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No contextual advantage in nonparadoxical scenarios of the two-state vector formalism
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The two-state vector formalism (TSVF) proposed by Aharonov, Bergmann, and Lebowitz [A. Aharonov, P. G.
Bergmann, and J. L. Lebowitz, Phys. Rev. 134, B1410 (1964)] allows a counterfactual assignment of probabilities
of outcomes of contemplated (but unperformed) measurements on quantum systems. The probabilities assigned
by the Aharonov-Bergmann-Lebowitz (ABL) rule and the associated weak values have been used to provide
insights into quantum situations and to unearth underlying quantum contextuality. We apply the principle of
exclusivity on ABL probabilities which are assigned to mutually orthogonal projectors to define paradoxical
and nonparadoxical scenarios. Given a pre- and a postselected pair of states, we consider the nonparadoxical
sector with a view to explore the demonstration of quantum contextuality. For the Klyachko-Can-Binicioğlu-
Shumovsky scenario, we numerically show that the ABL probabilities of the TSVF in the nonparadoxical sector
do not offer any contextual advantage. Our approach can be easily generalized to other contextual scenarios
as well. We thus argue that several previous proofs of the emergence of contextuality in pre- and postselected
scenarios are only possible if the principle of exclusivity is violated and are therefore classified as paradoxical.
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I. INTRODUCTION

Standard quantum theory does not provide an adequate
framework to make predictions about measurements in the
past (retrodiction) of a quantum system, once it has been
measured in a definite state. Aharonov, Bergmann, and
Lebowitz, in their seminal work on time symmetry in suc-
cessive quantum measurements, introduced a reformulation
of standard quantum theory wherein one can meaningfully
talk about statistical predictions of a measurement on a pre-
and a postselected (PPS) ensemble at intermediate times [1].
The retrodiction formula derived by Aharonov et al. [the
Aharonov-Bergmann-Lebowitz (ABL) rule] is the probability
of a measurement outcome conditioned on the outcomes of a
preceding and a succeeding measurement.

A generalized framework for PPS ensembles in terms of
“weak values” was formulated as the two-state vector for-
malism (TSVF) [2–4] in order to experimentally validate the
ABL formulation [5,6]. In the TSVF, the complete description
of a quantum system is specified by two-state vectors, one
evolving forward in time and the other one evolving back-
ward. Here the arrow of time is described by the order of
preceding and succeeding measurements. The TSVF finds
intriguing applications in quantum foundations [7–13] and
quantum information processing [14]. The ABL retrodiction,
more specifically the TSVF, has resulted in various counter-
intuitive results commonly called PPS paradoxes [15–23]. In
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a recent work [24] counterfactual use of the ABL retrodiction
was shown to run into direct contradiction with operational
quantum mechanics, thus challenging the completeness of the
TSVF. Therefore, further investigations about the appropri-
ateness of the ABL retrodiction in connection with various
nonclassical aspects of quantum theory are critical in order to
pinpoint the exact role of the TSVF in the studies of quantum
foundations.

Contrary to the Born rule, probabilities assigned by the
ABL formula are determined by the specification of the mea-
surement setting of an observable and on pre- and postselected
states in the context of which the observable is being mea-
sured. This kind of context dependence of measurements
has led to connections between PPS paradoxes and contex-
tuality [25]: Since the probabilities assigned to measurement
outcomes are explicitly context dependent, there is no moti-
vation to consider a noncontextual hidden variable theory as
a realistic extension of operational quantum theory. Neverthe-
less, this reasoning has been disputed based on the fact that
Bell-type correlations can be simulated using postselection in
local hidden variable theories [26]. Therefore, the mere pres-
ence of context-dependent elements in the ABL formula will
not suffice to prove the Bell-Kochen-Specker (BKS) theorem
[27,28] or the various statistical versions of contextuality [29].
More effort is required in order to establish a valid connection
between contextuality and the ABL retrodiction formula.

Mermin [30] showed the existence of a strong connection
between the ABL retrodiction formula and contextuality, by
illustrating how measurements used in a proof of the BKS the-
orem can give birth to unsolvable PPS paradoxes, indicating
the impossibility of noncontextual hidden variable theo-
ries. Leifer and Spekkens [31] later reasoned that for every
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PPS paradox with a scenario involving nonorthogonal pre-
and post-selection states there exists an associated proof of
the BKS theorem. Their proof is based on the fact that ABL
probability assignments of certain sets of projectors in a
variant of the three-box paradox violate algebraic constraints
dictated by classical probability theory. An exhaustive discus-
sion on the same in relation to weak values was presented by
Tollaksen [32]. Another important contribution in this direc-
tion was recently made by establishing a direct connection
between anomalous weak values and contextuality, where it
was suggested that anomalous weak values can be consid-
ered as proofs of contextuality [33–35]. Thus far, the studies
in this research direction have focused on logical proofs of
contextuality invoking only the paradoxical nature of ABL
probability assignments. In these logical proofs of contextu-
ality, one arrives at a contradiction while making assignments
of probabilities to various outcomes following the ABL rule.
Such proofs generally involve the paradoxes generated by the
application of the ABL rule. Therefore, it is natural to ask
whether there is any contextual advantage in situations with
nonparadoxical assignments of ABL probabilities.

In this paper, by analyzing the Klyachko-Can-Binicioğlu-
Shumovsky (KCBS) scenario [36] (which comprises a
statistical proof of contextuality) within the framework of the
ABL formula, we show that nonparadoxical ABL probability
assignments do not give rise to any contextual advantage.
Furthermore, in order to produce an advantage, one needs
to renounce the exclusivity principle, which is central to any
operational theory [37–39]. Our result raises serious questions
about the connections between the ABL rule and contextual-
ity, which have been advocated by previous authors: Is this
connection merely an illusion created by postselection, similar
to the detection efficiency loophole in Bell nonlocality tests?
Since the paradoxical sector of ABL probabilities requires
abandoning the notion of the principle of exclusivity, can
ABL retrodiction be considered an appropriate description of
quantum systems at all?

The paper is organized as follows. In Sec. II A we introduce
the concept of PPS scenarios and briefly discuss the ABL
formula and consequently the TSVF. In Sec. II C we present
our main result that the ABL rule is unable to correctly predict
the statistics of the KCBS scenario. In Sec. V we offer some
concluding remarks.

II. ABL RULE, TSVF, AND PPS PARADOXES

In this section we describe the TSVF and ABL retrodiction
rule. We define PPS scenarios and introduce the notion of the
paradoxical and nonparadoxical nature of them. This classi-
fication depends on whether the probability assignments are
properly conditioned by the exclusivity principle or not.

A. TSVF and ABL retrodiction

In this section we illustrate a general pre- and postselected
scenario and elucidate how the ABL rule can be used to assign
probabilities to intermediate measurements.

A pre- and postselection scenario deals with statistical as-
signment of probabilities to the outcomes of the measurement
of an observable A at time t when the system is preselected
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FIG. 1. A PPS scenario with a measurement of an observable
A at an intermediate instance of time. The system is preselected in
state |ψ〉 by performing a projective measurement P1 and filtering
the outcome corresponding to the state |ψ〉 and postselected in state
|φ〉 by filtering outcome ˜|φ〉 of measurement P2. Here {|a〉i} is the
set of all possible outcomes of an intermediate observable A.

to be in the state |ψ〉 at some time ti < t and postselected
in the state |φ〉 at a later moment in time t f > t . Prese-
lection is achieved by performing a projective measurement
P1 ≡ {|ψ〉〈ψ |,1 − |ψ〉〈ψ |} at time ti on the initial state of
the system ρ (which can be chosen arbitrarily) and selecting
only the outcomes corresponding to |ψ〉〈ψ |. Similarly, for
postselection one can perform a projective measurement of
P2 ≡ {|φ〉〈φ|,1 − |φ〉〈φ|} at time t f where outcomes corre-
sponding to |φ〉〈φ| are filtered (see Fig. 1). It is apparent that
such probability assignments are conditioned on PPS states
|ψ〉 and |φ〉 and therefore are time symmetric.

Consider an observable A with outcomes {|ai〉〈ai|} which
is measured after preselecting a state |ψ〉 and afterward posts-
electing a state |φ〉. The probability of obtaining the outcome
|ai〉〈ai| conditioned on pre- and postselections is given as

ζi = |〈φ|ai〉|2|〈ai|ψ〉|2∑
j |〈φ|a j〉|2|〈a j |ψ〉|2 , (1)

which can be simplified as

ζi = |〈φ|�i|ψ〉|2∑
j |〈φ|� j |ψ〉|2 , (2)

where �i = |ai〉〈ai|. As one can see, ζi for a projector �i

is dependent on PPS states |ψ〉 and |φ〉. A different choice
of these will yield different probability assignments. Further-
more, the measurement context of the projector �i also plays
a major role. If the set of measurement settings in which �i

appears is chosen differently, the term
∑

j |〈φ|� j |ψ〉|2 will
also change. All of the aforementioned choices form a context
for the projector �i. This makes the ABL formula given in
Eq. (2) inherently context dependent and led Albert and co-
workers [2,25] to draw a parallel between ABL retrodiction
and quantum contextuality.
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B. Counterfactual vs noncounterfactual ABL retrodiction

There are two ways to interpret Eq. (1), namely, noncoun-
terfactual and counterfactual. In the former, the measurement
of an observable A is actually performed, while in the latter
one only imagines such a measurement. In the noncounterfac-
tual case the observable A is actually measured after perform-
ing a preselection and before postselection. In this case there
is a total of three different sequential measurements being per-
formed. This case is known as noncounterfactual assignment
of probabilities [40–42]. In the second case, the observable
A is not actually measured, but rather a probability distribu-
tion over its outcomes is assigned counterfactually depending
on the PPS states [4]. This case is known as counterfactual
assignment of probabilities. It has been argued by Aharonov
et al. [1,4] that simultaneous counterfactual probability as-
signments to even noncommuting observables is possible.

It should be noted that Eq. (1) is in fact a classical Bayes
rule expressing the conditional probability of getting outcome
ai given that measurement of an observable A was performed
on a system that was pre- and postselected in states |ψ〉 and
|φ〉, respectively. The order of the events follows as |ψ〉 →
A → |φ〉, where the arrows indicate passage of time. In such
a scenario, the observable A is actually performed. According
to standard quantum mechanics, in order to evaluate the prob-
ability distribution over another observable B that does not
commute with A requires using a separate ensemble of pre-
and postselected states with a new order of events as |ψ〉 →
B → |φ〉. This scenario is reminiscent of standard quantum
theory with probability distributions evaluated using the Born
rule. We call such PPS scenarios noncounterfactual. This in-
terpretation of Eq. (1) has been used as an argument by various
authors to resolve the apparent PPS paradoxes [40–43].

However, proponents of the TSVF have used a counter-
factual interpretation of Eq. (1) to construct a series of PPS
paradoxes which are supported by experimental demonstra-
tions using weak measurements [2,10,11,17,19,20,22,23,44].
Contrary to noncounterfactual PPS scenarios, there is no
actual measurement between the pre- and postselection pro-
cedures. The order of events is just |ψ〉 → |φ〉. It has been
hypothesized in the literature that probability distributions
can be assigned to outcomes of unperformed intermediate
measurements. Such counterfactual probability assignment
makes ABL retrodiction a suitable candidate for an ontologi-
cal model [45].

The question whether quantum theory is a complete
description of physical reality is still an open problem.
In case it is incomplete, the description of the state is
supplemented or substituted with certain ontological vari-
ables. Such a model should reproduce all statistical predic-
tions of quantum mechanics. No-go theorems on nonlocality
and quantum contextuality have ruled out certain models
which appear to be classically reasonable [28,36,46]. The
importance of such theorems lies in the characterization of
the nonclassical features of quantum mechanics. Any new
candidate for an ontological model must show nonlocal and
contextual characteristics. Since the counterfactual ABL rule
is a way to assign values to observables prior to actually
performing a measurement, it becomes natural to ask whether
such an assignment is contextual.

It has been demonstrated in the literature that counterfac-
tual ABL retrodiction is contextual as required by the BKS
theorem [30–32]; however, this could be achieved only by
invoking PPS paradoxical scenarios. Here we investigate only
nonparadoxical scenarios and demonstrate that these do not
exhibit quantum contextuality.

For the remainder of this paper we consider only the
counterfactual measurement setting of the observable A.
Moreover, we use the TSVF and counterfactual PPS scenarios
inter-changeably. This rule [Eq. (1)] is eponymously known
as the ABL rule and is the same for both the aforementioned
cases. However, the interpretation for both the cases is en-
tirely different and leads to some interesting results, especially
when linked to counterfactual assignments of projectors in the
KCBS scenario.

C. Paradoxical and nonparadoxical PPS scenarios

In this section we provide a classification of PPS scenar-
ios into paradoxical and nonparadoxical. We then proceed to
show how the KCBS scenario can be modified to fit within
the paradigm of the TSVF and whether the latter can help in
predicting the correct statistics of the former. We then provide
a general algorithm to check for contextual advantages for
other contextuality scenarios.

Definition 1 (counterfactual PPS scenario). A counterfac-
tual PPS scenario is specified by (〈φ||ψ〉,M), where 〈φ||ψ〉
is a two-state describing the PPS ensemble and a projective
valued measure (PVM) and M = {�i} (i = 1, 2, . . . , n) is the
counterfactual measurement setting at an intermediate time.
The corresponding {ζi} given by Eq. (2) are then the counter-
factual probability assignments for the PVM M.

For certain pre- and postselections counterfactual prob-
ability assignments can lead to paradoxical situations. The
three-box paradox is a case in point. Consider a particle that
is preselected in the state (|A〉 + |B〉 + |C〉)/

√
3 and post-

selected in the state (|A〉 + |B〉 − |C〉)/
√

3, where |A〉, |B〉,
and |C〉 represent the states of the particle in boxes A, B,
and C, respectively. Now consider two possible counterfac-
tual measurement settings A = {|A〉〈A|,1 − |A〉〈A|} and B =
{|B〉〈B|,1 − |B〉〈B|}. It is easy to visualize A and B as the
actions of opening the boxes A and B, respectively, at an
intermediate time in order to check whether the particle was
present there. A counterfactual probability assignment to both
the projectors |A〉〈A| and |B〉〈B| can be made according to
the ABL formula (2). However, it can be seen that such
an assignment leads to a situation in which the particle is
present in box A with unit probability and box B with unit
probability [40].

The exclusivity principle states that the sum of probabil-
ities of mutually exclusive events cannot be greater than 1.
Therefore, such scenarios in which two mutually exclusive
events are assigned unit probabilities are paradoxical. This
motivates the following definition.

Definition 2 (logical PPS paradox). A logical PPS para-
dox consists of at least two counterfactual PPS scenarios
(〈φ||ψ〉,M1) and (〈φ||ψ〉,M2), where Mi = {�i,1 − �i}
for i = 1, 2 and tr(�1�2) = 0 such that ζ1 + ζ2 > 1, where ζi

is the counterfactual probability assigned to �i.
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FIG. 2. The KCBS scenario with five projectors. Projectors con-
nected by an edge are orthogonal.

The logical PPS paradox is defined for PPS scenarios
which violate those shown in Ref. [31], that for every corre-
sponding logical PPS paradox there exists a proof of the BKS
theorem. However, the relation between nonparadoxical PPS
scenarios and contextuality is still left unexplored. To that end
we make the following definition to distinguish between the
paradoxical and nonparadoxical sectors of PPS scenarios.

Definition 3 (paradoxical and nonparadoxical sectors).
The set of all two-states that generate logical PPS para-
doxes for given two counterfactual measurement settings
M1 = {�1,1 − �1} and M2 = {�2,1 − �2} such that
tr(�1�2) = 0 is called the paradoxical sector corresponding
to the pair {M1,M2}. We refer to the set of all two-states that
are not elements of the above as the nonparadoxical sector
corresponding to the pair {M1,M2}.

III. KCBS CONSTRUCTION AND NONCONTEXTUALITY

We now analyze whether the nonparadoxical sector of PPS
scenarios can offer a proof of contextuality. We first focus on
the minimal proof of state-dependent contextuality, namely,
the KCBS scenario (Fig. 2), and construct an ontological
description of the same via the TSVF.

Consider a scenario consisting of five tests ei, i ∈
{0, 1, 2, 3, 4}. A test is an experiment which yields some
statistics for a given preparation. These tests are assumed to
be cyclically exclusive, i.e.,

P(ei ) + P(ei⊕1) � 1, (3)

where i ⊕ 1 is taken modulo 5. This scenario is eponymously
referred to as the KCBS scenario, in honor of the people who
first studied it. The KCBS scenario can be represented on a
graph whose vertices correspond to tests and two vertices are
connected by an edge if they are exclusive. This scenario is
capable of revealing quantum contextuality if the following
inequality is violated:

K :=
∑
i=0

P(ei ) � 2. (4)

Here the underlying ontic probability distribution P(ei ) is
assumed to be noncontextual. This is the well-known KCBS
inequality.

A valid construction of the KCBS scenario for the quan-
tum case is as follows. Consider five different PVMs: Mi =
{�i,1 − �i} (i ∈ {0, 1, 2, 3, 4}) and tr(�i�i⊕1) = 0. Each

projector corresponds to a test in the KCBS scenario and
cyclic orthogonality ensures the required exclusivity condi-
tions given in Eq. (3). The maximum quantum value of the
KCBS inequality (4) for the aforementioned settings and a
state |ψ〉 is

max(K) := max

(∑
i=0

P(�i = 1)

)
=

√
5, (5)

which is greater than the noncontextual bound. This is an
indication of contextual advantage of quantum probability
distributions.

It should be noted that any valid construction of the KCBS
scenario in any formalism must necessarily ensure the exclu-
sivity conditions (3).

IV. ABL RULE AND KCBS INEQUALITY

The foremost requirement to check whether the nonpara-
doxical sector of the ABL formalism offers any contextual
advantage is to set up the KCBS scenario with the proper
exclusivity conditions given in Eq. (3) by assigning a prob-
ability distribution ζi to the projectors under a PPS scenario.
We choose the PPS as |ψ〉 and |φ〉, respectively, to assign
a counterfactual probability distribution to the projector �i

according to the ABL rule as

ζi = |〈φ|�i|ψ〉|2
|〈φ|�i|ψ〉|2 + |〈φ|(1 − �i )|ψ〉|2 , (6)

where the measurement setting is of the form {�i,1 − �i}.
By careful selection of a PPS, such counterfactual assign-

ments can lead to a logical paradox in which �i and �i⊕1

are assigned probabilities leading to ζi + ζi⊕1 > 1. This is a
direct violation of the exclusivity conditions (3). Furthermore,
in order to analyze the nonparadoxical sector of the KCBS
scenario, it is required that ζi + ζi⊕1 � 1 for all two-states
〈φ||ψ〉.

We now propose the following setup to test the KCBS in-
equality using the ABL formalism. Without loss of generality
we assume a preselected state |ψ〉 as

|ψ〉 = (0, 0, 1)T (7)

and a postselected state as

|φ〉 = (cos θ, sin θ cos φ, sin θ sin φ)T , (8)

where θ ∈ [0, π ] and φ ∈ [0, 2π ]. The projectors �i =
|vi〉〈vi| are of the form

|v0〉 = (1, 0,
√

cos π/5)T ,

|v1〉 = (cos 4π/5,− sin 4π/5,
√

cos π/5)T ,

|v2〉 = (cos 2π/5, sin 2π/5,
√

cos π/5)T ,

|v3〉 = (cos 2π/5,− sin 2π/5,
√

cos π/5)T ,

|v4〉 = (cos 4π/5, sin 4π/5,
√

cos π/5)T .

(9)

We then optimize |φ〉 for the maximum value of K with
the exclusivity conditions (3) imposed on ζi. We evaluate K
using the rule (6) for the measurement {�i,1 − �i} to assign
P(�i = 1) = ζi accordingly.
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FIG. 3. Region plot corresponding to a set of postselected states
(8) (shaded blue) for which Eq. (3) is satisfied for all i with (a) K >

1.4, (b) K > 1.5, (c) K > 1.6, and (d) K > 1.7. No set of states was
found for K > 2.0.

By imposing the exclusivity conditions we found that no
postselection can lead to a violation of the KCBS inequality.
In Fig. 3 we plot the intersection of the solutions that satisfy
the inequalities (3) and (4) for various minimum values of
K over the entire region of postselected states. Incidentally, we
do not find any set of states for which the KCBS inequality is
violated. This provides clear evidence of the fact that the ABL
formalism does not provide a complete description under the
nonparadoxical sector of the PPS scenario.

In order to achieve a violation it is necessary to violate
at least a single exclusivity constraint. If all the constraints
are satisfied, the resultant distribution, even from the ABL
retrodiction formula, is necessarily noncontextual.

Therefore, any violation of the KCBS inequality observed
via the ABL rule must necessarily arise from the paradoxical
sector of PPS scenarios. As a consequence, the maximum vio-
lation can even go above the algebraic bound. This is because
the exclusivity conditions are not properly satisfied.

It is a natural consequence of this work that a valid PPS
KCBS scenario can be modeled using a noncontextual onto-
logical model.

Our analysis can be extended to arbitrary contextuality
scenarios too [47]. Following our analysis, it is required to first
identify the proper exclusivity conditions according to Eq. (3).
These conditions demarcate the set of nonparadoxical PPS
scenarios from the paradoxical ones according to Definition
3. Within this set of counterfactual PPS scenarios one can
then vary the preselected and postselected states for a given
set of PVMs (which define the corresponding contextuality
scenario) to make counterfactual probability assignments. A
violation of the corresponding contextuality inequality would
then indicate a contextual advantage of the TSVF.

The KCBS scenario requires a set of five PVMs and
imposes five exclusivity constraints on the ABL rule. Any

n-cycle scenario [47] would then consequently impose n such
exclusivity constraints. This in turn reduces the nonpara-
doxical sector of PPS scenarios possible for this contextual
inequality. While a solution for all n-cycle scenarios with n
exclusivity constraints applied to TSVF is not possible, we
conjecture with good confidence that no n-cycle contextual
inequality can exhibit a violation under the TSVF paradigm.

V. CONCLUSION

In this work we have focused on unearthing quantum con-
textuality as identified by the violation of the KCBS inequality
in PPS scenarios where the ABL rule provides a way to assign
counterfactual probabilities to measurement outcomes. We
provide a classification of PPS scenarios into paradoxical and
nonparadoxical sectors. We then show that the nonparadoxical
sector of the ABL rule to evaluate the probability distribution
over the outcomes of an observable in a PPS scenario does not
provide a contextual violation of the KCBS inequality. Since
the ABL rule is applied in a counterfactual manner, the ABL
rule acts as an ontic model of the KCBS inequality. By impos-
ing proper exclusivity conditions on the ABL probabilities,
we find that it is not able to reproduce the statistics that are
observed in nature.

It should be noted that the KCBS scenario and the
pentagram graph in general underlie many other contextual
scenarios as well [48]. Apart from the KCBS scenario, our
result also implies a noncontextual behavior of these scenarios
under the paradigm of the TSVF.

At first glance it may appear that our method of classi-
fication of correlations into paradoxical and nonparadoxical
sectors may also carry over to state-independent tests of
quantum contextuality. In reality, the situation is not as
straightforward. For instance, the state-independent exclu-
sivity graph of the Yu-Oh scenario [49,50] can be used to
define the exclusivity conditions that need to be imposed
on the ABL probabilities. These conditions then define the
paradoxical and nonparadoxical sectors. However, it should
be noted that the resultant classification is no longer state
independent as it implicitly depends on PPS states (as per
Definitions 1–3 in our classification). Therefore, our analy-
sis becomes state dependent irrespective of the contextuality
scenario.

Our results show that the ABL rule is essentially non-
contextual, contrary to recent studies [31,33,34]. Most of the
recent studies deal with probability assignments which are not
properly conditioned and lead to scenarios where the sum of
probabilities of exclusive events can be greater than 1, leading
to false signatures of contextuality. Any such signature arises
from Definition 2 and therefore violates the principle of ex-
clusivity which is at the heart of operational theories [37–39].
Therefore, in order to observe a violation, the principle of
exclusivity needs to be abandoned.

Furthermore, it is well known that the ABL rule and weak
values are deeply inter-connected, and the conclusions made
on the former should also translate in some manner to the
latter. While it has already been shown that anomalous weak
values are a proof of contextuality [33–35], imposing exclu-
sivity conditions on them following our work is not as trivial
as they can take on imaginary values which can be arbitrarily
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large as opposed to real, positive, and normalized ABL prob-
abilities. Since the exclusivity conditions cannot be directly
imposed on weak values, it is not clear how our classification
can be performed. Therefore, one needs to identify better con-
ditions that can help identify paradoxical and nonparadoxical
correlations arising from weak values.
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