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Lower bounds on par with upper bounds for few-electron atomic energies
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The development of computational resources has made it possible to determine upper bounds for atomic
and molecular energies with high precision. Yet, error bounds to the computed energies have been available
only as estimates. In this paper, the Pollak–Martinazzo lower-bound theory, in conjunction with correlated
Gaussian basis sets, is elaborated and implemented to provide subparts-per-million convergence of the ground-
and excited-state energies for the He, Li, and Be atoms. The quality of the lower bounds is comparable to that of
the upper bounds obtained from the Ritz method. These results exemplify the power of lower bounds to provide
tight estimates of atomic energies.
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I. INTRODUCTION

A century ago, the development of quantum theory was
motivated, among others, by the stability of atoms and
molecules. Schrödinger’s Coulomb Hamiltonian for the hy-
drogen atom has a finite, lowest-energy eigenvalue, i.e.,
quantum theory correctly predicted its stability. Regarding
polyelectronic and polyatomic systems, the analytic solution
is unknown, but it has been demonstrated by formal tools that
the many-particle Coulomb Hamiltonian is bounded from be-
low [1,2]. In this sense, formal lower-bound theory played an
essential role in showing that nonrelativistic quantum theory
was qualitatively correct.

The evaluation of the ground- and excited-state energy
levels of the Hamiltonian has been of central importance
during the course of the practical application of quantum
theory to molecular physics and chemistry. The Schrödinger
equation of atomic and molecular systems has been solved by
various numerical techniques; the most accurate energy values
have been obtained by variational methods.

Variational methods are based on the variational principle,
formulated for an energy upper bound, and provide systematic
numerical means to converge from above to the (unknown)
exact energy (and the corresponding wave function) by using
computer power.

In spite of the essential role lower bounds played in the for-
mal theory, they were rarely used as practical computational
tools and for good reason. Computed lower bounds have been
orders of magnitude less accurate than the upper bound; thus,
the computational effort was concentrated on converging the
upper bound. The convergence rate of the upper bound has
been used to estimate the exact nonrelativistic energy (within
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some estimated energy interval). Such an extrapolation is ap-
proximate and may fail. The energy uncertainties derived from
basis-set extrapolation have sometimes turned out to be overly
optimistic, making conclusions based on estimated error bars
to the computed energies unreliable.

This work aims to turn the formal lower-bound theory into
a practical computational tool that provides an energy lower
bound converging to the (unknown) exact energy value from
below at a rate comparable to the upper bound. Thereby, it
becomes possible to compute and systematically narrow the
energy interval within which the exact nonrelativistic energy
resides. This procedure allows us to take the first step towards
computing error intervals, instead of estimating them. A com-
puted error interval to the computed atomic (or molecular)
energy is necessary for a good comparison with experimental
data, when we aim to test and further develop the funda-
mental theory of atomic and molecular matter. In this work,
we present algorithmic developments and computations for
few-electron atoms. Further work is planned to generalize the
procedure for molecular energies.

Several lower-bound methods have been introduced based
on the Temple [3] and the Weinstein [4] approaches. The
Weinstein lower bound was further elaborated and generalized
by Stevenson and Kato [5–7]. Several theoretical [8–15] and
practical improvements [16–18] have been developed with
respect to the Temple bound. The optimal inclusion intervals
introduced by Lehmann [19–21] were a significant devel-
opment in relation to the original Temple bound. Further
approaches of lower-bound methods are based on bracketing
functions [22–27] and on the method of intermediate oper-
ators [28,29]. Lower bounds are also of importance in the
context of physical properties of few-electron atoms such as
oscillator strengths [30–34].

In the past few years, a novel class of lower-bound meth-
ods [35,36] based on the Lánczos construction of basis sets
has been proposed. A self-consistent lower-bound theory
(SCLBT) [37,38] was developed and successfully applied
to quartic [38] and double-well [39] potentials as well as
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lattice models [37,40]; however, these methods are typically
not applicable for Coulomb-interacting systems due to the
divergence of matrix elements of cubic and higher powers of
the Coulombic Hamiltonian, unless one can devise basis sets,
which like the true eigenfunctions, prevent such divergence
and still the basis is in principle complete.

While a tight Temple lower bound was computed for the
helium atom [41], the quality of this lower bound is sev-
eral orders of magnitude worse than the corresponding upper
bound. As alternatives to Temple’s approach, expanding on
Aronszajn’s work [29], Bazely [42,43] and later Bazely
and Fox [44] obtained lower bounds using intermediate
Hamiltonians by introducing a special choice for the finite-
dimensional space used to represent the Hamiltonian operator.
This class of methods has been further elaborated and applied
to Coulombic systems as well as other potentials [45–48],
most recently by Marmorino [49,50]. Lower bounds to the
energy eigenvalues of the helium atom have been computed
using further strategies [51,52] and an energy lower bound
to the ground state of the lithium atom was computed us-
ing Lehmann’s method [53]. However, none of these studies
resulted in lower bounds with comparable accuracy to those
obtained with the Ritz variational method.

Most recently, a different approach has been introduced by
Pollak and Martinazzo applicable for Coulombic potentials,
which was successfully used to compute lower bounds to the
energy levels of hydrogen [54], and the two-electron helium
and the three-electron lithium atoms [55]. This work presents
a further development and application of the method based on
the use of explicitly correlated Gaussian basis sets. We report
algorithmic and computational strategies and present numeri-
cal results for lower bounds to the (ground- and excited-state)
energies of the helium, lithium, and beryllium atoms with
a relative precision comparable to the corresponding upper
bound obtained in the same series of computations.

II. LOWER-BOUND THEORY

Schrödinger’s formulation of the nonrelativistic Hamilto-
nian of atoms with a fixed nucleus of charge number Z is
written in Hartree atomic units as

H = −1

2

N∑
i=1

�i +
N∑

i=1

N∑
j>i

1

ri j
−

N∑
i=1

Z

ri
(1)

with ri denoting the distance of the ith electron from the
nucleus, ri j denoting the distance of the ith electron from
the jth one, and �i is the kinetic energy operator for the ith
electron. The nucleus is assumed to be stationary, with infinite
mass, located at the origin of the spatial coordinate system.
A central branch of molecular physics revolves about the
computation of stationary states of H by (numerical) solution
of the eigenvalue equation

Hψn = εnψn, n = 1, 2, . . . . (2)

According to the Ritz–Macdonald variational
principle [56,57], the energy functional

λn = 〈ϕn|H |ϕn〉
〈ϕn|ϕn〉 � εn (3)

provides an upper bound to the exact energy εn for an ap-
propriate ϕn trial function. For a linear parametrization of
the trial function in terms of “primitive” basis functions fi,
ϕn = ∑L

i=1 cni fi, the minimization problem is turned into a
matrix eigenvalue equation

Hcn = λ(L)
n Scn, (4)

where the H Hamiltonian and S overlap matrices are cal-
culated using the basis functions. The matrix elements are
Hi j = 〈 fi|H | f j〉 and Si j = 〈 fi| f j〉.

A central difficulty in computing lower bounds to Coulom-
bic systems using Lánczos basis sets or more generally the
Krylov algorithm [58] is due to the fact that with most basis
sets, H2 is the highest power of the Coulomb Hamiltonian
that can be handled; powers greater than 2 usually diverge.
The expectation value of H2, 〈H2〉n = 〈ϕn|H2|ϕn〉, and the
corresponding variance, σ 2

n = √〈H2〉n − 〈H〉2
n, can be com-

puted and used in relation with several lower-bound theories.
However, until recently, all lower-bound theories returned
numerical values that were several orders of magnitude less
accurate than the upper bound obtained in a similar computa-
tional setup; hence, the practical utility of the computed lower
bounds remained limited.

The recently formulated Pollak–Martinazzo (PM) lower-
bound theory addresses this problem by constructing a special
matrix used in conjunction with the Cauchy interlacing the-
orem. According to the interlacing theorem, which can be
derived from the Courant–Fisher theorem [59], if the eigen-
values of an n × n Hermitian matrix A are given in ascending
order as a1 � a2 � · · · � an−1 � an, and the eigenvalues of
its (n − 1) × (n − 1) principal submatrix B are b1 � b2 �
· · · � bn−2 � bn−1, then a1 � b1 � a2 � b2 � · · · � an−1 �
bn−1 � an. This theorem is used to obtain lower bounds to
the eigenvalues of B as follows. The matrix B with dimen-
sion L = n − 1 is substituted with the diagonal Hamiltonian
matrix obtained by diagonalizing the L × L Hamiltonian ma-
trix, Eq. (4), with eigenvalues denoted in an ascending order
as λ

(L)
j .

Then, a “big” [(L + 1) × (L + 1)]-dimensional matrix is
defined, motivated by the matrix A in the previous paragraph,
as [54]

KL(ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ
(L)
1 0 . . . 0 σ

(L)
1

0 λ
(L)
2 . . . 0 σ

(L)
2

...
...

. . . 0
...

0 0 . . . λ
(L)
L σ

(L)
L

σ
(L)
1 σ

(L)
2 . . . σ

(L)
L ε + ∑L

k=1
(σ (L)

k )2

λ
(L)
k −ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)

where λ(L)
n labels the nth Ritz eigenvalue and σ (L)

n is the
associated standard deviation. We refer to the matrix KL(ε)
as the PM matrix with parameter ε.

By construction, the parameter ε is an eigenvalue of the
PM matrix. The remaining eigenvalues of the matrix are the L
solutions of the polynomial equation

1 =
L∑

k=1

σ 2
k

(λk − ε)(x − λk )
. (6)
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They are denoted in ascending order as x j ( j = 1, . . . , L) and
have the important property that x j (ε) is a monotonically
increasing function of the parameter ε.

Suppose that we choose ε to equal the unknown ground-
state energy denoted as ε1. According to Cauchy’s interlacing
theorem, the eigenvalues xk of the KL(ε) matrix are inter-
laced by the Ritz eigenvalues λk as follows: ε1 � λ

(L)
1 � x1 �

λ
(L)
2 � · · · � λ

(L)
L � xL. If then we have a lower bound for

x1 and compute from Eq. (6) the value of ε that would give
the same value of x1, then due to the monotonicity property
this value of ε would necessarily be a lower bound to the
ground-state energy. If the basis set used is “good” in the sense
that both λ

(L)
1 and λ

(L)
2 are not too far from the exact eigen-

values ε1 and ε2, then, barring special circumstances such
as described below for the He atom, one finds that x1 � ε2,
so that bounding x1 from below by a lower bound to the
excited-state energy gives a lower bound to the ground-state
energy. Since the eigenvalues of the PM matrix are not very
sensitive to the precise value of x1 used, this leads to accurate
lower bounds, as shown below.

This procedure may then be continued. For example, if λ
(L)
3

is also not too far from the exact eigenvalue ε3, then x2 will be
larger than ε3, so that replacing it with a lower bound to ε3 and
finding the two lowest eigenvalues of the PM equation yields
lower bounds to the ground- and first-excited-state energies.
This procedure may then be continued for the next-excited
state, etc.

III. COMPUTATIONAL SETUP WITH AN EXPLICITLY
CORRELATED GAUSSIAN BASIS

Explicitly correlated Gaussian (ECG) functions [60–64]
are commonly used as a spatial basis for atomic and molecular
problems; however, unlike orthogonal polynomials, they do
not provide uniform coverage of space by simply increasing
the polynomial order. ECGs can be powerfully used in rela-
tion with parametrization by optimization (minimization) of
some appropriate target functional. (Regarding nodeless har-
monic oscillator functions used as a basis, see Ref. [63].) The
parametrization of ECGs with respect to minimization of the
energy functional is a powerful means of obtaining and sys-
tematically improving energy upper bounds. While ECGs fail
to satisfy the cusp condition [65], they have general, analytic
N-particle integrals for most physically relevant operators,
which can be generalized also for molecular computations.

In this work, trial functions corresponding to the S ground-
state symmetries of the helium, lithium, and beryllium atoms
are expressed as antisymmetrized (A) products of φ spatial
and χ spin functions

fi(r, σ ) = A{φL,ML (r, Ai )χS,MS (σ, ϑi )}. (7)

χS,MS (σ, ϑi ) corresponds to the two-, three-, and four-electron
spin functions coupled to spin states with total spin quantum
numbers (S, MS ) = (1, 0) for helium and beryllium and to
(2,0) for lithium. The total spin functions for lithium and
beryllium correspond to a two-dimensional spin space, which
is parametrized by one free parameter (θi) [63]. We used ECGs
as spatial basis functions corresponding to (L, ML ) = (0, 0)
orbital momentum quantum numbers (suppressed in the rest

of the paper),

φ(r, Ai ) = e−rT(Ai⊗I3 )r, (8)

centered at the origin (where the nucleus is fixed) and
r ∈ R3N collects the electronic coordinates. The Ai ∈ RN×N

positive-definite, symmetric matrix determines the width of
the Gaussian and the correlation length of the particles, and is
determined by optimization of some appropriate target func-
tion.

All computations were performed using a computer pro-
gram named QUANTEN (QUANTum mechanical description of
electrons and atomic nuclei) and developed by the Budapest
group. QUANTEN has a (stochastic and deterministic) varia-
tional engine and an extensive ECG library with recent appli-
cations including nonadiabatic, pre-Born–Oppenheimer, per-
turbative, and variational relativistic computations [66–74]. It
can be efficiently run with double-precision arithmetic, but a
quadruple precision mode is also available. The first imple-
mentation of the H2 integrals and assembling the variance
computation in QUANTEN, which was recently reported for
two- and three-electron atoms [55,75], is further developed
and extended to four- (and, in general, N) particle systems in
this work.

A. Strategy for converging the PM lower bound to the energy

Atomic PM lower bounds have been reported for the he-
lium and lithium ground states using the computational setup
described above [55]. Although the PM lower bounds were
tighter than the Weinstein, Temple, or Lehmann bounds ob-
tained with the same basis set [55], even the best PM bound
was (at least) three orders of magnitude less precise (a relative
precision of 0.55 ppm for helium and 4.0 ppm for lithium
was achieved) than the corresponding upper bound (with a
relative precision of 0.000 17 ppm for helium and 0.002 ppm
for lithium).

The natural question arises: How can we improve the
convergence of the PM bounds? The plausible idea of fine
tuning the ECG basis parametrization based on a simple PM
energy maximization condition was found to be impractical in
Ref. [55]. If one is not careful, then a simple-minded applica-
tion of the PM method may lead to energy values which are
higher rather than lower than the true eigenvalue under study.

To better understand the conditions for which the PM
method leads to lower bounds, it is necessary to consider
that all lower-bound theories based on the variances of the
Hamiltonian are only valid under certain conditions. These
conditions are typically connected to the quality of the vari-
ances and the ε parameter. When the upper bounds are “well
behaved,” in the sense that the λ j − ε j distance may be con-
sidered as small, one may expand the PM equation [Eq. (6)]
to leading order in the distance to find [54]

x j (ε) − ε j+1 � λ j+1 − ε j+1 − σ 2
j+1

σ 2
j

(λ j − ε j ) � 0. (9)

This relation implies that the left-hand side of the equa-
tion will be positive if the ratio of the variances of the
( j + 1)th to the jth state is sufficiently small. This suggests
that if we are interested, for example, in a high-quality lower
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bound to the ground-state energy, and we already have a fairly
good description of the ground-state upper bound, then we
should continue improving not the ground but the first-excited
state’s description, i.e., continue with the minimization of
the first-excited-state energy and associated reduction of its
variance. This is the core idea for the computational develop-
ments presented in this paper. Furthermore, Eq. (9) will also
be used to rationalize some further observations regarding the
numerical results [sensitivity of the computed lower bounds to
the ε parameter of the PM matrix, Eq. (5), and possible failure
of obtaining a lower bound].

The implementation of the core idea, i.e., improvement of
the description of excited states to have a better lower bound
for the ground state, was not readily available in the exist-
ing computational setup. Although ECG basis sets generated
based on the energy minimization condition for a selected
state provide a very compact representation, they do not guar-
antee a high-quality description of other states (unlike a set
of orthogonal polynomials, for which increasing the number
of functions, i.e., the polynomial order, automatically ensures
more complete coverage of the space and, hence, improved
convergence of excited-state energies).

1. Implementation of the multistate energy minimization
strategy in an ECG-based procedure

A usual energy minimization procedure, e.g., for the
ground state, is initiated by random basis generation and se-
lection [63], which is followed by repeated refinement cycles
of the already existing basis set, for which we use the Powell
method [76]. Both steps are based on the energy minimiza-
tion condition (and the variational principle for Hamiltonians
bounded from below).

The same procedure can be repeated for the first-
(nth) excited state (even long-lived states embedded in the
continuum [69] in combination with a stabilizationlike pro-
cedure). In this fashion, separate near-optimal basis sets for
separate states can be straightforwardly generated. One could
then try and merge the basis sets optimized for the ground and
for the first-excited states, but this procedure would result in a
gigantic basis and, more importantly, near-linear dependency
problems in the finite precision arithmetic used for the com-
putations.

Instead, we have implemented a multistate procedure in
a single computation as follows. The usual basis generation
and refinement using the energy minimization condition for
the ground state is implemented up to a certain number of
basis functions. This number is determined based on conver-
gence of the Ritz ground-state energy. This results in the first
“block” of our basis set. The computation is then continued
with generation and refinement of additional basis functions
(second block of the basis set), for which the energy min-
imization condition for the second state (first-excited state)
was implemented. We have regularly refined (using the Powell
method) the entire basis set, one function after the other, by
using the energy minimization condition for the ground-state
energy for functions belonging to the first basis block, and
the energy minimization condition for the second state for
functions belonging to the second basis block.

FIG. 1. Upper- and lower-bound gaps [Eq. (10)] for the lithium
atom with respect to the εref, j reference energies taken from
Ref. [78]. The first, second, and third basis blocks with L ∈
[1, 980], (980, 1700], and (1700,2175] basis indexes, in short
[1:980:1700:2175], were optimized according to minimization of
the ground (yellow), the first- (white), and the second-excited-state
(gray) energies. (See also Table I.)

The repeated full-basis refinement cycles allow us to relax
functions in the first block (optimized to the ground state)
while the ground-state energy is (partly) described also by the
second-block functions (optimized to the first-excited state).
Therefore, small deviations from a monotonic decrease of
the energy may occur upon enlargement of the basis set.
For sufficiently large basis sets and with further, extended
optimizations these small deviations from monotonicity can
be smoothed out.

By construction, the procedure generates a basis set which
is (near) optimal for both the ground and the first-excited
states, and the linear-dependency problem is automatically
avoided (a new basis function that would have a too large
overlap with the existing basis set is discarded or “weighted
down” with a “penalty” correction to the value of the energy
functional). Furthermore, the procedure can be straightfor-
wardly extended to additional states, and thus, applicable also
beyond the ground state.

2. Numerical demonstration of the multistate optimization
strategy for lithium and beryllium

The computational strategy described above has been im-
plemented in QUANTEN [77]. It is highlighted for the case of
lithium in Fig. 1 (see also Table I). The computations are more
expensive for beryllium, so for this case, we report only the
final results (Tables II and III). Unexpectedly, helium turned
out to be a very special case, for which the strategy does not
work (the condition x1 � ε2 fails), and this can be rationalized
on the basis of Eq. (9) as explained in the last paragraphs of
this section.
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TABLE I. Results for the lithium atom. Tabulation of lower- and
upper-bound energies ε j,− and λ j , respectively, in units of Eh, result-
ing from multistate optimization with three blocks (with basis sizes
[1:980:1700:2175], cf. Fig. 1). The relevant variances are also given
in units of E 2

h . The relative deviation from the εref, j reference energy
adapted from Ref. [78] is shown in parentheses in ppb (parts per
billion). The PM parameter in Eq. (5) was ε−

2 = εref,2 − 5 × 10−8 Eh

and ε−
3 = εref,3 − 10−7 Eh for obtaining the lower bounds for the

ground and first-excited states, respectively (see also Fig. 2 and
corresponding text).

Ground state
ε1,− −7.478 060 364 (5.3)
εref,1 −7.478 060 324 [78]
λ1 −7.478 060 316 (1.0)

First-excited state
ε2,− −7.354 098 569 (20.1)
εref,2 −7.354 098 421 [78]
λ2 −7.354 098 404 (2.4)

Second-excited state
εref,3 −7.318 530 846 [78]
λ3 −7.318 530 751 (12.9)

Variances
σ 2

1 0.158 934 586

σ 2
2 0.225 395 309

σ 2
3 0.265 772 122

As a measure of the quality of the lower-bound energy
for a given basis set, we compare the relative upper- and
lower-bound gaps defined as

�λ j = log10(|λ j − εref, j |/εref, j ),

�ε j = log10(|ε j,− − εref, j |/εref, j ),
(10)

where εref, j is a reference value (expected to be very close
to the exact value and available from the literature for the
computed examples), λ j and ε j,− are the computed upper and
lower bounds for the jth state ( j = 1, 2, . . .), respectively.

TABLE II. Results for the beryllium atom: ground state. Tabu-
lation of lower- and upper-bound energies ε j,− and λ j , respectively,
in units of Eh resulting from multistate optimization with two blocks
(with basis set sizes [1:2000:4500]). The relevant variances are also
given in units of E 2

h . The relative deviation from the εref, j reference
energy given in Ref. [79] is shown in parentheses in ppb (parts per
billion). The PM parameter in Eq. (5) was ε−

2 = εref,2 − 10−7 Eh (see
also Fig. 3 and corresponding text).

Ground state
ε1,− −14.667 356 917 (28)
εref,1 −14.667 356 507 [79]
λ1 −14.667 356 191 (22)

First-excited state
εref,2 −14.418 240 364 [79]
λ2 −14.418 239 479 (61)

Variances
σ 2

1 0.506 745 221

σ 2
2 0.698 028 906

TABLE III. Results for the beryllium atom: first-excited state.
Tabulation of lower- and upper-bound energies ε j,− and λ j , respec-
tively, in units of Eh resulting from multistate optimization with
three blocks (with basis-set sizes [1:2000:4000:4500]). The relevant
variances are also given in units of E 2

h . The relative deviation from
the εref, j reference energy [79] is shown in parentheses in ppb (parts
per billion). The PM parameter in Eq. (5) was ε−

3 = εref,3 − 10−6 Eh

(see also Fig. 3 and corresponding text).

First-excited state
ε2,− −14.418 248 205 (543)
εref,2 −14.418 240 364 [79]
λ2 −14.418 238 971 (97)

Second-excited state
εref,3 −14.370 087 938 [79]
λ3 −14.370 062 140 (1795)

Variances
σ 2

2 0.698 028 906

σ 2
3 5.389 904 253

(We note that ε−
j is used in Tables I–IV to label the estimated

lower bounds used in the PM equation.) If the gap ratio

η j = �ε j/�λ j (11)

approaches one, we may say that the lower (and upper) bound
computation is useful in terms of bracketing the exact energy.

In Fig. 1, showcasing our computation for lithium, the per-
formance of the various energy estimates in the yellow region
is comparable to the best gap ratio achieved in Ref. [55]. Then,
we continue with the implemented multistate optimization
procedure. During the generation of the second basis block
(white region in the figure), we see a significant improvement
for the ground-state lower bound, and the first-excited-state

TABLE IV. Lower and upper bounds for the He atom energy
levels, in Eh, computed in this work for the ground, first-, and second-
excited states using L = 510 ECG basis functions. The relative
deviation from the reference energies [41,80] is shown in parentheses
in parts per billion (ppb). The PM matrix parameters used in Eq. (5)
were ε−

i = εref,i − 2 × 10−9 Eh for both i = 2 and 3. The variances
are in units of E 2

h .

Ground state
ε1,− −2.903 724 379 (0.7)
εref,1 −2.903 724 377 [41]
λ1 −2.903 724 376 (0.3)

First-excited state
ε2,− −2.145 974 048 (0.9)
εref,2 −2.145 974 046 [80]
λ2 −2.145 974 045 (0.5)

Second-excited state
εref,3 −2.061 271 990 [80]
λ3 −2.061 271 989 (0.4)

Variances
σ 2

1 0.013 300 747

σ 2
2 0.129 998 619

σ 2
3 0.121 216 647
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lower bound also improves (lower part of the figure), in
parallel with the improvement of the first- and second-excited-
state upper bounds (upper part of the figure).

As can be seen in the figure, the optimization for one
state does not necessarily guarantee the monotonic improve-
ment of the ground and other states; however, any increase
in a state energy can be minimized by applying subsequent
refinement cycles to the already generated basis set. The
figure also shows the generation and optimization of a third
basis block (gray-shaded area), in which the basis functions
are optimized using the energy minimization condition for the
second-excited state.

The resulting best upper- and lower-bound values obtained
for the lithium atom corresponding to a total basis size of
L = 2175 are collected in Table I. While previous PM compu-
tations carried out for the lithium atom ground state [55] (with
a single basis block) already improved upon the Lehmann
bound obtained using a Hylleraas basis [53], the present
PM lower bounds significantly outperform both. The lower
bounds are at most one order of magnitude worse than the
upper bounds. This may be improved upon if one has a better
estimate for the excited-state energies as discussed in further
detail below. At this point it suffices to say that the values used
as estimates for the excited-state energies upon implementing
the PM equations are rather conservative.

As might be expected, the ground-state lower bound is
more accurate than the first-excited-state lower bound and
the same ordering of accuracy is true for the upper bounds.
The plateauing of the ground-state lower bound for L � 1500
reflects the plateauing of the ground-state upper bound. The
ground-state lower bound will improve as the PM eigenvalue
x1 converges to the first-excited-state energy. As seen from
Eq. (9), for this to occur one needs an improvement of the
upper bound. Since this does not happen, the lower bound
reaches a plateau value. The same occurs for the first-excited-
state lower bound.

Similarly good results are obtained with multistate op-
timization for the ground- and first-excited states of the
beryllium atom (Tables II and III). The multistate optimization
strategy was essential to arrive at good lower bounds also
for beryllium. In this case, the quality of the ground-state
lower bound is comparable to the Ritz upper bound while it
is somewhat worse, a factor of �6, for the excited state. This
reflects to some extent the lower-bound values used for the
excited states when implementing the PM equation.

B. Stability and sensitivity of the results to
the ε parameter of the PM matrix

The PM lower-bound computation (similarly to Tem-
ple’s bound or other lower-bound methods) requires some
knowledge about the higher-energy state(s). This information
(estimate) is encoded in the ε parameter of the PM matrix
[Eq. (5)]: for the computation of a lower bound to the nth
eigenvalue, the ε value in the PM matrix must be a lower
estimate to the (n + 1)th energy eigenvalue.

The computed lower-bound results (in Tables I–IV) have
been reported with a specific ε value (estimated from a known
precise reference value) used in the PM calculation. The crit-
ical reader might comment that obtaining a tight lower bound

FIG. 2. Sensitivity of the PM ground- (red) and first-excited-
(blue) state lower-bound gap [Eq. (12)] for the lithium atom at a
basis size of L = 2175 (cf. Fig. 1) with respect to the precision of the
ε PM parameter used in Eq. (5) given in Eq. (13). The ground-state
Temple gap is also shown (black). The ratios of the variances are
σ 2

2 /σ 2
1 = 1.42 and σ 2

3 /σ 2
2 = 1.18.

which is based on knowledge of a different tight lower bound
is problematic. Hence, it is necessary to address the “stability”
of the results with respect to the precise choice of this value.
The PM results obtained in previous computations reported in
Refs. [54,55] have been found to be relatively insensitive to ε.

In this work, we repeated the PM computations for the
largest basis-set results of lithium and beryllium (Tables I and
II) using various ε parameters. Figures 2 and 3 present the
lower-bound gap defined with respect to the Ritz eigenvalue

δε j = log10(|ε j,− − λ j |/λ j ), (12)

which is defined analogously to �ε j in Eq. (10), but free from
the knowledge of an “external” reference value εref, j . The gap
for the (estimated) ε−

j parameter in Eq. (5), which is a lower
bound to the respective excited state, is defined with respect to
the reference value exactly the same way as the lower-bound
gap in Eq. (10):

�ε−
j = log10(|ε−

j − εref, j |/εref, j ). (13)

In Fig. 2, the red and blue lines show the ground- and first-
excited-state PM lower-bound gaps δε j , respectively, plotted
with respect to the lower-bound gap �ε−

j+1, whereas the black
line shows the (orders of magnitude worse) Temple lower-
bound gap, where the Temple bound is

ε
Temple
1,− = λ1 − σ 2

1

ε−
2 − λ1

. (14)

As can be seen in Figs. 2 and 3, the PM lower bounds are
sensitive to the precision of the lower estimate to the jth
energy (ε−

j = εref, j − �ε−
j is the parameter used in the PM

matrix) while the Temple lower bound is not, due to its poor
quality. In the �ε−

j range used to compute the data reported
in Tables I–III, the functions in Figs. 2 and 3 are nearly linear,
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FIG. 3. Sensitivity of the PM ground-state lower-bound gap
[Eq. (12)] for the beryllium atom at a basis size of L = 4500 (2000
states for the ground and 2500 for the first-excited state, (cf. Table II)
with respect to the precision of the ε PM parameter used in Eq. (5)
given in Eq. (13). The ground-state Temple gap is also shown (black).
The ratio of the variances is σ 2

2 /σ 2
1 = 1.37.

i.e., the precision of the PM lower bound is determined by
the precision of the excited-state estimate used in the PM
matrix. This observation can be rationalized on the basis of
Eq. (9). In contrast to the results presented in Refs. [54,55],
the ratio of variances σ 2

j+1/σ
2
j is of the order of unity, due

to the optimization of the excited states, and the accuracy of
the ( j + 1)th excited-state Ritz eigenvalue is much improved,
leading to the linear dependence.

How then does one know the correct value of ε to be used in
the lower-bound calculation? The strategy we employed was
to use a value that is substantially lower than the accuracy
expected from the convergence properties of the relevant Ritz
eigenvalue. These are the values reported in Tables I–III. The
high accuracy of the resulting lower bounds demonstrates that
this strategy is robust and that the linear dependence is not
really a serious problem.

Special case of the helium atom

We applied the multistate optimization strategy also for the
helium atom. When applied naively, the PM equation gave
values for the ground-state energy which, in the limit of a large
basis set, were larger than the known ground-state energy.
What went awry?

This is related to the use of a correlated Gaussian basis set
rather than an orthogonal polynomial basis. We observed in
convergence figures (similar to Fig. 1) that the upper bounds
(Ritz eigenvalues) to the first- and second-excited states, op-
timized in the second and third basis blocks, converged faster
than the ground-state eigenvalue. As may be then reasoned
from Eq. (9), this causes the right-hand side of the equation to
be negative, that is, the eigenvalue x1 is no longer greater
than the first-excited-state energy. Using the first-excited-state

energy in the PM equation will then naturally no longer give
a lower bound.

It can also be understood that this behavior is unique to the
helium atom, which is a two-electron system. The ground state
is dominated by a 1s2 configuration, the first-excited state is
1s2s, the second-excited state is 1s3s, etc. The correlation of
the electrons, which is described increasingly more accurately
during the course of the variational computation, is less impor-
tant for excited states than for the ground state, and hence their
Ritz eigenvalues for the excited states converge faster than for
the ground state.

Does this mean that one cannot get meaningful and accu-
rate lower bounds for the He atom using correlated Gaussian
basis sets? Not necessarily. If one forces the basis set so that
the excited-state eigenvalues are not better than the ground-
state level, one may expect the method to work. This is
demonstrated in Table IV, where using the known excited-
state energy values, we can ensure that the accuracy of all
three levels is similar. However, this does not answer the
question as to how would it be possible, without knowledge
of the numerically exact values, to ensure that the PM equa-
tion leads to a lower bound. Fortunately, for larger atoms, the
problem does not exist and, as we showed, it is straightfor-
ward to obtain high-quality lower bounds for the Li and Be
atoms.

IV. SUMMARY AND DISCUSSION

A multistate optimization strategy is developed to sys-
tematically converge the Pollak–Martinazzo energy lower
bound with an explicitly correlated Gaussian basis set. Lower
bounds to the ground- and first-excited-state energies of the
lithium and beryllium atoms are computed. The resulting
lower bounds are the most precise to date, and their relative
precision is comparable to that of the energy upper bound in
the same basis.

In view of the performance of the multistate optimization
and the PM lower-bound theory, the following conclusions
can be drawn:

(i) The multistate optimization of ECG bases provides a
systematic and robust improvement of the low-lying eigenval-
ues.

(ii) The optimization of higher-lying states does not affect
the already converged states adversely.

(iii) The optimization of the energy of the nth state im-
proves the quality of the lower bound to the (n − 1)th state.

(iv) The PM theory is able to provide lower bounds with
ppb relative precision for the energy levels of few-electron
systems.

The presented computational procedure and numerical
results are for nonrelativistic energies. Relativistic and
leading-order quantum electrodynamic effects have been tra-
ditionally accounted for as perturbative corrections to the
nonrelativistic energy, see, for example Ref. [70]. Identifica-
tion of a many-particle relativistic wave equation based on
relativistic quantum electrodynamics (QED) is more challeng-
ing. Most recently, it became possible (for two particles) to
start out from the Bethe–Salpeter QED wave equation, ex-
ploit that interactions in atoms and molecules are dominantly
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instantaneous, and arrive at an eigenvalue equation for a
no-pair Dirac–Coulomb–Breit Hamiltonian [81]. This Hamil-
tonian appears to be bounded from below, and robust
variational procedures could be developed to compute its
eigenvalues, which have an α fine-structure constant depen-
dence that is in agreement with the known α orders of the
well-established perturbative procedures [71–74].

This theoretical approach provides variational relativistic
upper bounds (including also some of the so-called “nonra-
diative” QED corrections of the perturbative framework), and
(with further development to many-particle systems) it will be

relevant to ask for relativistic lower bounds in a spirit similar
to this work.
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