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Suppression of spontaneous defect formation in inhomogeneous Bose gases
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We investigate the defect suppression effect in an inhomogeneous trapped atomic Bose gas which is quenched
into a superfluid phase. We find that the spontaneous defect production is relatively more suppressed in the
sample’s outer region with higher atomic density gradient. By measuring the spatial distribution of created
defects for various quench times, we show that the power-law scaling of the local defect density with the
quench time is enhanced in the outer region, which is consistent with the Kibble–Zurek mechanism including
the causality effect due to the spatial inhomogeneity of the system. This work opens an avenue in the study of
nonequilibrium phase transition dynamics using the defect position information.
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Topological defect creation in the dynamics of phase
transitions is a remarkable manifestation of the underlying
spontaneous symmetry breaking. When a system is cooled
to an ordered phase, spatial domains with randomly bro-
ken symmetries develop, and their merging may lead to
formation of topological defects that survive in the ordered
phase of the system [1]. Such spontaneous defect formation
is ubiquitous in nonequilibrium phase transition dynamics
and has been discussed in various fields such as cosmology
[1,2], condensed matter physics [3–9], and recently, quan-
tum computing [10–12]. A general description of the defect
formation dynamics is provided by the Kibble–Zurek mech-
anism (KZM) [13–15], where based on the breakdown of
the system’s adiabatic evolution due to critical slowing down
[16] and the scaling properties of the system near the critical
point, the defect density is predicted to exhibit a power-law
dependence on the time scale in which the phase transition is
crossed. The universality of the KZM has been experimentally
tested with many different systems [4,9,17–26].

In a spatially inhomogeneous system, the defect formation
dynamics can be qualitatively changed. Since the local crit-
ical temperature varies spatially due to the inhomogeneity,
different parts of the system undergo the phase transition at
different times during a quench, so that a phase transition
front is formed and propagates in the system. If the transi-
tion front moves sufficiently slowly, the ordered phase behind
the front would influence the symmetry breaking at the critical
front, consequently suppressing the defect formation [27].
Therefore, the defect creation probability is determined not
only by the cooling rate but also by the propagation speed
of the transition front. The causal independence of distant
regions is essential for spontaneous defect formation but is
undermined by the spatial inhomogeneity of the system.
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To incorporate the causality effect, an extension of the
KZM was proposed by imposing an additional defect creation
criterion that the propagation speed of the phase transition
front should exceed the local phase information spreading
speed [28–30]. This model, referred to as inhomogeneous
KZM (IKZM), presents two key predictions: (1) appearance
of defect-free regions breaking the causal independence cri-
terion [28] and (2) an enhanced power-law scaling of the
total defect number with the quench time [29]. In recent ex-
periments with trapped ion chains [18–20] and atomic gases
[24–26], the scaling exponents of the total defect number were
measured to be higher than the KZM predictions, supporting
the IKZM. However, without comparative measurements for
homogeneous systems, causality-induced defect suppression
was not conclusively demonstrated.

In this letter, we investigate the causality effect in spon-
taneous defect formation by measuring the defect position
distributions for various quench times in an inhomogeneous
atomic Bose gas. The gas sample is trapped in an external
potential to have a spatially varying particle density, and upon
quenching into a superfluid phase, quantum vortices are spon-
taneously created in the system. We observe that as the quench
time increases, the spatial distribution of defects is localized to
the central region of the sample, revealing defect suppression
in the outer region with higher atomic density gradient. It is
also observed that the power-law scaling exponent of the local
defect density with the quench time is enhanced in the outer
region. These observations are qualitatively consistent with
the predictions of the IKZM and demonstrate the defect sup-
pression effect by causality in the phase transition dynamics
of an inhomogeneous system.

We consider a gas of identical bosonic particles cooled into
a superfluid phase, where its temperature is linearly lowered
with a quench rate rq = − dT

dt through the critical temperature
Tc. The characteristic quench time is given by τq = Tc/rq. In
a homogeneous system, according to the KZM, the spatial
correlation length at the freeze-out time when the system stops
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FIG. 1. Causality effect in the phase transition dynamics of an
inhomogeneous system. (a) The critical temperature Tc varies spa-
tially in an inhomogeneous system, and under a thermal quench with
a cooling rate rq = − dT

dt the front of the ordered phase propagates
with a speed vF = dxF

dt . (b) When vF exceeds the propagation speed
of phase information ŝ, the local ordered phases are causally inde-
pendent, resulting in defect formation. When vF is less than ŝ, the
broken symmetry is determined by the ordered phase of neighboring
regions and the defect formation is suppressed.

adiabatic following of the quench near the critical region is
given by [15]

ξ̂ = ξc

(τq

τc

) ν
1+νz

, (1)

where ξc and τc are the system-specific length and time scales,
respectively, and ν and z are the static and dynamic critical
exponents, respectively, which are determined by the univer-
sality class of the phase transition. For the superfluid phase
transition, ν ≈ 2/3 [31] and z ≈ 3/2 [22]. Since the aver-
age size of ordered-phase domains is governed by the length
scale of ξ̂ , the defect density is estimated by nd ∼ ξ̂−(D−d ) ∝
τ

−(D−d ) ν
1+νz

q , with D (d ) being the dimensionality of the system
(defect), exhibiting a power-law dependence on the quench
time τq.

In the inhomogeneous case, e.g, when the atomic gas is
confined to an external potential V (x), the local critical tem-
perature Tc(x) varies spatially and the phase transition occurs
at the position xF with T (t ) = Tc(xF) at time t . For a given
cooling rate rq, the phase transition front propagates through
the system with a speed given by [Fig. 1(a)]

vF(x) =
∣∣∣dTc

dx

∣∣∣−1
rq. (2)

On the other hand, the local speed ŝ of the phase information
propagation is estimated by [27,28]

ŝ(x) ∼ ξ̂

τ̂
= ξc

τc

(τq

τc

) ν(1−z)
1+νz = ξc

τ
γ
c

(Tc

rq

)γ−1
, (3)

where τ̂ ∼ ξ̂ z is the system’s relaxation time at the freeze-
out time and γ = 1+ν

1+νz ≈ 5/6. Then, the causal indepen-
dence condition, vF > ŝ, for spontaneous defect formation is
expressed as

rq > rq,c(x) ∼
∣∣∣ξc

d ln Tc

dx

∣∣∣1/γ Tc

τc
. (4)

This means that to produce defects at a given position, there
is a threshold quench rate rq,c that depends on the spatial
gradient of Tc.

More specifically, we consider a system trapped in a
power-law potential of the form V (x) ∝ |x|nx . Assuming that
the local density n(x) ∝ e−βV (x) is not changed during the
quench, the local critical temperature may be approximated as
Tc(x) ∼ Tc0e−|x/�x |nx , with Tc0 being the critical temperature at
the trap center and �x the characteristic spatial extent of the
trapped sample. For a Bose gas, up to some numerical factors,
ξc and τc can be estimated by the de Broglie wavelength
λdB ∝ T −1/2

c and the elastic collision time τel ∝ T −2
c at the

critical point, respectively [32]. Taking into account the Tc

dependence of ξc and τc, from Eq. (4),

rq,c(x) ∼ Tc0

τc0

(nxξc0

�
nx
x

)1/γ

|x| nx−1
γ e−(3− 1

2γ
)| x

�x
|nx

, (5)

where the 0 in the subscript indicates the trap center. For
nx > 1 and in a near-center approximation for |x| � �x [29],
the causality criterion of Eq. (4) renders a defect-allowed
region as

|x| < x∗ ∼
( �nx

x

nxξc0

) 1
nx−1

( τc0

Tc0

) γ

nx−1
r

γ

nx−1
q , (6)

predicting a suppression of defect formation in the outer re-
gion of the trapped system [Fig. 1(b)].

It is important to note that if the phase transition occurs
in a locally independent manner over the whole system, i.e.,
ŝ = 0, the defect density would be higher in the outer re-
gion with low Tc because the local correlation length ξ̂ (x) ∝
T

3ν
1+νz − 1

2
c r

− ν
1+νz

q ≈ T 1/2
c r−1/3

q from Eq. (1). This is in stark con-
trast to the prediction from Eq. (6). Therefore, the spatial
distribution of defects can reveal the causality effect in the
phase transition dynamics of the inhomogeneous system. In
the following experiment, we observe that the defect popu-
lation is relatively more suppressed in the outer region of the
system as the quench rate decreases, which is the main finding
of this work.

The experiment was performed with a cold thermal gas of
87Rb in an optical dipole trap (ODT) with a highly oblate
geometry as described in Ref. [26]. The sample is initially
prepared at a temperature of Ti ≈ 440 nK, containing ∼3.3 ×
107 atoms, and evaporatively cooled by linearly lowering the
ODT depth U from Ui = 1.15Uc to Uf = 0.27Uc in a variable
time τ . Here, Uc is the critical trap depth for Bose–Einstein
condensation, determined for an equilibrium sample, where
the atom number is measured to be ∼3.0 × 107. At the end
of the quench, the sample temperature is Tf ≈ 50 nK and
the typical atom number is ∼1.2 × 107. In our experiment,
the quench time τ is varied from 2.95 s to 11.06 s. For the
entire range of τ , the linear relationship between the sample
temperature and the trap depth was confirmed [25], ensuring
that the sample is sufficiently thermalized during the quench
evolution. The cooling rate is rq = Ti−Tf

τ
and the characteristic

quench time is τq0 = Tc0
rq

≈ 0.96τ , with Tc0 ≈ 370 nK. At the
critical temperature, λdB ≈ 0.3 µm and τel ≈ 1 ms for the peak
atomic density [32].

After finishing the quench process, a hold time of τh =
1.25 s is applied to facilitate defect formation [25]. The final
condensate fraction is about 80% and the Thomas–Fermi radii
are Rx,y,z ≈ (244, 65, 2.8) µm. Due to the tight confinement
along the z direction, the sample has quasi-two-dimensional
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FIG. 2. Spatial distribution of defects created in a trapped Bose
gas quenched into superfluid phase. (a) Images of Bose gases for
various quench times τ . The images were taken after a time of flight,
and vortices are detected with their density depleted holes in the
images. (b) Vortex positions for three different ranges of τ : 8.0 s �
τ � 11.5 s, 4.5 s � τ � 7.0 s, and 2.5 s � τ � 4.5 s, where the data
were obtained from 90, 80, and 80 realizations of the experiment,
respectively. The solid lines indicates the boundary of the condensate
determined by the column density threshold at 5% of the maximum
value in the averaged image. (c) Histogram of vortex position in |x|
and |y|. N̄ indicates the mean vortex number in the corresponding
spatial bin and N̄total denotes the mean total number. The markers are
the same as in (b).

geometry and it is energetically favorable to have vortex lines
aligned along the short axis. The created vortices are detected
by imaging the sample along the z direction after a time of
flight of 40.4 ms.

In the experiment, to generate a large area sample, we
employ an ODT formed by focusing a clipped Gaussian laser
beam [33]. The transverse trapping potential is determined
to be

V (x, y) = V0

[( x

Rx

)3.9
+

( y

Ry

)2
]
. (7)

For the laser beam clipping, the focal region is elongated and
flattened along the beam propagation (x) axis, and the trapping
potential along the direction is approximately quartic.

In Fig. 2(a), we show absorption images of the samples
for various quench times. It is apparent that more vortices
are created for faster quenches. We measure the positions of
the vortices by hand with the aid of a vortex detection algo-
rithm based on a convolutional neural network method [34]
and rescale them to the in situ positions, assuming that their

FIG. 3. Evolution of the vortex distribution for various quench
times. (a) Distribution width σx(y) of vortices as a function of τ .
The width σx(y) is determined such that 60% of vortices are con-
tained within the region with |x| < σx (|y| < σy ). Each data point
was obtained from 20 realizations of the same experiment, except
for τ = 11.06 s with 30 realizations. The uncertainties shown by the
error bar were estimated by bootstrap resampling. (b) σx/σy as a
function of τ . The horizontal solid line indicates the aspect ratio of
the sample. Both panels are log-log plots. The dashed lines are drawn
for reference, indicating the power-law scaling from Eq. (6).

relative x and y positions with respect to the condensate are
maintained during the time of flight. In Fig. 2(b) we display
the vortex positions obtained for three different ranges of the
quench time, and in Fig. 2(c) we plot the histograms of the
average vortex number N̄ (inset) and the relative probability
of the vortex appearance N̄/N̄total in the different binned re-
gions along the long (x) and short (y) transverse directions.
N̄total is the average total vortex number of the system. The
measurement results clearly show that the vortex creation
probability is more suppressed in the outer region for longer
quench times, which is consistent with the expectation from
the causality effect in a quenched inhomogeneous system.

To characterize the evolution of the vortex distribution, we
determine the widths σx and σy of the distribution such that
60% of the detected vortices are contained within the region
with |x| � σx and |y| � σy. The uncertainties on the widths
are determined by bootstrap resampling repeated 1000 times.
Figure 3(a) shows the evolution of the widths as a function
of τ , corroborating their decreasing behavior with the quench
time.

One noticeable observation is that in the slow quench
regime with τ > 6 s, σy decreases relatively faster than σx,
which is also shown in the evolution of their ratio, σx/σy in
Fig. 3(b). We attribute it to the difference in the power-law
dependencies of the trapping potential along the x and y di-
rections. According to Eq. (6), the dependence of the widths
on τ might be expected to be σx ∝ τ−5/18 and σy ∝ τ−5/6

for nx = 4 and ny = 2, and thus, σx/σy ∝ τ 5/9. In Figs. 3(a)
and 3(b), the expected scaling behaviors are indicated by
dashed lines, and it seems that they qualitatively explain the
evolution of the measured widths in the slow quench regime
quite well. For τ = 10 s, the spatial ranges, x∗ and y∗, of
the defect-allowed region are estimated to be x∗ ≈ 115 µm
and y∗ ≈ 4 µm from Eq. (6) with ξc0 = λdB, τc0 = τel, and
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FIG. 4. Scaling of the defect number with the quench time.
(a) Defect numbers as functions of the quench time τ for three differ-
ent regions of the sample along the transverse x direction: the central
region (A, blue triangles), the middle region (B, green rectangles),
and the outer region (C, red diamonds). The black circles denote the
total defect number. The dashed lines are power-law fits to the scaling
regime of the corresponding data with τ > 4.5 s (light blue shaded).
The data points below 0.05 are excluded. (b) Power-law exponents
for the different regions. The horizontal dashed line and the gray
band indicate the value of the scaling exponent for the total defect
number and its uncertainty, respectively.

�x,y = Rx,y, which compare reasonably well to the measured
widths.

For fast quenches, however, σy deviates from the expected
trend and, particularly, the ratio σx/σy seems to settle down
at a value close to the sample aspect ratio. To get a com-
plete understanding of the evolution of the measured widths
for changing τ , it might be necessary to take into account
the effect of vortex motion or diffusion [35] which possibly
occurs during the defect formation period in the experiment.
For our fastest quench, the vortex density in the central region
is nv ≈ 7 × 10−4 µm−2 and the characteristic drift velocity is
estimated to be vd = h̄

m

√
nv ≈ 20 µm/s.

From the knowledge of the vortex position, we now inves-
tigate the spatial dependence of the scaling exponent of defect
density for different regions in the inhomogeneous system. In
Fig. 4(a), we plot the mean vortex numbers as functions of
the quench time for three different regions of the sample: (A)
the center (|x| < 75 µm), (B) the middle (75 µm � |x| <

150 µm), and (C) the outer regions (150 µm � |x|). As ex-

pected from the causality effect, the vortex number decreases
with τ more rapidly in the outer region. We determine the scal-
ing exponent by fitting a power-law function of Ni = Ni0τ

−α

(i = A, B, C) to the data for each sample region and find that
the exponent α increases from ∼2.4 for the central region to
∼3.6 for the outer region [Fig. 4(b)]. In the power-law fitting,
we used the data in the range τ > 4.5 s to avoid the saturation
effect for fast quenches [25].

Although the increment of the local scaling exponent is
consistent with the causality effect, quantitative understanding
of the measured exponents is currently lacking. In Ref. [29],
the expected total defect number for the inhomogeneous sys-
tem is estimated as N̄total ∼ S∗/ξ̂ 2

0 , with S∗ ∼ x∗y∗ being the
effective area for defect formation, yielding N̄total ∼ τ−αIKZ ,
with αIKZ = 2ν

1+νz + ( 1
nx−1 + 1

ny−1 )γ ≈ 16/9 for our case with

(nx, ny) ≈ (4, 2). In Fig. 4(a), the total defect number N̄total

is also displayed and the scaling exponent is measured to
be αtotal = 2.8(2), which is significantly higher than the pre-
dicted value. Recently, it was experimentally shown that the
scaling behavior of the defect number is also affected by the
coarsening dynamics in the early stage of condensate growth
[26,36]. Since the relative quench depth is shallower in the
outer region for lower Tc, the early coarsening effect might
partially contribute to the observed spatial variations of the
local scaling exponent. This possibility is beyond the scope of
the IKZM and warrants further investigation in the future.

In conclusion, we have investigated the spatial distribution
of vortices in a quenched Bose gas with inhomogeneous den-
sity distribution and observed that the local suppression of
spontaneous defect creation is consistent with the causality
effect due to the spatial inhomogeneity of the system. With
precise control of the trapping potential, we expect that this
work can be extended to a quantitative study of the defect cre-
ation probability via statistical analysis of the defect position
information for various power-law traps. For example, with a
linear trapping potential, the phase information propagation
speed could be measured from the onset of defect forma-
tion above a certain critical quench rate [28]. Furthermore,
position correlations between created defects may provide an-
other avenue to understand the details of the defect formation
dynamics [37].

This work was supported by the National Research Foun-
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