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Memory effects in multipartite systems coupled by nondiagonal dephasing mechanisms
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The developing of (non-Markovian) memory effects strongly depends on the underlying system-environment
dynamics. Here we study this problem in multipartite arrangements where all subsystems are coupled to each
other by dephasing mechanisms that are taken into account through an underlying Markovian Lindblad dynamics
characterized by a nondiagonal rate matrix. Taking as system and environment arbitrary sets of complementary
subsystems, it is shown that both operational and nonoperational approaches to quantum non-Markovianity
can be characterized in an exact analytical way. Similarly to previous studies about dissipative entanglement
generation in this kind of dynamics [Seif, Wang, and Clerk, Phys. Rev. Lett. 128, 070402 (2022)], we found
that memory effects can only emerge when a time-reversal symmetry is broken. Nevertheless, it is also found
that departures from Markovianity can equivalently be represented through a statistical mixture of Markovian
dephasing dynamics, which does not involve any system-environment entanglement. Specific bipartite and
multipartite dynamics exemplify the main general results.
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I. INTRODUCTION

In the last years remarkable advancements have been
achieved in the study and characterization of open quantum
systems [1–3]. In particular, the old association of memory ef-
fects with time-convoluted contributions in the time evolution
of the system density matrix [4] has been surpassed. Instead,
quantum non-Markovianity can now be understood from two
alternative powerful theoretical main streamlines.

First, in nonoperational approaches, memory effects are
only determined by taking into account the (unperturbed) sys-
tem density propagator. Markovianity (memoryless regime) is
univocally associated with quantum semigroup structures [5].
Thus, deviations in the propagator properties with respect to
this reference are used to quantify the magnitude of memory
effects [6,7]. Diverse witnesses have been proposed, such as
the trace distance between two initial states [8], the divisi-
bility of the propagator [9], non-Markovianity degree [10],
the quantum regression theorem [11,12], and the sign of the
rates in a canonical Lindblad structure [13], just to name a
few. Secondly, operational approaches have been introduced
more recently. Here, the system of interest is subjected to a set
of explicit measurement processes. Markovianity is related to
the usual concept in terms of probabilities [4]. Thus, memory
effects are characterized from the joint probabilities of the
measurement outcomes [14–20].

Both operational and nonoperational approaches to quan-
tum non-Markovianity provide complementary and valid
frames to understand memory effects. Nevertheless, different
conclusions can be obtained in some cases. For example, the
conditions under which memory effects can be interpreted in
terms of an environment-to-system backflow of information
strongly differ in both schemes [21–27].

In the operational approach the absence of any (phys-
ical) environment-to-system backflow of information was
associated with (non-Markovian) casual bystander environ-
ments [28], that is, those whose self-dynamics do not depend
at all on the system degrees of freedom. A measurement-based
procedure enables to detect this condition [29]. In addition, it
allows to determine if the environment action, when consider-
ing the outcome statistics, can be represented in terms of this
kind of “passive environment,” such as, for example, statisti-
cal mixtures of different Markovian evolutions (unitary [27]
or dissipative Lindblad ones). This kind of evolution, in the
unitary case, has also been studied from the perspective of
memory effects in nonoperational approaches [30]. Interest-
ingly, with a totally different motivation, the possibility of
representing an open quantum system dynamics in terms of
a statistical mixture (random noisy ensembles) of Markovian
evolutions has been associated with the classicality of the
system-environment interaction [31–36].

All previous issues have been mainly discussed in single
open quantum systems. Nevertheless, given that quantum in-
formation becomes relevant when implemented in multipartite
arrangements, there has been a growing interest in the study
of this kind of dynamics (from an open system perspective),
both from unitary and dissipative (or effective) underlying de-
scriptions [37–47]. The main goal of this work is to contribute
to this research line by providing a full characterization of
quantum non-Markovianity, jointly with the previous topics,
in a class of multipartite dissipative dynamics [47].

In Ref. [47], the authors study a multipartite qubit dynam-
ics where all subsystems are coupled to each other by bipartite
Markovian dephasing mechanisms. Thus, the underlying
description relies on a Lindblad master equation charac-
terized by a nondiagonal rate matrix. Depending on the
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dimensionality (number of qubits) and coupling parameters,
the dynamics may lead to the emergence of transient multi-
partite entanglement [48]. This property is read as a signature
of the nonclassicality of the evolution. Here, we consider both
unitary and dephasing coupling terms, where the former one
is induced by an extra Hamiltonian contribution [see Eqs. (1)
and (2)]. It is shown that, for any kind of subsystem (qubits or
arbitrary ones), the multipartite dynamics can be diagonalized
in an exact analytical way. Consequently, both operational
and nonoperational approaches to quantum non-Markovianity
can be tackled in the same way. Similarly to the study of
entanglement generation [47], we find that the break of a time-
reversal symmetry plays a fundamental role when considering
the emergence of memory effects. In contrast, the possibility
of representing the dynamic of an arbitrary set of subsystems
in terms of a statistical mixture of Markovian dephasing dy-
namics is also established.

The paper is outlined as follows. In Sec. II the multipartite
dynamics is solved in an exact way. Introducing an arbitrary
system-environment splitting, conditions for the emergence of
memory effects in nonoperational approaches are obtained.
In Sec. III we characterize memory effects when consider-
ing successive measurement processes performed over the
subsystems of interest. In Sec. IV we study bipartite and
multipartite specific examples. In Sec. V we provide the con-
clusions. Extensions and calculation details are provided in
the Appendices.

II. MULTIPARTITE DEPHASING DYNAMICS

We consider a multipartite system consisting of an arbitrary
set of n subsystems. In general, each one has associated a
(possibly different) Hilbert space Hi. Hence, the total Hilbert
space is H = H1 ⊗ H2 · · · ⊗ Hn. By assumption, the total
density matrix ρt obeys the evolution

dρt

dt
= −i[H, ρt ] +

∑
i, j

�i j (S
(i)ρt S

( j) − 1

2
{S( j)S(i), ρt }+).

(1)
The indexes i = 1, 2, . . . n and j = 1, 2, . . . n label the sub-
systems. In addition, S(i) is an arbitrary Hermitian operator
(S(i) = S(i)†) acting on each subsystem Hilbert space Hi.
{A, B}+ denotes an anticommutator operation between two ar-
bitrary operators A and B. Hence, the second term in Eq. (1) is
a Lindblad contribution that introduces a dissipative coupling
between all pairs of subsystems. For guarantying the complete
positive nature of the solution map, the nondiagonal matrix
of (complex) rate coefficients {�i j} must be Hermitian and
positive semidefinite [1]. The total Hamiltonian is assumed
to be

H = 1

2

∑
i, j

hi jS
(i)S( j), (2)

where hi j are real coefficients. They scale a unitary coupling
between all subsystems. The model studied in Ref. [47] is
recovered by taking all subsystems as qubits with S(i) the
z-Pauli matrix in Hi.

A. Density matrix solution

An explicit expression for ρt can be obtained by introduc-
ing an appropriate basis for the full Hilbert space. Given that
each operator S(i) is Hermitian, its eigenvectors {|si〉} provide
a natural basis for Hi, where S(i)|si〉 = si|si〉. The set {si}
are the corresponding eigenvalues. The basis {|s〉} of the full
multipartite Hilbert space H is then taken as

|s〉 ≡ |s1 . . . sn〉 = |s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sn〉. (3)

With the previous definitions, the dephasing nature of Eq. (1)
can explicitly be shown, that is, the matrix elements of ρt do
not couple to each other. In fact, taking two arbitrary basis
states, |s〉 and |s̃〉, and using that S(i)|s〉 = si|s〉, from Eq. (1)
we get

d

dt
〈s̃|ρt |s〉 = −�s̃,s〈s̃|ρt |s〉. (4)

The complex coefficients �s̃,s are given by

�s̃,s = i(�s̃ − �s) + ϒs̃,s. (5)

Here, the frequencies �s are induced by the Hamiltonian
contribution (2), being defined as

�s = 1

2

∑
i, j

hi jsis j . (6)

The contribution ϒs̃,s, induced by the off-diagonal Lindblad
terms in Eq. (1), after a simple algebra, can be written as

ϒs̃,s =
∑
i, j

(s̃i − si )
�i j

2
(s̃ j − s j ) +

∑
i, j

�i j

2
(s̃ jsi − s̃is j ). (7)

Notice that the first and second sum contributions depend,
respectively, on the real and imaginary parts of the coefficients
{�i j}. These properties follow straightforwardly from the in-
dex interchange i ↔ j.

The matrix element behavior defined by Eq. (4) can be
integrated straightforwardly. Consequently, the multipartite
state ρt can explicitly be written as

ρt =
∑
s,s̃

|s̃〉〈s̃|ρ0|s〉〈s| exp[−�s̃,st], (8)

where ρ0 is the initial multipartite state. Notice that popula-
tions do not evolve in time, 〈s|ρt |s〉 = 〈s|ρ0|s〉. This property
follows from Eqs. (6) and (7), which imply �s,s = 0. The
expression (8) allows us to analyze diverse aspects of the
dynamics in an explicit analytical way. It is valid for arbitrary
operators {S(i)} and coupling matrices {hi j} and {�i j}. Inter-
estingly, an analytical solution can also be found even when
the unitary and dissipative coupling in Eq. (1) are defined by
more than two (multipartite) operators (see Appendix A).

B. System-environment splitting

In Eq. (1) all subsystems play the same role. In order
to analyze memory effects, an arbitrary system-environment
splitting must be introduced. Thus, the total Hilbert space
is written as H = HS ⊗ HB. We consider that nS and nB

subsystems, with nS + nB = n, define the system (HS) and
“bath” (HB) Hilbert space, respectively. When nB > 1, the
environment is a multipartite one. In a similar way, without
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loss of generality, each element of the basis {|s〉} [Eq. (3)] is
rewritten as

|s〉 → |sb〉 ≡ |s1 . . . snS 〉 ⊗ |b1 . . . bnB〉. (9)

Introducing the change of notation ρt → ρse
t , the total density

matrix defined by Eq. (8) is reexpressed as

ρse
t =

∑
s,s̃,b,b̃

|s̃b̃〉〈s̃b̃|ρse
0 |sb〉〈sb| exp[−�s̃b̃,sbt]. (10)

Here, �s̃b̃,sb follows from Eq. (5) after introducing the split-
ting s̃ → (s̃, b̃) and s → (s, b), that is,

�s̃b̃,sb = i(�s̃b̃ − �sb) + ϒs̃b̃,sb. (11)

The frequency terms associated with the unitary evolution
immediately lead to �s → �sb, with

�sb = �s + �b +
∑

i∈S, j∈B

(
hi j + h ji

2

)
sib j . (12)

The sum indexes i ∈ S and j ∈ B run over the subsystems
associated with the system and the environment, respectively.
The noncoupling contributions �s and �b are given by Eq. (6)
but restricting the sum indexes as (i, j) ∈ S and (i, j) ∈ B, re-
spectively. On the other hand, the contribution ϒs̃,s → ϒs̃b̃,sb
can be written as

ϒs̃b̃,sb = ϒs̃,s + ϒb̃,b + χs̃b̃,sb. (13)

The terms ϒs̃,s and ϒb̃,b have the same structure as Eq. (7)
with the restrictions (i, j) ∈ S and (i, j) ∈ B, respectively. The
contribution χs̃b̃,sb introduces the system-environment cou-
pling. It reads

χs̃b̃,sb =
∑

i∈S, j∈B

(s̃i − si)

(
�i j + � ji

2

)
(b̃ j − b j )

+
∑

i∈S, j∈B

(
�i j − � ji

2

)
(b̃ jsi − s̃ib j ). (14)

Notice that the sum terms depend respectively on the real and
imaginary parts of the matrix {�i j}.

C. System dynamics

Of special interest is to determine the system density ma-
trix, which is obtained by tracing out the environment degrees
of freedom, ρ

(s)
t ≡ Tre[ρse

t ]. Similarly, for the environment
ρ

(e)
t ≡ Trs[ρse

t ]. By taking separable initial conditions ρse
0 =

ρ
(s)
0 ⊗ ρ

(e)
0 , from Eq. (10) we get

ρ
(s)
t =

∑
s,s̃

fs̃s(t )|s̃〉〈s̃|ρ (s)
0 |s〉〈s|, (15)

where the set of functions { fs̃s(t )} is given by

fs̃s(t ) =
∑

b

〈b|ρ (e)
0 |b〉 exp(−t�s̃b,sb). (16)

From these expressions it is simple to realize that a de-
phasing mechanism also characterizes the system dynamics,
where the decay of the system coherence 〈s̃|ρ (s)

t |s〉 is de-
fined by the functions fs̃s(t ). Consistently, given that fss(t ) =∑

b〈b|ρ (e)
0 |b〉 = 1, the populations do not change with time,

〈s|ρ (s)
t |s〉 = 〈s|ρ (s)

0 |s〉. In Appendix B we explicitly write the
environment state.

In contrast to Eq. (8), the coherence behavior defined by
fs̃s(t ) strongly departs from an (complex) exponential one.
This property anticipates the presence of memory effects,
which is supported by characterizing the time evolution of
ρ

(s)
t . The most general time-dependent (dephasing) evolution

consistent with Eq. (15) can be written as

dρ
(s)
t

dt
= Lt

[
ρ

(s)
t

] +
∑
s̃,s

γ s̃s
t

(
	s̃ρ

(s)
t 	s − 1

2

{
	s	s̃, ρ

(s)
t

}
+

)
,

(17)
where we have introduced the system projectors 	s ≡ |s〉〈s|
and Lt [ρ

(s)
t ] ≡ −i[H (s)

t , ρ
(s)
t ], with Hamiltonian

H (s)
t = 1

2

∑
s

ωs
t |s〉〈s|. (18)

The set of (time-dependent) frequencies {ωs
t } and the Hermi-

tian matrix of (complex) coefficients {γ s̃s
t } can be determined

after knowing the set of functions { fs̃s(t )} [Eq. (16)]. From
Eq. (17), they are related by the equation (s̃ 	= s)

dfs̃s(t )

dt
= −1

2

[
i
(
ωs̃

t − ωs
t

) + (
γ s̃s̃

t + γ ss
t

) − 2γ s̃s
t

]
fs̃s(t ). (19)

Therefore, the unknown functions {ωs
t } and {γ s̃s

t } can be de-
termined from {[1/ fs̃s(t )](d/dt ) fs̃s(t )}.

D. Necessary condition for the development of memory effects

In nonoperational approaches to quantum non-
Markovianity [6,7], when the matrix {γ s̃s

t } in Eq. (17) is
positive semidefinite the system evolution is classified as
Markovian. This kind of general characterization of the
matrix {γ s̃s

t } cannot be established in our case of study.
Nevertheless, after providing a specific underlying model
[Eq. (1)], it can always be calculated in an exact analytical
way.

In spite of the previous limitation, it is possible to establish
a necessary condition for the developing of memory effects. In
terms of the partial diagonal (b̃ = b) multipartite dephasing
rates it reads

�s̃b,sb 	= �s̃,s. (20)

In fact, when this condition is not met [�s̃b,sb = �s̃,s], the
system coherence behavior [Eq. (16)], using

∑
b〈b|ρ (e)

0 |b〉 =
1, becomes (complex) exponential. Consequently the system
density matrix [Eq. (17)] obeys a time-independent Marko-
vian Lindblad equation. We remark that in nonoperational
approaches the condition (20) is necessary but in general not
sufficient for the developing of memory effects.

From the explicit expression for �s̃b̃,sb [Eq. (11)], taking
b̃ = b, straightforwardly it follows that

�s̃b,sb = �s̃,s +
∑

i∈S, j∈B

i

(
hi j + h ji

2

)
(s̃i − si )b j

−
∑

i∈S, j∈B

(
�i j − � ji

2

)
(s̃i − si)b j . (21)
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The first contribution has the same structure as Eq. (5), �s̃,s =
i(�s̃ − �s) + ϒs̃,s, but here it only involves system degrees
of freedom. The two remaining sum contributions lead to
memory effects [Eq. (20)].

In Eq. (21), the sum contribution proportional to (hi j +
h ji )/2 corresponds to the system-environment coupling in-
duced by the Hamiltonian term. They lead to the fulfillment
of condition (20) if there exists any coupling between the
system and environment subsystems. On the other hand, the
dissipative coupling induced by the off-diagonal structure is
proportional to the imaginary part (�i j − � ji )/2 of the cou-
pling rates. It is completely independent of the corresponding
real part (�i j + � ji ). Thus, system-environment correlations
induced by the real part of {�i j} do not lead to memory
effects. In addition, memory effects can only emerge when
the time-reversal symmetry is broken. In fact, this symmetry is
broken when the matrix {�i j} is a complex one. Interestingly,
the same conditions were found in Ref. [47] when considering
the production of transient entanglement.

A relevant conclusion can also be obtained from Eq. (21).
While the unitary and dissipative couplings may lead to differ-
ent system-environment correlations, they may induce exactly
the same non-Markovian system dynamics. In fact, in Eq. (21)
the dependence of the sum contributions with respect to the
eigenvalues {(s̃i − si )b j} is exactly the same. Consequently,
under the mapping i(hi j + h ji )/2 ↔ −(�i j − � ji )/2, exactly
the same system memory effects are induced by the uni-
tary and dissipative couplings, respectively [see Eqs. (15)
and (16)].

III. OPERATIONAL APPROACH TO QUANTUM
NON-MARKOVIANITY

In operational approaches to quantum non-Markovianity
the system of interest is subjected to a set of measurement
processes [14,15]. The classification of the dynamics relies
on determining if the corresponding outcome joint probability
fulfills or does not fulfill a standard Markov definition [4].
Interestingly, a full characterization of this approach can be
formulated for the dynamics under study.

We assume that the system [defined by the splitting (9)]
is subjected to three successive measurement processes. The
goal is to calculate the joint probability P(z, y, x) where the
sets {x}, {y}, and {z} correspond to the outcomes of each
measurement, which are performed at times 0, t , and t + τ ,
respectively. The measurement operators are defined as {	m},
with m = x, y, z. They fulfill the normalization condition∑

m 	†
m	m = Is, where Is is the identity operator in the sys-

tem Hilbert space. The intermediate measurement is assumed
to be a projective one. In all cases, the measurements in-
duce the transformation ρ → ρm, where the postmeasurement
states are ρm = 	mρ	†

m/Tr[	†
m	mρ], each case occurring

with probability P(m) = Tr[Emρ]. For simplifying the expres-
sions we denote Em ≡ 	†

m	m, where m = x, y, z.

A. Joint probability of measurement outcomes

We maintain the system-environment splitting defined by
Eq. (9). Thus, the corresponding propagator is set by Eq. (10).
Furthermore, separable initial conditions are assumed ρse

0 =

ρs
0 ⊗ ρe

0. Consequently, the outcome probability for the first
measurement is P(x) = Trs[Exρ

s
0], while the postmeasure-

ment state is

ρse
0 → ρse

x = ρx ⊗ ρe
0. (22)

Afterwards, during a time interval of duration t , the ar-
rangement follows the dynamics (10), which induces the
transformation ρse

x → ρse
x (t ), where

ρse
x (t ) =

∑
s,s̃,b,b̃

|s̃b̃〉〈s̃b̃|ρx ⊗ ρe
0|sb〉〈sb| exp[−t�s̃b̃,sb]. (23)

The conditional probability for the second measurement
outcomes {y}, given that the first measurement outcome is x, is
given by P(y|x) = Trse[Eyρ

se
x (t )]. It can explicitly be written

as

P(y|x) =
∑
s,s̃,b

〈s|Ey|s̃〉〈s̃|ρx|s〉〈b|ρe
0|b〉 exp[−t�s̃b,sb]. (24)

Using that the second measurement is a projective one, the
corresponding postmeasurement state is

ρse
x (t ) → ρse

yx(t ) = ρy ⊗ ρe
yx(t ), (25)

where the environment state is

ρe
yx(t ) = 1

P(y|x)

∑
b,b̃

|b̃〉〈b̃|ρe
0|b〉〈b|

×
∑
s,s̃

〈s|Ey|s̃〉〈s̃|ρx|s〉 exp[−t�s̃b̃,sb]. (26)

Finally, the arrangement evolves during a time interval τ ,
inducing the transformation ρse

yx(t ) → ρse
yx(t + τ ). Using the

propagator defined by Eq. (10), it follows that

ρse
yx(t + τ ) =

∑
s,s̃,b,b̃

|s̃b̃〉〈s̃b̃|ρse
yx(t )|sb〉〈sb| exp[−τ�s̃b̃,sb].

(27)
The conditional probability for the last measurement out-
comes {z}, given that the previous ones were y and x, is given
by P(z|y, x) = Trse[Ezρ

se
yx(t + τ )], which yields

P(z|y, x)=
∑
s,s̃,b

〈s|Ez|s̃〉〈s̃|ρy|s〉〈b|ρe
yx(t )|b〉exp[−τ�s̃b,sb],

(28)
where ρe

yx(t ) is defined by Eq. (26).
The previous calculation steps allows to obtain the joint

probability for the set of three measurement outcomes.
In fact, from the Bayes rule it follows that P(z, y, x) =
P(z|y, x)P(y|x)P(x). Using Eqs. (28) and (24), we get

P(z, y, x) =
∑

b

{[ ∑
s,s̃

〈s|Ez|s̃〉〈s̃|ρy|s〉 exp(−τ�s̃b,sb)

]

×
[ ∑

s,s̃

〈s|Ey|s̃〉〈s̃|ρx|s〉 exp(−t�s̃b,sb)

]

× 〈b|ρe
0|b〉

}
P(x). (29)

This final result provides an explicit expression for P(z, y, x).
It only depends on the chosen measurement processes, the
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initial conditions, and the characteristic dephasing rates �s̃b,sb
[defined by Eq. (21)].

B. Markovian case

In the operational approach, the dynamics is memoryless
if the joint probability of the outcomes fulfills the Markov
property: P(z, y, x) = P(z|y)P(y|x)P(x). This equality must
be valid for arbitrary measurement processes. In general, the
expression (29) does not fulfill this condition, which implies
a non-Markovian system dynamics. On the other hand, it is
simple to realize that under the condition

�s̃b,sb = �s̃,s, (30)

the (operational) Markov property is fulfilled for any elec-
tion of the measurement processes. In fact, using that∑

b〈b|ρe
0|b〉 = 1, from Eq. (29) we get

P(z, y, x) =
⎡
⎣∑

s,s̃

〈s|Ez|s̃〉〈s̃|ρy|s〉 exp(−τ�s̃,s)

⎤
⎦

×
⎡
⎣∑

s,s̃

〈s|Ey|s̃〉〈s̃|ρx|s〉 exp(−t�s̃,s)

⎤
⎦P(x). (31)

The first and second sum contributions can be read as P(z|y)
and P(y|x), respectively, which implies the validity of the
Markov property P(z, y, x) = P(z|y)P(y|x)P(x).

We remark that in the operational approach, Eq. (30) is
a necessary and sufficient condition for Markovianity. That
is, in contrast to the nonoperational approach, here the in-
equality �s̃b,sb 	= �s̃,s [Eq. (20)] guarantees the presence of
memory effects. Taking into account Eq. (21), a nonvanishing
Hamiltonian term (hi j + h ji )/2 or any nonvanishing dissipa-
tive imaginary coupling (�i j − � ji )/2 guarantee the presence
of detectable memory effects. On the other hand, it can oc-
cur that condition (30) is fulfilled but �s̃b̃,sb 	= �s̃,s (b̃ 	= b).
As before, this case emerges when the off-diagonal rate co-
efficients are real. In fact, system-environment correlations
induced by the real part (�i j + � ji )/2 do not lead to departure
from (operational or nonoperational) Markovianity.

C. Statistical mixture representation

During the dynamics, system and environment are in-
trinsically coupled by their mutual interaction, and transient
quantum entanglement can be produced [47]. Consistently,
the environment state and dynamics depend on the system
degrees of freedom (see Appendix B). In particular, between
the successive measurement processes the environment state
is actively modified.

In spite of the previous properties, we notice that the
same outcome probability [Eq. (29)] can be obtained from an
alternative underlying dynamics. In fact, the expression for
P(z, y, x) can be read as a statistical mixture (random super-
position) of different system dephasing Markovian dynamics
[compare with Eq. (31)], each one with dephasing rates �s̃b,sb,
where the statistical weight of each one is given by the popu-
lation 〈b|ρe

0|b〉. Thus, one can obtain the same joint statistics
by considering an environment whose participation in the
developing of memory effects is completely passive, which in

turn does not involve any system-environment entanglement.
The same affirmation is valid for the system state ρ

(s)
t [see

Eqs. (15) and (16)].
The reading of the system dynamics in terms of a sta-

tistical mixture of Markovian dynamics can be seen as a
nonunitary extension of the Hamiltonian ensemble introduced
in Ref. [31]. Interestingly, this kind of equivalence can be
detected through the measurement scheme. Considering the
results of Ref. [29], a random selection of the system state
after the second measurement should render the statistics
Markovian. Explicitly, in Eq. (29), the following two changes
are introduced:

ρy → ρy̆, Ey →
∑

y

Ey = Is. (32)

The first change implies that after the second measurement,
the postmeasurement state is randomly chosen as y → y̆ over
the set {ρy}. This change (performed, for example, with an
unitary transformation) is chosen with an arbitrary conditional
probability ℘(y̆|x). As a consequence, the original y outcome
is disregarded, a property that leads to the corresponding
addition

∑
y. Introducing in successive order the changes (32)

into Eq. (29), it follows that

P(z, y̆, x)
r=

⎡
⎣∑

b,s,s̃

〈s|Ez|s̃〉〈s̃|ρy̆|s〉 exp(−τ�s̃b,sb)〈b|ρe
0|b〉

⎤
⎦

×℘ (y̆|x)P(x), (33)

where the symbol
r= implies that this equality is only valid

under the steps (32). As expected, this final expression has
the structure P(z, y̆, x)

r= P(z|y̆)℘(y̆|x)P(x), that is, indepen-
dently of the measurement process and chosen probability
℘(y̆|x), a Markov property is induced. In general, this Marko-
vian property is not fulfilled. When it applies, it provides an
experimental technique [29] for detecting when an environ-
ment can be replaced by a passive or, in general, by a casual
bystander one [28]. This feature in turn can be read as the
absence of any physical environment-to-system backflow of
information.

IV. EXAMPLES

In this section we apply the previous general theoretical ap-
proach to some specific examples. The properties of memory
effects are discussed in detail.

A. Bipartite arrangement

First we consider a bipartite arrangement [Eq. (1) with n =
2]. Therefore, both the system and the environment consist of
one single system. For clarity, their density matrix evolution
is explicitly written as

dρse
t

dt
− i

[
H, ρse

t

] + L
[
ρse

t

]
, (34)

where the bipartite Hamiltonian is

H = �(S ⊗ B), (35)
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while the nondiagonal Lindblad contribution L[ρse
t ] is defined

by

L
[
ρse

t

] = +γ
(
Sρse

t S − 1
2

{
S2, ρse

t

}
+
)

+ β
(
Bρse

t B − 1
2

{
B2, ρse

t

}
+
)

+ [
χ

(
Sρse

t B − 1
2

{
SB, ρse

t

}
+
) + H.c.

]
. (36)

In these expressions S and B are arbitrary Hermitian operators
acting in the system and bath Hilbert spaces, respectively.
The frequency � measure the strength of the unitary system-
environment interaction. On the other hand, the Hermitian
matrix

{�i j} =
(

γ χ

χ∗ β

)
(37)

sets the dissipative system-environment interaction. Given
that {�i j} must be a positive semidefinite matrix, it follows
the constraints γ � 0, β � 0, and γ β − |χ |2 � 0.

Introducing the eigenvectors and eigenvalues S|s〉 =
s|s〉, B|b〉 = b|b〉, the dephasing rates (5) under the split-
ting (9) can be written as [Eq. (11)]

�s̃b̃,sb = i�(s̃b̃ − sb) − iχI (s̃b − sb̃) + γ

2
(s̃ − s)2

+β

2
(b̃ − b)2 + χR(s̃ − s)(b̃ − b), (38)

where the real and imaginary parts of the off-diagonal cou-
pling rate χ are denoted as χR = Re[χ ] and χI = Im[χ ],
respectively.

For the emerging of system memory effects we have
to consider the (partial) diagonal contribution b̃ = b [see
Eqs. (15) and (16)], which leads to

�s̃b,sb = −i(χI − �)b(s̃ − s) + γ

2
(s̃ − s)2. (39)

Consequently, the parameters β and χR do not participate in
the developing of memory effects. This result is consistent
with the general expression (21). On the other hand, from the
point of view of the system dynamics the parameters � and χI

play exactly the same role. In fact, the sign of both parameters
is arbitrary. Nevertheless, notice that the underlying coupling
processes associated with these two constants, and the system-
environment correlations induced by each one, are different in
general.

Two qubits

As a specific example we consider that both subsystems are
qubits. For simplicity, both operators S and B are taken as a
z-Pauli matrix (σz) in the corresponding Hilbert spaces. Thus,
s = ±1 and b = ±1. Using the partial transpose criteria [48]
in Eq. (34), it follows that system-environment entanglement
can only be induced by the Hamiltonian H [Eq. (35)]. Com-
plementarily, the dissipative nondiagonal coupling is unable
to generate entanglement in this case.

The system density matrix [Eq. (15)] reads

ρ
(s)
t =

(
p+ c0 f (t )

c∗
0 f ∗(t ) p−

)
, (40)

where p± ≡ 〈±|ρ (s)
0 |±〉 and c0 ≡ 〈+|ρ (s)

0 |−〉 are, respec-
tively, the initial populations and coherence of the system in
the eigenbase of σz. The behavior of the coherences [Eq. (16)]
is given by

f (t ) = e−2tγ (q+e+it2χ
I + q−e−it2χ

I ), (41)

where q± ≡ 〈±|ρ (e)
0 |±〉 are the initial populations of the en-

vironment. In this expression and the following ones, for
shortening the expression we introduced the parameter χ

I
≡

(χI − �).
a. Nonoperational approach to memory effects. From

Eq. (17), and consistently with the solution (40), the system
density matrix time evolution can be cast in the form

dρ
(s)
t

dt
= −i

ω(t )

2

[
σz, ρ

(s)
t

] + γ (t )
(
σzρ

(s)
t σz − ρ

(s)
t

)
. (42)

Using the procedure defined by Eq. (19), the time-dependent
frequency is

ω(t ) = − 2χ
I
(q+ − q−)

q2+ + q2− + 2(q+q−) cos(4χ
I
t )

, (43)

while the time-dependent rate is

γ (t ) = γ + 2χ
I
(q+q−) sin(4χ

I
t )

q2+ + q2− + 2(q+q−) cos(4χ
I
t )

. (44)

Consistently, both ω(t ) and γ (t ) only depend on the charac-
teristic rates γ and χ

I
. On the other hand, the environment

populations {q±} also govern the emergence of memory ef-
fects. In fact, when q± = 1, q∓ = 0, it follows that ω(t ) =
∓2χ

I
and γ (t ) = γ . Hence, the system dynamics is Marko-

vian.
In general, the rate γ (t ) may assume both positive and

negative values, which can be used as a witness of memory
effects [13]. In Figs. 1(a) and 1(b) we plot both the frequency
ω(t ) and the rate γ (t ) for two different values of the (scaled)
off-diagonal coupling χ

I
/γ . Depending on its value, a transi-

tion from Markovian [γ (t ) � 0] to non-Markovian dynamics
[γ (t ) ≷ 0] is clearly observed.

b. Operational approach to memory effects. For imple-
menting the operational approach, we assume that the three
measurements are projective ones. They are performed suc-
cessively in the Bloch directions x̂ − n̂ − x̂, where n̂ =
[cos(φ), sin(φ), 0] is an arbitrary direction in the x̂-ŷ plane de-
fined by the angle φ. The successive measurement outcomes
are x = ±1, y = ±1, and z = ±1. Using the correspond-
ing measurement projectors {	m = |m〉〈m|} associated with
each direction [49], from the general expression (29), using
Eq. (39), we get

P(z, y, x)

P(x)
= 1

4
[1 + yx f (+)

φ (t ) + zy f (−)
φ (τ ) + zx fφ (t, τ )].

(45)
Here, the auxiliary functions are

f (±)
φ (t ) = e−2tγ {q+ cos[2tχ

I
(±)φ] + q− cos[2tχ

I
(∓)φ]},

while the last one is

fφ (t, τ ) = e−2γ (t+τ )[q+ cos(2tχ
I
+ φ) cos(2τχ

I
− φ)

+ q− cos(2tχ
I
− φ) cos(2τχ

I
+ φ)].
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FIG. 1. Time dependence of the frequency ω(t ) and rate γ (t ),
Eqs. (43) and (44), respectively, jointly with the correlation
Cp f (t, τ )|y [Eq. (47)] at equal times, for a system coupled to a single
qubit environment, n = 2. In (a) and (c) the off-diagonal parameter
is χ

I
/γ = −0.2, while in (b) and (d) it is χ

I
/γ = −1.0. In all cases

the environment populations are taken as q+ = 0.4, q− = 0.6, while
the angle of the intermediate measurement is φ = π/2.

Taking χ
I
= 0 in Eq. (45), it is simple to show that

P(z, y, x) fulfill a Markov property. A simple way of witness-
ing departures of P(z, y, x) from Markovianity is through a
conditional past-future correlation [15]. It is defined as

Cp f (t, τ )|y =
∑
z,x

zx[P(z, x|y) − P(z|y)P(x|y)]. (46)

Here, {z} and {x} represent the possible outcomes in the
last (future) and first (past) measurement processes, respec-
tively, while the conditional y is an arbitrary outcome of
the intermediate (present) measurement. From the Bayes
rule, the Markov property P(z, y, x) = P(z|y)P(y|x)P(x) can
be rephrased as a conditional past-future independence,
P(z, x|y) = P(z|y)P(x|y), which leads to Cp f (t, τ )|y = 0.
Hence, the condition Cp f (t, τ )|y 	= 0 implies the presence of
memory effects.

Using that P(z, x|y) = P(z, y, x)/P(y), where P(y) =∑
z,x P(z, y, x), from Eq. (45) the correlation (46) reads

Cp f (t, τ )|y = −(4q+q−) sin2(φ)e−2γ (t+τ )

× sin(2tχ
I
) sin[2τχ

I
]. (47)

For simplicity, this result was derived by assuming system ini-
tial conditions such that P(x) = 1/2. In Figs. 1(c) and 1(d) we
plot Cp f (t, τ )|y at equal measurement time intervals, τ = t .
The off-diagonal coupling is in correspondence with Figs. 1(a)
and 1(b), respectively. Consistently with previous general re-
sults, for any nonvanishing value of χ

I
/γ 	= 0, in contrast to

the negative rate criteria, here the dynamics is non-Markovian,
Cp f (t, τ )|y 	= 0.

B. Multipartite environment

Now we consider a multipartite dynamics [Eq. (1) with n >

2]. As in the previous example, all subsystems are taken as
qubits. The first qubit is taken as the system (nS = 1), and
consequently the rest are part of the environment (nB = n −
1). Similarly, all coupling operators are taken as the z-Pauli
matrix (σz) in the corresponding Hilbert spaces. The matrix of
rate coefficients {� jk} is taken as

{� jk} = {(γ − χ )δ jk} + χ | fλ〉〈 fλ|, (48)

where γ and χ are two real parameters. Furthermore, δ jk is
the Kronecker delta function. The complex vector is | fλ〉 ≡∑n

j=1 e2π i( j−1)λ/n|e j〉, where {|e j〉}n
j=1 is the standard basis

of a vectorial space of dimension n, while λ is an arbitrary
dimensionless real parameter. It is simple to check that γ

and χ scale the diagonal and off-diagonal elements of {� jk},
respectively. The structure of {� jk} introduced in Ref. [47] is
recovered when χ = γ .

While the developed results allow characterizing the dy-
namics in an exact analytical way, simple expressions are
only obtained for special values of the free parameter λ.
From now on we take λ = n/4. Hence, Eq. (48) becomes
� jk = (γ − χ )δ jk + χ (i) j−1(−i)k−1, that is,

{� jk} =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ −iχ −χ +iχ +χ

+iχ γ −iχ −χ
. . .

−χ +iχ γ −iχ . . .

−iχ −χ +iχ γ
. . .

+χ
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (49)

The diagonal elements are equal to γ , while the off-diagonal
couplings alternatively change between imaginary (±iχ ) and
real (±χ ) values. The positive semidefinite character of {� jk}
[Eq. (49)], which guarantees that the full evolution is a com-
pletely positive one, implies that γ > 0 and the inequalities

− γ

(n − 1)
� χ � γ , (50)

where n � 2. In addition, in Eq. (1) we assume H = 0.

1. Entanglement generation

The generation of entanglement in dephasing dynamics
has been characterized for unitary evolutions [50]. For the
multipartite nondiagonal dissipative dynamics [Eq. (1)], the
corresponding analysis has been presented previously [47].
The basic procedure is to calculate the matrices (h̃i j, �̃i j ),
which define the evolution of the total density matrix after
transposing the environment degrees of freedom, ρt → ρ

ᵀ
t

(see Eq. (4) in Ref. [47]). Using the partial transpose cri-
terion [48], it is possible to conclude that when {�̃i j} has
negative eigenvalues, the dynamics generates transient en-
tanglement. When {�̃i j} has positive eigenvalues, the partial
transpose state ρ

ᵀ
t is positive definite and entanglement gen-

eration is not granted [47,48].
By determining {�̃i j} from Eq. (49), and by calculating its

eigenvalues for each n (total number of qubits) it is possible to
determinate (numerically) the minimal value of the parameter
χ/γ that guarantees entanglement generation. In Fig. 2, we
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FIG. 2. Parameter values χ/γ as a function of the arrangement
size n that lead to system-environment entanglement. The matrix of
rate coefficients is given by Eq. (49). The upper and lower boundaries
of χ/γ are defined by Eq. (50). The frontier between the entangling
(negative partial transpose) and the positive partial transpose is de-
termine numerically (see text).

plot the regions where entanglement generation is granted and
where complementarily ρ

ᵀ
t is positive definite. Only for n � 3

there is entanglement generation. Furthermore, positive values
of χ/γ are necessary, which in turn decreases with n. Both
regions are limited by the constraints defined by Eq. (50).
Beyond these frontiers, the dynamics must be implemented
with Hamiltonian contributions.

2. System memory effects

Independently of the value of the parameter χ/γ , the sys-
tem state ρ

(s)
t and its evolution can be written as in Eqs. (40)

and (42), respectively. For simplicity, we assume that all
subsystems of the environment begin in an (multipartite) un-
correlated state, each subsystem (mixed) state having equal
upper and lower populations. Thus, 〈b|ρ (e)

0 |b〉 = (1/2)n−1.
The coherence behavior f (t ) from Eq. (16), after some alge-
bra, is given by

f (t ) = e−2γ t [cos(2χt )]n̄, (51)

where n̄ ≡ Int[n/2] is the integer part of (n/2). The de-
pendence on n̄ emerges because the off-diagonal elements
of {� jk} alternate between real and imaginary values [see
Eq. (49)]. The time evolution of ρ

(s)
t [Eq. (42)] is defined with

ω(t ) = 0, γ (t ) = γ + n̄χ tan(2χt ). (52)

The absence of a Hamiltonian contribution [ω(t ) = 0] fol-
lows from the equality of the upper and lower populations
of each subsystem associated with the environment. From
γ (t ), we deduce that in the nonoperational approach to mem-
ory effects, the system dynamics is non-Markovian whenever
χ 	= 0. Interestingly, this kind of “trigonometric eternal non-
Markovianity” with periodic divergences was also found in a
different kind of underlying multipartite dynamics [44].

For the operational approach we choose the same set of
measurements as in the previous bipartite case, x̂ − n̂ − x̂,
where the intermediate one is defined by the angle φ. The
joint probability of measurement outcomes P(z, y, x) can be
written with the structure (45). From Eq. (29) it follows that

f (±)
φ (t ) = fφ (t ) = f (t ) cos(φ), (53)

FIG. 3. Coherence decay f (t ) [Eq. (51)] and correlation
Cp f (t, τ )|y at equal times [Eq. (55)] for a system coupled to a multi-
partite environment. The off-diagonal coupling rate χ/γ and the total
number of qubits n is indicated in each plot. In all cases, the qubits of
the environment begin with equal upper and lower populations. The
angle of the intermediate measurement is φ = 0.

where f (t ) is given by Eq. (51), while

fφ (t, τ ) = 1
2 e−2γ (t+τ ){cosn̄[2χ (t + τ )]

+ cos(2φ) cosn̄[2χ (t − τ )]}. (54)

Consequently, it is simple to check that P(z, y, x) fulfill the
Markov condition only when χ = 0. This property is corrob-
orated by the conditional past-future correlation [Eq. (46)],
which here can be written as

Cp f (t, τ )|y = fφ (t, τ ) − fφ (t ) fφ (τ ). (55)

As before, this result was derived by assuming system initial
conditions such that P(x) = 1/2.

In Figs. 3(a) and 3(b) we plot the coherence decay (51)
and the conditional past-future correlation (55) with n = 6 and
taking different values of χ/γ . Consistently with their analyt-
ical expressions, the developing of entanglement (see Fig. 2)
does not lead to any significant change in these two objects.
This independence follows from the previous general analysis.
In fact, both the system dynamics [Eqs. (15) and (16)] and
the outcome statistics [Eq. (29)] can equivalently be obtained
from a random superposition of Markovian dephasing dynam-
ics without involving any multipartite entanglement.

In Figs. 3(c) and 3(d) we plot the coherence decay (51) and
the conditional past-future correlation (55) for different num-
bers n of qubits. Given that χ/γ = 1, transient entanglement
is granted in all cases. When increasing n the decoher-
ence function f (t ) decays in a faster way, and in addition
Cp f (t, τ )|y assumes higher values, which can consistently be
read as an increasing of system memory effects.

3. Infinite bath size

The system dynamics can also be characterized in the
limit in which the number of subsystems of the environment
become infinite. Nevertheless, for getting a smooth system
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coherence decay [Eq. (51)], the off-diagonal dissipative cou-
pling χ in Eq. (49) must be scaled with the arrangement size
n. We assume

χ −→ χn = g

√
2

n
, (56)

where g is an arbitrary scaling constant. It is simple to prove
that

lim
n→∞[cos(2χnt )]n̄ = e−2g2t2

. (57)

Therefore, for increasing n, the system coherence decay can
be fit as

lim
n→∞ f (t ) = e−2γ t e−2g2t2

. (58)

While the diagonal contribution leads to an exponential decay
with rate γ , the nondiagonal coupling lead to a Gaussian
decay behavior. The time-dependent rate [Eq. (52)] becomes
limn→∞ γ (t ) = γ + 2g2t . Remarkably, similar Gaussian be-
haviors are obtained from unitary system-environment dy-
namics [51] (spin baths) and also from chaotic quantum many
body arrangements [52].

V. SUMMARY AND CONCLUSIONS

We studied the emergence and properties of memory
effects in a class of multipartite arrangements where all sub-
systems are coupled to each other by Markovian Lindblad
dephasing mechanisms [Eq. (1)]. By choosing an appropri-
ate basis for the total Hilbert space, the multipartite density
matrix was obtained in an exact analytical way [Eq. (8)]. An
arbitrary number of subsystems are associated with the system
of interest, while the rest define its environment. This splitting
[Eq. (9)] provided the basis for characterizing in an exact way
both nonoperational and operational approaches to quantum
non-Markovianity.

In nonoperational approaches to quantum non-
Markovianity, memory effects are determined from the
properties of the system density matrix evolution. We
showed that its general structure can be written as a
nondiagonal time-dependent dephasing evolution [Eq. (17)].
Its characteristic parameters are set by the corresponding
system coherence behaviors [Eq. (19)]. A necessary condition
for the emergence of memory effects can be cast in terms
of the multipartite dephasing rates [Eq. (20)]. Explicitly,
memory effects may be induced by Hamiltonian couplings
or when the dissipative coupling breaks a time-reversal
symmetry, that is, the off-diagonal coupling rates must be
complex ones. In these dynamics, these conditions are also
necessary for the development of transient entanglement [47].

In operational approaches to quantum non-Markovianity,
memory effects are determined from a set of measurement
processes performed over the system of interest. We calcu-
lated in an explicit analytical way the joint probability of
measurement outcomes [Eq. (29)]. In this case the previ-
ous conditions for the emergence of memory effects become
sufficient, that is, any nonvanishing unitary or dissipative cou-
plings consistent with the break of time-reversal symmetry
lead to departures from Markovianity.

While the multipartite dynamics lead to entanglement
generation, we concluded that this feature is not relevant
when considering the properties of system memory effects.
In fact, both the density matrix dynamics and the statistics
of measurement outcomes [Eqs. (15) and (29)] can alterna-
tively be obtained from a statistical mixture of Markovian
dephasing evolutions. This equivalent representation does not
involve any entanglement. In addition, in the operational ap-
proach, this property implies that memory effects can be
obtained without the occurrence of any physical environment-
to-system backflow of information.

As examples we studied bipartite and multipartite dynam-
ics [with coupling rates given by Eqs. (37) and (49)], where
each subsystem is a qubit. The properties of the corresponding
memory effects support the previous main results (Figs. 1–3).

Understanding the role of system-environment correlations
in the developing of memory effects is a central problem in
open quantum system theory. The present analysis sheds light
on possible memory features that can emerge in systems em-
bedded in multipartite dissipative arrangements. Their validity
can in principle be checked in optical setups where this kind
of dynamics can be implemented [47].
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APPENDIX A: GENERALIZATION TO MULTIPARTITE
COUPLINGS

In the evolution defined by Eq. (1), the coupling between
the subsystems is a bipartite one, that is, it only involves the
action of two operators: S(i) and S( j). Multipartite coupling
mechanisms can also be considered, where more than two
subsystems are involved. In this situation, the density matrix
can be written as

dρt

dt
= −i[H, ρt ] +

∑
μ,ν

�μ,ν

(
Sμρt Sν − 1

2
{SνSμ, ρt }+

)
,

(A1)
where the indexes are μ = (μ1, μ2, . . . , μn) and ν =
(ν1, ν2, . . . , νn). The operators {Sμ} are defined by the product

Sμ = S(1)
μ1

⊗ · · · ⊗ S(n)
μN

, (A2)

where each operator S(i)
μi

[defined in Hi] depends on the
subindex μi. It is defined as

S(i)
μi

≡
{

S(i) i f μi = 1
I(i) i f μi = 0

, (A3)

where I(i) is the identity operator in the Hilbert space Hi.
Thus, it is simple to realize that, in contrast to Eq. (1), ar-
bitrary multipartite coupling mechanisms are associated with
the coupling rates �μ,ν . Similarly, the Hamiltonian is taken as
H = (1/2)

∑
μ hμSμ, where hμ are real coefficients.

In this general situation, by writing S(i)
μi

= μiS(i) + (1 −
μi )I(i) it is simple to check that Sμ|s〉 = λ

μ
s |s〉, where the

eigenvalue is given by λ
μ
s = ∏n

i=1[μisi + (1 − μi )] and |s〉 is
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defined by Eq. (3). After similar calculation steps, the density
matrix can also be written as in Eq. (8). Here, the frequencies
are defined by

�s = 1

2

∑
μ

λμ
s hμ, (A4)

while the multipartite dissipative couplings lead to

ϒs̃,s =
∑
μ,ν

�μ,ν

(
λ

μ

s̃ λν
s − 1

2
λ

μ

s̃ λν
s̃ − 1

2
λμ

s λν
s

)
. (A5)

By adding and subtracting appropriates terms, this result can
be cast with the same structure as Eq. (7).

APPENDIX B: ENVIRONMENT DYNAMICS

A relevant aspect when characterizing memory effects is
the environment dynamics. The system dynamics depends on
the environment degrees of freedom [Eqs. (15) and (16)].
Given that the system-environment splitting is arbitrary, a sim-

ilar property must be valid for the environment. Specifically,
during the dynamics the environment depends on the system
degrees of freedom. In fact, from Eq. (10) it follows that

ρ
(e)
t = Trs

[
ρse

t

] =
∑
b,b̃

Fb̃b(t )|b̃〉〈b̃|ρ (e)
0 |b〉〈b|, (B1)

where we have introduced the functions

Fb̃b(t ) =
∑

s

〈s|ρ (s)
0 |s〉 exp[−t�sb̃,sb]. (B2)

Similarly to Eq. (16), here the behavior of the environment
coherences {Fb̃b(t )} is time dependent and depends on the sys-
tem degrees of freedom. Thus, independently of the specific
system-environment splitting [Eq. (9)], the environment is not
a casual bystander one [28], that is, it dynamically participates
in the generation and developing of system memory effects.
Only when the initial environment state ρ

(e)
0 is diagonal in the

basis {|b〉}, using that �sb,sb = 0, the bath dynamics become
independent of the system, ρ

(e)
t = ρ

(e)
0 .
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