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Avoiding barren plateaus via transferability of smooth solutions in a Hamiltonian variational ansatz
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A large ongoing research effort focuses on variational quantum algorithms (VQAs), representing leading
candidates to achieve computational speed-ups on current quantum devices. The scalability of VQAs to a
large number of qubits, beyond the simulation capabilities of classical computers, is still debated. Two major
hurdles are the proliferation of low-quality variational local minima, and the exponential vanishing of gradients
in the cost-function landscape, a phenomenon referred to as barren plateaus. In this work, we show that by
employing iterative search schemes, one can effectively prepare the ground state of paradigmatic quantum
many-body models, also circumventing the barren plateau phenomenon. This is accomplished by leveraging
the transferability to larger system sizes of a class of iterative solutions, displaying an intrinsic smoothness of the
variational parameters, a result that does not extend to other solutions found via random-start local optimization.
Our scheme could be directly tested on near-term quantum devices, running a refinement optimization in a
favorable local landscape with nonvanishing gradients.

DOI: 10.1103/PhysRevA.106.L060401

Introduction. Variational quantum algorithms (VQAs)
[1,2] are among the main candidates for near-term practi-
cal applications of noisy intermediate-scale quantum (NISQ)
devices [3]. VQAs are quantum-classical hybrid optimiza-
tion schemes that have been successfully applied to quantum
ground-state preparation [4–8] and classical optimization
tasks [9], ranging from the solution of linear systems of
equations [10] to quantum information [11]. In the standard
VQA setting, one aims at minimizing the average energy of a
problem Hamiltonian Ĥtarg with respect to a variational state
|ψ (γ )〉 prepared by a parameterized quantum circuit. This
is accomplished by a feedback loop between a classical and
a quantum machine: the quantum device is used to repeat-
edly prepare the ansatz state for a set of gate parameters γ

and to estimate the cost function Evar(γ ) = 〈ψ (γ )|Ĥtarg|ψ (γ )〉,
while the optimization of the parameters is performed
classically.

The optimization of the cost function Evar(γ ) is known to
be a difficult task [12]: only a careful choice of the ansatz is
usually expressive enough to approximately find the ground
state of Ĥtarg and, at the same time, trainable enough for the
optimization to succeed. In particular, the landscape of the
cost function may not be easy to inspect for two reasons:
the proliferation of low-quality local minima traps [13] and
the exponential flattening of the landscape by increasing the
number of qubits, a phenomenon dubbed barren plateaus [14],
which can severely hinder the scalability of the VQA scheme
beyond small system sizes amenable to classical simulations.
Barren plateaus are linked to highly expressive parameterized

quantum circuits [14–16], but they arise also in the context
of less-expressive symmetry-preserving [17,18] or equivari-
ant [19] Ansätze. A few recent studies have proposed different
approaches to limit or avoid barren plateaus, by employing
pretraining techniques [20], layerwise learning for classifica-
tion tasks [21], identity-block initialization [22], or classical
shadows [23,24].

Among the effective strategies to avoid low-quality local
minima traps, we mention approaches [8,25–27] inspired by
standard adiabatic quantum computation (AQC) [28,29], and
iterative schemes [30,31], optimizing only a subset of gate
parameters at each iteration and using this result as a warm-
start guess for the next iterative step. These techniques proved
particularly efficient for a class of variational states commonly
dubbed Hamiltonian variational ansatz (HVA) [6,7,9,18,32–
39], with an ansatz wave function of the form

|ψ (γ )〉 =
P∏

m=1

e−iγm,M ĤM · · · e−iγm,1Ĥ1 |ψ0〉. (1)

Here, m = 1 · · · P labels successive circuit layers, each in turn
composed by j = 1 · · · M alternating unitaries generated by
Hamiltonian operators Ĥj , applied to a simple initial state
|ψ0〉. This family of ansatz wave functions draws inspiration
from a digitized version of AQC (also known as digitized
quantum annealing [40,41]). Indeed, the target Hamiltonian
Ĥtarg can be linearly decomposed in terms of the generators,
so that each circuit layer resembles a Trotter split-up of the
unitary evolution generated by Ĥtarg for a small time step, with
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the crucial difference that the angles γm, j are not fixed by a
Trotter split-up in this variational setting, but rather promoted
to free variational parameters.

On a side note, this ansatz state can be regarded as a gener-
alization of the quantum approximate optimization algorithm
(QAOA) [9], originally devised for classical combinatorial
optimization problems. Remarkably, by means of appropriate
iterative schemes for constructing the layer parameters γm, j , it
is often possible to efficiently single out optimal or nearly op-
timal variational parameters that are smooth functions [30,42–
47] of the layer index m.

In this paper, we draw a connection between smooth opti-
mal solutions—obtained by means of iterative methods—and
barren plateaus, developing an efficient scheme to circumvent
this issue. Our procedure leverages the transferability of an
optimal smooth solution, obtained for small system size, to
solve the same task with a larger number of qubits, where
a direct optimization would fail due to barren plateaus. In a
nutshell, the transferred smooth solution serves as an excellent
warm start with low variational energy for the large system,
and a subsequent refinement optimization is observed to be
free of the barren plateau issue. Remarkably, even though
other (nonsmooth) solutions for the small system can be ob-
tained by standard random-start local optimization, they do
not provide any useful warm start for larger systems and,
crucially, a refinement optimization still suffers from barren
plateaus in their neighborhood.

For definiteness, we focus on the ground-state preparation
of the Heisenberg XYZ model [48] and of the antiferromag-
netic longitudinal-transverse-field Ising model (LTFIM) [49],
two ubiquitous models in quantum physics with rich phase
diagrams, whose ground-state preparation with VQAs is af-
fected by barren plateaus [17,19]. We select ansatz states in
the form of Eq. (1), by choosing the generators Ĥj in such a
way to implement model symmetries into the variational wave
functions. This leads to a restriction of the Hilbert space to
the ground-state symmetry sector, boosting trainability, and
a reduction in the number of independent Pauli correlators
needed to compute the cost function.

Models and methods. The first class of models we consider
is the spin-1/2 XYZ [48,50–52] Hamiltonian,

ĤXYZ =
N∑

j=1

(
σ̂ x

j σ̂
x
j+1 + �Yσ̂

y
j σ̂

y
j+1 + �Zσ̂

z
j σ̂

z
j+1

)
, (2)

restricting to the antiferromagnetic case �Y,�Z > 0. Second,
we examine the antiferromagnetic LTFIM [49,53],

ĤLTFIM =
N∑

j=1

σ̂ z
j σ̂

z
j+1 − gx

N∑
j=1

σ̂ x
j − gz

N∑
j=1

σ̂ z
j , (3)

with positive local fields gx, gz > 0. For both models, we
examine even values of N and we assume periodic boundary
conditions. In Supplemental Material (SM) [54], we briefly
discuss the phase diagram of these models.

Our ansatz states are in the general form of Eq. (1) with
M = 2 generating Hamiltonians only, defined to encode some
symmetries of the model. To illustrate this idea for the XYZ
case, let us split ĤXYZ into two mutually noncommuting parts
that refer to the even(2 j − 1, 2 j) and to the odd (2 j, 2 j + 1)

bonds, ĤXYZ = Ĥeven + Ĥodd, with

Ĥeven =
N/2∑
j=1

(
σ̂ x

2 j−1σ̂
x
2 j + �Yσ̂

y
2 j−1σ̂

y
2 j + �Zσ̂

z
2 j−1σ̂

z
2 j

)
, (4)

and similarly for Ĥodd. Next, in the spirit of AQC [28], imagine
an interpolating Hamiltonian connecting Ĥeven to the full ĤXYZ,

Ĥ (s) = sĤXYZ + (1 − s)Ĥeven = Ĥeven + sĤodd, (5)

with s ∈ [0, 1]. For s = 0, the ground state of Ĥ (0) = Ĥeven is
a valence-bond state of singlets on the even bonds, which is
taken as the initial state.

This suggests, in close analogy with QAOA, the following
ansatz for the XYZ ground-state wave function:

|ψ (β,α)P〉 = ÛP · · · Û2 Û1|ψ0〉. (6)

Here, (β,α)P = (β1 · · ·βP, α1 · · · αP ) are 2P variational pa-
rameters, and the unitary operators Ûm = Û (βm, αm), for m =
1 · · · P, evolve the state according to Ĥeven and Ĥodd, in an
alternating fashion,

Ûm = Û (βm, αm) = e−iβmĤeven e−iαmĤodd . (7)

As usual in the VQA framework, the goal is to minimize
the variational energy,

EN (β,α)P = 〈ψ (β,α)P|Ĥtarg|ψ (β,α)P〉, (8)

with Ĥtarg = ĤXYZ. The connection with AQC is restored in
the P → ∞ limit by setting specific values for (β,α)P, as
prescribed by a Trotter split-up [55] of the continuous-time
AQC dynamics [31].

The ansatz state lies in the same symmetry subsector of
the XYZ ground states for the following symmetries (see
SM [54]): translations by two lattice spacings T̂2 (which maps
j → j + 2), lattice inversion Î (which maps j ↔ N − j + 1),
and parity P̂b = ∏

j σ̂
b
j . Additionally, for the SU(2)-invariant

Heisenberg model, this holds true for the total spin Ŝb
tot (b =

x, y, z) and Ŝ2
tot, while for the U(1)-invariant XXZ model, only

for Ŝz
tot . As a result, the cost function in Eq. (8) requires

the evaluation of only six independent two-point correlators,
which may be further reduced to four (two) by exploiting
rotational symmetries in the XXZ (XXX) case.

The ansatz for the ground-state preparation of the LTFIM
reads as in Eq. (6), with a single layer unitary given by

Ûm = eiβmĤX e−iαm(ĤZZ−gzĤZ ), (9)

where we defined ĤZZ, ĤZ, and ĤX simply as the sum of
nearest-neighbor interactions, Pauli-z and Pauli-x operators,
respectively. In this setting, the initial state is simply the fully
polarized state along x, |ψ0〉 = |+〉⊗N , once again bearing a
direct connection with AQC state preparation for P → ∞.
The goal is to minimize the variational energy as in Eq. (8),
now with Ĥtarg = ĤLTFIM.

Incidentally, we remark that similar HVA wave functions
can be adopted for other models, encompassing, e.g., Hubbard
models and quantum chemistry applications [32], where the
ansatz form would still be given by a Trotter split-up of a
digitized quantum annealing evolution.

The checkerboard structure in terms of local unitary gates
of the ansatz in Eqs. (6) and (7) resembles the time-evolving
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block decimation (TEBD) algorithm [56,57]. However, in our
case, the unitary gates are not predetermined by the genera-
tor of the unitary dynamics, but they are globally optimized
in a variational setting. Nonetheless, a natural interpretation
in terms of light-cone spreading of quantum correlations
emerges for both of our ansatz wave functions (see SM [54]).
As a main consequence, the whole cost-function landscape,
once rescaled by the system size N , becomes independent of
N itself for N > ÑP, where ÑP = 4P + 2 and ÑP = 2P + 1
for the XYZ and the LTFIM, respectively.

Results. In this work, we adopt an iterative interpolation
scheme (INTERP) [30,31] which was originally formulated
for standard QAOA applied to classical optimization prob-
lems. Here, we apply this heuristic to more general HVA
wave functions as in Eq. (1), with the goal of quantum
many-body ground-state preparation. Essentially, the idea is
to perform a sequence of local optimizations for increasing
values of P, each of them starting from an educated guess
that is iteratively updated, by interpolating on the optimal
parameters found at the previous step. Additional details
on this algorithm are reported in the SM [54], where we
also provide numerical evidence that both XYZ and LTFIM
ground states can be efficiently prepared across their phase
diagrams. The code for numerical simulations is written
with QISKIT [58] (using as classical optimizer the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B)
algorithm [59]).

In practice, one applies such iterative methods for a
given system size N up to P layers, eventually find-
ing a set of optimal variational parameters, (β∗,α∗)|P,N =
(β∗

1 · · · β∗
P, α∗

1 · · ·α∗
P ). Remarkably, the components of the two

vectors β∗, α∗ are usually smooth functions of the layer index
m = 1 · · · P. For this reason, we dub them smooth solutions.
This is consistently observed in all phases of our models,
as shown in Fig. 1 at the critical point of XXZ (Heisenberg
model) and close to the critical line of the LTFIM [49]. On
top of that, we note that these smooth optimal curves are
qualitatively similar for different system sizes. Inspired by
this observation, we verify numerically that smooth optimal
solutions (β∗,α∗)|P,NG —obtained by applying INTERP to a
small-size system with dimension NG up to a certain value
of P—can be transferred to solve the same task for a larger
number of qubits, thus providing an effective educated guess.
In the following, we will always indicate with NG the “guess”
size used to obtain the smooth optimal solution, which will be
eventually transferred to a larger system with N > NG lattice
sites. Unless otherwise stated, we set NG = 8. In order to
estimate the effectiveness of our transferability protocol, we
define the residual energy as

εN (β∗,α∗)|P,NG = EN (β∗,α∗)|P,NG − Emin
N

Emax
N − Emin

N

, (10)

where EN (β∗,α∗)|P,NG is the cost function in Eq. (8) for a
system of size N , evaluated at fixed variational parameters
(β∗,α∗)|P,NG , while Emin

N (Emax
N ) is the ground-state (maxi-

mum) exact energy for such a size N . In Fig. 2, we plot
this quantity for different points of the phase diagram of our
models: strikingly, smooth optimal curves obtained for a small

FIG. 1. Smooth optimal parameters (β∗, α∗)|P,N =
(β∗

1 · · · β∗
P, α∗

1 · · · α∗
P ) obtained with INTERP (see main text),

plotted vs the rescaled index m̃ ≡ (m − 1)/(P − 1) in the x-axis
range [0,1]. Results are shown for the Heisenberg model (�Y = 1,
�Z = 1) (left) and the LTFIM (gx = 1, gz = 1) (right) for P = 16,
and they are qualitatively similar for different sizes N . These
solutions are stable by further increasing the number of layers, P.
Similar smooth solutions can be found for different points of the
phase diagram.

system provide an excellent educated guess for the ground-
state preparation up to N = 24 lattice sites.

A few comments are in order. The residual energy is usu-
ally a good proxy for the fidelity with the ground state. It
may roughly evaluate at ≈0.5 when computed at a random
point in the energy landscape, while its values obtained via
transferability are remarkably low. A detailed study on the
fidelity of transferred solutions with target ground states is
carried out in the SM [54]. Second, the transferability of this
class of smooth solutions found via INTERP holds true for
larger values of P; in contrast, other equal-quality nonsmooth
solutions for the small NG-size system—obtained by means
of random-start local optimization—do not provide any useful
guess for the ground-state preparation of the same model with
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FIG. 2. Residual energies [Eq. (10)] for different system sizes us-
ing parameters from a small-size “guess system” (NG = 8) computed
for different flavors of the two models. We show the transferability of
smooth optimal solutions (β∗, α∗)|P,NG with P = 10 for XYZ models
(left) and the LTFIM (right).
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FIG. 3. Barren plateaus in the whole search space (data denoted
as “Global”), contrasted with a qualitatively different trend in the
ε-neighborhood of the transferred smooth solution (β∗, α∗)|P,NG , ob-
tained with INTERP for a small system size NG = 8 (data denoted as
“Smooth”). Here, we focus on a single partial derivative with respect
to θ = α1 [see Eqs. (7) and (9)] of the cost function in Eq. (8),
rescaled in terms of the few independent correlators (see SM [54])
and dubbed C. We plot the sample variance of the partial derivative
as a function of the number P of HVA layers in the circuit. We fix
ε = 0.05 and a batch of 1000 samples for each value of P and N .

a larger number of qubits (see SM [54]). Finally, we tested the
existence of smooth curves and their transferability to a larger
number of qubits, also for the TFIM: our results are confirmed
up to much larger sizes (see SM [54]) by leveraging a standard
mapping to free fermions [60–63].

Despite the good educated guess provided by the trans-
ferability of smooth solutions, one may be tempted to refine
the ground-state approximation for the N-size model, e.g., by
aiming at a target value of fidelity such as 99.9%. However,
for such large sizes, both the XYZ models and the LTFIM
are affected by barren plateaus [17,19]. Therefore, any local
optimization starting from a random point in the parameter
space is doomed to fail on a realistic quantum device due to
vanishingly small gradients requiring an exponential scaling
of resources [14,64]. Remarkably—and this is the main re-
sult of our paper—we find that transferred smooth optimal
solutions stand out in this respect: in their neighborhood, the
landscape does not suffer from small gradients and a local
optimization would succeed.

Figures 3 and 4 illustrate this important point. For con-
ciseness, we show data for (�Y = 1, �Z = 1) and (gx = 1,
gz = 1), but our results extend to other points of the phase
diagrams. Specifically, in Fig. 3, we plot the variance of
a representative gradient component of the cost function in
Eq. (8), as customary in studies on barren plateaus [14,15,18],
which is sampled at random in the whole landscape. As ex-
pected, its exponential decay with the system size N confirms
the presence of barren plateaus. However, if we sample the
same gradient component only in a neighborhood of radius
ε of the transferred smooth solution, its magnitude does
not show any appreciable exponential decay. This result is
clearly observed for both classes of models under exam and
it is further evidenced in Fig. 4, showing data for a fixed

FIG. 4. Same quantity as in Fig. 3, here plotted vs the qubit num-
ber for a fixed circuit depth P = 40 (P = 100) for the Heisenberg
model (LTFIM). The labels “Global” and “Smooth” refer to the same
data of Fig. 3. We denote with “Local ε” a sampling performed in an
ε-region centered around a random point. Data are averages over 20
random points (generated independently for each value of N) with
ε = 0.05. We use a constant batch size of 1000 samples, for each
N and sampling region. A clear trend appears: the neighborhood
of a random point (or that of a transferred nonsmooth solution; see
SM [54]) exhibits the same exponential decay as the whole space,
whereas this is not present in the neighborhood of the transferred
smooth solution.

value of P: the exponential decrease of the gradients in the
whole search space is equivalent to that in a neighborhood of
radius ε of any given set of variational parameters, with the
exception of the smooth transferred curve (β∗,α∗)|P,NG . Once
more, also this local-landscape property does not extend to
the neighborhood of other transferred nonsmooth solutions,
which neither provide a useful educated guess for the large
system nor solve the barren plateau issue for a local optimiza-
tion. This is shown in the SM [54], along with data supporting
the effectiveness of a refinement optimization, performed
classically in the neighborhood of the transferred smooth
curve.

Incidentally, for each value of N , the sample variance in
the whole search space saturates after a certain circuit depth
P, as argued in [14,64] and clearly shown in Fig. 3. This
fact is usually linked to the ansatz parameterized quantum
circuit approaching an approximate 2-design [65–67] on its
symmetry subspace [17].

Finally, our findings pave the way to an improved scheme
to prepare the ground state of this class of many-body quan-
tum systems with a large number of qubits: the smooth
optimal curves can be found classically for a small system and
then transferred to solve the same task for larger N , beyond
the reach of classical simulations. The quantum device would
only be needed for a refinement optimization, in the absence
of barren plateaus.

Conclusions. We tackled many-body ground-state prepa-
ration via problem-inspired VQAs and provided extensive
numerical evidence on the transferability of a class of
optimal smooth solutions—obtained by means of iterative
schemes for a small number of qubits—to solve the same
task for larger system sizes. Remarkably, these solutions
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provide an excellent educated guess for the ground-state wave
function, as opposed to other solutions that can be easily
obtained for small systems without appropriate iterative
schemes. These results are confirmed up to larger sizes for the
TFIM.

Our procedure overcomes the well-known (and not yet
fully addressed) difficulties related to the highly nontriv-
ial structure of the variational energy landscape. On top of
avoiding low-quality local minima traps daunting random-
start local optimization [13,30], we provided evidence of a
remarkable feature of this class of solutions: the cost-function
landscape is observed to become free of barren plateaus in
their neighborhood, potentially allowing for further effective
refinement optimizations with a quantum device on a classi-
cally obtained smooth guess.

This work paves the way to a plethora of novel exciting
research directions. Our effective way of approaching ground-
state preparation for larger many-body systems may allow one
to deal with two-dimensional lattice models, ranging from
spin systems to Hubbard-like systems, with or without dis-
order. Furthermore, an interesting proposal would be to test
our scheme in the presence of noise and for the mitigation of
noise-induced barren plateaus [68].

On a theoretical side, it might be interesting to analyt-
ically prove the transferability and landscape properties of
smooth solutions found via INTERP. Previous numerical and
analytical results on reusable optimal variational parame-
ters exist, either among typical instances of a problem or
across different system sizes [43,69–75]. These “parameter

concentration” results are usually limited to shallow circuits,
while here we focus on smooth optimal solutions for large
values of P, providing a link between solution transferability
and the local absence of barren plateaus.

Interestingly, the existence of smooth QAOA schedules
has also been described in the context of a theoretical char-
acterization of optimal QAOA protocols [76,77] and in a
generalized variational setting inspired by counterdiabatic
(CD) evolution [45]. We conjecture that the transferability
property of smooth optimal curves might be related to non-
linear adiabatic schedules, similar, e.g., to the one obtained
analytically in the simpler setting of a Grover search [78]. We
speculate that a VQA, endowed with a Trotter-inspired ansatz
as in Eq. (1) and optimized by means of iterative techniques,
could be able to single out these solutions, possibly showing
a mild dependence on the system size.

Finally, our scheme could be directly tested with near-term
technology on real quantum devices, beyond the size limits of
classical computation.
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