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Theoretical prediction of a non-Hermitian skin effect in ultracold-atom systems
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We study the non-Hermitian skin effect in dissipative ultracold fermions with spin-orbit coupling, which has
been implemented in a recent experiment (Z. Ren et al., Nat. Phys. 18, 385 (2022)). In this work we prove
that the non-Hermitian skin effect in such a continuous system is robust to the variation of external parameters
and trapping potentials. We further reveal a dynamic sticky effect in our system, which has a common physical
origin with the non-Hermitian skin effect. Our work paves the way for studying novel physical responses of the
non-Hermitian skin effect in quantum systems.
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I. INTRODUCTION

The ultracold-atom system has provided an ideal plat-
form for studying both single-particle physics and many-body
physics due to its super purity, high controllability, and intrin-
sic quantum nature [1–5]. Some examples include the study
of topological band theory [6–24] and strongly correlated
physics [2,25–28]. When the system is not closed, particles
can escape from the system to the environment [29–46] and
its single-particle physics can no longer be described by a
Hermitian Hamiltonian, but by an effective non-Hermitian
Hamiltonian [45,47,48]. For example, recently, Ref. [36] first
implemented a one-dimensional spin-orbit-coupled system
with highly controllable spin-dependent particle loss, which
establishes a new platform to study non-Hermitian physics.

The non-Hermitian skin effect (NHSE), which refers to
an anomalous localization phenomenon in an open boundary
system [49], has been widely studied recently [49–77]. For
a system with the NHSE, the number of boundary localized
eigenstates is proportional to the volume of the system. From
a theoretical point of view, an important implication of the
NHSE is the nonperturbative breakdown of Bloch’s theorem
[78], which introduces new opportunities and challenges to
quantum theories established within Bloch’s theorem. From
an experimental point of view, although the NHSE has
been experimentally observed in several classical systems
[68–71,79–84], its implementation in quantum systems is still
absent. Therefore, the realization and detection of the NHSE
in quantum systems, e.g., ultracold-atom systems, have be-
come the next step for the non-Hermitian community and may
open a new route for further theoretical research.
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In this paper we predict that the one-dimensional dissi-
pative spin-orbit-coupled ultracold fermions implemented in
Ref. [36] have a robust NHSE. In contrast to previous studies
of the lattice model, the NHSE discussed in this paper appears
in a continuous model due to the absence of an externally
applied optical lattice. We also generalize the non-Bloch band
theory [49,53,56] to the continuous case, which is referred
to as generalized wave vector (GWV) theory. In addition,
we propose that the NHSE in our model can induce a so-
called momentum-dependent dynamic sticky effect (DSE),
that is, when a small (large) momentum wave packet hits the
skin-localized boundary, it will be bounded (reflected) by the
corresponding boundary.

II. NHSE IN ULTRACOLD ATOMS

The model implemented in Ref. [36], which is illustrated
in Fig. 1(a), can be described by the stationary Schrödinger
equation

[H (k̂) + V (x)]ψE (x) = EψE (x), (1)

where k̂ = p̂/h̄ = −i∂x is the wave-vector operator, V (x) is
the effective trapping potential, and H (k̂) is the free-particle
Hamiltonian whose form is

H (k̂) =
(

ε−(k̂) + δ/2 − i�↑/2 �R/2
�R/2 ε+(k̂) − δ/2 − i�↓/2

)
.

(2)
Here ε±(k̂) = (h̄k̂ ± h̄qr )2/2m, m is the mass of the atom,
±h̄qr is half of the momentum transferred through the
two-photon Raman coupling process with Raman coupling
strength �R and two-photon detuning δ [85], and �↑ (↓) is
proportional to the spin-dependent loss of the atom.1

1Here we define the recoil momentum h̄qr and recoil energy Er =
h̄2q2

r /2m as the units of momentum and energy, respectively. The
corresponding derivation of the dimensionless Hamiltonian can be
found in the Supplemental Material [86].
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FIG. 1. (a) Physical system we studied where k± = k ± qr and
ε± = h̄2k2

±/2m. (b) Both the NHSE and the DSE originate from the
(free-particle spectral) degeneracy splitting. (c) Presence of degener-
acy splitting in our model. One can find that although the real part
of the energy between states k1 and k2 is the same, the imaginary
part of the energy is different. The parameters are (δ, �R, �↑, �↓) =
(4, 9

2 , 6, 6
13 )Er , where Er = h̄2q2

r /2m.

When the effective trapping potential V (x) is ignored, the
atoms can be considered free. By diagonalizing Eq. (2) we can
obtain the corresponding eigenvalues

E±(k) = E0(k) ±

√√√√(
− h̄2qr

m
k + δ

2
− i

�z

2

)2

+ �2
R

4
, (3)

where k ∈ R, E0(k) = h̄2(k2 + q2
r )/2m − i�0/2, and �0 (z) =

(�↑ ± �↓)/2. As shown in Fig. 1(b), an important feature of
Eq. (3) is the presence of (free-particle spectral) degeneracy
splitting,2 which causes the NHSE and DSE. The reason is
that due to the existence of degeneracy splitting, the num-
ber of plane waves is not enough to form the eigenstate
(and participate in the boundary reflection process), which
indicates the emergence of the NHSE (and DSE). This de-
generacy splitting can be observed in Figs. 1(c) and 2(a).
In Fig. 1(c), Re E±(k) is plotted with thick solid lines and
Re E±(k) + |Im E±(k)|/2 and Re E±(k) − |Im E±(k)|/2 are
plotted with thin solid lines. Therefore, the vertical distance
around Re E±(k) represents |Im E±(k)|. One can find that
although Re E−(k1) = Re E−(k2) = 0, their imaginary parts
are different. Other parameters in the calculation are listed
in the caption of the corresponding figures, and the color of
the curves represents the mean value of the z-component spin,
i.e., 〈sz〉.3 Figure 2(a) further shows that the above-discussed
degeneracy splitting still holds in almost the whole spectrum
in the plotted region. Here we note that the solid lines and
arrows in Fig. 2(a) indicate the spectral flow in the complex
energy plane when k runs from −∞ to +∞.

2The degeneracy splitting proposed here is for the whole spectrum.
There may be a few intersection points in the spectrum at which no
splitting occurs, so the state formed by these corresponding eigen-
states may not be localized at the boundary, which is an extended
state.

3More precisely, 〈sz〉 = 〈uR
±(k)|sz|uR

±(k)〉, where |uR
±(k)〉 is the right

eigenstate [87] of Eq. (2) with eigenvalue E±(k).

FIG. 2. (a) Energy spectrum of Eq. (1), where solid lines rep-
resent the spectrum under V (x) = 0 and the dots represent the
spectrum under Eq. (4) with L = 40/qr . (b) Several eigenfunctions
whose eigenvalues are labeled in (a). Both the spectral difference and
the exponential localization of the eigenfunctions are the signatures
of the NHSE. The parameters are the same as in Fig. 1.

When the effective trapping potential V (x) is taken into ac-
count, the NHSE appears. In order to simplify the discussion,
a box potential is assumed, i.e.,

V (x) =
{

0 for − L/2 < x < L/2
∞ otherwise. (4)

As shown in Fig. 2(a), the dots represent the numerical so-
lutions in the drawing interval with L = 40/qr for Eq. (4).
One can find that the eigenvalues in the box potential are
distinct from the free-particle spectrum E±(k ∈ R) in the
complex energy plane. This is the spectral signature for the
emergence of the NHSE [54,55]. Figure 2(b) further shows
several typical numerical wave functions of the system, whose
eigenvalues are labeled in Fig. 2(a).4 One can find that they
are all exponentially localized at the left boundary and have
different localization lengths. The appearance of the exponen-
tially localized eigenstates for the quasicontinuous spectrum
is the wave-function signature for the emergence of the NHSE
[49,53].

III. ASYMPTOTIC SOLUTIONS

For large L, the asymptotic solution of Eq. (1) for the
box potential (4) can be obtained analytically, which con-
tains two boundary-condition-allowed complex wave-vector
curves k+ and k−, respectively. The corresponding asymptotic
eigenspectra of E+ and E− can be obtained from E+(k+) and
E−(k−), respectively [86]. Here we note that our method can
be regarded as a continuous version of the auxiliary general-
ized Brillouin zone theory [56]. As shown in Figs. 3(a) and
3(b), the thick solid colored lines represent the asymptotic
curves of complex wave vectors k+ and k−, which we call
GWVs, and the thin solid gray lines represent the auxil-
iary generalized wave vectors, which determine the analytical
behaviors of k± and can be calculated exactly [86]. From
Figs. 3(a) and 3(b) one can find that Im k±, which is related
to the localization behaviors, gradually approaches zero as

4Here we note that the wave functions we plotted are |ψEi,↑(x)|2 +
|ψEi,↓(x)|2, where ψEi,↑ (↓)(x) is the spin-up (-down) component of
the eigenfunction whose eigenvalue is Ei.
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FIG. 3. Asymptotic solutions under the parameters shown in
Fig. 1. In (a) and (b) the generalized wave vectors and auxiliary
generalized wave vectors are shown with thick colored lines and
thin gray lines, respectively. Here the dashed lines represent the
largest and smallest values of the imaginary part of k, respectively,
which will be used to characterize the strength of the NHSE [86].
(c) Asymptotic spectrum, namely, E+ (E−) maps the curve A-B-C
(D-E -F -G-H -I-J) (represent the energy flow for E+(k+) [E−(k−)])
in (a) [(b)] to the curve A-B-C (D-E -F -G-H -I-J) in (c). (d) Com-
parison between the asymptotic (black line) and numerical (colored
dots) solutions. Here the radius of the dots in (d) is proportional to
the inverse of the localization length.

|Re k±| increases.5 As a result, the corresponding asymptotic
eigenstate becomes extended. In contrast, the eigenstates for
small |Re k±| are localized skin modes. Figure 3(c) shows the
asymptotic spectrum determined by k±, where the point pairs
(F, H ), (E , B, I ), (A, J ), and (C, D) represent four different
common points in the complex energy plane. It should be
noted that E+(k+) and E−(k−) cover different regions on the
complex plane, respectively [86]. As shown in Fig. 3(d), by
comparing E±(k±) with numerical solutions represented by
the dots in Fig. 3(d) one can find that they match well.

IV. ROBUSTNESS OF THE NHSE

The stability of the NHSE is related to the absence of the
inversion symmetry P and anomalous time-reversal symmetry
T̄ [65,88] of H (k), whose definitions are

P−1H (k)P = H (−k), T̄ −1H (k)T̄ = H (−k), (5)

where k is a complex number, P is a unitary operator, and
T̄ = UT̄ Kt is an antiunitary operator with Kt the transpose
operator [88,89]. It can be checked that once �↑ �= �↓, the
two symmetries above must be broken, which ensures the
existence of the NHSE. Further numerical verifications are
shown in the Supplemental Material [86].

5For example, here the points A and C represents the position
at which Im(k+) = 1/100 and the points D and J that at which
Im(k−) = 1/100.

FIG. 4. Spatial distribution of several eigenfunctions in (a) a
finite deep square well and (b) a Gaussian well [86], where the
presence of the skin modes localized on the left can be clearly seen.
The parameters are the same as those in Fig. 1.

The NHSE is also robust against trapping potentials. In
Figs. 4(a) and 4(b) we have plotted several eigenstates lo-
calized on the left-hand side of the boundary under different
trapping potentials, which numerically indicates the robust-
ness of the NHSE [86]. This robustness is quite important,
since if the NHSE can be destroyed by these potentials, then
the NHSE will be fragile and can hardly be observed in exper-
iments.

We believe that the above robustness of the NHSE to
external potentials is a consequence of the non-Hermitian
bulk-boundary correspondence. Here the bulk refers to the
degeneracy splitting of the free-particle spectrum and the
boundary refers to the NHSE under generic slowly varying
trapping potentials V (x). The reason is that in the slowly vary-
ing trapping region V (x) can be approximated by a constant.
As a result, the corresponding solution in this region will
not all be composed of plane waves due to the presence of
degeneracy splitting.

V. DYNAMIC STICKY EFFECT

Now we reveal a new effect related to the NHSE, that is,
the DSE. In general, this effect can be present in any non-
Hermitian systems with the NHSE, not restricted to ultracold
atoms. Figures 5(a) and 5(b) and Figs. 5(c) and 5(d) show the
dynamics of the system without and with the NHSE, respec-
tively. Here the initial state is ψ↑(x, t = 0) = 0 and ψ↓(x, t =
0) = A exp[−(x − x0)2/20 + ik0x], where A is the normaliza-
tion factor, the center position x0 = 40/qr , and the average
momentum k0 = −3qr in Figs. 5(a) and 5(c) and k0 = −5qr

in Figs. 5(b) and 5(d). In order to characterize the dynamical
evolution of wave packets, we normalized the wave function
at each time and plot |ψ (x, t )| = √|ψ↑(x, t )|2 + |ψ↓(x, t )|2
in Figs. 5(a ii)–5(d ii). An important feature for the dynamics
with the NHSE is that the wave packets will be bounded (re-
flected) at a small (large) momentum k0 by the left boundary
as shown in Fig. 5(c ii) [Fig. 5(d ii)]. This anomalous dynam-
ical behavior is referred to as the momentum-dependent DSE
in this paper.

The reason why the DSE appears and is momentum de-
pendent can be well explained by the fact that the DSE has
a similar physical origin to the NHSE, that is, the degener-
acy splitting as shown in Fig. 1(b). Now we explain it. We
first focus on the incident waves. As shown in Figs. 5(a i)–
5(d i), the (mean) momentum of the incident wave is k1
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FIG. 5. Dynamical behavior of the system (a) and (b) without NHSE, i.e., (δ, �R, �↑, �↓) = (4, 9
2 , 0, 0)Er , and (c) and (d) with NHSE, i.e.,

(δ, �R, �↑, �↓) = (4, 9
2 , 6, 6

13 )Er . (a i)–(d i) Free-particle dispersion relation Re E±(k ∈ R), in which the shadow region represents |Im E±(k ∈
R)|. (a ii)–(d ii) Scattering behavior of the Gaussian wave packet with a different momentum, in which the solid lines represent the trajectories
calculated from the group velocity. The anomalous reflection behavior in (c ii) can be understood from the presence of degeneracy splitting in
(c i).

and we can define the corresponding group velocity as v1 =
Re[dE−(k)/dk|k=k1 ] [86]. The solid lines labeled by k1 in
Figs. 5(a ii)–5(d ii) represent the dynamics determined by
v1, i.e., x(t ) = x0 + v1t . One can find that the dynamics
of the incident waves can be well described by the group-
velocity calculations. Next we focus on the reflection waves.
For the case in Fig. 5(a), there is only one reflection chan-
nel, i.e., k2, which satisfies the equal energy condition, i.e.,
E−(k1) = E−(k2). Therefore, the reflection wave can be well
described by the group velocity of k2, which is demonstrated
in Fig. 5(a ii). For the case in Fig. 5(b), since there are two
reflection channels, i.e., E−(k1) = E−(k3) = E−(k4), the cor-
responding reflection wave shows an interference feature and
also the corresponding dynamics can be well described by the
group-velocity calculations, namely, k3 and k4 in Fig. 5(b ii).
However, for one case with the NHSE, i.e., Fig. 5(c), the
presence of degeneracy splitting implies that there is no plane
wave that satisfies the equation energy condition. As a result,
the reflection becomes anomalous and the DSE appears.67 As
a comparison, for another case with the NHSE, the degeneracy
splitting between k1 and k3 is weak, which implies that the
reflection wave can be well described by the group velocity
of k3. The result in Fig. 5(d ii) demonstrates this point. Here

6In the SM [86] we use an exactly solvable model to demonstrate
this point.

7It should be noted that our theory is consistent with the current
experimental measurements of Ref. [36]. Although the momentum-
resolved Rabi oscillation detected in Ref. [36] agrees with the
free-particle spectrum, we cannot say the system does not have
NHSE. The reason is that the NHSE cannot be detected by the short-
time correlations far away from the boundary. In the Supplemental
Material [86] we provide a detailed discussion and simulations to
demonstrate this point.

we note that, due to the degeneracy splitting between k1 and
k4, k4 does not contribute to the reflection wave, which can be
observed in Fig. 5(d ii) with the absence of interference for
the reflection wave.

VI. DISCUSSION AND CONCLUSION

The degeneracy splitting proposed in this work can be
regarded as a band criterion for the emergence of the NHSE.
Before our work, a spectral criterion was established based
on the spectral winding number of the Bloch Hamiltonian
[54,55]. Although this criterion is straightforward in some the-
oretical calculations, it cannot be applied to the experiments
because there is no method to measure the complex energy
spectrum directly.8 In contrast, our band criterion, i.e., the de-
generacy splitting, can be measured directly, for example, by
angle-resolved photoemission spectroscopy. Therefore, this
criterion will be helpful in experiments.

The GWV theory proposed in this work also provides
an analytical method for solving a typical class of differ-
ential equations of the form H(−i d

dx )�(x) = E�(x) [86]
in the large-L limit with homogeneous boundary conditions
dk

dkx �(x = 0) = 0 and dl

dl x �(x = L) = 0, where H(−id/dx)
can be a matrix and its elements can have arbitrary order of
−id/dx and k, l = 0, 1, 2, . . ., which represent the order of
the derivative with respect to x.

In summary, we predicted that the ultracold fermions with
dissipative spin-orbit coupling have a robust NHSE. Since
both the many-body interaction can be well controlled in

8Experimentally, since the box potential has been realized in
Refs. [90,91], we believe that the measurement of the distribution
of fermion density over time which is often used in ultracold-atom
technology [9,15,92] can be used to observe the DSE.
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such a system, our proposal establishes an ideal platform to
study the interplay between the NHSE and many-body in-
teractions. We further showed that the NHSE is robust not
only to external parameters but also to external trapping po-
tentials. The latter can be understood from the perspective
of a non-Hermitian bulk-boundary correspondence. Finally,
we proposed a boundary effect related to the NHSE, that is,
the DSE. This DSE not only provides a valuable method to
identify the NHSE but also reveals that non-Hermitian sys-
tems with the NHSE violate the conventional reflection rule,
which is an important physical consequence that deserves to
be investigated in detail.
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