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Space-time-resolved quantum field approach to Klein-tunneling dynamics across a finite barrier
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We investigate Klein tunneling through finite potential barriers with space-time-resolved solutions to rela-
tivistic quantum field equations. We find that no particle actually tunnels through a finite supercritical barrier,
even in the case of resonant tunneling. The transmission is instead mediated by modulations in pair production
rates, at each edge of the barrier, caused by the incoming electron. We further examine the effect of the barrier’s
width on the numbers of produced pairs in the fermionic case (characterized by saturation) and in the bosonic
case (characterized by exponential superradiance). This work paves the way to precise studies of the radiating
dynamics of supercritical barriers, and could be applied to certain analogs of Klein tunneling observed in systems
modeled by relativistic wave equations.
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Vacuum pair production in a strong supercritical external
field is one of the basic elementary processes predicted by
relativistic quantum theory [1,2]. Understanding its precise
dynamics is important not only for fundamental reasons, but
also due to current efforts aiming to experimentally observe
pair production in the intense laser facilities currently un-
der construction [3,4]. To this end, several works employing
different approaches have examined field configurations that
would optimize pair production [5–8].

A related aspect concerns the interaction of a charged par-
ticle with the pair production process as the particle scatters
on an inhomogeneous supercritical field. This is well known
to give rise to “Klein tunneling” [9], that in a first quantized
framework appears as undamped propagation inside the po-
tential region. The precise dynamics of this interaction has
remained controversial even in the case of a simple elec-
trostatic step, a situation giving rise to the so-called Klein
paradox [10]. Time-independent first quantized approaches
are generally misleading [11], but even stationary quantum
field theory (QFT) methods failed to reach a consensus (e.g.,
the choice of asymptotic “in” and “out” fields [12–15]). A
numerical space-time-resolved QFT approach [16] was instru-
mental in computing the precise dynamics of the interaction
between the incoming particle and the pair production for a
step, leading to a reinterpretation of the fermionic Klein para-
dox in terms of the Pauli blockade of vacuum pair production.

For a particle impinging on a supercritical electrostatic
barrier of finite width, the computation of the time-dependent
pair creation rates and of the dynamics inside the barrier is ex-
pected to be more involved; in particular the asymptotic field
operators only contain particles, which has led some authors
[9,17] to conjecture that a symmetric supercritical barrier once
formed cannot radiate. While genuine Klein tunneling has yet
to be observed for elementary particles, the physics encapsu-
lated in the first quantized Dirac equation has been used as
an effective model in other areas, leading to the experimental
observation of Klein tunneling in graphene heterojunctions

[18], with photonic crystals [19], trapped ions [20], or cold
quantum gases [21].

In this Letter, we implement a time-dependent space-
resolved QFT treatment in order to compute the detailed
dynamics of Klein tunneling for fermions and bosons across
a finite barrier. In the fermionic case, the calculations will
lead us to propose a mechanism accounting for the undamped
transmission characterizing Klein tunneling: Due to the ex-
change symmetry, pair production appears only as a transient
effect when the field is turned on. A particle incoming on the
saturated barrier then induces modulations in the antiparticle
density which in turn triggers production of the transmitted
particle. Hence no particle actually tunnels inside the barrier,
even in the resonant case of nearly full transmission. In the
bosonic case, a barrier amplifies pair production, with the
antiboson charge oscillating inside the barrier increasing ex-
ponentially each time it scatters on an edge.

The barrier is modeled as a one-dimensional background
external field with negligible backreaction [22]. The fermionic
pair production rate is obtained from field operators � ex-
panded as

�(x, t ) =
∫

d p[bp(t )φp(x) + d†
p (t )ϕp(x)]. (1)

φp and ϕp are respectively the positive and negative en-
ergy spinor eigenfunctions of the field-free Dirac Hamil-
tonian H0 = −ih̄cαx∂x + βmc2 with eigenvalues ±|Ep| =
±

√
p2c2 + m2c4 (α and β are the usual Dirac matrices [23], m

the electron mass, and c the light velocity), bp(t ) [respectively
dp(t )] is the annihilation operator for a particle (respectively
antiparticle), and b†

p(t ) and d†
p (t ) are the corresponding cre-

ation operators obeying the usual commutation relations, i.e.,
the only nonzero equal time anticommutators are [bp, b†

k]+ =
[dp, d†

k ]+ = δ(p − k). The time dependence of the creation
and annihilation operators is obtained by noting that � obeys
the Dirac equation with the full Hamiltonian H = H0 + V (x),
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where V (x) is the background potential. It then follows that
[24]

bp(t ) =
∫

dk[Uφpφk (t )bk (0) + Uφpϕk (t )d†
k (0)], (2)

d†
p (t ) =

∫
dk[Uϕpφk (t )bk (0) + Uϕpϕk (t )d†

k (0)]. (3)

The time-evolved amplitudes, defined by

Uφkϕp (t ) ≡ 〈φk| exp (−iHt/h̄)|ϕp〉, (4)

are computed numerically on a discretized space-time grid
by relying on a split operator [25] method: The evolution
operator is split into a kinetic part propagated in momentum
space and a potential-dependent part solved in position space
[26].

Let us first consider vacuum pair production in a
quasirectangular potential barrier of width L; for definiteness
we take V (x) = V0

2 {tanh[(x + L/2)/ε] − tanh[(x − L/2)/ε]},
where V0 > 2mc2 is supercritical and ε is a smoothness pa-
rameter. The electron density is obtained from the vacuum
expectation value ρel(x, t ) = 〈0|�†

el(x, t )�el(x, t )|0〉, where
�el is the positive energy part of Eq. (1). The positron density
ρpos(x1, x2, t ) is obtained similarly from �pos defined as the
positive energy part of the field conjugate to the one given
by Eq. (1) [27]. It should be stressed that such densities (in
particular the positron densities) represent particle densities
in a field-free basis [28]. This corresponds to an experiment in
which the particles would be counted after switching off the
field instantaneously.

Since a potential of the form V (x) typically creates two
pairs simultaneously (one at edge of the barrier, where the
field is highly inhomogeneous), it is particularly instructive
to compute the two-particle density for a joint electron or
positron creation at x1 and x2,

ρa(x1, x2, t ) = 〈0|�†
a (x1, t )�†

a (x2, t )�a(x2, t )�a(x1, t )|0〉/2!,
(5)

where “a” stands for pos or el. Note that by construction
ρ(x1, x2) also counts the number of multiple pairs created on
the same edge of the barrier, although the probability for mul-
tiple pair creations at a single field inhomogeneity is expected
to decrease exponentially as the multiplicity number increases
[29,30] (but see Ref. [31]). The two-particle density (5) can be
shown to be written as [26]

ρa(x1, x2, t ) = ρa(x1, t )ρa(x2, t )/2 − ρ int
a (x1, x2,t ), (6)

indicating that the number of created pairs is affected by
the exchange interaction terms encapsulated in ρ int. This is
portrayed in Fig. 1 for the positron density inside the barrier.
As the positrons produced at each edge propagate towards the
opposite side, ρ int

pos becomes of the same order of magnitude
as the factorized density ρpos(x1)ρpos(x2), so that the exchange
interaction significantly reduces the number of couples inside
the barrier.

The number N (t ) of created positron-electron pairs, ob-
tained by integrating either ρpos(x, t ) or ρel(x, t ) over all space
(i.e., essentially inside the barrier for ρpos, outside for ρel) is
shown in Fig. 2(a) for different barrier widths. N (t ) is seen
to saturate after a transient time that depends on the barrier
width: At short times the number of produced pairs increases

FIG. 1. (a) The spatial density ρ(x1, x2) of positron couples at
positions x1 and x2 created inside the barrier at time 2×10−3 ex-
pressed in atomic units (a.u., defined by h̄ = m = 1, c = 137.036,
where m is the electron mass); the barrier has width L = 0.2 a.u.,
height V0 = 3mc2, and the smoothness has been set to ε = 0.3/c.
(b) Same as (a) but without the exchange interaction terms in the
computations [see Eq. (6)].

similarly to a step potential, but a fermionic symmetric barrier
will not radiate after this transient period, as expected from
the asymptotic behavior of the evolution amplitudes Uφkϕp (t )
[32].

We can now examine how an electron colliding on the
supercritical barrier interacts with the fermionic pair produc-
tion process. We will consider resonant Klein tunneling, that
has been widely investigated in the condensed matter analog
of quasiparticles undergoing nearly full transmission through
electrostatic barriers in graphene [33]. The field operators
are again given by Eqs. (1)–(3), but the spatial densities are
obtained from the expectation values

ρa(x) = 〈ζ |�†
a (x)�a(x)|ζ 〉, (7)

where |ζ 〉 = ∫
d pζp(p0, x0)b†

p(0)|0〉 represents the initial
electron wave packet centered at x0 with mean momentum p0;
for definiteness we take ζp(p0, x0) ∝ e−�2(p−p0 )2−ipx0/h̄ corre-
sponding to a Gaussian wave packet of width �, similarly
to previous works dealing with the Klein paradox due to a

FIG. 2. (a) Time dependence (in a.u.) of the total number of
created electron-positron pairs N (t ) for a fermionic barrier with the
parameters given in Fig. 1 except for the width L, indicated in the
legend. The rate vanishes except in the limit of a potential step
(note that in order to compare the step and finite barrier cases,
the curve shown for a step has been multiplied by two). (b) The
total number of created boson-antiboson pairs Nbo(t ) for a massive
bosonic field obeying the Klein-Gordon equation interacting with
a background potential barrier with V0 = 3mboc2, ε = 0.3/c, and
varying widths; mbo is the boson mass which renormalizes the atomic
units, so that L and t are given in units of λ = mbo h̄/c and λ/c,
respectively.

L060202-2



SPACE-TIME-RESOLVED QUANTUM FIELD APPROACH TO … PHYSICAL REVIEW A 106, L060202 (2022)

potential step [16,34]. The resonant barrier condition [35](
p2

0 + V 2/c2 − 2V
√

p2
0/c2 + m2

)1/2

= kπ

2L
(8)

(which holds for a rectangular barrier, corresponding to the
potential slope parameter ε → 0) is obtained by maximizing
the transmitted Dirac current relative to the incident one (k
is an integer). In the first quantized approach, this means
that the transmission amplitude T (p0) for stationary solutions
of the Dirac equation is unity, so that if the wave packet is
sufficiently narrow in momentum, it will nearly entirely tunnel
through the barrier [11].

However, in the present more fundamental second quan-
tized framework, the incoming electron interplays with the
particles created by the supercritical potential. The electronic
spatial density given by Eq. (7) can be shown [26] to take the
form, by using Eqs. (1)–(3), ρel = 〈0|�†

el�el|0〉 + ρ
ζ

el, where

ρ
ζ

el(x) =
∣∣∣∣
∫

d pdkζ (p)Uφkφp (t )φk (x)

∣∣∣∣
2

(9)

gives the evolution of the wave-packet density. Inside the bar-
rier the electron density vanishes (hence there is no electron
wave packet) and the positron density reads

ρpos(x, t ) = 〈0|�†
pos(x, t )�pos(x, t )|0〉 − ρζ

pos(x, t ), (10)

where the last term

ρζ
pos(x) =

∣∣∣∣
∫

d pdkζ (p)Uϕkφp (t )ϕk (x)

∣∣∣∣
2

(11)

appears as a correction to the vacuum positron density due to
the incoming electron scattering on the supercritical potential
[26].

In the case of resonant Klein tunneling, the barrier needs to
be narrow relative to the wave-packet width, so this decrease
will be small, but it is nevertheless crucial in order to modulate
pair production at the right edge of the barrier. Indeed, most
of the wave packet will typically reach the barrier at times
for which the pair production rate becomes negligible. The
mechanism invoked in Ref. [16] explaining the Klein paradox
for a supercritical step as the result of Pauli blockade should
be parsed differently for a finite barrier since a sizable part
of the wave packet will typically reach the barrier at times
for which the pair production rate vanishes. A mechanism
consistent with our computations could be the following: (i)
The incoming electron annihilates a barrier positron [36],
depleting the positron density, thereby creating a dip. (ii) The
dip propagates inside the barrier; physically, the positrons’
motion is opposite to that of the dip, as the states of the
annihilated positrons become unoccupied. (iii) Upon reaching
the right edge, the dip stimulates pair production. (iv) The
created electrons at the right edge of the barrier account for
the recreated transmitted wave packet. Note that the depletion
instability undergoes multiple reflections inside the barrier,
with successively decreasing amplitudes [11]. Hence when
the positron density dip reaches the left edge, pair produc-
tion is stimulated and the resulting created electronic charge
contributes to the small reflected wave packet.

Numerical results illustrating resonant Klein tunneling are
given in Fig. 3. Each panel shows snapshots at different

FIG. 3. Dynamics of Klein tunneling: An electron wave packet
initially (t = 0) centered at x = −3 a.u. to the left of the supercrit-
ical barrier is launched with mean momentum p0 = 100 a.u. The
barrier (V0 = 3mc2, ε = 0.3/c) lies in the region −0.0474 < x <

0.0474 a.u., chosen so that the width L obeys the resonance condition
[Eq. (8)]. (a) Snapshot of particle densities at t = 10−2 a.u., as the
electron wave packet (dotted orange line) approaches the barrier. The
solid black line gives the total electron density (due to pair creation
as well as the wave packet). The positron density lies outside the
scale of the main plot and is shown in the inset (thick gray line);
the thin blue line is the contribution of the modulations due to the
interaction between the wave packet and the barrier. (b) Snapshot at
t = 3×10−2 a.u. as the wave packet reaches the barrier. (c) Zoom
around the barrier region at t = 4×10−2 a.u., as the electron wave
packet is reformed at the right edge of the barrier; note there is no
electron density inside the barrier, but the positron modulations (thin
line in the inset) are of greater amplitude. (d) At t = 5×10−2 a.u.
most of the wave packet (dotted orange line) is “transmitted” to the
right, while a smaller fraction is reflected.

times. By the time the initial electron wave packet [Fig. 3(a)]
reaches the barrier, the pair production rate has already de-
creased [Fig. 3(b)]. A small part of the electron wave packet
is reflected, while the transmitted part annihilates barrier
positrons, thereby modulating the positron density inside the
barrier [Fig. 3(c)]. Note there is no electron inside the bar-
rier (the electron density is vanishingly small). The electron
wave packet is then reformed at the right edge of the barrier
[Fig. 3(d)] by pair creation due to the positron modulation.
Hence there is no tunneling in Klein tunneling, but a change
in the pair creation rate at both edges of the barrier caused by
the incoming electron. Another example detailing the barrier
dynamics for a wider and parsing each step of the proposed
mechanism is shown in Fig. 4.

The present QFT formalism can be applied similarly to
spin-0 bosons obeying the Klein-Gordon equation. The field
operators in Eqs. (1)–(3) now obey commutation rules, and
the basis functions φp and ϕp are two-component solutions
of the free Klein-Gordon equation expressed in Hamiltonian
form [10]. As is well known, bosons scattering on a super-
critical potential step give rise to superradiance [37], whereby
the bosonic amplitude reflected from the step is larger than
the incoming one [38] (compensated inside the step by the
creation of antibosonic amplitude). The same phenomenon in
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FIG. 4. The transmission mechanism detailed in the text is
illustrated for an electron wave packet colliding on a smooth rect-
angular barrier (region between dashed lines, x in a.u.). The ratio
ρel (x, t )/ρB el(x, t ) is shown in black at different times (ρel is the
total electron density and ρB el the electron density in the absence
of an incoming wave packet). The corresponding positron number
density ratio ρpos(x, t )/ρB pos(x, t ) is shown in gray (online blue). At
t = 2×10−2 a.u., the front tail of the electron wave packet reaches
the left edge of the filled barrier. This creates a dip in the positron
density, visible at t = 3×10−2 a.u. The dip propagates inside the
barrier (t = 4×10−2 a.u.), and reaches the right edge, stimulating
pair production. The additional created electron excitations (rela-
tive to vacuum polarization) to the right of the barrier are seen at
t = 5×10−2 a.u. to correspond to the front tail of the wave packet
that appears as having been transmitted.

the case of a supercritical barrier is expected to lead to an
exponential rate of pair creation, as the antibosons created at
one edge of the barrier undergo multiple scatterings inside the
barrier. Our numerical results, shown in Fig. 2(b) for increas-
ing barrier widths, confirm this behavior. For a fixed potential,
the momentum distribution of the ejected bosons peaks at
(V 2

0 − 4m2c4)1/2/2c, so the creation rate only depends on the

time taken by the antibosons to travel from one edge to the
other. A similar self-amplification takes place in supercritical
wells [39] and can be traced back to the divergent behavior
of the scattering amplitudes when interacting with a field
inhomogeneity [40].

Note that in the case of bosonic Klein tunneling, the in-
coming boson will also undergo an amplification by multiple
scattering inside the barrier; the total antiboson (ab) density
inside the barrier takes the form

ρab(x, t ) = 〈0|�†
ab(x, t )�ab(x, t )|0〉 + ρ

ζ

ab(x, t ), (12)

similar to Eq. (10) but with the sign of the modulation inverted
relative to the fermionic case. The incoming boson now en-
hances pair production when colliding at the left edge of the
barrier. The modulation caused by the wave packet, described
by the term ρ

ζ

ab in Eq. (12), propagates inside the barrier,
amplifying the charge with each collision on a barrier edge
on top of the antibosonic charge produced by the field.

To sum up, we have investigated Klein tunneling across
a supercritical barrier employing a space-time-resolved QFT
approach. While this approach does not aim at quantitative
predictions for a specific future experiment, the present non-
perturbative theoretical framework provides an understanding
of the elementary processes underlying not only Klein tunnel-
ing, but also the radiating properties of the barrier. Concerning
the latter, we recovered the expected asymptotic behavior for
pair production by a symmetric background potential [9],
but have also further unraveled the detailed time-dependent
dynamics and correlations for shorter times. Our proposed
mechanism describing the undamped tunneling feature when
a particle impinges on a finite barrier goes beyond the results
obtained previously [16,24] concerning the resolution of the
Klein paradox for a potential step, in that the mechanism ac-
counts for particle transmission. Additional refinements, such
as the inclusion of the Coulomb repulsion, will be necessary
in order to achieve a definitive understanding of tunneling in
supercriticial potentials.
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