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We develop a fundamental transfer-matrix formulation of the scattering of electromagnetic (EM) waves that
incorporates the contribution of the evanescent waves and applies to general stationary linear media which need
not be isotropic, homogenous, or passive. Unlike the traditional transfer matrices whose definition involves
slicing the medium, the fundamental transfer matrix is a linear operator acting in an infinite-dimensional function
space. It is given in terms of the evolution operator for a nonunitary quantum system and has the benefit of
allowing for analytic calculations. In this respect it is the only available alternative to the standard Green’s-
function approaches to EM scattering. We use it to offer an exact solution of the outstanding EM scattering
problem for an arbitrary finite collection of possibly anisotropic nonmagnetic point scatterers lying on a plane.
In particular, we provide a comprehensive treatment of doublets consisting of pairs of isotropic point scatterers
and study their spectral singularities. We show that identical and PT -symmetric doublets do not admit spectral
singularities and cannot function as a laser unless the real part of their permittivity equals that of the vacuum.
This restriction does not apply to doublets displaying anti-PT -symmetry. We determine the lasing threshold for
a generic anti-PT -symmetric doublet and show that it possesses a continuous lasing spectrum.
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I. INTRODUCTION

Transfer matrices have been used as an effective tool in
the study of wave propagation in effectively one-dimensional
stratified media since the 1940s [1–3]. They were sub-
sequently generalized to deal with the propagation and
scattering of scalar and electromagnetic (EM) waves in two
and three dimensions [4–7]. These developments were guided
by the basic principle of slicing the medium in which the wave
propagates along a propagation or scattering axis, discretizing
the transverse degrees of freedom, associating a numerical
transfer matrix with each slice, and multiplying the latter
according to the celebrated composition rule for transfer ma-
trices [8,9] to obtain the transfer matrix for the medium [10].
This leads to a numerical method of computing the behavior of
the wave, which is however plagued with instabilities arising
from the multiplication of large numbers of numerical matri-
ces. This in turn has motivated the development of various
intricate variations of this approach to improve the numerical
stability of the calculations [11].

In Refs. [12,13] we follow a completely different route
to define a transfer matrix for the scattering of scalar waves
by an interaction potential in two and three dimensions. The
result is not a numerical matrix but a linear operator act-
ing in an infinite-dimensional function space. Similarly to
its traditional numerical predecessors, this notion of transfer
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matrix stores the information about the scattering properties
of the potential and has a built-in composition property. The
latter follows from a curious relation between the transfer
matrix and the evolution operator for an associated nonunitary
quantum system.1 For this reason we call this approach dy-
namical formulation of the stationary scattering. Recently, we
proposed a similar approach for introducing a transfer matrix
for the scattering of EM waves by isotropic scatterers [15].

In the first half of the present article, we develop the
basic framework provided in Ref. [15] into a comprehen-
sive “dynamical formulation of stationary scattering for EM
waves.” We achieve this by extending this framework to gen-
eral anisotropic stationary linear media and introducing an
EM analog of the auxiliary transfer matrix of Ref. [13] which
allows us to account for the contribution of the evanescent
waves, hence lifting an implicit assumption made in [15].
An important advantage of this formulation of EM scattering
over the known transfer-matrix methods is that it allows for
analytic calculations. In the second half of the article, we use
it to obtain an exact analytic solution of the scattering problem
for EM waves interacting with an arbitrary finite collection of
nonmagnetic point scatterers that reside on a plane and can
display anisotropy as well as gain and loss.2 If we choose
a coordinate system in which the point scatterers lie on the

1A similar connection exists in one dimension [14].
2The point scatterers are confined to a plane but otherwise their

positions need not have a particular symmetry. For the cases in
which they form a lattice, we can use this system to model certain
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FIG. 1. Schematic views of planar collections of point scatterers
(a) forming a two-dimensional regular lattice and (b) having arbitrary
positions.

x-y plane, as shown in Fig. 1, we can model them using the
permittivity and permeability tensors, respectively,

ε(x, y, z) = ε0

[
I + δ(z)

N∑
a=1

Za δ(x − xa)δ(y − ya)

]
,

(1)
μ (x, y, z) = μ0I.

Here ε0 and μ0 are the permittivity and permeability of the
vacuum, I stands for the 3 × 3 identity matrix, δ(·) is the Dirac
delta function, N is the number of point scatterers, Za are
nonzero 3 × 3 matrices,3 and (xa, ya) are the coordinates of
the point scatterers in the x-y plane.

If Za are scalar multiples of the identity matrix, Eq. (1) rep-
resents a finite collection of isotropic point scatterers [16,17].
For N = 1 this corresponds to a single isotropic point scatterer
whose scattering amplitude has been obtained in closed form
in earlier studies of the subject [18]. The standard treatment
of this point scatterer leads to singularities whose removal
requires the use of a highly nontrivial renormalization scheme.
The application of our fundamental transfer matrix to this
point scatterer turns out to avoid the unwanted singularities
of its standard treatment and yields the same result [15]. As
we show in the present article, the finiteness property of this
approach extends to the general case where the point scatterers
need not be isotropic and their number is arbitrary. Another
remarkable outcome of this approach is that the scattering
amplitude for the collections of point scatterers given by (1)
satisfies the simple relation

f (ki, ks )es = k2

4π
[r̂ × (g × r̂)]. (2)

Here f (ki, ks ) stands for the scattering amplitude [19], ki and
ks are the incident and scattered wave vectors, respectively,
es is the polarization vector for the scattered wave, r̂ is the
unit vector specifying the direction of ks, and g is a vector
lying in the x-y plane that stores all the information about

two-dimensional optical lattices [16]. The exact analytic treatment
of nonplanar configurations of point scatterers is a difficult open
problem.

3For technical reasons we assume that the Za,33 entry of Za is
nonzero.

the scattering properties of the point scatterers as well as the
polarization and wave vector for the incident wave.

Our approach allows for an analytic calculation of g which
simplifies considerably for doublets consisting of a pair of
isotropic point scatterers. For cases where the latter are made
of active optical material, the doublet may serve as a laser. Our
results enable us to locate the spectral singularities [20–22]
of such active doublets and determine their laser threshold
condition [23–31]. A surprising outcome of this investigation
is that identical and PT -symmetric pairs of point scatterers
do not lase unless the real part of their permittivity equals
that of the vacuum, a condition which makes their realization
utterly difficult. This obstruction is lifted for doublets pos-
sessing anti-PT -symmetry. The latter is a peculiar property
which has previously been investigated only in one dimension
[32–38]. We offer a comprehensive study of generic anti-PT -
symmetric doublets of point scatterers determining their laser
threshold condition and lasing spectrum.

The outline of this article is as follows. In Sec. II we
discuss a basic setup for the scattering of EM waves due
to a general stationary linear medium and use it to identify
the fundamental transfer matrix for these waves. Here we
also describe the utility of the fundamental transfer matrix
in solving EM scattering problems. In Sec. III we introduce
an EM analog of the auxiliary transfer matrix of Ref. [13],
reveal its relationship to the fundamental transfer matrix, and
derive its Dyson series expansion. In Sec. IV we employ our
general results to obtain an exact solution of the scattering
problem for planar collections of point scatterers. Here we
derive Eq. (2), give the explicit form of the vector g in terms
of the physical parameters of the system, offer a detailed
treatment of doublets of point scatterers, and examine their
spectral singularities. In Sec. V we confine our attention to
the study of anti-PT -symmetric pairs of isotropic point scat-
terers and determine their laser threshold condition and lasing
spectrum. Section VI presents a summary of our findings and
concluding remarks.

Throughout this article, we use the following basic nota-
tions and conventions. The Cm×n denotes the set of complex
m × n matrices. In particular, Cm×1 consists of column
vectors with m components. The F m denotes the set of (gen-
eralized) functions that map R2 to Cm×1, i.e., its elements
are m-component functions; if F ∈ F m and �r ∈ R2, there are
functions F1, F2, . . . , Fm ∈ F 1 such that

F(�r) =

⎡
⎢⎢⎣

F1(�r )
F2(�r )

...

Fm(�r )

⎤
⎥⎥⎦.

The 0 and I label the zero and identity matrices of appropriate
size and 0̂ and Î mark the zero and identity operators act-
ing in the relevant function spaces, respectively. We adopt a
Cartesian coordinate system {(x, y, z)} such that the source of
the incident wave and the detectors measuring the scattered
wave lie on the planes z = ±∞ (see Fig. 2). The ex, ey,
and ez denote the unit vectors pointing along the x, y, and z
axes, respectively. If a = (ax, ay, az ) ∈ R3, we use �a to denote
the projection of a onto the x-y plane, i.e., �a := axex + ayey.
We often identify �a with (ax, ay) ∈ R2 and use the hybrid
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FIG. 2. Schematic view of the scattering setup for a left-incident
plane wave. The source of the incident wave is located at z = −∞.
The purple region contains the scattering medium. Here r is the
position of a detector placed at z = +∞, ki and ks are the incident
and scattered wave vectors, respectively, and ϑ0 and ϑ are the angles
they make with the positive z axis.

notation a = (�a, az ). In particular, we write the position vector
r := (x, y, z) also in the form (�r, z).

II. SCATTERING OF EM WAVES AND THE
FUNDAMENTAL TRANSFER MATRIX

A. Scattering amplitude and differential cross section

Consider the propagation of time-harmonic EM waves in a
stationary linear dielectric medium that does not include any
free charges or currents. Let ε(r) and μ(r) be the permittivity
and permeability tensors for the medium, respectively. Then
the electric and magnetic fields associated with this wave take
the form e−iωtE (r)/

√
ε0 and e−iωtH(r)/

√
μ0, where ω is the

angular frequency of the wave. Maxwell equations imply

∇ · (ε̂E ) = 0, ∇ · (μ̂H) = 0, (3)

∇ × E = ikμ̂H, ∇ × H = −ikε̂E, (4)

where ε̂(r) := ε−1
0 ε(r) and μ̂(r) := μ−1

0 μ(r) are the relative
permittivity and permeability tensors and k := ω/c is the
wave number.

Suppose that for r := |r| → ∞, ε̂(r) − I and μ̂(r) − I
tend to 0 at such a rate that (3) and (4) admit solutions
fulfilling the asymptotic boundary condition

E (r) = E0

[
eiki·rei + eikr

r
f (ks, ki )es

]
for r → ∞, (5)

where E0 is a constant, ki and ks := kr/r = kr̂ are the wave
vectors for the incident and scattered waves, respectively,
ei and es are the polarization vectors for the incident and
scattered waves, respectively, and f (ks, ki ) is the scattering
amplitude. The latter determines the differential cross section4

according to

σd (ks, ki ) = | f (ks, ki )|2. (6)

4By definition, σd (ks, ki ) := r2|〈Ss〉|/|〈Si〉|, where 〈Si〉 and 〈Ss〉 are
the time-averaged Poynting vectors for the incident and scattered
waves [19].

The first and second terms in the square bracket in (5) corre-
spond to the incident and scattered waves, respectively,

E i(r) := E0eiki·rei, E s(r) := E0eikr

r
f (ks, ki )es. (7)

Their wave and polarization vectors satisfy

|ki| = |ks| = k, ei · ki = 0, es · ks = kes · r̂ = 0.

By solving the scattering problem for the medium, we
mean the determination of the scattered wave, alternatively
f (ks, ki )es, which is a function of the wave number and
polarization of the incident wave, k and ei, respectively, and
the directions of the incident and scattered wave vectors,
k̂i = ki/k and k̂s = r̂, respectively.

We also recall that the magnetic fields for the incident
and scattered waves are given by Hi,s = c−1k̂i,s × E i,s. In
particular, they are scalar multiples of the unit vectors

hi = k̂i × ei, hs = k̂s × es = r̂ × es. (8)

B. Effective Schrödinger equation for time-harmonic EM waves

Consider the dynamical Maxwell equations (4). Supposing
that the ε̂33 and μ̂33 entries of the relative permittivity and
relative permeability tensors do not vanish identically, we can
use these equations to express Ez and Hz in terms of Ex, Ey,
Hx, and Hy, [4,5]. Specifically, we have

Ez = ε̂−1
33

[
−ε̂31Ex − ε̂32Ey + i

k
(∂xHy − ∂yHx )

]
, (9)

Hz = μ̂−1
33

[
− i

k
(∂xEy − ∂yEx ) − μ̂31Hx − μ̂32Hy

]
. (10)

In view of these relations, we can reduce (4) to a system
of four first-order differential equations for Ex, Ey, Hx, and
Hy. It is not difficult to see that this is equivalent to the
time-dependent Schrödinger equation

i∂z�(x, y, z) = Ĥ�(x, y, z) (11)

for the four-component field [5,15]

� :=

⎡
⎢⎢⎣
Ex

Ey

Hx

Hy

⎤
⎥⎥⎦ =

[ �E
�H
]
, (12)

where �E := [Ex

Ey
], �H := [Hx

Hy
], z plays the role of time, and Ĥ

is a time-dependent 4 × 4 matrix Hamiltonian with operator
entries.

To derive an explicit expression for Ĥ, first we introduce

�ε	 :=
[
ε̂	1

ε̂	2

]
, �μ	 :=

[
μ̂	1

μ̂	2

]
, �∂ :=

[
∂x

∂y

]
, (13)

L̂E := ε̂−1
33

[ −�ε3

k−1σ2�∂
]
, L̂H := −μ̂−1

33

[
k−1σ2�∂

�μ3

]
, (14)

where 	 ∈ {1, 2, 3}, and express (9) and (10) in the form

Ez = −ε̂−1
33

(
�ε T

3
�E + k−1�∂ T σ2 �H) = L̂T

E�,

Hz = μ̂−1
33

(
k−1�∂ T σ2 �E − �μ T

3
�H) = L̂T

H�, (15)
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where a superscript T marks the transpose of a matrix and σ	

are the Pauli matrices

σ1 :=
[

0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
.

Next we solve (4) for ∂zEx, ∂zEy, ∂zHx, and ∂zHy and use (15)
to establish

i∂z �E = k
(
JH �H + �JHL̂T

H�
) + i�∂L̂T

E�, (16)

i∂z �H = −k
(
JE �E + �JE L̂T

E�
) + i�∂L̂T

H�, (17)

where

�JE :=
[
−ε̂23

ε̂13

]
, JE :=

[
−�ε T

2
�ε T

1

]
=

[
−ε̂21 −ε̂22

ε̂11 ε̂12

]
, (18)

�JH :=
[
−μ̂23

μ̂13

]
, JH :=

[
−�μT

2
�μT

1

]
=

[
−μ̂21 −μ̂22

μ̂11 μ̂12

]
.

(19)

Equations (12), (16), and (17) imply the Schrödinger equa-
tion (11) with Ĥ given by

Ĥ :=
[

Ĥ11 Ĥ12

Ĥ21 Ĥ22

]
, (20)

Ĥ11 := −i�∂ �ε T
3

ε̂33
+ 1

μ̂33

�JH�∂ T σ2,

(21)

Ĥ12 := − i

k
�∂ 1

ε̂33

�∂ T σ2 + k(JH − J̃H),

Ĥ21 := i

k
�∂ 1

μ̂33

�∂ T σ2 + k(J̃E − JE ),

(22)

Ĥ22 := −i�∂ �μT
3

μ̂33
+ 1

ε̂33

�JE �∂ T σ2,

J̃E := 1

ε̂33

�JE�ε T
3 , J̃H := 1

μ̂33

�JH �μT
3 . (23)

Note that the operators �∂ and �∂T act on all the terms appearing
to their right. For example given a two-component function f ,
we have

Ĥ11f = −i�∂
( �ε T

3

ε̂33
f
)

+ 1

μ̂33

�JH�∂ T (σ2f ).

C. Fundamental transfer matrix for EM waves

For r → ∞, ε̂(r) → I, and μ̂(r) → I,

Ĥ → Ĥ0 :=
[

0 L̂0

−L̂0 0

]
, (24)

where

L̂0 := −ik−1(�∂�∂ T + k2I)σ2 = k−1

[
∂x∂y −∂2

x − k2

∂2
y + k2 −∂x∂y

]
,

(25)
and solutions � of (11) tend to those of

i∂z�0(x, y, z) = Ĥ0�0(x, y, z). (26)

Because Ĥ2
0 = (∂2

x + ∂2
y + k2)I, for each choice of z,

�0(·, ·, z) solves the Helmholtz equation in two dimensions

[15]. Therefore,

�0(x, y, z) = �0(�r, z) = 1

4π2

∫
R2

d2 �p ei �p·�r[A( �p )ei
 ( �p )z

+B( �p )e−i
 ( �p )z], (27)

where A,B ∈ F 4 are four-component coefficient functions
and


 ( �p ) :=
{√

k2 − �p 2 for | �p | < k
i
√

�p 2 − k2 for | �p | � k.
(28)

Performing the Fourier transform of both sides of (27) with
respect to x and y, we find

i∂z�̃0( �p, z) = H̃0( �p )�̃0( �p, z), (29)

where �̃0( �p, z) is the Fourier transform of �(�r, z) :=
�(x, y, z) with respect to �r = (x, y), i.e.,

�̃0( �p, z) :=
∫
R2

d�r 2e−i �p·�r�0(�r, z)

= A( �p )ei
 ( �p )z + B( �p )e−i
 ( �p )z, (30)

and

H̃0( �p ) :=
[

0 L̃0( �p )
−L̃0( �p ) 0

]
,

L̃0( �p ) := 1

k

[ −px py p2
x − k2

−p2
y + k2 px py

]
. (31)

Because H̃0( �p ) does not depend on z, we can express the
general solution of (29) in the form

�̃0( �p, z) = e−izH̃0( �p )C( �p ), (32)

where

C( �p ) := �̃0( �p, 0) = A( �p ) + B( �p ). (33)

Furthermore, we can use (29) and (30) to identify A( �p ) and
B( �p ) with eigenvectors of H̃0( �p ) with eigenvalues −
 ( �p )
and 
 ( �p ), respectively [15],

H̃0( �p )A( �p ) = −
 ( �p )A( �p ), H̃0( �p )B( �p ) = 
 ( �p )B( �p ).
(34)

For | �p | 	= k we can introduce the projection matrices

� j ( �p ) := 1

2

[
I + (−1) j


 ( �p )
H̃0( �p )

]
(35)

= 1

2
 ( �p )

[

 ( �p ) (−1) jL̃0( �p )

(−1) j+1L̃0( �p ) 
 ( �p )

]
,

onto the eigenspaces associated with the eigenvalues
(−1) j
 ( �p ) of H̃0( �p ) and show that

�1( �p ) + �2( �p ) = I, �i( �p )� j ( �p ) = δi j� j ( �p ), (36)

A( �p ) = �1( �p )C( �p ), B( �p ) = �2( �p )C( �p ), (37)

where δi j is the Kronecker delta symbol and i, j ∈ {1, 2}.
According to (37), C determines A and B uniquely.

For | �p | < k, 
 ( �p ) takes positive real values and the cor-
responding Fourier modes on the right-hand side of (27)
generate the right- and left-going plane-wave solutions of
(26). Every solution of this equation is the sum of such an
oscillating plane-wave solution �0,os and an evanescent wave
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solution �0,ev, i.e., �0 = �0,os + �0,ev, where

�0,os(�r, z) = 1

4π2

∫
Dk

d2 �p ei �p·�r[A( �p )ei
 ( �p )z

+ B( �p )e−i
 ( �p )z], (38)

�0,ev(�r, z) = 1

4π2

∫
R2\Dk

d2 �p ei �p·�r[Ǎ( �p )ei
 ( �p )z

+ B̌( �p )e−i
 ( �p )z], (39)

where Dk := {�p ∈ R2 | | �p | < k},
A := π̂kA, B := π̂kB,

(40)
Ǎ := (Î − π̂k )A, B̌ := (Î − π̂k )B,

and π̂k : F 4 → F 4 is the projection operator

(π̂kF)( �p ) :=
{

F( �p ) for | �p | < k
0 for | �p | � k

(41)

that maps F 4 onto

F 4
k := {F ∈ F 4 | F( �p ) = 0 for | �p | � 0}.

Next consider the case that the scattering medium lies
between a pair of planes z = a±, where a− < a+, i.e., for z /∈
(a−, a+), ε̂(r) = I and μ̂(r) = I.5 The EM field configura-
tions that do not grow exponentially as z → ±∞ correspond
to bounded solutions of the Schrödinger equation (11). These
have the form

� = �os + �ev, (42)

where

�(�r, z) = 1

4π2

∫
R2

d2 �p ei �p·�r

×
{
A−( �p )ei
 ( �p )z + B−( �p )e−i
 ( �p )z for z < a−
A+( �p )ei
 ( �p )z + B+( �p )e−i
 ( �p )z for z > a+,

(43)

�os(�r, z) = 1

4π2

∫
Dk

d2 �p ei �p·�r

×
{

A−( �p )ei
 ( �p )z + B−( �p )e−i
 ( �p )z for z < a−
A+( �p )ei
 ( �p )z + B+( �p )e−i
 ( �p )z for z > a+,

(44)

�ev(�r, z) = 1

4π2

∫
R2\Dk

d2 �p ei �p·�r

×
{

B̌−( �p )e|
 ( �p )|z for z < a−
Ǎ+( �p )e−|
 ( �p )|z for z > a+,

(45)

A±,B± ∈ F 4, and

A± := π̂kA±, B± := π̂kB±,
(46)

Ǎ+ := A+ − A+, B̌− := B− − B−.

5This is always the case for a finite-size scatterer. We can recover
the general case by letting a± → ±∞.

Let us also introduce

C± := A± + B±, C± := π̂k C± = A± + B±. (47)

Then, setting C = C± in (37), we find

A± = �̂1C±, B± = �̂2C±, (48)

where �̂ j : F 4
k → F 4

k is the projection operators defined by

(�̂ jF)( �p ) := � j ( �p )F( �p ), (49)

j ∈ {1, 2}, and �p ∈ Dk . Note that, in view of (36), (41), (48),
and (49),

�̂1A± = A±, �̂2B± = B±,
(50)

�̂2A± = �̂1B± = 0̂, [π̂k, �̂ j] = 0̂.

For z → ±∞, �ev(�r, z) → 0. Therefore,

�(�r, z) → �os(�r, z) for z → ±∞ (51)

and the asymptotic behavior of �(�r, z) is determined by A±
and B±, or alternatively by C±. This provides our basic moti-
vation for identifying the fundamental transfer matrix for EM
waves with a linear operator M̂ : F 4 → F 4 that satisfies

C+ = M̂ C−. (52)

D. Solution of the scattering problem

Similarly to the traditional numerical transfer matrices
[1–10] and the fundamental transfer matrix for scalar waves
[13], we can use M̂ to determine the scattering amplitude.
This offers an alternative procedure for solving EM scattering
problems whose details we have reported in Ref. [15]. Here
we provide a brief summary of this procedure and elaborate
on its utility in obtaining a series expansion for the scattering
amplitude.

For the cases where the source of the incident wave is
located at z = −∞, as depicted in Fig. 2, we proceed as
follows.

(i) Introduce

�ei,s :=
[

ei,s · ex

ei,s · ey

]
, �hi,s :=

[
hi,s · ex

hi,s · ey

]
, ϒi,s :=

[�ei,s

�hi,s

]
,

(53)

where we recall that ei and es are the polarization vectors for
the incident and scattered waves, hi and hs are the unit vectors
(8), which signify the direction of the magnetic field for these
waves, and �ei, �hi, �es, and �hs represent the projections of ei,
hs, es, and hs onto the x-y plane, respectively. It is easy to see
from (8) that

�hi =
[

(− cos ϑ0ey + sin ϑ0 sin ϕ0ez ) · ei

(cos ϑ0ex − sin ϑ0 cos ϕ0ez ) · ei

]
, (54)

�hs =
[

(− cos ϑey + sin ϑ sin ϕez ) · es

(cos ϑex − sin ϑ cos ϕez ) · es

]
, (55)

where (k, ϑ0, ϕ0) and (k, ϑ, ϕ) are the spherical coordinates
of the incident and scattered wave vectors ki and ks, re-
spectively. Notice that because we consider the scattering of
a left-incident wave, ϑ0 ∈ [0, π

2 ), B+( �p ) = 0, and A−( �p ) =
4π2δ( �p − �ki )ϒi, where �ki is the projection of ki onto the x-y
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plane. The last equation together with (48) and (50) implies
�1(�ki )ϒi = ϒi and �2(�ki )ϒi = 0.

(ii) Let Tl
± ∈ F 4

k be the four-component functions satisfy-
ing

�̂1Tl
+ = Tl

+, �̂2Tl
− = Tl

−, �̂1Tl
− = �̂2Tl

+ = 0, (56)

�̂2M̂Tl
− = −4π2�̂2(M̂ − I)ϒiδ�ki

, (57)

Tl
+ = �̂1(M̂ − Î)(Tl

− + 4π2ϒiδ�ki
), (58)

where δ�ki
stands for the Dirac delta function in two dimensions

that is centered at �ki, i.e., δ�ki
( �p ) := δ( �p − �ki ). As noted in

Ref. [15], we can represent M̂ as a 4 × 4 matrix whose entries
are integral operators. Therefore, (57) is a system of linear
integral equations for the 4-component functions Tl

−.
(iii) Determine the scattering amplitude and differential

cross section using

f (ki, ks )es = − ik|cos ϑ |
2π

�T Tl
±(�ks) for ± cos ϑ > 0,

(59)

σd (ki, ks ) = k2 cos2 ϑ Tl
±(�ks)†Tl

±(�ks)

4π2(1 + cos2 ϑ )
for ± cos ϑ > 0,

(60)

where

� :=

⎡
⎢⎢⎣

ex

ey

sin θ sin ϕ ez

− sin θ cos ϕ ez

⎤
⎥⎥⎦ (61)

and the dagger stands for the complex conjugate of the trans-
pose of a matrix [15]. It is not difficult to see that the term
�T Tl

±(�ks) entering (59) admits the more explicit expression

�T Tl
±(�ks) = t+

± + [(t−
± × r̂) · ez]ez for ± cos ϑ > 0,

(62)
where

t+
± := t±1ex + t±2ey, t−

± := t±3ex + t±4ey, (63)

t±m denote the components of Tl
±(�ks) so that Tl

±(�ks)T =
[t±1 t±2 t±3 t±4], and we have employed (61)–(63). Notice that
because es is a unit vector and | f (ki, ks )| = √

σd (ki, ks ), we
can use f (ki, ks )es/

√
σd (ki, ks ) to determine es and f (ki, ks )

up to a physically irrelevant phase factor.
The above procedure reduces the solution of the EM scat-

tering problems for a general linear scattering medium to the
determination of the fundamental transfer matrix M̂ and the
solution of (57). We can easily obtain a series solution of this
equation. To do this, we introduce the operators

N̂ j := (−1) j�̂ j (Î − M̂), j ∈ {1, 2}, (64)

and use (57) and (58) to show that

Tl
− = 4π2N̂2(Î − N̂2)−1ϒiδ�ki

= 4π2N̂2

∞∑
	=0

N̂	
2ϒiδ�ki

, (65)

Tl
+ = 4π2N̂1(Î − N̂2)−1ϒiδ�ki

= 4π2N̂1

∞∑
	=0

N̂	
2ϒiδ�ki

. (66)

Substituting these relations in (59), we arrive at a series ex-
pansion for f (ki, ks )es.

If the source of the incident wave is located at z = +∞, the
above procedure applies except that the role of Tl

± is played
by another pair of functions Tr

± ∈ F 4
k that satisfy (56)–(58),

(65), and (66) for a ϒi that is associated with a right-incident
wave. The latter is given by (53) and (54) with ϑ0 ∈ ( π

2 , π ].
Furthermore, because for a right-incident wave, A+( �p ) = 0
and B+( �p ) = 4π2δ( �p − �ki )ϒi, Eqs. (48) and (50) imply that
�1(�ki )ϒi = 0 and �2(�ki )ϒi = ϒi.

III. AUXILIARY TRANSFER MATRIX AND
ITS DYSON EXPANSION

We have defined the fundamental transfer matrix as a linear
operator M̂ : F 4

k → F 4
k that maps C− to C+. According to

(43) and (47), these are given by the coefficient functions A±
and B± determining the Fourier transform �̃( �p, z) of �(�r, z)
with respect to �r for z /∈ [a−, a+].

Let us recall that �(�r, z) satisfies the time-dependent
Schrödinger equation (11) where z plays the role of time.
Clearly, the Hamiltonian operator Ĥ entering this equation de-
pends on z. Making this dependence explicit and viewing
�(·, z) as a function that at time z assigns to each �r ∈ R2 a
column vector belonging to C4×1, we can write (11) in the
form

i∂z�(·, z) = Ĥ(z)�(·, z). (67)

Let F̂ denote the (two-dimensional) Fourier transformation of
functions of �r. This is a linear operator F̂ that maps �(·, z) to
�̃(·, z). Applying F̂ to both sides of (67), we find

i∂z�̃(·, z) = ˆ̃H(z)�̃(·, z), (68)

where ˆ̃H(z) := F̂ Ĥ(z)F̂−1. Given an initial value z0 of z, we
can express the solutions of (68) in the form

�̃(·, z) = ˆ̃U(z, z0)�̃(·, z0), (69)

where ˆ̃U(z, z0) is the evolution operator for the Hamiltonian
ˆ̃H(z), i.e.,

ˆ̃U(z, z0) := T exp

[
−i

∫ z

z0

ˆ̃H(z′)dz′
]

:= Î +
∞∑

	=1

(−i)	
∫ z

z0

dz	

∫ z	

z0

dz	−1

· · ·
∫ z2

z0

dz1
ˆ̃H(z	) ˆ̃H(z	−1) · · · ˆ̃H(z1), (70)

and T stands for the time-ordering operator [39].
For z � a− and z � a+ we have Ĥ(z) = Ĥ0, Eq. (68)

reduces to (29), and �̃(·, z) satisfies (43). Performing the
Fourier transform of both sides of this equation and using (34)
and (47), we obtain

�̃(·, z) =
{

e−iz ˆ̃H0C− for z < a−
e−iz ˆ̃H0C+ for z > a+.

(71)

Consequently,

C± = eia± ˆ̃H0�̃(·, a±). (72)
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In particular, introducing

Û (z, z0) := eiz ˆ̃H0 ˆ̃U(z, z0)e−iz0
ˆ̃H0 (73)

and using (69) and (72), we have

C+ = Û (a+, a−)C−. (74)

Comparing this equation with (52) and recalling that accord-
ing to (47), C± = π̂kC±, we arrive at

M̂ = π̂kM̂π̂k, (75)

where M̂ := Û (a+, a−) is the EM analog of the auxiliary
transfer matrix of Ref. [13].

It is easy to show that Û (z, z0) is the evolution operator for
the (interaction-picture) Hamiltonian

Ĥ(z) := eiz ˆ̃H0 [ ˆ̃H(z) − ˆ̃H0]e−iz ˆ̃H0 . (76)

In other words, Û (z, z0) = T exp[−i
∫ z

z0
Ĥ(z′)dz′]. If for

some z ∈ R, ε̂(�r, z) = μ̂(�r, z) = I for all �r ∈ R2, then Ĥ(z) =
Ĥ0, ˆ̃H(z) = ˆ̃H0, and (76) implies that Ĥ(z) = 0̂. Now suppose
that there is some interval I ⊆ R such that for all z ∈ I and
�r ∈ R2, ε̂(�r, z) = μ̂(�r, z) = I. Then Ĥ(z) = 0̂ for all z ∈ I,
which in turn implies that Û (z+, z−) = Î for all z± ∈ I. In
particular, Û (a−,−∞) = Û (+∞, a+) = Î, Û (+∞,−∞) =
Û (a+, a−), and

M̂ = Û (+∞,−∞) = Î +
∞∑

	=1

(−i)	
∫ ∞

−∞
dz	

∫ z	

−∞
dz	−1

· · ·
∫ z2

−∞
dz1 Ĥ(z	)Ĥ(z	−1) · · · Ĥ(z1). (77)

Substituting this equation in (75), we find a series expansion
for the fundamental transfer matrix M̂. This offers a method
for computing M̂ which is particularly effective if the Dyson
series (77) terminates.

Another consequence of the vanishing of Ĥ(z) in empty
space is the composition rule for the auxiliary transfer ma-
trix M̂. Letting a0, a1, a2, . . . , an be an increasing sequence
of real numbers such that a0 = a− and an = a+ for all l ∈
{1, 2, . . . , n}, Il := [al−1, al ], and M̂l := Û (al , al−1) be the
auxiliary transfer matrix for Il , then

M̂nM̂n−1 · · ·M̂1 = Û (an, an−1)Û (an−1, an−2) · · · Û (a1, a0)

= Û (a+, a−) = M̂. (78)

This is the EM analog of the composition property of the
auxiliary transfer matrix for scalar waves [13].6

6Reference [15] assumes that the contribution of the evanescent
waves to the solution of the scattering problem is negligible. If this
assumption holds, we can identify the fundamental and auxiliary
transfer matrices and Eq. (78) coincides with Eq. (96) of Ref. [15].
Note, however, that this provides an approximate description of the
scattering phenomenon which is exact for certain setups [40]. The
principal example is the isotropic EM point scatterer and invisible
configurations studied in Ref. [15].

IV. SCATTERING BY A PLANAR COLLECTION
OF POINT SCATTERERS

Consider a collection of N nonmagnetic point scatterers
that lie on the x-y plane and whose relative permittivity and
permeability tensors have the form

ε̂(�r, z) = I + δ(z)
N∑

a=1

Zaδ(�r − �ra),

(79)
μ̂ (�r, z) = I,

where Za are 3 × 3 complex matrices and �ra = (xa, ya) sig-
nify the positions of the point scatterer in the x-y plane, as
shown in Fig. 1.7 If N = 1 and Z1 = zI for some z ∈ C,
Eq. (79) describes an isotropic point scatterer whose scattering
problem has been studied thoroughly [18]. The standard treat-
ment of this problem requires dealing with certain divergent
terms. This is usually achieved through a delicate regulariza-
tion of these terms and a coupling-constant renormalization
to subtract the unwanted singularities. In Ref. [15] we use the
dynamical formulation of EM scattering to obtain an exact
solution for this problem which avoids the singularities of
the standard treatment and yields the same result. In this
section we use the results of Secs. II and III to explore the
scattering properties of the collection of point scatterers8 cor-
responding to (79) for the generic case where Za are arbitrary
3 × 3 complex matrices with a nonzero Za,33 entry,

Za,33 	= 0 for all a ∈ {1, 2, . . . , N}. (80)

This is a technical condition that is extremely difficult to
violate by a physically realizable point scatterer.

A. Calculation of the fundamental transfer matrix

We begin our study of the point scatterers (79) by drawing
attention to the identities whose proof we give in Appendix A,

δ(�r − �ra)

1 + ∑N
c=1 ccδ(�r − �rc)

= 0, (81)

caδ(�r − �ra)δ(�r − �rb)

1 + ∑N
c=1 ccδ(�r − �rc)

= δabδ(�r − �ra), (82)

where a, b ∈ {1, 2, . . . , N} and the ca are nonzero complex
numbers. In view of (13), (18), and (79)–(81),

ε̂−1
33 − 1 = 0, ε̂−1

33 �ε3 = ε̂−1
33

�JE = �0. (83)

It is important to realize that these relations hold in the sense
of distributions [41]. In particular, although J̃E := ε̂−1

33
�JE�ε T

3 ,
the last equation in (83) does not imply J̃E = 0. In fact, we

7Clearly, �ra = �rb if and only if a = b.
8Our approach also applies to more general (nonplanar) config-

urations of point scatterers, but for these configurations the exact
and analytic treatment of the problem, i.e., the determination of the
explicit form of the entries of the fundamental transfer matrix and the
four-component functions Tl/r

± that give the scattered wave, becomes
intractable.
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can use (13), (18), (79), and (82) to show that

J̃E = δ(z)
N∑

a=1

δ(�r − �ra)

Za,33

[−Za,23Za,31 −Za,23Za,32

Za,13Za,31 Za,13Za,32

]
, (84)

where Za,i j stand for the entries of Za. Furthermore, according
to (18) and (79),

JE = −iσ2 + δ(z)
N∑

a=1

δ(�r − �ra)

[−Za,21 −Za,22

Za,11 Za,12

]
. (85)

Next we use (13), (19), (23), and (79) to establish that

μ̂33 − 1 = 0, μ̂−1
33 �μ3 = μ̂−1

33
�JH = �0,

(86)
JH = −iσ2, J̃H = 0.

Substituting (83) and (86) in (21) and (22) and making use of
(25), we then find that

Ĥ11 = Ĥ22 = 0̂, Ĥ12 = L̂0,
(87)

Ĥ21 = −L̂0 + k(J̃E − JE − iσ2).

Equations (20), (24), (84), (85), and (87) imply that

Ĥ − Ĥ0 = ikδ(z)
N∑

a=1

δ(�r − �ra)

[
0 0

Zaσ2 0

]
, (88)

where

Za := 1

Za,33

[
Za,22Za,33 − Za,23Za,32 Za,23Za,31 − Za,21Za,33

Za,13Za,32 − Za,12Za,33 Za,11Za,33 − Za,13Za,31

]

= 1

Za,33

[
Za,11 −Za,12

−Za,21 Za,22

]
(89)

and Za,i j stands for the minor of the Za,i j entry of Za, i.e., Za,i j

is the determinant of the 2 × 2 matrix obtained by deleting the
ith row and jth column of Za.

Next we compute the Hamiltonian operator Ĥ(z) for our
collection of point scatterers. In view of (76) and (88),

Ĥ(z) = eiz ˆ̃H0 [F (Ĥ − Ĥ0)F−1]e−iz ˆ̃H0

= ikδ(z)
N∑

a=1

δ̃(i �∇p − �ra)

[
0 0

Zaσ2 0

]
, (90)

where δ̃(i �∇p − �ra) : F m → F m is the linear operator given
by

δ̃(i �∇p − �ra)F( �p ) := e−i�ra· �p F̌(�ra),

m is an arbitrary positive integer, F ∈ F m, and F̌ stands
for the inverse Fourier transform of F, i.e., F̌(�r) :=

1
4π2

∫
R2 d2 �p ei�r· �pF( �p ).

A simple consequence of (90) is that for all z1, z2 ∈ R,
Ĥ(z2)Ĥ(z1) = 0̂. Therefore, the Dyson series on the right-
hand side of (77) terminates and (75) yields

M̂ = π̂k + k
N∑

a=1

π̂k δ̃(i �∇p − �ra)π̂k

[
0 0

Zaσ2 0

]
. (91)

If we view M̂ as a linear operator acting in F 4
k , we can write

this relation in the form

M̂ = Î + k
N∑

a=1

π̂k δ̃(i �∇p − �ra)

[
0 0

Zaσ2 0

]

=
[

Î 0
k
∑N

a=1 π̂k δ̃(i �∇p − �ra)Zaσ2 Î

]
, (92)

where

π̂k δ̃(i �∇p − �ra)F( �p ) = χk ( �p )e−i�ra· �pF̌(�ra), (93)

χk ( �p ) :=
{

1 for | �p | < k
0 for | �p | � k.

For the special case where all the point scatterers are isotropic,
i.e., Za = zaI for some za ∈ C, Eq. (89) gives Za = zaI, and
the transfer matrix is given by (92) with Za changed to za.

B. Determination of the scattering amplitude and cross section

The planar collection of point scatterers specified by (79)
is clearly invariant under the reflection about the x-y plane.
This implies that the expressions for the scattering amplitude
for the left- and right-incident waves coincide. We therefore
confine our attention to the scattering of a left-incident wave.

First, we determine the four-component function Tl
−. Be-

cause �̂2Tl
− = Tl

−, we can write (57) in the form

Tl
− = −�̂2(M̂ − I)

(
Tl

− + 4π2ϒiδ�ki

)
. (94)

Let �T ±
− ∈ F 2

k be such that

Tl
− =

[ �T +
−
�T −
−

]
. (95)

Then we can use (35), (53), (92), (93), and (95) to show that,
for all �p ∈ R2,

[
(M̂ − I)

(
Tl

− + 4π2ϒiδ�ki

)]
( �p ) = k

[ �0
�X ( �p )

]
, (96)

�T +
− ( �p ) = − k

2
 ( �p )
L̃0( �p ) �X ( �p ), �T −

− ( �p ) = −k

2
�X ( �p ),

(97)

where

�X ( �p ) := χk ( �p )
N∑

a=1

e−i�ra· �pZaσ2(�xa + ei�ki·�ra�ei ), (98)

�xa := �̌T +
− (�ra) = 1

4π2

∫
R2

d2 �p ei�ra· �p �T +
− ( �p ). (99)

If we insert (98) in the first equation in (97) and use the result
to evaluate the right-hand side of (99), we find the system of
linear equations for �xa,

N∑
b=1

Aab�xb = �ba, (100)

012203-8



FUNDAMENTAL TRANSFER MATRIX FOR … PHYSICAL REVIEW A 107, 012203 (2023)

where

Aab := δabI + L(�ra − �rb)Zbσ2,
(101)

�ba := −
N∑

b=1

ei�ki·�rbL(�ra − �rb)Zbσ2�ei,

L(�r) := k

8π2

∫
Dk

d2 �pei�r· �pL̃0( �p )


 ( �p )

= k

8π2
L̂0

∫
Dk

d2 �p ei�r· �p


 ( �p )
= k2

4π
L̂0sinc(k|�r|)

= k

4π

[
∂x∂y −∂2

x − k2

∂2
y + k2 −∂x∂y

]
sinc(k

√
x2 + y2), (102)

and

sinc(x) :=
∞∑

n=0

(−1)nx2n

(2n + 1)!
=

{
sin x

x for x 	= 0

1 for x = 0.
(103)

The system of equations (100) has a unique solution, if
there are matrices Bab ∈ C2×2 satisfying

N∑
b=1

BabAbc = δacI (104)

for all a, c ∈ {1, 2, . . . , N}. In this case, the solution of (100)
takes the form �xa = ∑N

b=1 Bab�bb and (98) gives

�X ( �p ) = σ2�g( �p ), (105)

where

�g( �p ) := χk ( �p )
N∑

a=1

e−i�ra·( �p−�ki )σ2Zaσ2(I − xa)�ei, (106)

xa :=
N∑

b,c=1

e−i�ki·(�ra−�rc )BabL(�rb − �rc)Zcσ2. (107)

In view of (35), (95), (97), and (105),

Tl
−( �p ) = − k

2
 ( �p )

[
L̃0( �p )σ2�g( �p )


 ( �p )σ2�g( �p )

]
. (108)

Having obtained �X ( �p ), we can calculate the right-hand side
of (96) and use this equation together with (58) to infer that

Tl
+( �p ) = k

2
 ( �p )

[−L̃0( �p )σ2�g( �p )

 ( �p )σ2�g( �p )

]
. (109)

Next we introduce

J := i

k
L̃0(�ks)σ2

=
[

1 − sin2 ϑ cos2 ϕ − sin2 ϑ sin ϕ cos ϕ

− sin2 ϑ sin ϕ cos ϕ 1 − sin2 ϑ sin2 ϕ

]
, (110)

and use (108) and (109) to establish that

Tl
±(�ks) = k

2
 (�ks)

[
ikJ�g(�ks)

±
 (�ks)σ2�g(�ks)

]
. (111)

This allows us to read off the components t±m of Tl
±(�ks) and

determine the vectors t±
± of Eq. (63). With the help of (110),

we can write the result of this calculation in the form

t+
± = ik2[g − (r̂ · g)r̂ + (r̂ · g)(ez · r̂)ez]

2
 (�ks)
, t−

± = ± ik

2
ez × g,

(112)

where g := g1ex + g2ey and g1 and g2 are the components of

�g(�ks) so that �g(�ks)T = [g1 g2]. Clearly, we can express g as

g = �g(�ks)T

[
1
0

]
ex + �g(�ks)T

[
0
1

]
ey. (113)

Substituting (112) in (62), using the resulting expression
in (59), and noting that 
 (�ks) = k|cos ϑ |, g · ez = 0, and
σd (ki, ks ) = | f (ki, ks )es|2, we obtain

f (ki, ks )es = k2

4π
[r̂ × (g × r̂)], (114)

σd (ki, ks ) = k4

16π2
[|g|2 − |r̂ · g|2]. (115)

According to these relations, the information about the scat-
tering properties of the collection of point scatterers described
by (79) is contained in g.

If the point scatterers are isotropic so that Za = zaI for
some za ∈ C, we have Za = zaI and Eqs. (106) and (107)
imply that

�g(�ks) =
[

N∑
a=1

zaei(�ki−�ks )·�ra I

−
N∑

a,b,c=1

zcei(�ki·�rc−�ks·�ra )BabL(�rb − �rc)σ2

⎤
⎦�ei. (116)

For a single isotropic point scatterer located at the origin of the
coordinate system, i.e., N = 1 and �r1 = �0, we can use (101),
(102), (104), and (116) to establish that

L(�0) = − ik3

6π
σ2, B11 = I − x1 = A−1

11 = β(z1)I,

g = z1β(z1)�ei, (117)

where

β(z1) :=
(

1 − iz1k3

6π

)−1

. (118)

In particular, g is a scalar multiple of the projection of the
incident polarization vector onto the x-y plane. Plugging the
last of Eqs. (117) in (114) and (115), we recover Eqs. (118)
and (119) of Ref. [15].

For a single anisotropic point scatterer which is located at
the origin and has its principal axes aligned with the x, y, and
z axes, N = 1, �r1 = �0, and Z1 and Z1 are diagonal matrices;
there are z1, z2, z3 ∈ C such that

Z1 =
⎡
⎣z1 0 0

0 z2 0
0 0 z3

⎤
⎦, Z1 =

[
z2 0
0 z1

]
.

In view of these relations and (101), (104), (106), (107), (113),
and the first equation in (117),

B11 = I − x1 = A−1
11 =

[
β(z1) 0

0 β(z2)

]
,

g = z1β(z1)eixex + z2β(z2)eiyey, (119)
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FIG. 3. Schematic view of a doublet of point scatterers lying on
the x axis.

where eix := ei · ex and eiy := ei · ey are the x and y
components of the polarization vector ei for the inci-
dent wave, respectively. Equations (114), (118), and (119)
give

f (ki, ks )es = k2

4π

[
eix r̂ × (ex × r̂)

z−1
1 − ik3

6π

+ eiyr̂ × (ey × r̂)

z−1
2 − ik3

6π

]
.

(120)

As is manifest from this equation, if z j = −6π i/k3 for j = 1
( j = 2), the scattering amplitude blows up for eix 	= 0 (eiy 	=
0). This marks the emergence of a spectral singularity [20]
which corresponds to the situation where the point scatterer
starts amplifying the background noise and emitting coher-
ent EM waves [23]. According to (120), the presence of
anisotropy affects the polarization of the emitted wave in the
direction r̂.

C. Scattering by a doublet of isotropic point scatterers

Consider a doublet of isotropic point scatterers that lie in
the x-y plane. We can always choose our coordinate system
such that r1 = 0 and r2 = 	ex for a positive real parameter
	, i.e., one of them is located at the origin and the other lies
on the x axis, as shown in Fig. 3. Let z1 and z2 be nonzero
complex numbers such that Z j = z jI for j ∈ {1, 2}. Then (89)
and (102) give

Z j = z jI, L(�0)σ2 = − ik3

6π
I, L(±r2)σ2 = − i

4π	3
α,

(121)

where

α :=
[
α1(k	) 0

0 α2(k	)

]
, (122)

α1(x) := 2(sin x − x cos x),
(123)

α2(x) := (x2 − 1) sin x + x cos x.

Substituting (121) in (101), we have

A11 = β(z1)−1I, A12 = − iz2

4π	3
α,

(124)

A21 = − iz1

4π	3
α, A22 = β(z2)−1I,

�b1 = i

12π	3
[2(k	)3z1I + 3z2eikix	α]�ei,

(125)
�b2 = i

12π	3
[2(k	)3z2eikix	I + 3z1α]�ei,

where kix := ki · ex.
Because Aab are diagonal matrices, the determination of

Bab is not difficult. In Appendix B we compute them for
generic possibly anisotropic doublets of point scatterers. For
the isotropic doublet we consider here, they take the form

B11 = β(z1)γ, B12 = iz2β(z1)β(z2)

4π	3
αγ,

B21 = iz1β(z1)β(z2)

4π	3
αγ, B22 = β(z2)γ,

(126)

where

γ :=
[
γ1 0
0 γ2

]
, γ j :=

[
1 + z1z2β(z1)β(z2)α j (k	)2

16π2	6

]−1

.

(127)

Next, we set N = 2 in (116) and use (118), (121), and (126)
to show that

�g(�ks) = G�ei, (128)

where G is the diagonal 2 × 2 matrix defined by

G := z1[I − G(z1, z2) − e−iηs G0]

+ z2eiηi{−G0 + e−iηs [I − G(z2, z1)]} (129)

and

G(z1, z2) := β(z1)

48π2	3
[3	−3z2β(z2)α2 − 8iπ (k	)3I]γ,

(130)

G0 := −iβ(z1)β(z2)

4π	3
αγ,

ηi := �r2 · �ki = 	 ex · ki = k	 sin θ0 cos ϕ0,
(131)

ηs := �r2 · �ks = 	ex · ks = k	 sin θ cos ϕ.

Substituting (118), (123), and (127) in (130), we find an
explicit formula for the matrix G. Using this formula and
Eqs. (113)–(115) and (128), we can compute the scattering
amplitude and differential cross section for the system. This
completes our treatment of the scattering problem for the
doublets of isotropic point scatterers. In the remainder of this
section we discuss its application in the study of the spectral
singularities [20] of these systems.

Spectral singularities correspond to the real values of the
wave number k for which the scattering amplitude blows up.
Therefore, according to (114) they correspond to singularities
of g or equivalently �g(�ks). Inspecting Eqs. (118), (123), and
(127)–(130), we observe that �g(�ks) develops a singularity only
if γ j blows up for j = 1 or 2, while β(z1) and β(z2) take finite
values.9 By virtue of (118) and (127), this is equivalent to the
requirement that the condition

α j (k	)2 = −16π2	6

(
z−1

1 − ik3

6π

)(
z−1

2 − ik3

6π

)
	= 0 (132)

holds for j = 1 or 2. Because α j (x) take real values, Eq. (132)
implies that (z−1

1 − ik3

6π
)(z−1

2 − ik3

6π
) must be a negative real

9When γ j blows up, there may still be exceptional values of the
angles θ0, ϕ0, θ , and ϕ and polarizations of the incident wave for
which �g(�ks ) vanishes.
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number. Let ρ j := Re(z j ) and ς j := Im(z j ) so that z j = ρ j +
iς j . Then the latter condition is equivalent to demanding that
one of the following holds:

Condition: 1 ρ1 = ρ2 = 0 and

ς1ς2

(
1 + k3ς1

6π

)(
1 + k3ς2

6π

)
> 0;

Condition: 2 ρ1ρ2 < 0 and

1

|ρ1|
[
ς1 + k3

6π

(
ρ2

1 + ς2
1

)] = 1

|ρ2|
[
ς2 + k3

6π

(
ρ2

2 + ς2
2

)]
.

Note that these are necessary conditions for the realization
of a spectral singularity. Once condition 1 or 2 holds, we
should in addition enforce (132) for either j = 1 or j = 2.
Unlike conditions 1 and 2, Eq. (132) restricts the distance 	

between the point scatterers. Moreover, because α j (x) involve
trigonometric functions, for fixed values 	, ρ j , and ς j , the
values of k that fulfill (132) form a discrete set.

If (132) holds for j = 1 ( j = 2), γ1 = ∞ (γ2 = ∞). For
generic values of θ0, ϕ0, θ , and ϕ, this implies G11 = ∞
(G22 = ∞), where Gi j are the entries of G. In view of (128),
this condition identifies a spectral singularity provided that
ei has a nonzero x component (y component), i.e., eix 	= 0
(eiy 	= 0). For applications in optics, the exceptional values
of θ0, ϕ0, θ , ϕ, and ei for which (132) fails to ensure the
emergence of a spectral singularity are of no interest, because
the system amplifies the background noise whose wave vector
and polarization take all possible values.

Clearly, condition 2 is less restrictive than condition 1.
Demanding that condition 2 holds, we can fix one of ρ1, ρ2,
ς1, and ς2 in terms of the other three and k. This leaves us
with a total of four free parameters and the distance 	 which
enters (132). If we solve this equation for k we find a discrete
set of values of k each depending on 	 and three of ρ1, ρ2, ς1,
and ς2. Suppose for definiteness that we use condition 2 to fix
ς2, which we can relate to the gain coefficient for the point
scatterer located at �r2. Then we can use (132) to express k in
terms of ρ1, ρ2, ς1, 	, and possibly a discrete label counting
the solutions of (132).

Finally notice that condition 2 obstructs the existence of
spectral singularities for doublets consisting of identical (z1 =
z2) and PT -symmetric (z1 = z�2) pairs of point scatterers.10

This shows that they cannot function as a laser unless they sat-
isfy condition 1. In particular, the real part of their permittivity
must equal that of the vacuum: Re[ε(r)] = ε0I. Materials
satisfying this condition cannot usually display large enough
gains so that the imaginary part of their permittivity profile
can be modeled using a δ function [45]. In the next section we
discuss a class of doublet systems which readily satisfy con-
dition 2.

10The scattering problem for scalar waves interacting with a
PT -symmetric pair of point scatterers in three dimensions was con-
sidered in Ref. [42]. A proper treatment of this problem that yields
its exact solution is given in [43]. For a general discussion of the
scattering of scalar waves by doublets of point scatterers in two and
three dimensions, see [44].

FIG. 4. Plots of b1 and b2.

V. ACTIVE ANTI-PT -SYMMETRIC PAIRS OF POINT
SCATTERERS AND THEIR LASING THRESHOLD

AND SPECTRUM

Consider an anti-PT -symmetric doublet of isotropic point
scatterers, which by definition [32,34] satisfies z2 = −z∗1 or
equivalently

ρ1 = −ρ2, ς1 = ς2. (133)

Then condition 2 holds and (132) identifies the values of
k	 corresponding to spectral singularities with the real and
positive solutions of the transcendental equations

(sin x − x cos x)2 = 1
9 (x6 + cdx3 + c), (134)

[(x2 − 1) sin x + x cos x]2 = 4
9 (x6 + cdx3 + c), (135)

where c := 36π2	6/(ρ2
1 + ς2

1 ), d := ς1/3π	3, and we have
made use of (123).

Let us introduce

a1(x) := α1(x)2

4
= (sin x − x cos x)2,

(136)

a2(x) := α2(x)2

4
= [(x2 − 1) sin x + x cos x]2

4
.

Then we can write (134) and (135) in the form11

a j (x) = 1

9

(
x6 + 12π	3ς1x3

ρ2
1 + ς2

1

+ 36π2	6

ρ2
1 + ς2

1

)
. (137)

It is easy to see that this is a quadratic equation for ς1. We can
express its solutions as

ς1 = − 6π	3

b j (x)x3
[1 ± √

� j (x)], (138)

where

b j (x) := 1 − 9a j (x)

x6
,

� j (x) := 1 − b j (x) −
(

ρ2
1 x6

36π2	6

)
b j (x)2.

The functions b j (x), whose graphs we plot in Fig. 4, are
continuous, vanish only at x = 0, and satisfy

0 < b j (x) � 1 for x 	= 0. (139)

11Equations (134) and (135) correspond to (137) with j = 1 and 2,
respectively.
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FIG. 5. Location of spectral singularities in the ς1-k plane for
ρ1 = 1 in units where 	 = 1. The thin blue solid and orange dashed
(thick green solid and red dashed) curves correspond to setting j = 1
( j = 2) and choosing − and + signs on the right-hand side of (138),
respectively. The critical values ς+ and ς− of ς correspond to the
maxima of the thin blue and thick green solid curves, respectively.
The maximum value of k for a spectral singularity is associated with
the intersection of the thin blue solid and orange dashed curves where
�1 = 0.

According to (138) and (139), there are real and positive
values of x and 	 and real values of ρ1 and ς1 satisfying
(137) only if � j (x) � 0. Suppose that this is the case. Then
(139) implies that � j (x) � 1. Using this in (138), we arrive
at ς1 < 0. This argument shows that a spectral singularity
can exist only for the negative values of the imaginary part
of the permittivity of the point scatterers. This happens if the
system has gain [45]. To produce and maintain this gain, the
system must receive energy. We arrive at the same conclusion
by noting that the presence of a spectral singularity leads to
the emission of outgoing EM waves which requires a source
of energy. Therefore, the mathematical result pertaining to the
nonexistence of the real and positive solutions of (134) and
(135) for ς1 � 0 agrees with a physical requirement imposed
by energy conservation.

To acquire more detailed information about the conditions
ensuring the existence of spectral singularities for our anti-
PT -symmetric doublet, we have used (138) to plot ς1 as a
function of k for fixed values of ρ1 and 	. Figure 5 shows the
behavior of ς1 for ρ1 = 1 in units where 	 = 1. It reveals the
existence of a pair of critical values ς± of ς1, with ς− < ς+ <

0, such that the following assertions hold.
(i) For ς1 > ς+ Eqs. (134) and (135) have no real and

positive solutions, i.e., no spectral singularities exists.
(ii) For ς1 = ς+ Eq. (134) has a unique real and positive

solution while (135) has none. Therefore, the system has a
single spectral singularity. This establishes the existence of a
threshold gain [23] and identifies ς1 = ς+ as the laser thresh-
old condition for the system [45].

(iii) For ς− < ς1 < ς+ Eq. (134) has two real and positive
solutions, (135) has no solutions, and the system develops two
spectral singularities.

(iv) For ς1 = ς− Eqs. (134) and (135) have two and one
real and positive solutions, respectively. So the number of
spectral singularities of the system is 3.

(v) For ς1 < ς− Eqs. (134) and (135) have two real and
positive solutions each and there is a total of four spectral
singularities.

(a) (b)

FIG. 6. Plots of the differential cross section σd (ki, ks ) as a func-
tion of k in units where 	 = 1 for ρ1 = 1, ς1 = −1.454, k̂i = ez (i.e.,
ϑ0 = ϕ0 = 0◦), ei = ex , and the different values for ϕ and ϑ .

(vi) The k	 values associated with spectral singularities
have an upper bound. This is attained at a particular value of
ς1 that lies between ς±.

For the particular example considered in Fig. 5, ς+ =
−1.454	3 and ς− = −2.405	3. These identify spectral sin-
gularities with k = 2.230	−1 and k = 1.905	−1, respectively.
The upper bound on the wave number signifying a spectral
singularity is 2.403	−1. This is realized for ς1 = −1.884	3,
which lies between ς±. Note also that the spectral singu-
larity obtained using larger values of ς1 have lower wave
numbers.

Figure 6 provides graphical demonstrations of the spectral
singularity corresponding to the lasing threshold, i.e., when
ρ1 = 	3 and ς1 = ς+ = −1.454	3. It shows the plots of the
differential cross section σd (ki, ks ) as a function of the wave
number k for k̂i = ez and different choices for ei and ks.
The high peak represents the spectral singularity. It occurs
for k = 2.230	−1, confirming our numerical calculation of
this quantity, which we have obtained by determining the
maximum point of the blue curve shown in Fig. 5.

An important property of the active anti-PT -symmetric
doublets of point scatterers is that the wave number k for
their spectral singularities has a continuous dependence on ς1

except at ς±, where there is a jump of the number of spectral
singularities. This shows that the system has a continuous
lasing spectrum, a remarkable feature which was previously
noticed in the study of certain one-dimensional anti-PT -
symmetric optical systems [32,37].

VI. CONCLUSION

Scattering of EM waves by linear stationary media has
been a focus of research activity since the late 19th century.
The standard treatment of this subject involves the use of
(dyadic) Green’s functions [19]. In the present article we have
outlined an alternative approach that is based on a fundamen-
tal notion of the transfer matrix. Unlike the traditional transfer
matrices employed in the study of the EM wave propagation,
this is not a numerical matrix, but a linear operator acting in an
infinite-dimensional function space. This underlines the util-
ity of the fundamental transfer matrix in performing analytic
calculations.
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The approach we have presented here takes into account
the contribution of the evanescent waves and applies to
isotropic as well as anisotropic scatterers. Its central ingre-
dient is the expression of the fundamental transfer matrix in
terms of the evolution operator for an effective nonunitary
quantum system. In particular, we can expand it in a Dyson
series. This makes it into an ideal tool for the study of scat-
terers where this series terminates. A physically important
example is the class of point scatterers lying on a plane which
by an appropriate choice of coordinates we take to be per-
pendicular to the scattering (z) axis. For these systems we
have computed the fundamental transfer matrix and used it
to obtain an analytic closed-form expression for the scattering
amplitude. The latter is given in terms of a vector g that lies
in the plane containing the point scatterers. A closer look
at the structure of g shows that its determination requires
the inversion of a 2N × 2N matrix (having Aab as its 2 × 2
blocks) and performing a triple sums over the product of
2 × 2 matrices carrying labels running over {1, 2, . . . , N}.
This suggests that it should be easy to use our analytic results
to conduct reliable numerical studies of the scattering features
of two-dimensional lattices and random ensembles of large
number of point scatterers [46].

A major disadvantage of the previous studies of EM point
scatterers is the complications related to the emergence of
singularities which required intricate regularization and renor-
malization schemes to deal with [17,18]. Moreover, these
studies only considered isotropic point scatterers. In contrast,
our treatment is free of unwanted singularities and applies to
both isotropic and anisotropic point scatterers. Note also that
it does not make use of the Foldy-Twersky ansatz or the results
of multiple scattering theory [17,47,48].

We have conducted a detailed study of doublets consist-
ing of a pair of isotropic point scatterers. In particular, we
have addressed the problem of characterizing their spectral
singularities. For the generic cases where the real part of
the permittivity of the point scatterers is different from the
vacuum permittivity, we have shown that doublets made of
identical or PT -symmetric point scatterers do not admit a
spectral singularity. This shows that they cannot function as a
laser. This is not the case for anti-PT -symmetric doublets. We
have provided a detailed analysis of the spectral singularities
of the latter and determined their laser threshold condition and
lasing spectrum. Similarly to the one-dimensional anti-PT -
symmetric slab systems studied in the literature [32,37], the
anti-PT -symmetric doublet systems have a continuous lasing
spectrum.

ACKNOWLEDGMENTS

We wish to express our gratitude to Alper Kiraz and
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APPENDIX A: PROOF OF EQS. (81) AND (82)

Let f : R2 → C be any smooth function that has a com-
pact support and

αa(�r ) := δ(�r − �ra)

1 + ∑N
c=1 ccδ(�r − �rc)

,

(A1)

βab(�r) := caδ(�r − �ra)δ(�r − �rb)

1 + ∑N
c=1 ccδ(�r − �rc)

.

Then, because the ca do not vanish and the �ra are distinct
elements of R2,∫

R2
d2�r ′αa(�r − �r ′) f (�r ′) = f (�r − �ra)

1 + ∑N
c=1 ccδ(�ra − �rc)

= f (�r − �ra)

1 + caδ(�0)
= 0, (A2)∫

R2
d2�r ′βab(�r − �r ′) f (�r ′) = ca f (�r − �ra)δ(�ra − �rb)∑N

c=1 ccδ(�ra − �rc)

= δab f (�r − �ra)

=
∫
R2

d2�r ′ f (�r ′)[δabδ(�r ′ − �r)].

(A3)

Equations (A1)–(A3) prove (81) and (82).

APPENDIX B: THE Bab FOR DOUBLETS OF POINT
SCATTERERS

We can solve the system of equations (100) using Gaussian
elimination. In the following, we present the details of the
solution for a doublet of point scatterers (N = 2) subject to
the condition that Aaa is invertible for both a = 1 and 2,

det Aaa 	= 0 for a ∈ {1, 2}. (B1)

When N = 2, Eq. (100) reads

A11�x1 + A12�x2 = �b1, (B2)

A21�x1 + A22�x2 = �b2. (B3)

Multiplying both sides of (B3) by −A12A−1
22 and adding the

resulting equation to (B2), we find(
A11 − A12A−1

22 A21
)
�x1 = �b1 − A12A−1

22
�b2. (B4)

Similarly, multiplying both sides of (B2) by −A21A−1
11 and

adding the resulting equation to (B3) gives(
A22 − A21A−1

11 A12
)
�x2 = �b2 − A21A−1

11
�b1. (B5)

Equations (B4) and (B5) have unique solutions provided the
matrices multiplying �x1 and �x2 are invertible. In this case the
solution takes the form �xa = ∑2

b=1 Bab�bb for

B11 = (
A11 − A12A−1

22 A21
)−1

, B12 = −B11A12A−1
22 , (B6)

B22 = (
A22 − A21A−1

11 A12
)−1

, B21 = −B22A21A−1
11 . (B7)
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