (1) it is much simpler
than Eq. (41), (2) it is independent of any UV divergences,
and most importantly (3) contrary to what is often said in the
literature, it preserves complete-positivity (CP) property for
the entirety of its evolution without further approximations
(including RWA) [47]. The requirement �/a � 1 is encoded
in the definition of CS, since C/a = CS/a + O(�2/a2). It is
important to note that the Markovian solution still has depen-
dence on �: it just cannot appear in the “matrix coefficients”
of the Markovian equation of motion.

In the remainder of this paper, we use this logic in applying
the analog of the Markovian approximation (45), namely,
Eq. (31), to our more complicated two-detector problem. We
see later that the “correct” Markovian approximation also
circumvents the need for tracking any UV divergences often
associated with the “standard” Markovian approximation and
will preserve complete positivity without RWA in the regime
where Markovian limit is valid. Before doing so, we first
show in the next subsection that (45) results in a Lindblad
equation which makes manifest the CP-preserving property
and hence why RWA is not necessary.

C. Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form

The best way to show why the Markovian approximation
(45) results in CP-preserving dynamics (without further ap-
proximation) is to cast our master equation into a Schrödinger
picture equation of the form

∂ρAB

∂τ
= −i[heff , ρAB(τ )] + D[ρAB(τ )]. (49)

Equation (49) takes the form analogous to the the Liouville–
von Neumann equation with an effective Hamiltonian heff

(sometimes called the Lamb shift) and with an extra term
involving the dissipation superoperator D capturing the
nonunitary open dynamics of the time evolution generated by
the master equation. For bipartite qubits, Eq. (49) is said to be
in Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form if
the dissipator has the form [61,62]

D[ρAB] =
3∑

α,β=1

∑
j,k=A,B

γ
αβ

jk

(
σ k

βρABσ
j

α − 1
2

{
σ j

ασ k
β , ρAB

})
,

(50)

where the matrix γ := [γ αβ

jk ] is known as the Kossakowski
matrix. The time evolution of the joint qubit state ρAB is said
to be completely positive (CP) if the linear superoperator �τ :
ρAB(0) �→ ρAB(τ ) is a quantum channel, i.e., �τ is completely
positive and trace-preserving (CPTP) map. It is known that
that the dynamical evolution is CP if and only if the Kos-
sakowski matrix γ is positive semidefinite, heff is Hermitian,
and the “jump operators” (here σ

j
α ) form an orthonormal basis

for the Hilbert-Schmidt operators on the joint detector Hilbert
space [56,61–63,76,78,79].

Let us now recast the Markovian dynamics encoded in
Eq. (36) into GKSL form. Converting (36) to the Schrödinger

012208-8



EFFECTIVE MASTER EQUATIONS FOR TWO … PHYSICAL REVIEW A 107, 012208 (2023)

picture using (12) yields

∂ρAB

∂τ
� −i[hA + hB, ρAB(τ )]

+ g2
∑

j,k

∫ ∞

0
ds {W jk (s)[μk (0)ρAB(τ ), μ j (0)]

+ H.c.}, (51)

with the sum running over j, k ∈ {A,B} as before. We stress
again that a crucial difference that distinguishes the usual
procedure in the literature from ours is the way the Markovian
approximation is implemented14

In addition to the constant CS defined in (48), we also define
two other constants that depend on separation L:

C× := 2
∫ ∞

0
ds Re[W×(s)] = sinh−1 (aL/2)

2π2L
√

1 + (aL/2)2
,

(52a)

K× := 2
∫ ∞

0
ds Im[W×(s)] = − 1

4πL
√

1 + (aL/2)2
.

(52b)

The Markovian master equation (51) can be reorganized
into GKSL form (49) with

heff = hA + hB + g2K×σ A
1 σ B

1 . (53)

The entries of the Kossakowki matrix (50) are given by

[
γ

αβ
AA

] = [
γ

αβ
BB

] =
⎡
⎣g2CS 0 0

0 0 0
0 0 0

⎤
⎦, (54a)

[
γ

αβ
AB

] = [
γ

αβ
BA

] =
⎡
⎣g2C× 0 0

0 0 0
0 0 0

⎤
⎦. (54b)

The effective Hamiltonian operator heff is here the joint
free Hamiltonian of the detectors hA + hB together with an ex-
tra degeneracy-lifting environment-induced interaction term
g2K×σ A

1 ⊗ σ B
1 . Notably, this so-called “Lamb shift” term is

finite and the degeneracy in the joint free Hamiltonian is lifted
because the spectrum of heff is {−�,−g2K×,+g2K×,�}
while the spectrum of hA + hB is {−�, 0, 0,�}.

We now claim that the dynamics described by heff and the
6 × 6 Kossakowski matrix,

γ =
[
γ

αβ
AA γ

αβ
AB

γ
αβ

BA γ
αβ

BB

]
, (55)

defines a CP-preserving evolution map without further ap-
proximation. This follows directly from the fact that heff is
Hermitian and the Kossakowski matrix γ is indeed positive-
semidefinite, where the only two nonzero eigenvalues are

λ1[γ] = g2(CS + C×), λ2[γ] = g2(CS − C×), (56)

which are nonnegative since CS � C× > 0 for any L � 0. In
other words, the Markovian master equation (51) studied in
this work using the correct Markovian approximation (31)
already defines CP-preserving evolution without the need for
any additional approximations such as the RWA.

D. Markovian limit of the X block

We are now ready to perform the late-time resummation
for the late-time dynamics of the detectors. Recall that the
evolution decouples15 into two sets of matrix ODE for the X
and O blocks as stated in (27). In what follows we find it more
convenient to work in the Schrödinger picture.

Starting from the Markovian dynamics (51), the X block
component can be rearranged into a matrix ODE with constant
coefficient of the form (34): this reads

dx
dτ

= (M0 + g2M2)x(τ ) + g2b, (57)

where we define the vector of X -block components x(τ ) and
the constant vector b to be

x(τ ) := [ρ11(τ ) ρ22(τ ) ρ33(τ ) Re[ρ14(τ )] Im[ρ14(τ )] Re[ρ23(τ )] Im[ρ23(τ )]]T , (58a)

b := [0 CS CS −C× −K× C× 0]T , (58b)

and M0,M2 are constant matrices

M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 2� 0 0
0 0 0 −2� 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2CS CS CS −2C× −2K× 2C× 0
0 −3CS −CS 2C× 0 −2C× −2K×
0 −CS −3CS 2C× 0 −2C× 2K×
0 2C× 2C× −2CS 0 2CS 0

2K× K× K× 0 −2CS 0 0
0 −2C× −2C× 2CS 0 −2CS 0
0 K× −K× 0 0 0 −2CS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (59)

14The “standard” Markovian approximation would have given

∂ρAB

∂τ
� −i[hA + hB, ρAB(τ )] + g2

∑
j,k

∫ ∞

0
ds {W jk (s)[μk (−s)ρAB(τ ), μ j (0)] + H.c.}.

15The full set of integro-differential equations for the X block from NZ-ME2 (before the Markovian approximation) are shown in Appendix A.
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The determinant of the matrix is given by

det(M0 + g2M2)

= −256g10�2Cs
(
C2

s − C2
×
)(

C2
s + K2

×
)
, (60)

which is nonzero so long as � > 0 and L > 0 (since C× � CS

with C× → Cs in the limit L → 0+). Remarkably, this alone
already implies that any inferences made for the dynamics
immediately become suspect in the limit that the trajectories
are “stacked” on top of one another with L → 0+ (considered,
e.g., in [27]).

The eigenvalues for M0 + g2M2 are given by16

λX
1 � −2g2Cs,

λX
2 � −3g2Cs − g2

√
C2

s + 8C2×,

λX
3 � −3g2Cs + g2

√
C2

s + 8C2×,

λX
4 = −2g2(Cs − iK×),

λX
5 = −2g2(Cs + iK×),

λX
6 � −2i� − 2g2Cs,

λX
7 � +2i� − 2g2Cs. (61)

Since the determinant (60) is nonzero this means that the
matrix is invertible (so long as �, L > 0). This is sufficient
for computing the steady-state solution

dx�

dτ
= 0 �⇒ x� = −(M0 + g2M2)−1g2b. (62)

Furthermore since Re[λX
j ] < 0 for all j at O(g2), we can

conclude that the dynamics sink towards the above steady
state x� for any initial state x(0). The stationary solution x�

reads

x� � (
1
4 , 1

4 , 1
4 , 0, 0, 0, 0

)T
, (63)

and more generally, the solution to (57) for arbitrary τ is given
by

x(τ ) = e(M0+g2M2 )τ (x(0) − x�) + x�. (64)

This is the late-time resummed solution for the X block since
it is valid for g2aτ ∼ 1.

We can evaluate this general solution (64) numerically or
perturbatively along the lines of [47] [e.g., see Eq. (105)]. The
numerical calculation of (64) will be relevant, for instance,
when we want to calculate the amount of entanglement that
the two detectors acquire via interaction with the quantum
field.

E. Markovian limit for O block

For the O block, we perform the same procedure as before
(see Appendix B for the NZ-ME2 before taking the Marko-
vian approximation) which leads to

dy(τ )

dτ
= (N0 + g2N2)y(τ ), (65)

where we define

y(τ ) := [ρ12(τ ) ρ13(τ ) ρ24(τ ) ρ34(τ ) ρ∗
12(τ ) ρ∗

13(τ ) ρ∗
24(τ ) ρ∗

34(τ )]T (66)

and where N0,N2 are constant matrices

N0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−i� 0 0 0 0 0 0 0
0 −i� 0 0 0 0 0 0
0 0 −i� 0 0 0 0 0
0 0 0 −i� 0 0 0 0
0 0 0 0 i� 0 0 0
0 0 0 0 0 i� 0 0
0 0 0 0 0 0 i� 0
0 0 0 0 0 0 0 i�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2CS −α C× CS CS C× −α∗ 0
−α −2CS CS C× C× CS 0 −α∗

C× CS −2CS −α∗ −α 0 CS C×
CS C× −α∗ −2CS 0 −α C× CS

CS C× −α 0 −2CS −α∗ C× CS

C× CS 0 −α −α∗ −2CS CS C×
−α∗ 0 CS C× C× CS −2CS −α

0 −α∗ C× CS CS C× −α −2CS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (67)

16These are computed as a series in the coupling g since the the characteristic polynomial has high degrees so we neglect O(g4) contributions
here. Note, however, that λX

4 and λX
5 are exact eigenvalues of M0 + g2M2).
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with the shorthand α := C× − iK×. Furthermore we find the
determinant

det(N0 + g2N2)

= �8 + 16g4�6C2
s + 64g8�4C2

s

(
C2

s − C2
×
)
, (68)

which is always nonzero in the perturbative limit for
nonzero gap (� > 0). The matrix eigenvalues at O(g2) are
given by

λO
1 � −i� + g2(−2Cs + C× −

√
(Cs − C×)2 − K2×),

λO
2 � −i� + g2(−2Cs + C× +

√
(Cs − C×)2 − K2×),

λO
3 � −i� + g2(−2Cs − C× −

√
(Cs + C×)2 − K2×),

λO
4 � −i� + g2(−2Cs − C× +

√
(Cs + C×)2 − K2×)

(69a)

with the corresponding conjugate pairs

λO
5 = λO∗

1 , λO
6 = λO∗

2 , λO
7 = λO∗

3 , λO
8 = λO∗

4 . (69b)

Since the matrix N0 + g2N2 is invertible (for � > 0), we
have the general late-time resummed solution

y(τ ) = e(N0+g2N2 )τ y(0). (70)

At large τ → ∞, we have y(τ ) → 0, i.e., the O block decays
to zero. This follows from the fact that the stationary solution
y� is given by

dy�

dτ
= 0 �⇒ y� = 0, (71)

because all the eigenvalues of N0 + g2N2 have negative real
parts (so long as � > 0). This result implies that regardless of
the initial state chosen for the two detectors, only the X -block
contribution survives in the late-time limit.

F. Thermalization and (lack of) entanglement

The late-time steady-state solution for the NZ-ME2 equa-
tion follows by combining the steady-state solutions x� and y�

for both X block and O block we obtained earlier. The result is
that the late-time stationary state is maximally mixed for any
initial joint state of both qubits:

ρAB(∞) = 1
2 ⊗ 1

2 + O(g4), (72)

which is clearly separable. Observe that the steady-state solu-
tion (72) is independent of �, a, L and any UV cutoffs (like ε

used to regulate coincident limit divergences). In other words,
calculations in the Markovian regime at leading order are un-
able to probe the temperature of the field even if both detectors
do thermalize. This is because the Markovian regime where
we need �/a � 1 corresponds to the high-temperature limit,
hence the steady-state solution picks out only the zeroth-order
expansion in �/a. Any dependence of the state on �/a can
appear only at finite τ .

Furthermore, the fact that the asymptotic final state is
independent of L means that the Markovian regime washes

out the effect of field-mediated communication between the
two detectors. Any L-dependent corrections to the steady-state
solution can appear only at finite τ at this order in perturbation
theory. It is worth emphasizing that the lack of L dependence
at late times on its own is not very surprising: already in
other contexts such as entanglement harvesting, detectors are
unable to get entangled by the quantum field vacuum when
the energy gap is too small compared to other scales of the
problem [9,12,80,81]. Similarly, in perturbative short-time
Dyson series expansions, accelerated detectors suffer entan-
glement degradation [19]. These older results already suggest
(in hindsight) that one should not expect any entanglement
in the late-time Markovian regime when both detectors are in
their ground states.

That said, we should still be able to infer the Unruh tem-
perature from the late-time dynamics indirectly. Indeed, since
the solutions to the ODEs are given by Eqs. (64) and (70) (we
repeat here for convenience),

x(τ ) = e(M0+g2M2 )τ (x(0) − x�) + x�,

y(τ ) = e(N0+g2N2 )τ y(0), (73)

the eigenvalues of M0 + g2M2 and N0 + g2N2 set the scale
for the thermalization process. In the limit of large sepa-
ration (aL � 1), we have C×/CS � 1 and K×/CS � 1, so
that the maximum of the real part of the eigenvalues is
given by

max
j

Re
(
λX

j

) � −2g2CS = g2a

2π2
≡ g2TU

π
. (74)

This is equal to the decay rate of a single accelerating de-
tector experiencing thermal bath at Unruh temperature TU =
a/(2π ) found in the literature (see, e.g., [43]). Therefore,
while the asymptotic final state cannot tell us about the Un-
ruh temperature, we can still learn about the Unruh effect
from its decay rates so long as the detectors are far enough
apart.

In contrast, for aL � 1 is not tractable in the Markovian
regime since λX

3 approaches zero as aL gets smaller. This can
be attributed to field-mediated communication (from the com-
mutator) between the two detectors at small separation which
dominates. In effect, what is happening is that for aL � 1,
the detectors can exchange information with one another via
the field commutator, so one detector “stores” the memory of
the other detector. Consequently, the decay process becomes
much slower at small separation (Re[λX

3 ] � 0−).

V. VALIDITY RELATIONS FOR MARKOVIAN LIMIT

In Sec. IV we obtained the Markovian solution for the
two-detector dynamics and showed that the evolution is CP
without the need for RWA. This issue is largely ignored
in the literature,17 especially so when two detectors are

17One exception is [43] for a single detector, but the method is not
very portable for two detectors.
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considered. In the majority of past literature we are aware of,
it is assumed that the Markovian limit can be taken, without
specifying when it is valid in terms of the relevant scales for
the problem at hand. We now find explicitly the requirements
for the Markovian limit to be valid, and we show that similar
two-detector calculations in the past can actually violate these
requirements.

Recall that the Markovian approximation can be
viewed in terms of the Taylor series (31), repeated

here:

μI
j (τ − s)ρ I

AB(τ − s)

� μI
j (τ )ρ I

AB(τ ) − s
[
μI

j (τ )ρ̇ I
AB(τ ) + μ̇I

j (τ )ρ I
AB(τ )

] + · · · .

(75)

This is physically motivated by the fact that the environment
correlators WS,× are strongly peaked about s = 0 in the master
equation. Inserting (75) into (26), we get

dρ I
AB

dτ
� g2

∑
j,k∈{A,B}

∫ ∞

0
ds

{
W jk (s)

[
μI

j (τ )ρ I
AB(τ ), μI

k (τ )
] + H.c.

}

− g2
∑

j,k∈{A,B}

∫ ∞

0
ds

{
sW jk (s)

[
μI

j (τ )ρ̇ I
AB(τ ) + μ̇I

j (τ )ρ I
AB(τ ), μI

k (τ )
] + H.c.

} + · · · . (76)

Using μ̇I
j (τ ) = −�(−iσ j

+e+i�τ + iσ j
−e−i�τ ) we can put Eq. (76) into the Lindblad-like form, which in the Schrödinger picture

reads
dρAB

dτ
� −i[heff , ρAB(τ )] + Dγ [ρAB(τ )] − i[zeff , ρAB(τ )] + Dη{−i[h, ρAB(τ )] + ρ̇AB(τ ) } + Dζ[ρAB(τ )]. (77)

The first two terms of Eq. (77) are the original terms in the GKSL master equation: the effective Hamiltonian heff is given in
Eq. (53), while the dissipator Dγ is given by Eq. (50), with Kossakowski matrix γ computed in Eqs. (54a) and (54b). The next
three terms contain the subleading corrections to the GKSL equation: first, we have zeff defined by

zeff := −g2�D′
S

2

(
σ A

3 + σ B
3

) − g2�S ′
×

2

(
σ A

1 σ B
2 + σ A

2 σ B
1

)
. (78)

The last two terms are extra “dissipation terms” Dη,Dζ with the corresponding “Kossakowski matrices” η and ζ given by

[
η

αβ
AA

] = [
η

αβ
BB

] =
⎡
⎣D′

S 0 0
0 0 0
0 0 0

⎤
⎦ [

ζ
αβ
AA

] = [
ζ

αβ
BB

] =
⎡
⎣ 0 1

2 (D′
S − iS′

S) 0
1
2 (D′

S + iS′
S) 0 0

0 0 0

⎤
⎦

and[
η

αβ
AB

] = [
η

αβ
BA

] =
⎡
⎣D′

× 0 0
0 0 0
0 0 0

⎤
⎦ [

ζ
αβ
AB

] = [
ζ

αβ
BA

] =
⎡
⎣ 0 1

2 (D′
× − iS′

×) 0
1
2 (D′

× + iS′
×) 0 0

0 0 0

⎤
⎦. (79)

The constant coefficients D′
S,× and S′

S,× are given by

D′
S,× := 2

∫ ∞

0
ds Re[WS,×(s)]s, (80a)

S′
S,× := 2

∫ ∞

0
ds Im[WS,×(s)]s, (80b)

which evaluate to (see Appendix D)

D′
S = ln(aε)

2π2
, D′

× = Re[Li2(�2
−) − Li2(�2

+)]

4π2 aL
√

1 + (aL/2)2
, (81a)

S′
S = − 1

4π
, S×′ = sinh−1 (aL/2)

2πaL
√

1 + (aL/2)2
, (81b)

where Li2(z) is the polylogarithm of order 2 [82] and we used
the shorthand

�± := aL
2 ±

√
1 +

(
aL

2

)2

. (82)

Note that D′
S is a UV-regulated function with the infinitesimal

ε > 0 appearing in the iε prescription of the environment
correlators WS,×. It is worth stressing that the UV regulator

is needed because sharp switching is not compatible with
pointlike limits in (3 + 1) dimensions: the UV regulator is
given the interpretation of a position-space cutoff on the size
of the detector below which we cannot resolve.18

A. Matrix ODE derivation of validity bounds

The idea of finding where the Markovian approximation
applies is to bound the last three terms in (77) involving zeff ,
η and ζ to be parametrically small compared to the first two
terms involving heff and γ . Wherever in parameter space this
is true, the Lindbladian dynamics studied in this work are
valid—this results in a set of bounds which must be satisfied
involving functions of g, a, � and L (as well as a UV cutoff ε)
which we call validity bounds.

18Note that in other contexts such as entanglement harvesting,
pointlike detector models may still work because some initial states
are insensitive to these UV issues. In the validity relations derived
here, the UV regulators will appear explicitly as we consider arbi-
trary qubit initial states.
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The simplest way of doing this is to again split (77) into
the X and O blocks, keeping the subleading non-Markovian
correction as in (77) and find the analogous matrix ODE to
Eq. (34): the result is an equation of the form

du
dτ

� Au + v︸ ︷︷ ︸
Markov.

−Y
du
dτ

− Zu︸ ︷︷ ︸
lead. non-Markov.

. (83)

The matrix Y can be obtained from A by the replacement
CS,× → D′

S,× and KS,× → S′
S,× (with the rest of the entries

zero), while the matrix Z depends only on combinations of
�D′

j and �S′
j . Iteratively plugging (34) into the right-hand

side of (83) gives

du
dτ

� (1 − Y )(1 − ZA−1)Au + (1 − Y )v, (84)

where we have used the fact that A is invertible (for both the
X and O blocks, so long as �, L > 0). Equation (84) says that
for the Markovian approximation to be valid, we need

1 − Y � 1, 1 − ZA−1 � 1, (85)

i.e., each matrix element satisfies

|Ynm| � 1 and |(ZA−1)nm| � 1. (86)

Equation (86) provides a very compact way of stating the
constraints required for validity of Markovian approximation.

What remains to be done is to write down the information
contained in (86) in terms of physical parameters g, �, a, L,
and ε. Studying the X block in the above manner results in
entries of the matrix Y which from |Ynm| � 1 yield

g2|D′
S| = g2 ln(aε)

2π2
� 1, (87a)

g2|D′
×| = g2 Re[Li2(�2

−) − Li2(�2
+)]

4π2aL
√

1 + (aL/2)2
� 1, (87b)

g2|S′
×| = g2 sinh−1 (aL/2)

2πaL
√

1 + (aL/2)2
� 1, (87c)

where �± is defined in (82). It is straightforward to see that
|S′

×| � 1 for all aL � 0, hence the third bound is automati-
cally satisfied. The first bound a single-detector bound (also
encountered in [47]) and ensures the smallness of the cou-
pling g must compensate for the largeness of the UV cutoff
ε. The nontrivial bound ends being the second one, since it
depends on the detector separation: for aL � 1 we always
have |D′

×| � 1; however,

g2|D′
×| � g2[1 − ln(aL)]

2π2
for aL � 1. (88)

What this means is that small aL must be compensated by
weaker coupling g, and so one cannot make aL arbitrarily
small. This bound is distinct from the UV cutoff requirement
that demands ε � L.

The condition |(ZA−1)nm| � 1 for the X block introduces
more bounds, which are generally very complicated due to the
matrix inverse. However, all the bounds involving aL are only
nontrivial when aL � 1 (i.e., they can be easily satisfied for
aL � 1), so below we restrict our attention only for aL � 1.

The g-dependent bounds are

g2|ln(aε)|
2πaL

� 1,
g2

4aL
+ g2|ln(aε)| � 1,

3π�/a − g2aL

(aL)2
� 1,

g2

aL
� 1, (89)

while the g-independent bounds are

π�

a
� 1,

π�

a(aL)2
� 1,

�|ln(a2εL)|
a(aL)2

� 1. (90)

One of the main takeaways from this analysis is that aL,
which measures detector separation in units of a, cannot be
arbitrarily small: it is bounded below by all other parameters
involving aε, �/a and g2. Very small aL amounts to very
closely spaced detectors, and the field-mediated communica-
tion makes memoryless approximation harder to satisfy.

We can perform the same kind of (tedious) analysis for
the O block, and it turns out that up to irrelevant numerical
factors and linear combinations of the above conditions, the O
block does not contain any new information about Markovian
validity.

B. Summary: When is Markovian approximation valid?

The short story is that the Markovian validity favours weak
coupling g � 1 (due to perturbation theory), as well as small
detector gaps � � a and large separation aL � 1. Overall,
we can summarize the validity relations for Markovian limit
as follows:

(1) By default, the Markovian approximation requires that
�/a � 1. This requirement is often implicit or ignored in the
literature.

(2) In general the pointlike limit is ill-defined for arbitrary
qubit initial states when one considers sharp switching, which
is the usual approach in open quantum systems (with rare
exceptions such as [42]). Consequently, the UV divergences
encountered are to be interpreted as ignorance about the de-
tectors finite spatial extent. The validity bounds require

g2|ln(aε)|
2π2

� 1. (91)

That is, aε cannot be arbitrarily small: either we probe the
“high-temperature” regime19 (large a) relative to effective size
of the detector prescribed by the UV cutoff ε), or that detector
size cannot be arbitrarily small.

(3) In the presence of two detectors, we require that
g2|D′

×| � 1, where D′
× depends on the dimensionless detector

separation aL. For large aL this is automatically satisfied if (i)
and (ii) are properly satisfied; however, for small aL � 1 we
require that g, a, �, L, and ε work together to obey

π�

a(aL)2
� 1,

�|ln(a2εL)|
a(aL)2

� 1, g2 � aL, (92)

which are simplified versions of the aL-dependent validity
bounds given in (89) and (90). The crucial point is that aL

19At the same time, no finite-sized realistic detector can maintain its
rigid shape for arbitrarily large accelerations, e.g., due to ionization.
So in practice high-temperature regime is highly nontrivial.
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cannot be arbitrarily small: it is bounded below by quantities
involving g,�/a, aε. Thus this condition favors aL � 1; for
aL � 1 one has to more carefully tune �/a, aε and g in order
to compensate for the non-Markovianity this introduces.

(4) Finally, the matrices governing the evolution for the
X and O blocks are treated as perturbative in the coupling g
(for nonzero � > 0 where matrix determinants are nonzero),
this means that the matrices M0,N0 are large compared to
the perturbations g2M2, g2N2 in the matrix ODEs (57) and
(67). What this amounts to is remaining in a regime where the
eigenvalues λX,O given in (61) and (69) are perturbative in the
coupling—this means that the oscillation scale � > 0 must be
large compared to the O(g2) corrections. At the end of the day
this enforces

g2 � �

a
and g2 � �L, (93)

which roughly speaking ensures that g2 is the smallest param-
eter in the problem.20 Notice that the second relation in is yet
another manifestation that aL cannot be arbitrarily small.

It is worth noting that (93) has two important implications:
(1) the gapless limit � = 0 must be treated separately and not
simply set � = 0 in the results we have gotten so far—the
reason has to do with the fact that the matrices M0 + g2M2

(also for N0 + g2N2) have vanishing determinant in this limit,
so the density matrix does not generically decohere properly.
This is not a real problem because for gapless regime we
can fully solve the dynamics nonperturbatively (see [83]); (2)
since we also have �/a � 1, it must mean that

�/a ∼ g (94)

so that �/a is small enough for Markovianity to hold, but
large enough for the perturbative calculation to work.

While the conditions (i)–(iii) are not prohibitively restric-
tive, they do imply that several calculations in the literature for
the past two decades are strictly speaking invalid or unreliable.
These include (1) the stacked trajectory limit21 (L = 0) con-
sidered in [27] and (2) calculations using RWA-based GKSL
equation considered in [29,41] in the regime where �/a � 1,
which already violate (i).

VI. COMPARISON WITH ROTATING-WAVE
APPROXIMATION

The fact that the steady state at late times (72) is separable
and maximally mixed is not in itself very surprising since
a fast or hot environment should generically be expected to
scramble any information contained in an arbitrary initial
joint detector state. This section addresses the fact that there

20Strictly speaking, enforcing the validity bounds (93) is about
remaining in the perturbative or nondegenerate regime as opposed
to just being Markovian.

21The fact that (iii) implies that L �= 0 is disallowed is unsurprising,
first, because the environment-induced interaction diverges in this
limit. It is also well known that divergences associated with pointlike
detector models have nothing to do with open quantum systems: for
finite-sized detectors, by construction we do not allow centers of
mass to overlap for this reason.

are several different results in the literature which seem to
conflict with the results of this work (see, e.g., [27–32,37–
41]), most notably that sometimes the two detectors can end
up entangled.

What makes comparison to these works difficult is that
the microscopically derived Lindblad equations used all apply
an additional approximation relative to our work: the RWA.
Beginning with a Born-Markov approximation where only
the reduced density matrix is slowly varying [as described
in (37)], these works would find a GKSL equation whose
Kossakowski matrix has in general some negative eigenval-
ues (hence spoiling complete positivity) as well as explicit
dependence on divergences which cannot be renormalized
into an effective Hamiltonian. The RWA is then applied to
rectify this apparent CP-violation, dropping certain terms in
the GKSL equation under the guise that they should not be
important when the system oscillates quickly. After applying
the RWA, the resulting Kossakowski matrix then ends up
having nonnegative eigenvalues for any sizes of parameters
in the problem, including large detector gaps � � a, and the
expression is free of any nonrenormalizable divergences.

As we have already argued in the preceding sections [mo-
tivated by an effective field theory (EFT) way of thinking],
the Markovian approximation has a domain of validity that
restricts the parameter space that we can use. Once this
is recognized and we strictly remain in this subset of the
parameter space, the resulting Markovian dynamics is CP
without further approximations. Applying RWA at best will
only restrict the domain of validity even further, making the
resulting master equation even more restrictive in its use. Our
results demonstrate that not only is RWA unnecessary, but
in general one should always track the regime of validity of
all approximations involved, otherwise one risks obtaining
nonsensical master equations and output states that do not
reflect the physical problem at hand.

In this last section, we investigate what happens if we
apply the RWA anyway, within the domain of validity of the
(“correct”) Markovian approximation, so as to make an easier
point of comparison to the aforementioned literature. The
point of this exercise is twofold: first to emphasize that both
the dynamics studied in this paper and the RWA yields late-
time states which are not entangled (when constrained to be
within the regime of validity of Markovianity). Furthermore,
we show that the dynamics between the two approaches can
differ notably, which means that carelessly applying the RWA
alters physical predictions significantly.

A. The RWA-based solution

Let us now check what happens if we were to perform the
RWA and see if the differences between this and the dynamics
reported in this work are significant. Following, for example,
[56], taking the RWA amounts to dropping all terms coming
from

σ
j

±σ k
±ρAB(τ ), σ

j
±ρAB(τ )σ k

±. (95)

In the interaction picture, these terms arise from prod-
ucts of the monopole operators with a phase e±i(E+E ′ )τ

that correspond to fast “counter-rotating” terms (here
E , E ′ ∈ {�, 0, 0,−�} denotes the spectrum of the system
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Hamiltonian h = hA + hB). The standard lore is that these
terms oscillate much more quickly compared to the slow
“co-rotating” terms that come with e±i(E−E ′ )τ , and so should
be neglected. This procedure, more rigorously described by
Davies [58,59], yields a Lindblad equation of the form (49)
with Kossakowski matrix γ (RWA), with components

[
γ

αβ
AA

](RWA) = [
γ

αβ
BB

](RWA) =

⎡
⎢⎣

g2CS

2 0 0

0 g2CS

2 0
0 0 0

⎤
⎥⎦, (96a)

[
γ

αβ
AB

](RWA) = [
γ

αβ
BA

](RWA) =

⎡
⎢⎣

g2C×
2 0 0

0 g2C×
2 0

0 0 0

⎤
⎥⎦, (96b)

and an effective Hamiltonian

h
(RWA)
eff = g2K×

2

(
σ A

1 σ B
1 + σ A

2 σ B
2

)
; (97)

cf. Eqs. (54a), (54b), and (53). There are now four nonzero
eigenvalues (with repetition) of the new Kossakowski matrix
γ (RWA), given by

λ1[γ (RWA)] = λ2[γ (RWA)] = g2

2
(CS + C×), (98)

λ3[γ (RWA)] = λ4[γ (RWA)] = g2

2
(CS − C×). (99)

The RWA yields almost identical equations of motion as the
ones without RWA for both the X block and O block, with
M(RWA)

0 = M0, N(RWA)
0 = N0, but with the perturbative correc-

tion M(RWA)
2 and N(RWA)

2 being sparser matrices:

M(RWA)
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2CS CS CS 0 0 2C× 0
0 −3CS −CS 0 0 −2C× −2K×
0 −CS −3CS 0 0 −2C× 2K×
0 0 0 −2CS 0 0 0
0 0 0 0 −2CS 0 0
0 −2C× −2C× 2CS 0 −2CS 0
0 K× −K× 0 0 0 −2CS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N (RWA)
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2CS −α− C× CS 0 0 0 0
−α− −2CS CS C× 0 0 0 0
C× CS −2CS x − α+ 0 0 0 0
CS C× −α+ −2CS 0 0 0 0
0 0 0 0 −2CS −α+ C× CS

0 0 0 0 −α+ −2CS CS C×
0 0 0 0 C× CS −2CS −α−
0 0 0 0 CS C× −α− −2CS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(100)

cf. Eqs. (57) and (67). The matrix M0 + g2M(RWA)
2 can be

inverted, and the general solution for the X block is

x(RWA)(τ ) = e(M0+g2M(RWA)
2 )τ [x(0) − x�] + x�, (101)

where x� ends up evaluating to be exactly the same steady-
state solution as given earlier in Eq. (63) without applying
RWA.

For the O block one can check that the block-diagonal
matrix N0 + N (RWA)

2 is invertible with all eigenvalues having
negative real parts. This proves that at late times the O block
decays to zero for arbitrary initial states of the field. Together,
we have shown that for any initial state of the field, the steady-
state solution at late times is exactly the same as without
RWA: it is also a separable mixed state at leading order in
perturbation theory:

ρ
(RWA)
AB (∞) = 1

2 ⊗ 1
2 + O(g4) = ρAB(∞). (102)

Being explicit about the dynamics in the RWA case, it turns
out that at O(g2) the matrices M0 + g2M(RWA)

2 and N0 +

g2N (RWA)
2 have the same eigenvalues as the earlier (non-RWA)

eigenvalues listed in Eqs. (61) and (69). Since the real parts of
these eigenvalues are all negative this confirms that RWA also
sinks towards a separable mixed state.

The main difference between applying RWA and the earlier
Markovian description arises when one tracks the finite-time
dependence of the components of the density matrix. For
example, let us consider ρ

(RWA)
14 (τ ), which can be obtained

from two of the components of xRWA(τ ) in Eq. (101). We find
that

ρ
(RWA)
14 (τ ) � ρ14(0)e(−2i�−2g2Cs )τ . (103)

In contrast, for the non-RWA version the answer is somewhat
more complicated: one way to proceed is to compute the
(right) eigenvectors rX

j of the matrix M0 + g2M2 (as a series
in g), so that the solution (64) is equivalent to the ansatz

x(τ ) =
7∑

j=1

c je
λX

j τ rX
j + x�, (104)
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where the coefficients c j may also be computed as a series in g. This gives

ρ14(τ ) �
{
ρ14(0) + ig2CsRe[ρ14(0)]

�
+ ig2C×[2ρ22(0) + 2ρ33(0) − 1]

2�
− g2K×[2ρ11(0) + ρ22(0) + ρ33(0) − 1]

2�

}
e(−2i�−2g2Cs )τ

+ g2K×[2ρ11(0) + ρ22(0) + ρ33(0) − 1]

2�
e−2g2Csτ

−
ig2C×

(
4 − C2

s

C2×
+ Cs

C×

√
8 + C2

s

C2×

)[
2ρ22(0) + 2ρ33(0) − 1 + ( − Cs

C×
+

√
8 + C2

s

C2×

)
Re[ρ14(0)]

]
2�

(
8 + C2

s

C2×
− Cs

C×

√
8 + C2

s

C2×

) eg2(−3Cs−
√

C2
s +8C2× )τ

−
ig2C×

(
− 3Cs

C× +
√

8+ C2
s

C2×

)[(
− Cs

C× +
√

8+ C2
s

C2×

)
(2ρ22(0)+2ρ33(0)−1)−8Re[ρ14(0)]

]
4�

(
8+ C2

s
C2×

− Cs
C×

√
8+ C2

s
C2×

) eg2(−3Cs+
√

C2
s +8C2× )τ, (105)

where O(g4) effects have been neglected. In both cases,
for any given initial data ρ14(0) we have ρ14(τ ) → 0 and
ρ

(RWA)
14 → 0 at very late times. In other words, both non-RWA

and RWA solutions have the same late-time behavior for ρ14,
which we already know since the stationary state at late time
is diagonal in the uncoupled energy eigenbasis.

The main difference between Eqs. (105) and (103) can be
understood in the context of the theorems outlined by Davies
[58,59], and amounts to the simultaneous limit g2 → 0 and
τ → ∞ while keeping g2aτ ∼ O(1). What is important to
note is that Davies’ limit in fact includes taking RWA: while
the result of Davies is of course mathematically sound, the
master equation obtained via Davies’ approach cannot be used
if we insist on not applying RWA. To put it another way,
Davies’ theorem does not account for the free parameters in
the microscopic Hamiltonian which will vary from problem
to problem. Since we started from a UDW interaction (which
is the microscopic description of the setup), we are obliged
to restrict our attention to a subset of parameter space where
Born-Markov approximations apply. This in turn requires us
to restrict to “high-temperature” regime �/a � 1 (and all the
complicated validity relations found earlier). We only get the
same result as Davies’ approach if we also apply RWA, and
from an EFT perspective this means that we have to add more
constraints to the parameter space in addition to the validity
relations we have found earlier. These restrictions are not
given by Davies’ theorem and depends on the system under
consideration.

B. Entanglement generation and degradation:
With RWA vs without RWA

As shown in the previous subsection, at finite times the
two procedures yield different predictions since the density
matrices ρRWA

AB (τ ) �= ρAB(τ ) [compare for example (105) and
(103)]. In particular, it can be shown that the RWA result
approaches the full result when �L is large. This is consistent
with the fact that RWA may lead to superluminal signaling
in relativistic settings, yet large �L is precisely the regime
where the detectors are so widely separated that the superlu-
minal (but finite-time) propagation becomes negligible. This
means that RWA and the full result particularly disagrees
precisely when causal relations between the two detectors
matter.

In this subsection we underline this point by studying the
finite-time entanglement between the two detectors, showing
RWA evolution can in general differ significantly from the
non-RWA effective Markovian evolution studied in this work.
We choose to study negativity [84] as the entanglement mono-
tone, defined by

N [ρAB] =
∣∣∣∣ρ�A

AB

∣∣∣∣
1 − 1

2
, (106)

where �A denotes the partial transpose with respect to sub-
system A and || · ||1 is the trace norm. Negativity turns out
to vanish for separable states, and being an entanglement
monotone takes its maximum value for maximally entangled
bipartite states (such as Bell states for qubits, corresponding
to a negativity of 1/2).

We now show what happens to the entanglement genera-
tion and degradation by plotting N [ρAB(τ )] for various initial
states ρAB(0) by comparing RWA-based vs non-RWA based
solutions. We do not attempt to reproduce the plots in [29,41]
since they are outside the domain of validity of the Born-
Markov approximations (namely, �/a � 1 must always be
enforced in what follows).

In Fig. 1 we show the case when the detectors begin the
evolution in their ground states |↓↓〉. The common parame-
ter choices are �/a = 0.01, g = 0.01 and we consider both
smaller (aL = 0.25) and larger (aL = 2) separations. We see
a stark difference between the RWA-based solution and the
one without RWA: at all times the RWA-based solution cannot
generate entanglement, while the full Born-Markov solution
studied in this work (without RWA) can get temporarily en-
tangled at later times. The smaller the detector separation,
the longer the entanglement persists for non-RWA solutions.
Above aL ∼ 2 both solutions remain separable at all times.

We emphasize that our results are completely within the
domain of validity of the approximations (see Sec. V for how
to check its validity). This can be compared with Fig. 2, where
we show the case when the detectors are initially prepared
in states |↓↑〉, based on the choice of states in [29] with or
without RWA for the same set of parameters. This time, the
amount of entanglement is larger, but the differences between
RWA and non-RWA are very slight: the negativity is very
similar, and one can check that their differences N − N (RWA)

is of order 10−9 to 10−7 (i.e., significantly below ∼g2).
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FIG. 1. Initially prepared in ground state |↓↓〉 with or without RWA. The common parameter choices are �/a = 0.01 and g = 0.01. Left:
aL = 0.25; right: aL = 2. Note that for the RWA-based solution the detectors cannot get entangled from the ground state even though the
non-RWA solution could.

In Fig. 3, we show the case when the detectors are in the
Bell state |�±〉 = 1√

2
(|↓↓〉 + |↑↑〉) with the same parameter

choices. Since the Bell state is maximally entangled, there
is no surprise in having entanglement degradation especially
after interacting with the environment. This scenario is par-
ticularly interesting because it highlights what RWA actually
does to entanglement dynamics: it “smooths out” oscillatory
behavior of negativity obtained with only Born-Markov ap-
proximation, as can be seen from the zoomed-in version in
the middle figure of Fig. 3. The oscillatory behavior also is
modulated by a decaying function at late times (the rightmost
figure) and the difference in negativity is O(g2). Therefore,
we see that the non-RWA solution approaches RWA result at
very late times. Figure 3 gives an explicit demonstration of
how RWA is a form of averaging or coarse graining, essen-
tially by removing the oscillatory components and getting the
overall large-timescale behavior right. It is worth noting that
Fig. 3 has similar features as the one shown in Fig. 1 of [34],
even though there the parameters chosen are strictly speaking
outside the validity Markovian approximation (due to large
�/a � 1).

To summarize, the results we obtained so far show that
indeed analyses obtained with or without RWA can dras-
tically differ depending on the physical setups and initial

data at hand. In Fig. 1 the non-RWA solution can generate
entanglement while the RWA solution cannot; in Fig. 3 we
see the opposite where the entanglement dynamics is hardly
distinguishable. On a closer look, which is best demonstrated
using Bell states, we see that the RWA indeed applies an
averaging or coarse-graining procedure so that any oscillatory
behavior at short timescales are smoothed out. We have made
sure that all our plots are within the regime of validity in
which the dynamics is manifestly CP and Markovian even
without RWA.

VII. CONCLUSION

In this work we argue that the lack of CP property after
performing the Born-Markov approximation in the standard
open systems approach is problematic, as there is resid-
ual memory in the system operators that was not removed
when performing the Markovian approximation. This leads to
spurious divergences and lack of complete positivity, which
typically ends up being resolved by ad hoc procedures such
as the RWA. We show this explicitly in the context of the
oft-studied model of two accelerating detectors interacting
with a quantized massless scalar field in flat spacetime, using
a different Markovian approximation first used in [60]. The
fact that the bath (quantum field) is relativistic is important as
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0.030

5 10 15 20 25 30

0.1
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0.4

FIG. 2. Initially prepared in states |↓↑〉 based on the choice of states in [29] with or without RWA. The common parameter choices are
�/a = 0.01 and g = 0.01. Left: |↓↑〉, aL = 0.25; right: |↓↑〉, aL = 2. The difference between the negativities with or without RWA is of order
10−9 to 10−7.
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FIG. 3. Initially prepared in the Bell state |�+〉 = 1√
2
(|↓↓〉 +

|↑↑〉), based on the choice of states in [29] and [41], respectively,
with or without RWA. The common parameter choices are �/a =
0.01, g = 0.01 and aL = 2. Left: negativity as a function of time;
middle: zoomed-in version around g2aτ = 10, showing oscillatory
behavior for the solution without RWA; right: The difference in neg-
ativity �N = N − N (RWA) is O(g2). It shows oscillatory behavior
that decays at later times, with the non-RWA negativity approaching
RWA version at very late times.

it is well known that rotating wave approximations can lead
to important causality violations [64]: this has to do with the
fact that for fields in their vacuum states, both the co-rotating
and counter-rotating terms are important and there is no single
“rotating frame” that can counter all frequencies of the bath
modes (i.e., the field is a continuum of infinitely many modes,
as opposed to quantum optics settings where the bath is a laser
tuned to a single particular frequency).

Our work has a wider implication to generic open system
framework: more specifically, it suggests that the “infamous”
property of being non-CP for Redfield-type equations seen in
standard literature (see, e.g., [56,57]) is not quite correct. The
problem is that when one performs the Born-Markov approx-
imations, one has to restrict the parameter spaces for which
the resulting equation is valid. Our example shows that the
CP property is already guaranteed simply by faithfully staying
in the regime where the Markovian approximation is valid.
Applying RWA to fix the non-CP problem amounts in some
sense to “shifting the goalpost”: while the resulting GKSL-
RWA equation is manifestly CP even for large �/a � 1, we
are not allowed to do so because we needed �/a � 1 to even
arrive at this step. Therefore any calculation for �/a � 1 is
automatically not reliable.

This problem of “misusing” certain open systems approx-
imations is actually worse than it appears because there is a
general expectation that accelerating detectors should ther-
malize and entangle in some form or another. While both
expectations are fine, showing that they do hold properly is
rather tricky. For example, we here show that both the RWA-
based and non-RWA-based dynamics have the same stationary
solutions given by the maximally mixed state: this is to be
understood as a high-temperature thermal state since we are
in the regime where �/a � 1. Therefore, the asymptotic state
cannot easily be used to test the validity of approximations
taken. This is exacerbated by the fact that in the RWA-based
approach, one can obtain an actual thermal Gibbs state with
arbitrarily sized Unruh temperature without properly remov-
ing the memory effect when taking the Markovian limit. This
is a very tempting outcome, but we view this as an example of
getting an expected result via incorrect reasoning.

It is interesting to see that there is merit in approaching
problems in open quantum systems by treating the problem
as an EFT (i.e., in the Open EFT framework [60,69,85–106]
typically used for studying quantum fields themselves as op-
posed to qubits). From an EFT perspective, when a hierarchy
of scales can be utilized (in our case between the timescales
of the environment and system), relative “effective” simplicity
can arise. Furthermore, every EFT has its domain of valid-
ity and every approximation shrinks this domain; everything
works so long as one remains strictly within the regime where
the approximation is expected to work. Conversely, the break-
down of any approximate equation necessarily arises due to
being outside the domain of validity of that approximation.
Following this EFT line of thought, applying the RWA or
secular approximation to fix CP violations is an odd thing
to do because it amounts to moving the target by changing
the original problem to another (possibly unrelated) problem.
It is also worth noting that a similar model to ours has been
studied in [107], using harmonic oscillators as detectors in a
static bath, and the results are consistent with what we found
here.

We suspect that there are broader classes of problems
within the open system framework that have these sort of
spurious issues arising from apparent non-CP properties of
approximate master equations. One line of investigation we
are pursuing is to identify whether such problems arise in
more general open systems settings simply due to forc-
ing the resulting equation to work outside the domain of
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applicability of approximations taken. If these issues can be
solved by properly accounting for memory effects, then this
would make the open system framework more reliable, robust,
and more widely applicable for making physical predictions.
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APPENDIX A: NAKAJIMA-ZWANZIG EVOLUTION OF
THE X BLOCK

In this Appendix we give the explicit evolution equa-
tions for the X block ρ I

AB,X(τ ) defined in (27) for the
Nakajima-Zwanzig master equation (26) at O(g2) given in
Sec. IV. The X block contains five independent matrix el-
ements. The coupled integro-differential equations for these
matrix elements are given by

∂ρ I
11

∂τ
= 2g2

∫ τ

0
ds Re[WS(s)] cos(�s)

{ − 2ρ I
11(τ − s) + ρ I

22(τ − s) + ρ I
33(τ − s)

}
+ 2g2

∫ τ

0
ds Im[WS(s)] sin(�s)

{
2ρ I

11(τ − s) + ρ I
22(τ − s) + ρ I

33(τ − s)
}

− 2g2e−2i�τ

∫ τ

0
ds e+i�sW∗

×(s)ρ I
14(τ − s) − 2g2e+2i�τ

∫ τ

0
ds e−i�sW×(s)ρ I∗

14(τ − s)

+ 4g2
∫ τ

0
ds {Re[W×(s)] cos(�s) + Im[W×(s)] sin(�s)}Re

[
ρ I

23(τ − s)
]
, (A1)

∂ρ I
22

∂τ
= 2g2

∫ τ

0
ds Re[WS(s)] cos(�s)

{
1 − 3ρ I

22(τ − s) − ρ I
33(τ − s)

}
+ 2g2

∫ τ

0
ds Im[WS(s)] sin(�s)

{
1 − 2ρ I

11(τ − s) − ρ I
22(τ − s) − ρ I

33(τ − s)
}

+ 2g2e−2i�τ

∫ τ

0
ds e+i�sRe[W×(s)]ρ I

14(τ − s) + 2g2e+2i�τ

∫ τ

0
ds e−i�sRe[W×(s)]ρ I∗

14(τ − s)

− 4g2
∫ τ

0
ds

{
Re[W×(s)]Re

[
ρ I

23(τ − s)
] + Im[W×(s)]Im

[
ρ I

23(τ − s)
]}

cos(�s), (A2)

∂ρ I
33

∂τ
= 2g2

∫ τ

0
ds Re[WS(s)] cos(�s)

{
1 − ρ I

22(τ − s) − 3ρ I
33(τ − s)

}
+ 2g2

∫ τ

0
ds Im[WS(s)] sin(�s)

{
1 − 2ρ I

11(τ − s) − ρ I
22(τ − s) − ρ I

33(τ − s)
}

+ 2g2e−2i�τ

∫ τ

0
ds e+i�sRe[W×(s)]ρ I

14(τ − s) + 2g2e+2i�τ

∫ τ

0
ds e−i�sRe[W×(s)]ρ I∗

14(τ − s)

− 4g2
∫ τ

0
ds

{
Re[W×(s)]Re

[
ρ I

23(τ − s)
] − Im[W×(s)]Im

[
ρ I

23(τ − s)
]}

cos(�s), (A3)

∂ρ I
14

∂τ
= −4g2

∫ τ

0
ds e+i�sRe[WS(s)]ρ I

14(τ − s) + 4g2e+2i�τ

∫ τ

0
ds e−i�sRe[WS(s)]Re

[
ρ I

23(τ − s)
]

− 2g2e+2i�τ

∫ τ

0
ds Re[W×(s)]e−i�s

{
1 − 2ρ I

22(τ − s) − 2ρ I
33(τ − s)

}
− 2ig2e+2i�τ

∫ τ

0
ds Im[W×(s)]e−i�s

{
1 − 2ρ I

11(τ − s) − ρ I
22(τ − s) − ρ I

33(τ − s)
}
, (A4)
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∂ρ I
23

∂τ
= 2g2e−2i�τ

∫ τ

0
ds e+i�sRe[WS(s)]ρ I

14(τ − s) + 2g2e+2i�τ

∫ τ

0
ds e−i�sRe[WS(s)]ρ I∗

14(τ − s)

− 4g2
∫ τ

0
ds Re[WS(s)] cos(�s)ρ I

23(τ − s) + 2g2
∫ τ

0
ds Re[W×(s)] cos(�s)

{
1 − 2ρ I

22(τ − s) − 2ρ I
33(τ − s)

}
+ 2g2

∫ τ

0
ds Im[W×(s)] sin(�s)

{
1 − 2ρ I

11(τ − s) − 2ρ I
22(τ − s)

}
. (A5)

APPENDIX B: NAKAJIMA-ZWANZIG EVOLUTION OF THE O BLOCK

In this Appendix we give the explicit evolution equations for the O block ρ I
AB,O(τ ) defined in (27) for the Nakajima-Zwanzig

master equation (26) at O(g2) given in Sec. IV. The O block contains four independent matrix elements. The coupled integro-
differential equations for these matrix elements are given by

∂ρ I
12

∂τ
= −2g2

∫ τ

0
ds

{
Re[WS(s)] cos(�s)

[
ρ I

12(τ − s) − ρ I
34(τ − s)

] − Im[WS(s)] sin(�s)
[
ρ I

12(τ − s) + ρ I
34(τ − s)

]}
− 2g2

∫ τ

0
ds Re[WS(s)]ei�sρ I

12(τ − s) + 2g2e2i�τ

∫ τ

0
ds Re[WS(s)]e−i�sρ I∗

12(τ − s)

− 2g2e2i�τ

∫ τ

0
ds e−i�sW×(s)ρ I∗

24(τ − s) + 2g2
∫ τ

0
ds ρ I

24(τ − s){Re[W×(s)] cos(�s) + Im[W×(s)] sin(�s)}

+ 2g2e2i�τ

∫ τ

0
ds e−i�sRe[W×(s)]ρ I∗

13(τ − s) − 2g2
∫ τ

0
dsW∗

×(s) cos(�s)ρ I
13(τ − s), (B1)

∂ρ I
13

∂τ
= −4g2

∫ τ

0
ds Re[WS(s)]ei�sρ I

13(τ − s) + 2ig2
∫ τ

0
ds W∗

s (s) sin(�s)ρ I
13(τ − s)

+ 2g2
∫ τ

0
ds ρ I

24(τ − s){Re[WS(s)] cos(�s) + Im[WS(s)] sin(�s)} + 2g2e2i�τ

∫ τ

0
ds Re[WS(s)]e−i�sρ I∗

13(τ − s)

− 2g2e2i�τ

∫ τ

0
dsW×(s)e−i�sρ I∗

34(τ − s) + 2g2
∫ τ

0
ds ρ I

34(τ − s){Re[W×(s)] cos(�s) + Im[W×(s)] sin(�s)}

+ 2g2e2i�τ

∫ τ

0
ds Re[W×(s)]e−i�sρ I∗

12(τ − s) − 2g2
∫ τ

0
dsW∗

×(s) cos(�s)ρ I
12(τ − s), (B2)

∂ρ I
24

∂τ
= −2g2

∫ τ

0
ds Re[WS(s)]ei�sρ I

24(τ − s) − 2g2
∫ τ

0
ds {Re[WS(s)] cos(�s) + Im[WS(s)] sin(�s)}ρ I

24(τ − s)

+ 2g2
∫ τ

0
ds {Re[WS(s)] cos(�s) − Im[WS(s)] sin(�s)}ρ I

13(τ − s) + 2g2e2i�τ

∫ τ

0
ds Re[WS(s)]e−i�sρ I∗

24(τ − s)

− 2g2e2i�τ

∫ τ

0
dsW∗

×(s)e−i�sρ I∗
12(τ − s) + 2g2

∫ τ

0
ds ρ I

12(τ − s){Re[W×(s)] cos(�s) − Im[W×(s)] sin(�s)}

+ 2g2e2i�τ

∫ τ

0
ds e−i�sRe[W×(s)]ρ I∗

34(τ − s) − 2g2
∫ τ

0
dsW×(s) cos(�s)ρ I

34(τ − s), (B3)

∂ρ I
34

∂τ
= −2g2

∫ τ

0
ds {Re[WS(s)] cos(�s) + Im[WS(s)] sin(�s)}ρ I

34(τ − s) − 2g2
∫ τ

0
ds Re[WS(s)]ei�sρ I

34(τ − s)

+ 2g2
∫ τ

0
ds {Re[WS(s)] cos(�s) − Im[WS(s)] sin(�s)}ρ I

12(τ − s) + 2g2e2i�τ

∫ τ

0
ds Re[WS(s)]e−i�sρ I∗

34(τ − s)

+ 2g2
∫ τ

0
ds {Re[W×(s)] cos(�s) − Im[W×(s)] sin(�s)}ρ I

13(τ − s) − 2g2e2i�τ

∫ τ

0
dsW∗

×(s)e−i�sρ I∗
13(τ − s)

− 2g2
∫ τ

0
dsW×(s)cos(�s)ρ I

24(τ − s) + 2g2e2i�τ

∫ τ

0
ds Re[W×(s)]e−i�sρ I∗

24(τ − s). (B4)
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APPENDIX C: WHEN IS ALICE’S DETECTOR MARKOVIAN?

In this section we expand the argument leading to Eq. (43), which shows that Alice’s detector is Markovian only when �/a �
1 even in the “standard” Markovian approach. Recall that the Nakajima-Zwanzig equation for the off-diagonal components of
Alice’s detector is (39), repeated here for convenience:

dρ I
A,12

dτ
� ig2Dρ I

A,12(τ ) + FNZ(τ ), (C1a)

FNZ(τ ) := −2g2
∫ τ

0
ds Re[WS(s)]e+i�sρ I

A,12(τ − s) + 2g2e+2i�τ

∫ τ

0
ds Re[WS(s)]e−i�sρ I∗

A,12(τ − s) (C1b)

with a counterterm g2Dρ I
A12(τ ) [see the definition (C3) below] included to ensure that the Markovian solution oscillates at the

physical detector gap [47]. Applying the “standard” Markovian approximation �I
A(τ − s) � �I

A(τ ) commonly employed in the
literature yields Eq. (40), we get

dρ I
A,12

dτ
� ig2Dρ I

A,12(τ ) + FM(τ ) (C2a)

FM(τ ) := −2g2
∫ ∞

0
ds Re[WS(s)]e+i�sρ I

A,12(τ ) + 2g2e+2i�τ

∫ ∞

0
ds Re[WS(s)]e−i�sρ I∗

A,12(τ ) (C2b)

with the counterterm also included. Here we have defined a constant D that is UV-regulated (i.e., UV-divergent in the limit
ε → 0+):

D := 2
∫ ∞

0
ds Re[WS(s)] sin(�s) = �

2π2
ln(eγ aε) + �

2π2
Re

[
ψ (0)

(
− i�

a

)]
, (C3)

with γ the Euler-Mascheroni constant, ψ (0)(z) = �′(z)/�(z) the digamma function [82], and ε the finite UV cutoff associated
with the iε prescription of the correlator WS(s) defined in (24). Using the definition of constant C from (42), Eq. (C2) simplifies
to

dρ I
A,12

dτ
� −g2Cρ I

A,12(τ ) + g2(C − iD)e+2i�τρ I∗
A,12(τ ). (C4)

The Markovian solution of Eq. (C2) is given by

ρ I
A,12(τ ) � Ae−g2Cτ + Be(−g2C+2i�)τ , (C5)

where the constant coefficients A and B are given by

A = ρ I
A,12(0) + ρ I∗

A,12(0)
g2(D + iC)

2�
and B = −ρ I∗

A,12(0)
g2(D + iC)

2�
. (C6)

We are interested in the conditions under which the right-hand side of (C1) is approximately equal to the right-hand side of
(C2), i.e., when FNZ(τ ) � FM(τ ). To self-consistently answer this question we here insert the Markovian solution (C5) into both
FNZ(τ ) and FM(τ ) and explore constraints on the parameters that yield FNZ(τ ) � FM(τ ). Substituting the Markovian solution
(C5) into FNZ(τ ) and FM(τ ) we get

FNZ(τ ) = 2g2e−g2Cτ

∫ τ

0
ds Re[W (s)]e+i�s(B∗ − A)e+g2Cs + 2g2e(−g2C+2i�)τ

∫ τ

0
ds Re[W (s)]e−i�s(−B + A∗)e+g2Cs, (C7)

FM(τ ) = 2g2e−g2Cτ

∫ ∞

0
ds Re[W (s)](e−i�sB∗ − e+i�sA) + 2g2e(−g2C+2i�)τ

∫ ∞

0
ds Re[W (s)](−e+i�sB + A∗e−i�s). (C8)

Now, if we assume that g2C � a and aτ � 1 then (C7) becomes approximately

FNZ(τ ) � 2g2e−g2Cτ

∫ ∞

0
ds Re[W (s)]e+i�s(−A + B∗) + 2g2e(−g2C+2i�)τ

∫ τ

0
ds Re[W (s)]e−i�s(−B + A∗). (C9)

However, for arbitrary � > 0 this is in general not approximately equal to FM(τ ), since

FNZ(τ ) − FM(τ ) � 2g2e−g2CτB∗
∫ ∞

0
ds Re[W (s)](e+i�s − e−i�s) + 2g2e(−g2C+2i�)τB

∫ τ

0
ds Re[W (s)](e−i�s − e+i�s). (C10)

The only way we can have FNZ(τ ) − FM(τ ) � 0 in the above is if we additionally assume that �/a � 1 so that e+i�s � e−i�s � 1
under the integral sign, as claimed in the main text surrounding Eq. (43).
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APPENDIX D: SOME USEFUL INTEGRALS

In this Appendix we compute the functions C× and K×
defined in (52a) and (52b), as well as D′

× and S′
× defined in

(80b) and (80a) (where we note that CS, D′
S, and S′

S have all
been computed in [47,49]).

First we compute C× and S×, and to this end we define the
related Fourier cosine and sine transforms

C×(�) := 2
∫ ∞

0
ds Re[WS,×(s)] cos(�s), (D1)

S×(�) := 2
∫ ∞

0
ds Im[WS,×(s)] sin(�s). (D2)

The values of these integrals depend on the proper accelera-
tion a and detector separation L as well as the energy gap �.
These integrals have the properties

C× = lim
�→0+

C×(�), S′
× = lim

�→0+

dS×(�)

d�
(D3)

and are useful definitions because the thermality encoded in
the correlator W× implies that C×(�) and S×(�) are related
for arbitrary � > 0. In particular, W× satisfies the KMS con-
dition,

W×(τ − iβ ) = W∗
×(τ ), (D4)

with β = 2π/a = T −1
U the inverse Unruh temperature, which

in turn implies the detailed balance relationship

C×(�) = − coth

(
π�

a

)
S×(�). (D5)

Since the imaginary part of the Wightman function is pre-
cisely half the expectation value of the field commutator, we
have (see [12])

Im[〈0|φ(t, x)φ(t ′, x)|0〉]

= i

4π2|�x| [δ(�t + |�x|) − δ(�t − |�x|)], (D6)

where �x = x − x′ and �t = t − t ′. Substituting the trajec-
tories (1) and setting s = τ − τ ′ gives

Im[W×(s)] = −aδ
[
s − 2

a sinh−1(aL/2)
]

8πL
√

1 + (aL/2)2
. (D7)

With this one can compute S×(�) to give

S×(�) = − sin
[

2�
a sinh−1 (aL/2)

]
4πL

√
1 + (aL/2)2

, (D8)

which using (D5) in turn implies

C×(�) = coth
(

π�
a

)
sin

[
2�
a sinh−1 (aL/2)

]
4πL

√
1 + (aL/2)2

. (D9)

Using the above formulas along with (D3) then straightfor-
wardly gives the answers for C× and S′

× given in (52a) and
(81b). Using the expression (D7) for Im[W×(s)] in the integral
definition (52b) for K× also easily gives the result given in the
main text.

Finally we compute D′
× defined in (80a). Using the form

(25) of W×(s) and then switching the integration variable z :=
as/2 turns (80a) into

D′
× = − 1

2π2
Re

[
lim

δ→0+

∫ ∞

0
dz

z

sinh2(z) − (
aL
2

)2 − iδ

]
,

(D10)
where we have defined the dimensionless infinitesimal δ =
aε/2 (and taken it out of the argument of the sinh function
noting that z > 0). Performing a partial fraction expansion on
the integrand yields

D′
× = Re

⎡
⎢⎣ lim

δ→0+

I (
√(

aL
2

)2 + iδ) − I (−
√(

aL
2

)2 + iδ)

4π2
√(

aL
2

)2 + iδ

⎤
⎥⎦,

(D11)
with I (b) defined by

I (b) :=
∫ ∞

0
dz

z

sinh(z) + b
(D12)

for b ∈ C \ (−∞, 0]. This evaluates to

I (b) = Li2(−b + √
b2 + 1) − Li2(−b − √

b2 + 1)√
b2 + 1

(D13)

where Li2 is the polylogarithm of order 2 [82],

Li2(z) = −
∫ z

0
dt

ln(1 − t )

t
(D14)

defined for z ∈ C \ [1,∞). With the above formula we safely
can take the limit δ → 0+ giving the result (81a).
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